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PREFACE TO THIRD EDITION

Soox after the lamented death of Prof. Preston, at the early age
of forty, it became necessary to make arrangements for the
publication of the third edition of this work. Accordingly, Mrs.
Preston placed in my hands a copy of the second edition,
annotated by her late husband, together with all his scientific
manuseripts.  Greatly to my regret, I found that the author had
not made any detailed preparations for the new edition. I know
that he had contemplated many important changes in the
methods of exposition, but of these I can find no trace among his
papers, nor can I, from memory, piece them together in any con-
sistent way. He was never in the habit of writing elaborate
notes, and, during the last few years of a busy life, his leisure
time was fully occupied with his brilliant researches on the
electro-magnetic phenomena of radiation in a strong magnetic
field. This investigation he prosecuted with untiring activity
until it was rudely interrupted by his last illness.

I have therefore been oblized to retain the methods of the
last edition, but they are now supplemented by illustrations and
examples worked up from the author’s manuseripts. These notes
are printed without comment, while the additions I have myself
made are distinguished by square brackets. The liberties I have
taken with the text are few, and, as a rule, so trivial that it
would have seemed pedantic to distinguish them in every case.

I am under the greatest obligations to Mrs. Preston for her
assistance in the preparation of the new index, and for the great
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care she has taken in reading the proofs. To Prof. Bergin and
Prof. Thrift, F.T.C.D., my best thanks are also due. They have
not only read the proofs, but have given me valuable advice in
matters of uncertainty. I believe the accuracy of the book will
be found to be considerably increased owing to the thorough
revision it has undergone.

C. J. JoLy.

TrE OBsERVATORY, DMINSINE,
1st Mgy 1901,



PREFACE TO FIRST EDITION

THERE is perhaps no greater impediment to the advancement of
scientific research than the want of an easy channel of communi-
cation with all the most recent discoveries. Many of the most
valuable of these are hidden in the transactions of learned societies,
or scattered in scientific periodicals, published in several languages,
and in various parts of the world, so as to be practically in-
accessible to many who might otherwise become well qualified to
extend the bounds of natural knowledge.

In no branch of Experimental Physies is the English student
placed at such a disadvantage as in the Theory of Light, for
although we possess some excellent elementary text-books, yet the
field covered by them is so limited that they fall far short of the
requirements of all who wish to know how far investigation has
been carried, or in what directions it remains to be pursued, and
of these which are the most urgent and most likely to be attacked
with success.

Influenced by these considerations, I have been induced to
undertake the present work, with the hope of furnishing the
student with an accurate and connected account of the most im-
portant optical researches from the earliest times up to the most
recent date. I have, however, avoided entering into the more
complicated mathematical theories, yet the mathematical theory, in
its most elementary form, as well as the experiments on which it
is founded, will be found in sufficient detail to enable the student,
furnished with the necessary knowledge of higher mathematies,
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to attack at once with profit the original memoirs and theories
recently elaborated by various British and foreign writers.

Thus, although a large part of the book is suited to the read-
ing of junior students, yet I hope it will be found sufficiently full
to meet the requirements of those who desire a more special
acquaintance with the subject ; and to render it more really useful
in this respect I have, as far as possible, given reference to
original memoirs and other sources whence fuller information
may be derived.

The text contains, in addition to the physical theory, a de-
tailed account of the most important experiments and physical
measurements, such as the determination of the velocity of light,
wave lengths, refractive indices, ete.; and in some of the funda-
mental experiments, such as those of Newton on the refrangibility
of light and coloured rings, I have given extracts from the
original accounts, being fully convinced that in power and per-
spicuity they far surpass any second-hand digest. In this manner
I have endeavoured to direct attention to the great importance
of Newton’s work, and to show that in this department of scientific
research also he stands almost without a rival.

Some novelty of treatment will, I hope, be recognised in the
extensive application of graphic methods to the solution of pro-
blems in diffraction. The calculation of the intensity at the
various points of a diffraction pattern by the ordinary methods -
presents considerable difficulty and labour, but by the method
employed in the third section of Chapter IX. almost the whole
theory of diffraction is brought within the reach of persons fur-
nished with the most elementary mathematical knowledge, and
it might now reasonably form part of the course of very junior
students,

An account of the recent, and justly celebrated, experiments
of Professor Hertz will be found in the last chapter, together with
the mathematical theory of the electric vibrator and the radiation
of electromagnetic waves. The importance of these experiments
it would be diffieult to over-estimate, in so far as they teach us to
refer electric and electromagnetic phenomena to the intervention
of the same all-pervading medium, which forms the vehicle by
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which energy passes through space from one body to another,
which brings us light "and heat from the sun, and to which we
now look for a knowledge of the process by which one body is
enabled to attract another, as well as for an explanation of the
ultimate constitution of matter itself.

In conclusion, I wish to return my best thanks to Professor
Wm. Booth (Bengal Education Service), who has been good enough
to read through the proofs and make several valuable suggestions.
A considerable portion of the proof has also been read by my
friends My. M. W. J. Fry, E.T.C.D., and Mr. C. J. Joly, so that I
trust the work will be found free from any errors or obscurities
of a serious nature. To I'rofessor G, I, FitzGerald, F.R.5., F.'T.C.D.,
I am indebted not only for the reading of the proofs, and the most
generous assistance and advice, but also for that teaching to which
I mainly owe my knowledge of Experimental I’hysics.

22 TrixiTy COLLEGE,
Dverix, July 1890,



PREFACE TO SECOND EDITION

[~ this edition the text has been revised throughout, and angmented
by more than one hundred pages of new matter, in conjunction
with which several new diagrams have been introduced. Although
these additions are such as to increase the value of the book con-
siderably, yet I must express my regret that, owing to the pressure
of other engagements, I have been unable for the present to com-
plete my original design, namely, to bring all parts of the work
up to the standard demanded by the present state of science.

Such alterations and additions as I have been able to make
are located chiefly in those portions which relate to the rectilinear
propagation of light, wave reflection and refraction, and the applica-
tion of graphic methods to the solution of diffraction problems.
More detail has been introduced in some places, especially i the
chapter relating to the veloecity of light, which now contains an
account of Professor Newcomb’s valuable experiments.

To my friend Mr. C. J. Joly, F.T.C.D., I am again indebted for
his great kindness in assisting me with the proofs.

Jereh 1805,
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CHAPTER 1
INTRODUCTORY AND HISTORICAL

SECTION [.—EARLY HIsTORY

1. Opties—Definition and Division of the Subjeet.—The science
of Optics is that branch of natural philosophy which treats of the
nature and properties of light and vision. In its domains we meet
with a multitude of experiments of exquisite beauty, and investi-
gations which afford ample scope for all the refinements of modern
mathematical analysis. It also supplies us with instruments of the
highest utility both in the pursuit of scientific inquiry and in the
common enjoyments of life. There is accordingly no department of
science more deserving of our study, whether we consider the beauty
or the multiplicity of its phenomena. ¢

The subject was usually divided by the older writers into Cafoptries
and Diopfrics, which embraced the phenomena arising from reflection
and refraction vespectively. These terms have now fallen into disuse,
and two branches of the subject have been developed under the titles
(Geomefrical Optics and Physical Optics.  The former is a purely ideal
structure built on the assumed truth of the laws of reflection and
refraction, with the supposition that light travels through isotropic
substances in right lines or rays. It is consequently a mathematical
development of the two laws by which it assumes the rays to be
controlled, and any inquiry into the physical cause or nature of
light is ontside its province. This inquiry comes within the scope of
physical optics, the aim of which is to determine the physical processes
concerned in the production and propagation of light, and to account
for them by dynamical principles.  Physiological Optics deals with the
phenomena of vision or the sensation produced by light falling upon
the retina of the eye.

2. Ancient Use of Metallic Mirrors and Burning Glasses.—The

ancients appear to have been wholly ignorant of the theory of optics,
B



2 EARLY HISTORY CHAP. 1

and to have been exceedingly slow in advancing the construction of
optical instruments, almost all the refinements of the subject having
been originated and developed within the past three centuries. Yet it
cannot be doubted that some of the more striking of the fundamental
phenomena were observed and studied in the earliest times of civilisa-
tion.  If the physical theories of light and vision were subjects too
profound for their investigation, they could not fail to acquire some
knowledge of the laws of the reflection of light and the formation of
images. The attention of the most careless observer must have been
attracted with wonder to the image of himself depicted in still water :
and the reflected landscape, or the image of a few bushes on the
margin of a lake might have afforded to the humblest inquirer an
assemblage of observations from which the general laws of reflection
could be easily inferred.

Metallic mirrors, and even glass, seem to have been manufactured
long before any of the speculations of the ancient philosophers were
recorded.  They are distinetly mentioned in the Old Testament
(Exodus and Job). The invention of burning glasses seems to have
speedily followed the art of glass-making. Aristophanes! mentions
them as early as 424 B.C.

3. Pythagoras, Empedocles, Plato, and Aristotle.—The sources
from which light is most copiously derived are the sun, stars, and terres-
trial bodies undergoing combustion or heated to incandescence. Such
bodies we say ave self-luminous or simply luninous, while non-luminous
bodies are those which are not visible of themselves, but only when
illuminated, that is, when in the presence of a luminous body. The
former class we say emit light, while the latter do not. We thus
distinguish between luminous and illuminated bodies,

Simple as it may appear to us to regard a luminous body as the
source of some influence, which, acting on the eye, excites the sense
of sight, much doubt appears to have existed among those who first
investigated the subject as to whether objects become visible by means
of something emitted by them, or by means of something issuing from
the eye of the spectator. According to the opinion of Pythagoras

L Comedy of the Clouds, Act I1. (performed 424 v.0.): *° Strepsiades. You have
seen at the druggist's that fine transparent stome with which fires are kindled *
Socrates. You mean glass, do you not? Strep. Just so.  See. Well, what will you
do with that?! Sftrep. When a summons is sent to me I will take this stone, and,
placing myself in the sun, 1 will, though at a distance, melt all the writing of the
summons.” (The writing was then traced on wax spread over a solid substance. )

Pliny also mentions globes of glass, which, when held to the sun, produced com-
bustion, and Lactantius (303 A.p.) states that a glass globe, filled with water and
held to the sun, could light a fire even in the coldest weather.
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(died 540-510 m.c.) and his followers, vision was caused by particles
continually projected from the surfaces of objects into the pupil of
the eye ; while Empedocles (444 B.c.) and the Platonic school main-
tained that vision was effected by means of something emitted from
the eye itself, which, after meeting something else emanating from the
object, excited the sense of sight. In the theory of Plato! three
elements appear to have been necessary to vision. First a visual
stream of light or divine fire emitted by the eye itself. These visual
rays entered into union with the light of the sun, and the two together,
meeting with a third emanation, from the object seen, completed the

act of vision.
The doctrine of visual rays, and emission theories in general, was

1 ¢, . . and the pure fire which is within us and akin to this they (the gods)
made to flow through the eyes in a single, entire, and smooth substance, at the same
time compressing the centre of the eye so as to retain all the denser element, and
only to allow this to be sifted through pure. When, therefore, the light of day
surrounds the stream of vision, then like falls upon like, and there is a union, and
one body is formed by natural affinity according to the direction of the eyes,
wherever the light that falls from within meets that which comes from an external
object. And, everything being affected by likeness, whatever touches and is touched
by this stream of vision, their motions are diffused over the whole body, and reach
the soul, producing that perceptionwhich we call sight. But when the external and
kindred fire passes away in night, then the stream of vision is cut off ; for going
forth to the unlike element it is changed and extinguished, being no longer of one
nature with the surrounding atmosphere which is now deprived of fire : the eye no
longer sees, and we go to sleep ; for when the eyelids are closed, which the gods in-
vented as the preservation of the sight, they keep in the eternal fire.

. . . And now there is no longer any difliculty in understanding the creation
of images in mirrors and in all smooth and bright surfaces. The fires from within
and from without communicate about the smooth surface and form one image which
is variously refracted. All which phenomena arise by reason of the fire or light
about the face combining with the fire or ray of light about the smooth and bright
surfaces. And when the parts of the light within and the light without meet and
touch in a manner contrary to the usual mode of meeting, then the right appears to
be leflt and the left right ; but the right again appears right and the left left, when
the position of one of the two coneurring lights is inverted ; and this happens when
the smooth surface of the mirror, which is convex, repels the right stream of vision
to the left side, and the left to the right' (** The Dialogues of Plato,” vol. ii.
Timaeus, pp. 538, 539, by B. Jowett). .

He is speaking of two kinds of mirrors ; first the plane, secondly the cylindrical,

Again, p. 561 : ** There is a fourth class of sensible things, comprehending many
varieties, which have now to be distinguished. They are called by the general name
of colours, and are a flame which emanates from all bodies, and has particles corre-
sponding to the sense of sight. . . . Of the particles coming from other bodies
which fall upon the sight, some are less and some are greater, and some are equal to
the parts of the sight itself. Those which are equal are imperceptible, or transparent,
as they are called by us, whereas the smaller dilate, the larger contract the sight,
having a power akin to that of hot and cold bodies on the flesh, or of astringent
bodies on the tongue. . . . Wherefore, we ought to term that white which dilates
the visnal ray, and the opposite of this black.”
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combated by Aristotle as early as 350 p.c. He maintained. that light
is not a material emission from any source, but a mere quality of,
or action (évépyen) of a medium which he called the pellucid
(ﬁm#}ﬂl’é?}.l

Although the reasoning of Aristotle was very superficial, yet he is
entitled to considerable credit for his sagacious, though vague specula-
tions regarding the nature of light and various optical phenomena.
He may to some extent be regarded as having in a haphazard manner
anticipated the undulatory theory of light, which was established two
thousand years afterwards by the labours of Huygens, Young, and
Fresnel.

4. Knowledge of the Ancients.—The principal phenomena of the
rainbow, halos, ete., had not escaped the notice of the ancients, who
classed all these appearances under the common denomination of
meteors.  Aristotle * attributed these phenomena to the reflection of
the sun’s rays from drops of rain, and observed that a rainbow may be
made by the spray from an oar, and that in this case it will be visible

I & There is then, let us begin by saying, something which is pellucid. And by
pellucid is meant something which is visible, not visible by itself (to speak without
further qualification), but visible by reason of some foreign colour which affects its
nentral pellucidity. OF this character are air and water, and also many among
solid bodies, water and air being pellucid not in virtue of their qualities as water
or air, but because they both contain the same element as constitutes the everlasting
Empyrean essence. Light is then the action (évépyaa) of this pellucid qua pel-
tucid ; and whenever this pellucidity is present only potentially, there darkness
also is present. . . . Thus we have shown light te be neither fire, nor body gener-
ally, nor even the effluvium or emanation from any body (since even in this case
it would be a body of a kind), but only the presence of fire, or something like it, in
that which is pellucid ; two bodies being unable to exist at one and the same time
within the same space. . . . Darkness in fact is really the removal of such a posi-
tive quality from what is pellueid, so that light must necessarily be its presence.
Empedocles, therefore, and many others who have followed him, have not described
the phenomenon correctly in speaking of light as moving itself, and as coming some
time or other without our knowing it into existence between the earth and the
sarrounding air. . . . And the pellucid itself is also similarly dark, but it is so
net when it is pellucid in actuality, but only so potentially ; for it is one and the
same clement which is at one time darkness and at another time light. . . .

“* Coplour therefore is not visible without the presence of light ; this indeed we saw
was the essential character of colour that it is caleulated to set the actually pellucid
in movement ; and the full play of this pellucid constitutes light. . . . Vision is the
result of some impression made upon the faculty of sense ; an impression which
cannot be elfected by the colour itself as perceived, and must therefore be due to
the medium which intervenes. An intervening substance then of one kind or
another there must necessarily be ; and were this intervening space made empty,
not only will the object not be seen exactly, but it will not be perceived at all™
(Aristotle's Psychology, book ii. chap. vii., by Edwin Wallace, M.A., Cambridge
University Press Series, 1882).

2 Meteor, lib. idi. cap. ii.
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to a person who turns his back to the sun in the same manner as in
the case of the natural rainbow.

Notwithstanding the absurdity of the doctrine of scular beams, as
it was called, the geometers of the Platonic school were acquainted
with two very fundamental points in the science of optics. They
taught first, that light, from whatever source it might be emitted,
travels in straight lines; and secondly, that when it is reflected at
any surface, the angle made with the surface by the incident beam is
equal to that made with the surface by the reflected beam.

We thus find them acquainted with the rectilinear propagation of
light and with the law of reflection—the two facts in the science which
we would naturally expect to have been first discovered.

Epicurus, Lucretius, and the other supporters of the quasi-ten-
tacular theory, although they made few or no experiments, lacked not
fertility in hypotheses to account for the common appearances of nature.
They all had a confused notion that as we may feel bodies at a distance
by means of a rod, so the eve may perceive them by the intervention
of light. It is very remarkable that this strange hypothesis held
ground for many centuries, and little or no progress was made in the
subject till it was established on the authority of Alhazen, an Arabian
astronomer, in the eleventh century A.D. that the cause of vision pro-
ceeds from the object and not from the eye.

5. Euelid.—Shortly after the time of Aristotle the celebrated
geometer Euelid (300 p.c.) drew up a treatise on optics, which has
been handed down with his geometrical works.! However, the work
is so imperfeet and so inaceurate that some have found it diffienlt to
attribute it to one whose geometry is characterised by such perspicuity
and accurate reasoning.

6. Ptolemy.—The most celebrated of all the ancient writers on
opties was the Egyptian astronomer Ptolemy, who flourished about the
middle of the second century. He treated of astronomical refraction
and of the increase in the apparent diameters of heavenly bodies when
near the horizon. He also drew up tables of the values which he
found for the angles of incidence and refraction of a beam of light
passing from air into glass and water, but he failed to connect them
by any law, like all the subsequent writers of the next fifteen hundred
years.

7. Experiment of Cleomedes.—Next to a straight stick appearing
bent when part of it is immersed obliquely in water, the apparent

! {Oxford edition of Eueclid’s works, 1557.) He endeavoured to refute the
Pythagorean, or emission, theory of light, and investigated the apparent place of
the image formed by reflection at the surface of a polished mirror.
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elevation of a coin, or any othier object, placed at the bottom of a cup
into which some water is poured, is perhaps one of the oldest experi-
ments depending on refraction. It has been referred to by the oldest
optical writers, and especially by Cleomedes, who (50 A.D.)! also
pointed out that, in the same manner, the air by refraction may
render the sun visible when it is somewhat below the horizon.

8. Previous to Alhazen.—In addition to what has been mentioned,
the ancients had a superficial and fragmentary aequaintance with some
of the properties of the rainbow, mirage, and halos, but limited as it
was, it far exceeded their knowledge of the other branches of physical
science. Their knowledge of the general nature of refraction and of
some of its applications was exhibited in the construction and use of
burning glasses, which were sold as curiosities in the toy shops, and
were probably either glass globes filled with water or balls of glass or
rock erystal.

9. Alhazen.—After a long interval of inactivity the science of
optics was taken up and cultivated with assiduity in Arabia. The
first real progress in the mathematical theory was made by Alhazen in
the eleventh century. He entered into the anatomy of the eye, and
examined the rdle played by each part of it in the production of vision.
Besides accounting for twilight he showed that by means of the
duration of it the height of the atmosphere might be measured. After
deseribing the eye, he explains how it happens that with two eyes we
see only one object, and that we see each object, however small, not
by a single ray of light (as was at that time supposed), but by a cone
of rays proceeding from the object to the eye.

Alhazen treated largely of oplical deceptions, both in direct vision
and also in vision by reflected and refracted light. In this class of
phenomena he ranks what was known as the horizonlal moon ; that is,
the increase in the apparent magnitude of the moon, or any other
celestial object, when near the horizon. In explanation of this pheno-
menon he says that we judge of distance by comparing the angle under
which we see an object with its supposed distance, so that if the angles
under which two objects are seen be nearly equal and if the distance
of one be conceived greater than that of the other, the more distant
object will be imagined the larger. But the sky near the horizon, he
says, 15 always imagined farther from us than any other part of the
concave surface, on account of the range of intervening terrestrial
objects by which we judge the distance.®

U Cyelical Theory of Meteors (i.e. stars).
- # This account of the horizontal moon Bacon attributes to Ptolemy. As such
it is ohjected to hy B. Porta, De Refractione, pp. 24, 128 {Priestley's History).
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Although the work of Alhazen may have been founded on that of
Ptolemy, yet he made such a decided advance in the theory, that for
five hundred years or more he was recognised in Europe as the chief
anthority on the subject.

10. Vitellio.—In 1270 Vitello or Vitellio, a native of Poland,
drew up a treatise on optics! less prolix and more methodical than
that of Alhazen on which it was founded.? Vitellio attributed the
twinkling of the stars to the motion of the air in which the light is
refracted, and he remarked that the twinkling is increased when they
are viewed through water in gentle motion. He also compiled a
table of the angles of incidence and refraction of light at the surface
of water and glass, of much greater accuracy than that previously
given by Ptolemy.

11. Roger Bacon.—Contemporary with Vitellio was our country-
man Roger Bacon, a man of extraordinary genius, who wrote on almost
every branch of science, yet notwithstanding the pains he took with
the subject of optics, he does not appear to have made any advance in
the theory which Alhazen had already laid down before him. Great
as Bacon undoubtedly was, he was far from being free from the
prejudices of his predecessors and contemporaries, Some of the
wildest and most absurd of the speculations of the ancients had
the sanction of his approbation and authority.

The invention of the magic-lantern has been attributed to Bacon,
but it has been much disputed whether he was acquainted with tele-
scopes. Certainly if he was unacquainted with spectacles, telescopes,
and microscopes, he anticipated their invention in language more than
prophetic.’

! Published by Risner in 1572, with the work of Alhazen translated from the
Arabic, under the title Thesaurus Opticor, Bas, 1572,

* Vitellio is said to have at first denied that he had any knowledge of the works
of Alhazen, but he afterwards retracted this denial and acknowledged himself a
disciple of the Arabian philosopher,

¥ He says: *“If the letters of a book, or any minute object be viewed through
the lesser segment of a glass sphere or erystal, whose plane base is laid upon them,
they will appear far better and larger . . . and therefore this instrument is useful
to old men, and to those who have weak eyes ; for they may see the smallest letters
sufficiently magnified.” And again: ** Greater things than these may be performed
by refracted vision. For it is easy to understand by the canons above mentioned,
that the greatest things may appear exceedingly small, and on the eontrary ; also
that the most remote objects may appear just at hand, and on the contrary. . . .

And thus from an ineredible distance we may read the smallest letters. . . . And
thus a boy may appear to be a giant and a man as big as a mountain. . . . So also
the sun, moon, and stars may be made to descend hither in appearance . . . and

many things of like sort which would astonish unskilful persons ™ (Opus Majus,
Jebb's edition, p. 377).
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12. The Introduetion of Teleseopes.— Although it would appear
from the writings of Bacon, B. Porta, and others, that the properties
of some form of telescope were known or suspected, yet the construc-
tion and practical applications of the instrument do not appear to have
been known and published prior to the year 1608 A.p. If known
before this date, the instrument was probably the secret possession of
certain individuals who employed it in the demonstration of * natural
magic.”

Like many other discoveries, it is probable that more than one
person had hit upon the idea of the telescope, and had constructed
simple forms of the instrument for their own amusement and * curions
practices ” before any public record of the invention was made. For
this reason it is not surprising that the early history of the instrument
should have been the subject of a lively debate, and that the invention
should have been aseribed to different persons and claimed in different
countries. The first person, however, who seems to have independently
constructed a telescope, and who at the same time published his dis-
covery, was Hans Lippershey, a spectacle-maker of Middelburg, in the
year 1608.

No small share of honour in this matter must be ascribed to
Galileo,® who, in the following year (1609) (having merely heard that
the Belgian spectacle-maker had constructed an instrument by which
distant objects were made to appear nearer and larger), at once set to
work and independently constructed a telescope for himself. With
such skill and ability did he apply himself in this matter that in 1610
he finished an instrument of such excellence that it revealed the
satellites of Jupiter, and thus broke the dawn of modern astronomy.

It was Kepler (1571-1630), however, who first reduced the theory
of the telescope to its true principles, and laid down the common
rules for finding the foeal lengths of simple lenses, and the magnifying
powers of telescopes.

18. B. Porta—Camera Obseura.—At the end of the sixteenth
century John Baptista Porta (1545-1615), a Neapolitan philosopher
and famous collector of mysteries, published his Magia Naturalis. To
him the invention of the comera obscura is due. He remarked that if
light be admitted through a small hole in the shutter of a darkened
room, external objects will be clearly depicted on the white wall, in
their natural colours ; and he added that if a convex lens be placed
at the aperture the objects will appear so distinet as to be immediately
recognised.

14. A. de Dominis—The Rainbow.—In 1611 the frue theory of

Y Opere, ii. p. 4.

= SEEE-———
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the primary rainbow ! was at last arrived at by Antonio de Dominis,
archbishop of Spalatro. He showed that one reflection and two
refractions in the drops of rain were sufficient to bring the rays which
formed the bow to the eye of the spectator. This explanation was
either verified or suggested by viewing a glass globe filled with water
and exposed to the sun’s rays under the same circumstances as the
drops of rain. Both the primary and secondary bows were afterwards
explained by Descartes ® on mathematical principles.

15. Snell and Descartes.—The next great step was made by
Willebrod Snellius.®* About 1621 he ascertained that when light falls
upon the surface of a refracting medium, such as glass or water, the
sine of the angle of incidence bears a constant ratio to the sine of the
angle of refraction! He died, however, in 1626 without having
published his discovery. The law of refraction has been consequently
often attributed to Descartes, who first published it in the above form,
but not, as Huygens states, without having previously perused the
papers of Snell. In his investigations concerning the rainbow Descartes
also neglects to mention how far he was indebted to the previous
discoveries of Antonio de Dominis,

The speculations of Descartes on the nature of light bear some
resemblance to those of Aristotle, and it seems indeed extraordinary
that after the lapse of so many centuries, during which the attention
of many celebrated philosophers was concentrated on the subject, no
real progress had been made in the physical theory of light. Descartes
imagined light to be due to a pressure transmitted instantaneously
through an infinitely elastic medinum filling all space, and colours he
attributed to a rotatory motion of the particles of this medium.

16. Newton and Grimaldi.—It was still supposed that every re-
fraction of light actually produced colour, instead of merely separating

L De vadiis Visus el Lucis, 1611,

* Spee. Meteorwm, chap. viii. ¥ Professor of Mathematics at Leyden.

4 Although tables of the angles of incidence and refraction for glass and water
had been constructed by Ptolemy and Vitellio, the philosophers who studied them
failed to discover the law of refraction which lay hidden in them. Even Kepler
{Paralegomene ad Vitellionem, 1604) laboured unsuccessfully to derive it from the
tables of Vitellio.

Snellius obgerved that if the refracted ray and the incident ray continued through
the point of incidence be intercepted by any line parallel to the normal to the sur-
face at the point of incidence, the length of the intercepted portion of the refracted
ray is in a constant ratio to the length of the intercepted portion of the incident ray.
The form above, in which it was published by Descartes, is merely the trigonometrical
statement of the law arrived at by Snell.

It is remarkable that the law of refraction in its most improved form was arrived
at independently by our conntryman James Gregory. He is thercfore entitled to
as much honour in this matter as Descartes.
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the colours already existing in ordinary white light, but in 1666
Newton made the important discovery of the actual existence of
colours of all kinds in solar light, which he showed to be no other
than a compound of the various colours, mixed in certain proportions
with each other and capable of being separated by refraction of any
kind.

Whilst Newton was making his earliest experiments on refraction
Grimaldi’s treatise on light ! appeared, containing an account of many
interesting experiments on the effects of diffraction, which is the name
he gave to a small spreading out of light in every direction upon its
admission into a darkened chamber through a small aperture. This
spreading out (or inflection, as Newton called it) of the light shows
that light does bend round corners and deviate from the reectilinear
path like sound, but to a very small extent, and it forms the subject
of one of the most important branches of physical opties. Grimaldi
observed that in some instances the light from one aperture tended to
extingnish that from another, yet it cannot be admitted, from the
nature of his experiments, that he ever observed any true case of the
interference of light.

U Physico-Mathesis de Luwmine, Bonon., 1665,
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SEcTioN II.—DiscovERY OF THE VELOCITY OF LIGHT AND
DEVELOPMENT oF THE CORPUSCULAR THEORY

17. Romer—Finite Veloeity of Light.—A new era in the history
of optics was registered by the Danish astronomer Olaus Rémer, who
in 1676 made one of the greatest discoveries in the history of the
science—that of the propagation of light in time.! Romer ® was led to
this discovery by a series of careful observations on the eclipses of
Jupiter’s satellites. Each satellite, as it revolves round the planet,
disappears behind Jupiter and is hidden from view, or eclipsed, as
long as the opaque body of the planet is between us and the satellite.
As the periodic time of the satellite is small, its motion is rapid and it
disappears almost suddenly, so that the interval of time between two
suceessive eclipses can be estimated with tolerable precision. If this
periodic time be known, the dates at which successive eclipses will oceur
can be tabulated beforehand ; but Romer found that the observed
times of eclipses did not agree with those caleulated in this manner,
but that certain inequalities oceurred which could be satisfactorily ex-
plained only on the supposition that light travels with a finite velocity.

In order to fix our ideas, let us suppose the earth to be stationary
and that Jupiter is also fixed, and that the satellite under observation
moves round it uniformly with the periodic time T. Under these
cirenmstances the successive eclipses will follow each other regularly
at equal intervals of time T. On the other hand, if the earth moves
away from Jupiter with a given velocity so that the distance between
them inereases uniformly, then the interval of time between two con-
secutive eclipses, as observed from the earth, will be increased from T
to T + r, where 7 is the time required by light to traverse the distance
passed over by the earth in the time T+ 7. So also, if the earth
approaches Jupiter, the time between two eclipses will be diminished
in a similar manner. Now, on account of their motions round the sun,
the distance between the earth and Jupiter increases during one part of
the synodic revolution and diminishes during the remainder. In the
former part the periodie time T will have an apparent inerease, and in
the latter a decrease. This increase and decrease was found by Rimer to
depend on the rate at which the earth is receding from or approaching

I See Mach, Popular Lectures, p. 52.
* Hist. et Mém. x. p. 399. Ph. Tr. 1677, xii. p. 893.
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to Jupiter, and the inevitable conclusion was that light is propagated
with a finite veloeity.!

The velocity so determined was about 192,000 miles per second.

Considering the enormous rate at which light travels, it is not
surprising that Galileo and the Academy del Cimento should have
sought in vain to determine it direetly. In recent times, however,
methods of extreme ingenuity have been devised by Fizeau (1849)
and Foueault (1850) for directly measuring the velocity of light in air
or any other transparent medium. These methods will be fully de-
seribed in the sequel (chap. xix.), and the results leave no doubt as
to the finite speed of light, and fix it at about 186,000 miles, or
300,000,000 metres per second.

18. Bradley.—For nearly fifty years after the discovery of Rémer
no further evidence was adduced to show that the propagation of light
was not instantaneous, and the results arrived at by the Danish philo-
sopher were doubted, if not denied, in many quarters. However, in
1728 Bradley ? discovered what is known as fthe abeviation of light,
which, like many other great discoveries, was made when the author
was in pursuit of another inquiry. Intending to verify some of Dr,
Hooke's observations on the parallax of the fixed stars, he observed
the star ¢ Draconis at Kew in 1725, and found that it was more
southerly than it had appeared before, and on earefully observing it,
and other stars, for a long time he found that they all had an apparent
motion in space. After much speculation as to the cause of this
apparent motion he finally succeeded in solving the difficulty by
taking into account the motion of the earth together with the fact that
light is propagated with a finite velocity, and the result of his caleula-
tions gave a valne of this velocity agreeing fairly well with that
arrived at previously by Romer, This showed that the direct light of
the fixed stars travelled with the same velocity as that reflected from
the satellites of Jupiter (see further, chap. xix.).

19. Energy: its Conservation and Transmission.— When a
material particle is in motion we say it possesses a certain store of
energy, which we term kinetic, meaning that this energy is due to the

! The time taken by light to travel over the radius of the earth's orbit is ahout
500 seconds. Rimer's estimate was much too high, being eleven minutes. That
the inequalities noticed in the eclipses of Jupiter's satellites might arise from the
finite speed of light was admitted when Riomer propounded his views, but never-
theless it was contested that the observed inequalities might be due to want of
uniformity in the motion of the satellite itsell. This objection is legitimate, and
the astronomical methods alone do not place the question beyond doubt. All
uncertainty, however, has been removed by the terrestrial methods devised by
Fizean and Foucault, 2 Ph. Tr. 1728, xxxv. p. 637.
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motion of the body. The particle may give up part or all of its energy
to another, by collision or otherwise, but when any such transference
takes place, the amount of energy gained by one particle is the exact
equivalent of that lost by the other. If the energy of motion of any
body or system of hodies angments or diminishes, the energy gained
or lost must have been abstracted from, or given to, some other
system. In this respect energy is like matter. The amount of it in
any system can be angmented only at the expense of some other
system. That is, energy, like matter, cannot be created or destroyed
by any machine or process at the disposal of man. All working
engines and animals are mere machines for converting energy from one
form to another, or transferring it from one system to another. It is
in this sense that we speak of the conservation of energy, or the
permanence of energy, just as we speak of the conservation or inde-
structibility of matter. This idea of the impossibility of creating or
destroying energy, that is, of its ever disappearing in any system or
form without appearing in equal quantity in some other system or
form, underlies the whole basis of modern physics, and forms its
groundwork, just as the postulated permanence or indestructibility of
matter forms the foundation of modern chemistry.!

Now there are two methods by which we may communicate energy
to a body at a distance—take, for example, the case of a ship at sea.
We might fire bullets into it, each bullet carrying a store of energy
which it deposits in the ship when it strikes it. By this means we
might set the ship in motion. But there is another method by which
energy may be communicated to the ship. We may use the water or
medium in which the ship floats. We may spend our energy in
exciting waves in the water. These waves travelling outwards will
break upon the ship and set it in motion, thereby communicating a
part of their energy to it.

In the former method each bullet acted the part of a messenger
carrying a certain cargo of energy from the person or machine that
projected it to the ship. Here we have a transference not only of the
energy, ]Jl&t- also of the matter which carries it. In the case of the
waves, the energy is handed on in succession from one portion of the
water (or medium) to the next, while any element of the water merely
oscillates about its position of rest. We have thus a flow of energy
through the water which affords it a means of transit.

As another example of the transmission of energy through matter,
we may consider the case of a mass attached to one end of a rod or

! This subject is treated of more fully in the anthor's T%eory of Heat, Chap. L
Section VII.
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rope. When the other end is held in the hand and twisted, the
attached body will rotate so as to free the rod from torsion. Here
the energy supplied at one end is transmitted along the rod to the
mass at the other. There i1s a flow of energy along the rod.

Hence if by any means we obtain energy from a source situated at
a distance, we are forced to seek for the vehicle by which it is con-
veyed, Either matter has come to us from the source, carrying the
energy associated with it, as in the case of pellets fired from a gun, or
else the energy has been suceessively propagated through some medinm
existing between us and the source. The probability of the discovery of
other methods of the propagation of energy, or even the possibility of con-
ceiving some new method is perhaps a speculation of a purely visionary
character, and is certainly beyond our grasp at present. It is well, how-
ever, to keep our minds open to the fact that there may be methods of
which we have no direct experience, and of which we may, or may not,
become cognisant as our knowledge of the material universe increases.

20. Two Modes of Propagating Energy—Two Theories of Light.—
It having been proved that light travels with a finite velocity, and if
heing accepted that a luminous body, as such, is the source of some
mechanical influence which we call light, and which is necessary to
vision, and above all that the phenomena of light and heat are mani-
festations of energy, the question arises as fo how and where this
energy exists during the interval between the instant it leaves the
luminous body and the instant it reaches the observer. Thus light
(or heat) requires about eight minutes to reach us from the sun; how
and where is this energy stored during the transit, and by what
means is it transmitted from the sun to us? Direct action at a dis-
tance is out of the question. We cannot conceive of energy disappear-
ing at the sun and reappearing at the earth after an interval of eight
minutes without having been propagated continuously in the interval
through the intervening space.

In the present state of knowledge we are acquainted with energy
only as associated with matter, so much so indeed that matter
has been defined as the vehicle of energy. Consequently two dis-
tinct and intelligible methods of representing the propagation and
nature of light have been conceived. The first (the emission theory),
which was elaborated by Newton, assumes that a luminous body, as
such, continually emits small particles, or luminous corpuscles, of
extreme minuteness in all directions. These particles are projected
from the body and travel through space with the velocity of light,
carrying with them their kinetic energy; that is, their energy of
motion. This theory accounts at once for such general phenomena
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as the rectilinear propagation, and reflection, of light ; but some of its
consequences are quite inconsistent with observed facts. For instance,
the doctrine as ordinarily expounded has led to the conelusion that
licht should travel faster in the denser media, like water and glass, than
in the rarer less refracting media, such as air, while experiment proves
the reverse. This and other facts which it has failed! to explain have
been satisfactorily accounted for by the second theory (the wave theory),
which supposes light to be due to a periodic disturbance in a medium
existing between the lnminous body and the eye, and permeating all
space. This hypothetical medium is called the efher. We are not directly
cognisant of it by any of our senses, such as touch, taste, or smell, but
nevertheless from the phenomena of light (and electricity) we eannot
but be convinced that such a medium exists, and thanks to the labours
of scientific men, our knowledge of its properties is rapidly increasing.

According then to the second theory—known as the Wave Theory
—a luminous body is the source of a disturbance in the ether, which
is propagated in waves throughout all space. These waves falling
upon the eye excite the sense of vision. They travel with the velocity
of light, and carry energy from the body which produces them to that
by which they are absorbed.

Before proceeding to the history and development of this theory,
which is that now universally accepted, we shall first glance at the
emission theory and see how far it will account for the facts.

21. The Corpuscular or Emission Theory.—This hypothesis
assumes that the sensation produced by light is due to a mechanical
action on the retina. It formally states that a luminous body emits
minute particles® which by their impacts on the retina cause the
sensation of vision. Very formidable objections to it are presented at
the outset. For corpuscles moving with such an immense velocity as
186,000 miles per second would have an enormous momentum unless
their mass be small beyond all conception. Now an exceedingly large
number of these particles may be made to act together by concen-
trating them in the focus of a lens or mirror, and the resultant effect
of their impulses might be expected to become visible when subjected
to the test of experiment. This apparently easy test of the materiality
of light was appealed to by many philosophers. The effects they
observed were probably due to extraneous causes, such as draughts

1 Most of these difficulties may be overcome by introdueing snitable hypotheses
concerning the nature of the corpuscles.

2 “ Are not rays of light very small bodies emitted from shining substances ?
For such bodies will pass throngh uniform mediums in right lines without bending

into the shadow, which is the nature of the rays of light” (Newton, Opticks, book
iti. Qu. 29).
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caused by inequalities of temperature, and it is now universally
admitted that no effect of the impulse of light has ever been perceived.!
The motion execited in the well-known delicate radiometer of Mr.
Crookes is attributed to other causes, and it is to be remembered that
in experimenting with this instrument the vane first moves towards

the light, indicating an apparent attraction; and it is not until

rarefaction is pushed to a certain limit that the motion of the vane
is reversed and exhibits an apparent repulsive action of the light.

This is not the only difficulty which besets the theory at the very
beginning, for we have seen that the light of the sun is propagated
with the same velocity as that of the fixed stars, and that which comes
directly to us from these bodies travels at the same rate as that which
is reflected by a planet or its satellite. The speed of propagation
would therefore appear to be independent of the luminous source, as
well as of any subsequent modifications which the light may undergo
in the celestial spaces. Now the emissive force required to project
material particles with the velocity of light is caleulated to be over a
million of million times greater than the force of gravity at the earth’s
surface, and even though this prodigious force were the same for the
various independent bodies of the universe, Laplace has shown that
if the diameter of a fixed star were 250 times as large as that of our
sun, its density being the same, its attraction would be sufficient to
destroy the whole momentum of the emitted moleenles. M. Arago
ingenionsly escapes this difficulty by admitting that the molecules may
be projected with very different velocities, but that there is only one
velocity which is adapted to excite the sense of sight.

22. Refleetion.—According to the theory of emission each lumi-
nous molecule travels in a right line through a homogeneouns isotropie
medium, Let MN (Fig. 1) be the path of one of these molecules, and
let AB be a reflecting surface. As soon as
the molecule comes within a certain very
small distance from the surface, indicated
by the line PQQ, it begins to experience the
repulsive or reflecting action of the surface.
The velocity of the molecule at P() may be
resolved into two components, one parallel
to AB and the other perpendicular to it. The former component

Fig,l.—Reflection of a Light Molecule,

1 The experiments of Mr. Bennet seem to decide this point. A slender straw
was suspended horizontally by means of a single fibre of a spider’s thread. To one
end of this delicately suspended lever was attached a small piece of white paper, and
the whole was enclosed in a glass vessel, from which the air was withdrawn by an air-
pump.  The sun’s rays were then concentrated by means of a large lens and allowed
to fall on the paper, but without any pereeptible effect” (Lloyd’s Wave Theory).

o ik
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is unaltered by the action of the surface, while the latter is at first
diminished and then reversed, so that the molecule retires from ADB
at N’ with the same speed as it approached it at N. As soon as the per-
pendicular component begins to diminish under the reflecting action of
the surface the path of the molecule (at N) begins to curve, and when this
component is reduced to zero the path of the molecule is parallel to the
surface. After this point the repulsive action of the surface will be the
same as before, and the route of the molecule will be along a curved
path to N, while at N’ it retires with its velocity perpendicular to the
surface reversed, and its velocity parallel to it unaltered. The molecule
therefore emerges at N’ free from the influence of the surface in a
direction N'M’, making an angle with the surface equal to that made
with it by MN. Thus the theory accounts easily for the law of reflec-
tion, just as it is deduced for the reflection of a perfectly elastic sphere.

28. Refraction.—To deduce the law of refraction from a rare to
a denser medium it is assumed that when the molecule comes within
a very small limiting distance (PQ) (Fig. 2)
of the surface of separation AB, it hegins
to be attracted towards the surface so that
its component veloeity perpendicular to
the surface gradually inereases, till it
reaches a limiting distance (P'Q’) on the
other side of the surface AB. It then
proceeds in the new medium in a right Fiz. 2.—Remmaction of & Light Molecule,
line N'M', the velocity parallel to the surface remaining the same,
while that perpendicular to the surface is increased by an amount
which is independent of the angle of incidence, but which varies for
different materials. Let the velocity along MN be » and the angle
which MN makes with the normal i (the angle of incidence). Then
if the velocity along N'M' be #" and the angle between it and the
normal r (called the angle of refraction), we have from the constancy
of the veloeity parallel to the surface

psini=+ sinr,

gint v

Or - =,
sinr

The sine of the angle of incidence therefore bears a constant ratio to
the sine of the angle of refraction.! This is the law of refraction ;

VIt the particle were travelling along M'N’ in the more refracting medium, then
in approaching the surface AB it would as before be attracted towards the more re-
fracting medium, =o that its component velocity perpendicnlar to the surface would
be diminished by the attraction, and after traversing the curve N'N, it would
emerge into the second medium in the direction NM, making an angle with the
normal greater than that made by M'N".

C
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and the formula shows that if i be greater than » then +" is greater
than ». That is, the velocity of light in denser (more refracting)
media is greater than in rare (less refracting) media, for we know by
experience that the ray is bent towards the normal (as in Fig. 2) in
passing from a rare medium, such as air, to a denser medium like
glass or water.

We here reach a erisis in the emission theory, for it has been
proved beyond doubt by direct experiments on its velocity that light
travels faster in a rare medium like air than in a denser (more refract-
ing) medium like water. The emission theory is therefore untenable,
and the wave theory, which has not only successfully explained, but
even anticipated the results of experiments, has been universally
adopted.!

24. The prima facie evidence in favour of the emission theory is
very considerable. In the first place it readily accounts for the reeti-
linear propagation of light, which at first sight looks more like the
motion of projectiles than the propagation of undulations which have
a tendency to spread out. Then it lends itself at once to the explana-
tion of rays and shadows, while the aberration of light is an immediate
deduetion. The so-called rectilinear propagation of light was the great
diffieculty which the early supporters of the wave theory had to face,
and the account of it remained in an unsatisfactory state till the time
of Young, a hundred years after the time of Huygens who sought for
its explanation in certain speculations as to the ultimate constitution
of the ether. That no further progress was made until the time of
Young has been attributed to the great impulse given to the study
of the motion of particles under the action of known forces by the
grand discoveries of Newton, which diverted the attention of men of
seience into that channel rather than to the study of the propagation
of undulations.

With regard to the emission theory Sir G. G. Stokes says:?
“Surely the subject is of more than purely historical interest. It
teaches lessons for our future guidance in the pursuit of truth. It
shows that we are not to expect to evolve the system of nature out
of the depths of our inner consciousness, but to follow the painstaking
inductive method of studying the phenomena presented to us, and be
content to learn new laws and properties of natural objects. It shows
that we are not to be disheartened by some preliminary difficulties
from giving a patient hearing to a hypothesis of fair promise, assuming

! This difficulty in the theory may be surmounted by a snitable hypothesis con-
cerning the so-called mass of the luminous corpuscle.
2 Burnett Lectures on Light, Lecture L., delivered at Aberdeen, 1883
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of course that those difficulties are not of the nature of contradictions
between the results of observation or experiment, and conclusions
certainly deducible from the hypothesis on trial. It shows that we
are not to attach too great importance to great names, but to in-
vestigate in an unbiassed manner the facts which lie open to our
examination.”

25. Newton's Theory of Fits of Easy Reflection and Easy Trans-
mission.—The existence of both reflection and refraction at the surface
of a transparent substance presents at first sight a great difficulty in
the emission theory, for it is not easy to conceive how the same
surface may at one time reflect and at another refract an impinging
molecule. To meet the difficulty Newton was led from his observa-
tions on the coloured rings of thin plates (chap. viii.) to endow the
luminous corpusecles with periodic phases or fits, as he terms it, of
easy reflection and easy transmission, so that sometimes they are in
a condition to be reflected, and sometimes in a condition to be re-
fracted at a transparent surface. To communicate these fits to the
luminous corpuscles he imagined all space to be filled with an all-
pervading medinm or ether. The luminous corpuscles, on striking a
reflecting or refracting surface, excite waves in this ether which over-
take them at regular intervals, and assist or oppose their motion
periodically, so that at any new surface they are refracted or reflected
according as the wave assists or opposes the corpuscle. The eclement
of periodicity thus so ingeniously introduced, and which is so funda-
mentally involved in a wave motion, we should naturally expect to
be independent of the angle of incidence. However, to reconcile the
theory with his observations on thin plates, Newton found it necessary
to suppose the length of a fit to vary as the secant of the angle of
incidence, and it does not appear easy to account for such a law.

Boscovieh ! attributed the fits to a polarity of the luminous mole-
cules, which by rotating presented alternately their different sides to
the reflecting or refracting surface, and Biot expounded the same
theory.?

In coneclusion, we may state that we believe an ingenious exponent
of the emission theory, by suitably framing his fundamental postulates,
might fairly meet all the objections that have been raised against it.
It will be found, however, on an examination of the whole, that these
necessary postulates endow the corpuscles with the periodic charac-
teristics of a wave motion, and when this is introduced the corpuscles
themselves may be eliminated, for the wave motion alone sufficiently

I Boscovich, Philosophie Naturalis Theoria, 1758,
* Biot, Traité de Physique, tom. iv. p. 1.
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explains the phenomena. Hence the one remaining argument against
the supposition of corpuscles is that they are superfluous, for we helieve
that no direct test such as has been supposed to be given by the law of
refraction in regard to the velocity of light, or by interference pheno-
mena, can decide between the rival hypotheses.

Extracts from Newton

The following passages, quoted direct from Newton's writings,
expound his theory in his own words, and show how much more
closely than is generally supposed it resembles the undulatory theory

now accepted :—

“ Were I to assume an hypothesis, it should be this, if propounded more gener-
ally, so as not to determine what light is, further than that it is something or other
capable of exciting vibrations in the ether ; for thus it will become so general and
comprehensive of other hypotheses as to leave little room for new ones to be in-
vented ” (Birch, vol. iii. p. 249, December 1675).

Opticks, book ii. part iii. prop. xii. : ** Every ray of light in its passage through
any refracting surface is put into a certain transient constitution or state, which in
the progress of the ray returns at equal intervals and disposes the ray at every
return to be easily refracted through the next refracting surface, and between the
returns to be easily reflected by it.

“ This is manifest by the 5th, 9th, 12th, and 15th observations (coloured rings).
For by those observations it appears that one and the same sort of rays at equal
angles of incidence on any thin transparent plate is alternately reflected and trans-
mitted for many successions accordingly as the thickness of the plate increases in
arithmetical progression of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, ete., so that if the
first reflection (that which makes the first or innermost of the rings of colour there
deseribed) be made at thickness 1, the rays shall be transmitted at thicknesses 0, 2,
4, 6, 8, 10, 12, ete., and thereby make the central spot and rings of light which
appear by transmission, and be reflected at the thicknesses 1, 3, 5, 7, 9, 11, ete., and
thereby make the rings which appear by reflection. And this alternate reflection
and transmission, as I gather by the 24th observation (viewing them through a
prism), continues far above an hundred vicissitudes, and by the observations in the
next part of this book (colours of thick plates) for many thousands, being propagated
from one surface of a glass plate to the other, though the thickness of the plate be a
quarter of an inch or above ; so that this alternation seems to be propagated from
every refracting surface to all distances without end or limitation. This alternate
reflection and refraction depends on both the surfaces of every thin plate, because it
depends on their distance. .

“* What kind of action or disposition this is ; whether it consists in a cirenlating
or a vibrating motion of the ray, or of the medium, or soinething else, I do not here
inquire. Those that are averse from assenting to any new discoveries but such as
they can explain by a hypothesis, may for the present suppose that as stones by
falling upon water put the water into an undulating motion, and all bodies by per-
cussion excite vibrations in the air, so the rays of light, by impinging on any
refracting or reflecting medium or substance, and by exciting them, agitate the solid
parts of the refracting or refiecting body, and by agitating them, cause the body o
grow warm or hot ; that the vibrations thus excited are propagated in the refracting
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ot teflecting medium or substance much after the manner that vibrations are propa-
gated in the air for causing sound, and move faster than the rays so as to overtake
them ; and that when any ray is in that part of the vibration which conspires with
its motion, it easily breaks through a refracting surface, but when it is in the con-
trary part of the vibration which impedes its motion, it is easily reflected ; and by
consequence, that every ray is successively disposed to be easily reflected, or easily
transmitted, by every vibration which overtakes it. But whether this hypothesis
be true or false I do not here consider.™

Opticks, fourth edition, 1750, book iii. Qu. 17 : “If a stone be thrown into stag-
nating water, the waves excited thereby continue some time to arise in the place
where the stone fell into the water, and are propagated from thence in concentric
circles upon the surface of the water to great distances. And the vibrations or
tremors incited in the air by percussion continue a little time to move from the place
of percussion in concentric spleres to great distances. And in like manner, when
a ray of light falls upon the surface of any pellucid body, and is there refracted or
reflected, may not waves of vibrations, or tremors, be thereby excited in the refract-
ing or reflecting medium at the point of incidence and continue to arise there, and
to be propagated from thenece . . . and are not these vibrations propagated from the
point of incidence to great distances? And do they not overtake the rays of light,
and by overtaking them successively, do they not put them into the fits of easy
reflexion and easy transmission deseribed above? For if the rays endeavour to
recede from the densest part of the vibration, they may be alternately accelerated
and retarded by the vibrations overtaking them.”

And again, Qu. 18: *“ . . . Isnot the heat of the warm room conveyed through
the vacwuin by the vibrations of a much subtiler medium than air? . . . And is not
this medium the same with that medium by which light is refracted and reflected,
and by whose vibrations light communicates heat to bodies, and is put into fits of
easy reflexion and easy transmission ?”

In Qu. 19 he employs this ether (as he calls it) to acecount for gravitation. *‘Is
not this medium much rarer within the dense bodies of the sun, stars, planets,
and comets, than in the empty celestial spaces between them ! And in passing from
them to great distances, doth it not grow denser and denser perpetually, and thereby
cause the gravity of those great bodies towards one another, and of their part towards
the bodies ; every body endeavouring to go from the denser parts of the medium
towards the rarer? . . ."

Qu. 23: *Is not vision performed chiefly by the vibrations of this medium,
excited in the bottom of the eye by the rays of light, and propagated through the
solid, pellueid, and uniform capillamenta of the optick nerves into the place of sensa-
tiont" Hearing and animal motion he supposes to be brought about also by the
vibrations of the ether.
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SeEcTioN IIL—INTRODUCTION AND DEVELOPMENT OF THE WAVE
THEORY

26. Early Speculations.—The founding of the wave theory of
light, like the discovery of the laws of reflection and refraction, has
been erroneously attributed to Deseartes. In the theory of Descartes
vision was supposed to be excited by a pressure transmitted in-
stantaneously through an infinitely elastic medinm filling all space, so
that it contained nothing analogous to the continuous propagation of
waves.! The origin of the doctrine might be traced back to the vague
speculations of Avistotle, and some germs of it may be found in the
writings of Lionardo da Vinei,”> and in the correspondence of Galileo.
More or less obscure ideas were expressed by Grimaldi and Hooke,?
the latter of whom defined light as “a quick vibratile movement of
extreme shortness”;* but he supposed this movement to be propa-
gated instantaneously in all direetions. His theory was consequently
little in advance of the instantaneous pressure of Descartes. However,
it appears that Hooke was quite prepared to admit that light travelled
with a finite velocity (when proved), and that he even anticipated the
proof. _

The founder of a theory is not, however, the author who makes
more or less vague but happy guesses at it, and the credit of discovery
is entirely due to him who demonstrates. Otherwise it would be very
difficult to fix the date at which the undulatory theory of light was
first formulated.

27. Huygens, Young, Fresnel.—The true founder of the wave
theory is undoubtedly Huygens, who in 1678 first stated it in a
definite form, and in 1690 published a satisfactory explanation of
reflection and refraction on the supposition that light is due to wave

! It is strange that with his ideas as to the nature of heat, which he defines as
““an internal agitation of the particles of a body,” and thongh this vibratory motion
exists in bodies that are both hot and luminous (i.e. incandescent), and is the cause
of the *‘ instantaneous pressure " transmitted in all directions, yet there is no state-
ment of a vibration existing in the medinm through which the pressure is propagated.

* Libri, Histoive des Mathématiques en Ttalie.

2 Micrographia (1665) and Lecfure on Light. Posthumous works of Hooke, 1705.
See p. 76, ete.

¥ Micrographia, p. 15,
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motion in the ether.! He also accounted for double refraction in
uniaxial crystals—a phenomenon which had been observed and de-
seribed by Bartholinus # about 1670.

Having failed to account satisfactorily for the rectilinear propaga-
tion of light or the theory of shadows, to which the corpuscnlar theory
lent itself so easily, the wave theory, so well initiated by Huygens,
fell into disrepute, and remained lifeless for almost a century. It
was then revived by Dr. Young’s discovery of the celebrated principle
of interference.

Although Huygens discovered what is known as the polarisation
of light, he was unable to account for it on the wave theory, neither
could Young, for these philosophers supposed the wave disturbance
in the ether to be longitudinal ; that is, in the direction of the ray of
light, this being the kind of vibration known to ocecur in the propaga-
tion of sound. And it was not until Fresnel introduced with brilliant
success a happy guess of Hooke’s (1672), viz. that the light vibrations
are transverse—that is, perpendicular to the direction of the ray—that
the great difficulties besetting the theory were removed, and the
known phenomena not only satisfactorily explained, but others not
vet discovered were anticipated. Poggendorfl remarks that there
i1s no other instance in the history of modern physies in which the
truth was so long kept down by authority.

It was the phenomenon of the polarisation of light that led to the
final abandonment of the wave theory by Newton. Having before
his mind the longitudinal or sound vibrations, he could not conceive
how a ray could have different properties on its different sides. He
therefore fell back upon the emission theory, and developed it with a
genius more than human.

28. Interference—Non-Materiality of Light—Experiments of
Grimaldi and Young.—About 150 years before the time of Young,
Grimaldi ® remarked that in certain cases two lights when superposed
can partially destroy each other (and Hooke simultaneously laid claim

! The only anthor who ean be advanced with any show of reason as an antici-
pator of Huygens is the Jesuit Pardis. Huygens mentions the manuscript of Pardis,
and cites him ( Trodté de la Lumiére, p. 18) as ““one of those who have commenced
to consider the waves of light.” The ideas of Pardis were incorporated in the work
of another Jesunit, C. I'. Ango (L' Oplique divisée en trois livres, Paris, 1682), 1t is
here explicitly stated that light is due to waves in the ether, just as sound is due to
waves in the air.

* Erasmus Bartholinus, Eweperimenta chrystalli Islandici disdiaclastici, Copen-
hagen, 1669 ; Amsterdam, 1670,

# Prop. xxii. : “* Lumen aliquando per sui communiecationem reddit obseuram
superficiem eorporis alicunde ac prius illustratam " ( Physico- Mathesis de Luniine, colori-
bitg et {ride, Bologna, 1665).
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to the same discovery), but from the manner in which his experiments
were conducted he could not have observed any case of true interfer-
ence. After allowing the sunlight to enter a darkened chamber through
two small holes A and B (Fig. 3) pierced very near each other in the
shutter, he received the diverging cones of light on a screen. FEach
depicted a circular spot of light surrounded by a fainter ring. Having
placed the sereen at such a distance that these rings partly overlapped,
he observed that the illumination appeared less in the overlapping

Fig. 3.—Grimaldi's Experimnent.

portion than in the remainder of the rings. If one of the pencils was
intercepted by an obstacle, this dark portion recovered the brightness
of the rest. Thus darkness, he found, may be produced by adding
one light to another, and on the other hand, the illumination may be
inereased by withdrawing a portion of the light. The effect here
ohserved is, however, probably an optical illusion due to contrast. and
not a true case of interference.

The object of Grimaldi’s inquiry being merely to ascertain whether
licht was a material or an accident, he prosecuted his research no
further, for he considered the experiment fully proved that hight was
not a material substance.

Young, on the other hand, admitted a very small pencil of light
throngh a narrow slit S in a shutter (Fig. 4). This beam fell upon
a screen perforated by two
small pin-holes A and B, very
near each other. From the
apertures A and B he had
thus two small pencils of
licht which he received on a

Fig. 4.—Young's Experiment, screen M, and he observed
that at M, where the penecils overlapped each other, instead of uniform
illumination, a series of brilliantly coloured bands appeared (Fig. 5).
When he gradually inereased the distance between the pin-holes the
bands gradually diminished in width till they finally disappeared. They
also disappeared when he stopped one of the apertures, or when he
removed the slit 8 and allowed the sunlight to pass through A and B
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directly, as in Grimaldi’s experiment. This showed that the bands
must be due to the action of the light from A on that from B, and
“also that these apertures must
be supplied from the same small
source S.

At any point of a dark band
on the sereen, the light coming
to it from one aperture (A) is
apparently destroyed by that
coming from the other (B). In
this ease the two thtﬁ are said Fig. 5.—Interference Bands.
to interfere destructively. The dark bands are places where the sources
A and B produce opposite effects and neutralise each other, whereas
in the bright bands the two effects are alike and the illumination is very
brilliant. On the whole, however, there is no annihilation of the light.

The deficient illumination of the dark bands is accounted for in the Nodestrue-
excessive brillianey of the bright bands. The whole quantity of light on :::{LE:E“
the screen is the sum of the quantities which the sources A and B would tion.
furnish separately. The dark bands consequently do not point to the
annglilation of any portion of the light, but merely to a redistribution

of it on the sereen ; and when we speak of destructive interference

at any point, it must be remembered that the illumination which is
apparently destroyed there exists in equal quantity elsewhere (see

further, Art. 44). '

It is sometimes asserted that the mutnal interference and con-
sequent production of fringes by two similar sources of light com-
pletely overthrows material or emission theories of light ; for, it is said,
we cannot conceive of two substances destroying each other. But it
should be remembered that here we have no destruetion of light, the
total quantity remains the same, just as in the case of sand or dust
strewn on a vibrating plate or in a sounding tube. If the dust be
uniformly distributed on the plate before the vibration starts, it will
when the plate is bowed collect along certain lines, leaving the other
parts naked. The total quantity of dust however remains unaltered,
and the same law holds in Young's interference experiment. This
experiment would, consequently, not necessarily overthrow an emission Emission
theory, but rather foree it to adopt some new hypothesis concerning "¢°*¥:
the eorpuscles and their mode of interaction, just as Newton invented
his theory of fits to explain the production of coloured rings by thin
plates.

The principle of interference is one of the most fertile in physical
science, and many beautiful examples of its power will appear in the
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sequel. Presently we shall show how it reconciles the apparent reeti-
linear propagation of light with the wave theory, and answer the
difficulty suggested by Newton and those who espoused the emission
theory : “If light consists of undulations in an elastic medium, it
should diverge in every direction from each new centre of disturbance,
and so, like sound, bend round interposed obstacles, and obliterate all
shadow.” The reply of the wave theory is that light does bend round
obstacles (as Newton's own experiments prove), but to a very small
extent, on account of the extreme shortness of its wave length, and
shadows exist because the several portions of the laterally diverging
light destroy each other’s effect by interference.

Sound is observed to bend round corners very much more than
light, merely because its wave length is vastly greater.

29. A Medium necessary.—The radiations which we receive from
the sun or from any other luminous body not only affect our sense
of sight, which in itself is an evidence of work done, but also in general
appreciably heat any body on which they fall. Besides the radiations
which affect our sense of sight, and which we term light, a lnminous
body in general emits others, which we detect by their thermal or
chemical action. Heat and work being convertible, we may, by
measuring the heating effect of the sun’s radiation, ealculate the
amount of energy transmitted to us per second. We therefore learn
to regard the sun or any other luminous body as a source from which
energy is emitted in all directions, and the question now arises,—Dby
what means is this energy propagated, and how is it stored while it is
travelling to us from the sun or a distant star, for we know that it is
not transmitted instantaneously, but travels through the interstellar
spaces with a definite velocity, viz. the velocity of light.

Now, with our present experience, it does not seem possible to
conceive of more than two modes by which any body as a source of
a mechanical influence, travelling with a finite velocity, can ultimately
affect and communicate energy to another body situated at a distance.
A mechanical influence implies the intervention of a substance of some
kind, and this substance may be either projected forth from the in-
Huencing to the influenced body, like bullets from a gun, each particle
travelling with a certain velocity and carrying a definite amonnt of
energy with it; or it may exist as a continuons medium filling the
space between the two bodies, and, being disturbed by one, the dis-
turbance may be propagated from portion to portion of the medium
(each part being agitated by its predecessor, and in turn yielding to
the succeeding element the energy it received) till it finally reaches
the second body. The waves excited by casting a stone into water or
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by a sounding bell illustrate the latter method of propagating energy,
and this forms the basis of the wave theory of light.

Young's discovery of the so-called destructive interference of two
lights suggests that light in itself is not a substance emitted by the
luminous body. In addition the emission theory has failed (or requires
interminable patching) to account for the observed facts. Scientists
have consequently been compelled to have recourse to the wave theory,
and to assume that all space is filled with some medium or substance,
if we may so call it, differing in its properties from visible material
bodies, and that a luminous body, as such, is the source of a periodic
disturbance of some kind which is propagated in all directions by
means of this medium, or, as it i1s called, the elther.!

The balance of experimental evidence is in favour of the theory
that all optical and radiation effects are due to rapid periodic changes
of some properties of the ether. Electrie, magnetic, and electro-
magnetic effects also appear to be due to the intervention of the same
medium,

We know that sound travels through air, water, glass, and other
material substances with a definite velocity in each, and experiment
proves that the propagation of sound in these substances is due to an
undulatory disturbance or vibration, excited in them by the sounding
body. Sound is not propagated in a vacuum. Its phenomena are
consequences of the vibratory motion of the parts of the material
substances through which it travels. When a musical note is sounded
energy is transmitted to the air by the sounding body and the air is
thrown into vibration. This energy travels through the air as a wave
motion, and part of it is spent in execiting the tympanum of the
hearer. Light, on the other hand, is propagated with the greatest
facility through the best vacuum we can procure. It traverses the
interstellar spaces where we cannot suppose any material substances
to exist, except perhaps the most excessively attenuated atmospheres
or sporadic groups of meteorites. It is propagated with more or less
facility through transparent substances, but in all cases with a veloeity
enormously greater than that of sound. Hence although the presence
of material substances modifies the propagation of light to some extent
(as by refraction or diminution of velocity, etc.), yet they are by no
means necessary to its conveyance from one part of space to another.

The existence of some medium filling all space as far as the
farthest star becomes therefore a necessity in the rational explanation
of the phenomena of heat and light, and before proceeding to the
development of the wave theory of light, it will be well to consider

1 See further, Theory of Heat, pp. 51, 56.
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some of the fundamental properties of this hypothetical medinm—the
ether.

80. The Ether.—The assumption of the existence of a medium
filling all space does not seem to have presented any serious difficulty
to the reception of the wave theory. A far more formidable difficulty
with which the early supporters of the theory had to contend was
presented by the existence of rays and shadows. They could not
explain by the wave theory the apparent rectilinear propagation of
light to which the emission theory lent itself so easily.

Several ethers have been postulated by different philosophers for
different purposes.! Newton supposed that a medium existed in which
his luminous corpuseles travelled, and in which they were capable in
certain cases of exciting undulations. He also attempted to account
for gravitation by the differences of pressure in an ether, but he
published little of his theory, “ because he was not able from experi-
ment and observation to give a satisfactory account of the medium
and the manner of its operation in producing the chief phenomena of
nature.”

The only ether which has survived is that conceived by Huygens
to account for the propagation of light. The evidence in favour of
it has accumulated with each discovery of science, and the properties
of it as deduced from the phenomena of radiant light and heat are also
those required to explain the phenomena of electricity and magnetism.
It may be that this same medium forms the vehicle by which gravitation
is maintained between material substances, and in some manner as yet
unknown to us forms the link of connection by which the sun is en-
abled to attract the earth and planets and keep them in their orbits.®
The present tendency indeed of physical science is to regard all the

1 To Descartes the bare existence of bodies apparently at a distance was a proof
of the existence of a continuous medinum between them, for he regarded extension as
the sole essential property of matter, and matter a necessary condition of extension.
* Ethers were invented for the planets to swim in, to constitute electric atmo-
spheres and magnetic effluvia, to convey sensations from one part of our body to
another, till all space was filled several times over with ethers” {J. C. Maxwell).

2 Tt is true that, notwithstanding the labours of various scientific men, we are
not in a condition to give an explanation of gravitation, but our inability to explain
it by no means proves that it is a primary property of matter, incapable of explana-
tion, or forbids us to suppose that it may in some way be brought about by the
intervention of that same substance which we find it necessary to assume for the
explanation of the phenomena of light on the theory of undulations. . . . Assum-
ing for the moment, as a thing at the present day resting on evidence quite over-
whelming, that light consists of undulations, we cannot fail to be impressed by the
multiplicity of purposes all bearing so intimately on onr wellbeing, which, it seems
probable, or not unlikely, are fulfilled by one and the same substance, endowed with
properties which we are only gradually learning ™ (Stokes's Burnett Lectures).
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phenomena of nature, and even matter itself, as manifestations of
energy stored in the ether. When we electrify a body a certain
amount of energy is expended, and this is ordinarily regarded as the
energy of the electric charge, and may be recovered at any time by
discharging the body. But where is the energy stored? We say it
is stored in the ether. So again it may be that the energy spent in
raising a mass from the earth’s surface is stored in the ether.! Hence
what we call potential energy may be energy stored in the ether, and
if it exists there as motion of the ether, then we may regard all energy
as kinetie.

To account for the propagation of undulations with a finite velocity
and earrying energy, the ether has been endowed with the two radical
properties of elasticity and density, or rather something corresponding
to elasticity and density.> When sound is propagated through material
substances, rarefactions and condensations are produced, and to the
forces of restitution ealled into play the propagation of the sound is
due,” while the velocity of the propagation depends on the elasticity
and density of the substance. There is, however, a series of pheno-
mena in light* which have no counterpart in the theory of sound,
and which lead to the conclusion that the so-called elasticity of the
ether is very different from that of the air. They suggest that the
vibration of the luminiferous ether must be transverse to the direction
of propagation of the light. Air and fluids cannot transmit transverse
vibrations, for they offer no resistance to distortion, and this is the
property on which the propagation of transverse vibrations depends.
When_ sound is travelling through air the vibrations of the air are
longitudinal, that is in the direction in which the sound is travelling.
Solids, on the other hand, are capable of transmitting both kinds of
vibrations, but with a velocity enormously less than that of light.
The elasticity of the ether has consequently been assumed to be some-
what of the nature of that of an elastic solid, but the propagation of
light by it on this hypothesis is encumbered by several difficulties.
The first is the possibility of longitudinal vibrations or undulations
normal to the wave front, as in the case of sound propagation. That
no optical phenomena arise from these has been accounted for by sup-
posing the ether incompressible, so that the velocity of propagation of

! See further, Theory af Heat, p. 76.

* On this point see Theory of Heatl, p. 52.

4 In the case of a vibrating elastic solid the energy is half in the form of kinetic
energy, due to the vibratory motion of the parts of the body, the other half being
potential ; that is, stored up in the distortion of its parts {see Thomson and Tait's
Natural Philosophy, or Love's Theory of Elasticity).

¥ The polarisation of light.

Transverse
vibrations.

Elastic
anlid
theory.
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the longitudinal wave is infinite. Again, the phenomena of polarisa-
tion and double refraction have led to incongruities and artificial
assumptions,

Since the vibrations of transparent bodies travel much too slowly
to allow us for a moment to suppose that the propagation of light
might be due to them, we are forced to conclude that the ether which
conveys the light is distinet from these transparent media, and inter-
penetrates them all freely (and probably opague bodies too). It may
be difficult at first to admit that a solid body like glass could possibly
have ether freely pervading it ; but we must remember that the ether
is a medium about which our senses give us no direct information.
We cannot see, taste, or smell it. It is only by the intellect that we
hecome convinced of its existence,—by studying the phenomena of
nature, and finding how they may be explained by it. A magnet
attracts a piece of iron even though a plate of glass be interposed
between them, and yet the magnetic influence is one which does not
directly affect our senses, but we must conclude that whatever medium
enables the magnet to put the iron in motion, and communicate kinetic
energy to it, permeates the glass as well as the air and interstellar
space. This medium also propagates light and heat through many
solid substances ; it therefore not only interpenetrates them, but is
capable of vibrating within them.!

Now although we suppose the ether to freely permeate all bodies,
yvet we must suppose that its vibrations are controlled to some extent
by the matter of these bodies, for we can prove that light travels with
different velocities in different transparent substances (a fact attested
by the refraction or bending of the ray in passing from one transparent
substance to another), while in opaque bodies it is not propagated at
all. It is therefore natural to inquire if the free motion of the ether
is influenced by the presence of masses of matter or by matter mole-
cules. Do bodies in motion in this ocean of ether carry with them
the ether they already contain, or do they allow the ether to pass
throngh them freely, as water would pass through a net, or, as Young
imagined, like the air throngh a grove of trees? Or does the ether
offer any resistance to the motion of the earth and planets through it,
and do these bodies, by their motion, produce streams and eddies
in it ?

The whole question of the state of the ether near the earth, and

of its connection with ordinary matter, is still far from heing settled
by experiment (see chap. xix.).

! This free inter penetration follows as a natural consequence of the vortex-atom
theory of matter ( Theory of Heat, p. 77, ete.).
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Whatever difficulties we may have in forming a consistent idea of
the constitution of the ether, it cannot be doubted that the interstellar
spaces are filled with an all-pervading medium in which the ultimate
particles of matter and of our own bodies are continuall y bathed, and
yet of which our senses afford us no direct cognisance. And what-
soever other functions appertain to it, one of the chiefest is the con-
veyance from the sun to his system of that energy by which all its
physical life is sustained.

81. The Vibration.—Although all the phenomena of interference
afford us the strongest evidence that light is propagated as a vibration
of the ether—that is, a rapid periodic change of its state or of some
of its properties—yet the medium being hypothetical, we are almost
wholly ignorant as to what it is that vibrates or how it vibrates. The
direction to which the periodic change of state is related we term the
direction of the vibration, meaning by the vibration that periodic
change, whatever it may be. If it be a periodic displacement, then
the direction of the vibration is the direction of the displacement, but
this does not necessarily coincide with the direction of propagation of
the disturbance. In the case of sound we know well the nature of
the disturbance and the properties of the vehicle. In the case of light
we shall see that at least a component of the vibration is in the wave
front, or transverse to the direction of propagation.

32. Special Forms of the Wave Theory.—Many of the pheno-
mena of light, such as the colours of thin plates, can be equally
explained by any form of wave theory, and cannot be substantially
modified by a more exact knowledge of the constitution of the ether,
However, in other parts of the subject, such as the theory of crystalline
refraction and reflection, we are compelled to make some hypotheses,
and if on developing the special theory built on these hypotheses we
find a discordance with any observed phenomena, this disagreement
only disproves the special form of theory admitted, but the wave
theory in iis general sense remains intact.

The necessity of transverse vibrations, and the incapability of
fluids to propagate them, led to the development of the most celebrated
special form of wave theory—that which regards the ether as an
elastic solid. Here, however, we need not regard the ether as
possessing all the properties of an elastic solid. All it requires is
torsional rigidity, that is, resistance to change of shape, or some
property analogous to the torsional rigidity of elastic solids, to enable
it to transmit the transverse vibrations of light. A substance like a
jelly could transmit either transverse or longitudinal vibrations, and
the velocity of the latter might be very great compared with the
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former. To avoid the diffieulty introduced by the possible longitudinal
waves, Green and the promoters of the elastic solid theory supposed
the ether to be incompressible, so that the longitudinal disturbance
travelled with an infinite velocity. Sir G. G. Stokes has, however,
remarked that although the ether may act as a perfect fluid for any
finite displacements, yet the displacement occurring in the propagation
of light may be so small and so rapid that for it the medium behaves
as an elastic solid. Cumbered with difficulties which only increase as
it is required to meet the demands of accumulating information, the
elastic solid theory, although in many instances it comes near the
truth, can in optics be regarded only as a first speculation, but never-
theless it must always retain a high historie interest.

The theory which promises most favourably at present is that
which regards the ether as a turbulent fluid, and light as an electro-
magnetic phenomenon arising from very rapidly alternating electric
polarisations or “ displacements,” as Maxwell termed them. When a
body is electrified energy has been spent in producing the electrifica-
tion, and this energy is stored in the ether around the body. To
indicate this we may say that the ether is polarised, meaning thereby
that its elements have suffered some directed transformation in pro-
perties, or change of state, by the storing of the energy. Electric
phenomena are manifestations of this energy in transformation, and
when the body is discharged the ether is released from the energy and
the consequent polarisation. Similar remarks apply to an electric
current. Now if a body be rapidly charged and discharged, or a
current be passed rapidly in opposite directions, the ether around will
be as rapidly thrown alternately into opposite states of polarisation,
and when this becomes very rapidly periodic we have the vibration of
the ether spoken of in the wave theory of light. When the rapidity
of these vibrations lies within certain limits (red and violet) they affect
the eye with the sense of sight; below the red we detect them by
their thermal, and above the violet by their chemical action® (see
further, chap. xxi ).

Apart from its probable truth, the electro-magnetic theory of light
shows us how careful we must be to avoid limiting our ideas as to the
nature of the luminous vibration.

! A quasi-rigidity might be conferred on the ether by other motions going on in
it. Thus by filling it with vortices it might become capable of propagating trans-
verse waves and standing electric stress,



CHAPTER II
THE PROPAGATION OF WAVES AND THE COMPOSITION OF VIBRATIONS

83. Wave Motion.—The essential characteristic of wave motion is
that a periodic disturbance is handed on successively from one portion
of a medium to another. Examples of it are constantly presented to
the notice of every one, as, for instance, when a stone is cast into still
water or when a sounding bell throws the air into vibration.

That which is propagated from one part of the medium to the other
is energy, not matter, for while any element of the medium merely
oscillates about its position of rest, there is a continuous handing on, or
flow, of energy from one part to another. In the case of a projectile
or a current, on the other hand, matter flows from one place to another,
and carries with it its associated energy, so that we have a flow both
of energy and matter.

If the medium be homogeneous and isotropie, a disturbance is
propagated with the same velocity in all directions ; but if the medium
be not homogeneous the speed may vary from point to poeint, and if it
be homogeneous but not isotropic the speed may depend on the direc-
tion of propagation.

In general the velocity of propagation depends on the nature of
the medium and the length of the wave, but so far as light is con-
cerned the velocity in interstellar spaces seems to be the same for all
wave lengths.

34. Transverse Wave.—As an elementary introduction let us
consider the nature of a wave of transverse vibration and its mode of
propagation.

Take a flexible cord AB, one end B being fixed and the other A
free. (A thick piece of india-rubber tubing 3 or 4 yards long answers
very well.) If the free end A be quickly moved from A to A’ (Fig.
6, a) and back again, the displacement communieated to A will run
along AB as a wave. Fig. 6 (a) represents this wave travelling along
AB. If A had been displaced in the opposite direction the wave

I
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would travel as in (£), whereas if A were displaced backwards and
forwards continuously, a continuous series of waves would be pro-
pagated along it as in (y). The experiment (a) may be easily repro-
duced by giving a sudden jerk to one end of a rope lying on the
ground. Inall these cases we speak only of what happens as the wave

‘a) Solitary wave.

o
.S.I' + 1

(%) Consecutive waves,

Fig. 6. —Transverse Waves,

travels from A to B, that is, we suppose B very far away, for at
present we are not concerned with what happens after the wave
reaches it.

Here it is evident that each element of the cord merely oscillates
backwards and forwards, like A, through its position of rest, while the
disturbanee is propagated from A towards B. There is a flow of energy
along the cord.

Definition.—Two particles such as a and b [Fig. 6 (v)] are said to be
in the same phase of motion when their displacements and direction of
motion are the same, and two particles in the same phase are separated
by a complete wave length, or by any whole number of wave lengths.
Two particles such as a and ¢, whose displacements and directions of
motion are opposite, are separated by half a wave length, or any odd
number of half waves, and are said to be in opposite phases of
motion.

The process which takes place in the cord may be illustrated by
supposing AB a row of particles connected by elastic bands. When
A is displaced it drags the adjacent particle after it, which in turn acts
on the third, and so on, the disturbance being handed from one particle
to the next. Thus by the time A has reached its greatest distance A
(Fig. 7, B) from its position of rest, the disturbance will have travelled
along the line to some point 1), and the particle at D, will be on the
point of beginning to move as A did. In doing so it will pull its
successor after it, and the disturbance will travel on in this way to the
end of the line. But when A begins to return to its initial position it
drags the adjacent particle after it. This in turn reacts on the next,
and so on, so that by the time A reaches its initial position the original
disturbance (which was being propagated all the time along the line)
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has reached a distance D, equal to twice the distance of D, from the
end A of the line. The row of particles being now represented by
Fig. T (y), let A, pass through its position of rest to an equal distance
A, on the other side. The configuration of the line is now represented
by (&), in which the original disturbance is just about to displace D, at

‘a) Conmected particles.
A) Quarter wave,

) Half wave.

'8) Three-quarter wave.

(¢) Complete wave,

Fig. T.—Transverse Waves.

a distance equal to 3AD, from A. So again when A returns to its
position of rest the line will be represented by Fig. 7 (e), the disturb-
ance having now reached D, while A has made a complete excursion.
AD, represents a complete wave. It is the distance which the dis-
turbarice travels along the line while the particle A makes a complete
vibration. Now D, is just about to repeat the oscillation performed
by A, so that if A vibrates continuously D, will be moving in exactly
the same manner and have the same displacement and direction of
motion as A at every instant. A, and D, are in the same phase, and
the length AD, is a wave length. Thus at distances of a wave length,
or any multiple of a wave length apart, the motions of two particles
are exactly similar, while at distances of half a wave length apart, or
any odd number of half waves, the displacements and velocities are
equal but in opposite directions. (This remark is of great importance
in the theory of interference.)

35. Plane Wave.—Instead of a single cord let us imagine an
infinite number of parallel and similar cords with their ends attached
to the same plane. TFor the sake of clearness let us suppose the plane
to be horizontal and the cords to hang vertically from it. Then if
the plane be moved parallel to itself, so that each point of it describes
a short horizontal line, the ends of the cords, being attached to the
plane, will be displaced horizontally and a transverse disturbance will
run along each. At the end of any time this disturbance will have
travelled to the same distance along each cord, and therefore the locus
of those points which are just about to be disturbed, or the wave front,
will be a horizontal plane. If the plane be caused to oscillate regularly

“.".il..‘l'-k"

length.
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backwards and forwards a series of similar waves will run along
each cord.

We might now suppose the cords so numerous that they touch
each other, and we are thus furnished with an idea of a continuous
medium, disturbed by a series of plane waves propagated through it.

The end of each cord has been supposed for simplicity to oseillate
along a straight line, but we might equally have supposed it to deseribe
any eurve—thus in the case of waves in water the various particles
generally deseribe eireles or ellipses in vertical planes, parallel to the
direction of propagation.

36. Spherical Wave.—lLet us now take the case of an infinite
number of exactly similar elastic cords attached to the same point,
and diverging in all directions from it. Further, let a disturbing force
at the centre, acting in the same manner upon each, cause them all to
undulate alike. The cords being similar in all respects, it is obvious
that the waves propagated along them will be alike and travel with
the same velocity. Thus all points at the same distance from the
centre will be in the same state of disturbance at the same instant—
that is, the locus of points in the same phase of vibration is a sphere
and the wave fronts or wave surfaces are spherical. If we imagine the
cords to fill all the space around the centre we have the case of a con-
tinuous medium disturbed by a system of spherical waves diverging
from a point.

Definition.—The continuous loeus of those points which are in the
same phase of vibration is called a wave front. The word continuous
is inserted because in oscillatory motion such as we are considering a
system of successive waves are in similar phases and a suceession of
similar wave fronts coexist, each a wave length in advance of its
predecessor. In this sense any surface of equal phase is a wave front.

The wave front might be defined more closely as the continuous
loecus of those points which are just on the point of being disturbed,
and in this sense the term is frequently used. This wave front then
marks the limits to which the disturbance has just reached at the
instant considered.

Eramples
1.—DProve that -the equation

y=u 8in 2%'{1'3 =a)

represents a wave disturbance in which v is the velocity of propagation, A the wave
length, y the displacement of a partiele from its position of rest at the time ¢, and =
the distanee from the origin of the same particle.
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For brevity denote the angle (¢f — x)2x /N by @ ; then if we change @ to =\ we
change 8 to 8 327, and the sine of the angle remains the same, therefore the value of
y—that is, the displacement of the particie under consideration—is exactly the same
as that of the particle at a distance A from it, or any number of times A from it. Hence
A 1s the wave length.

Again let £ become M v, then & becomes #+2x, and therefore the value of ¥
remains the same as before. The value of i for the same particle is therefore periodic,
and the periodic fime T is Afv—that is, A=+¢T. But A the wave length is the
distance through which the disturbance is propagated in the periodic time T, con-
sequently the quantity v is the velocity of propagation.

The quantity @ is termed the amplitude of the vibration. It is evidently the
greatest displacement of any particle from its position of rest. The amplitude de-
pends upon the nature of the medium and the power of the disturbing centre, and
1ts magnitnde must here be left an open question. The periodic time T can be easily
determined in the case of sound, but in the case of light the vibration is so exceed-
ingly rapid that it can only be determined indirectly from the equation A=+T, by
means of a previous knowledge of © and A,

If we consider a row of particles AB, connected as in Fig. 7 and initially in a right
line, their simultaneous positions when disturbed by an undulatory metion will be
represented by Fig. 6 (y). This curve is determined by the above equation when we
suppose ¢ to remain constant and x and y to be the abscissa and ordinate of the
particle. But if we confine our attention to a single particle—that is, suppose & con-
stant while £ and ¥ vary—then the same curve will determine the 11i5II|.~'!-E'-!‘-r!Il!TI1, i of
the particle at any time £, the time £ being now the abscissa of the curve.

Thus the curve which represents the simultaneous displacements of all the
]_ul]'i.]'t'.l{::-i also eXPOSes the ]a:i.-in]'}‘ of the 11i::||]:l1,:|!'nn.'t|t of a Eillg]n !r;li'ti::lrt.

SNtnple Hermonie Motion.—If a particle moves subject to the above equation, it is
said to execnte a Hi]ll.]lll: harmonic vibration. The motion here deseribed is that
executed by a particle constrained to move on a right line under the action of a force
".'.:b,l:':,-':iug tliruut]}-‘ as the distanee.  Such wounld be the motion of a !h:Ll‘lin:lt: '|I]iI.I.'I!Il i
a smooth straight tube passing in any direction through the earth.

2, —If a particle moves round the cireumference of a cirele with uniform veloecity,
the foot of the perpendicular from it on any diameter moves backwards and forwards
along that diameter with a gsimple harmonie motion.

Let the angular velocity of the particle be @, and let the time be reckoned from

Fig. 8.

o

the instant the particle leaves the extremity A (Fig. 3) of some diameter OA making
an angle @ with OX. Then if P be the position of the particle at any time ¢ the
angle AOP=wt and XOP=wf+a. Hence, if OY be at right angles to- OX, the
distance y from O of the foot N of the perpendicular from P on the diameter OY is

g = sin (of +a),

where @ is the radins of the cirele, and is the amplitude of the vibration of the foot
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of the perpendicular. If T be the time of a complete revolution we have wT =2r, so
that the equation may be written

PR i R
¥ = sin ( T +u).

Or substituting from the equation X =+T we have as belore

¥=a sin (é:—r-r! - u'.\].

S

If v is the veloeity of the particle in the circle, then +T =2za. Hence if the velocity
in the circle be the velocity of propagation of the wave, and if the time T be the
period of the wave, then the cirenmference of the circle is equal to the length of the
wave, while its radius represents the excursion of the melecule making simple har-
monic vibrations,

The motion of the foot of the perpendicular is represented in Fig. 8, the variables
being y and {, and the co-ordinates y and wf. Similarly the foot M of the per-
pendicular from P on OX executes the vibration
s )

b }

e= cos (wl +a) = cos 1.

T

37. Algebraical Expression.—Let () he a fixed origin and y the
displacement of P, at any instant, from its position of rest. Then if
# be the distance of P from 0,
measured along OX, the particles
adjacent to P will in their dis-
placed positions lie on a curve, as
indicated in Fig. 9, and the equa-
tion of this curve at the instant
under consideration may be writ-
ten in the form 1= gl
Now by the characteristic of wave motion this enrve will be propa-
gated forward with a veloeity », and the displacement of any particle
P’ will be exactly the same as that of P at a time { previously, pro-
vided the difference of the abscisse of P’ and P is equal to »f, where {
is the time of propagation from P to P. In fact the wave curve at P’
is merely that at P moved forward through a distance #». But at P
we have y = ¢(x), therefore at P* we have

o= pl — i),
for the = of P is equal to the z of P’ diminished by #f.
It is clear in itself that this equation represents a wave motion

. 2w - -
! The form y=a :am{ I{rt—.:cj-i—A} was tacitly assumed by Newton for the

gquation of motion of thz air particles in sound propagation (Prencipie, lib, ii

prop. 47}
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travelling with a velocity », for 7 remains unchanged if we replace ¢
by ¢+ T and = by its corresponding value = + +T.

Otherwise thus :—If ¢ be the velocity of propagation, the displace-
ments at any two points P and P’ will be the same at the times { and ¢ if

' —z=v(t’'=t) orx'=a-vl4+ul.
Hence
y=olx, )=¢(x', 'Y=¢{x - vl + v, '),

which holds for all values of #, and consequently for =0, in which

case we have
y=d(vf - z).

If another disturbance be running in the opposite direction its equation
will be y = f(¢f + #), so that if the two be superposed we will have

y= (ot - x) + flet +),

which represents the general state of disturbance in a finite stretched
wire when we have both direct and reflected waves.
A particular solution of the equation y = ¢(vt — &) is obviously

: (i?f—.r)
g=asin | — ).
P

The value of y will be unaltered if f be increased by 2xp/v. The
periodic time is therefore T = 2zp /v, but A =T = 2zp. Therefore ?

r{l‘f - ).

y=asin =

The general form of y is a periodic function. It has the same
values at distances =, = + A, x + 2, etc., and at times /, £+ T, ¢ + 2T,
ete., and we know by Fourier's theorem (Thomson and Tait, Naf. Phil.)
that any periodic function f(z) of period A can be expanded as a series
in the form

o z . 2 L -
fiz)= A, sin (2:— 4 ml) + Assin (4;— 'E'-ﬂ-_';) + A zin ( j: -I—q.;;) L ete,

Hence we may write

2

= A, sin x

(vt =) + A sin 4—;(-:-:! — #a) + ete.

The complete vibration is therefore made up of a series of superposed
simple harmonic vibrations of wave lengths A, JA, A, ete.
As we have reason to believe that waves of different periodic times

1 Hence p is the radius of a cirele of circumference A,
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produce different impressions on the eye, just as notes of different pitch
produce different effectzs on the ear, we may therefore restrict our
attention to waves of a definite length, and take

[5

3= sin hf‘t‘.‘f- — @)= sin (En:! - u)
A 1
or
W=t sin (el — a

as the standard equation of the disturbance in our investigations con-
cerning light of a definite wave length.

Definition.—The whole angle 2z(vf — z)/A, or wf— «a, is called the
phase of the vibration, and the angle « is sometimes called its epoch.

38. Colour and Frequeney or Pitch.—We have seen how a single
wave or a continuous succession of waves (Fig. 6) may travel along a
stretched cord. In a similar manner a continuous system of waves
might be generated in the air or any other medium. Such a system
of waves may or may not affect our sense of hearing. The pheno-
menon of sound is produced by a more or less rapid suecession of
waves, but there are major and minor limits to the rapidity of vibra-
tion, outside of which the ear fails to follow, and no sensation of sound
1s produced—that is, the sensibility of the ear is limited, and the pitech
of the note must lie within certain limits in order that it may affect
the sense of hearing. So a wave system in the ether may or may not
affect our sense of sight. The sensations of light and colour are due
to a very rapid sueccession of waves, but the sense of sight iz limited
in range and the ether vibration may be either too slow or too rapid
to affect it. The limits in this case, however, are not nearly so widely
separated as in the case of sound. The rapidity with which the violet
waves siceeed each other has been caleulated to be less than twice as
fast as that of the red, the latter making about four and the former
about seven hundred millions of millions of vibrations per second.
The sensibility of the eye is thus confined to much narrower limits
than that of the ear, the interval between the red and violet being less
than an octave, while the ear possesses a range of several octaves.
Vibrations too slow to excite the eye are recognised hy their thermal
effects, and those which are too quick are generally detected by their
chemieal action. The former are most effective in heating our bodies,
while the latter facilitate the prosecution of such arts as photography,’
and are a very important factor in the growth of plants, ete,

! Captain Abney has succeeded in preparing photographic plates with Lromide of
silver which are capable of being decomposed not only by the violet end of the spee-
trum, but also by the red rays, and by rays of lower refrangibility which have wave
lengths nearly three times that of the red (see ** Bakerian Leeture,” Phil, Trans. Eoy.
Soc., 1881).
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As the pitch (or musical colour) of a note is determined by the
frequency of its vibrations, so it appears to be the frequency of the
vibration in the luminiferous ether that determines the colour. For
if a wave motion is propagated from one medium to another, the
vibration frequency in the second medium ought to be the same as in
the first, the vibration in the second being excited and forced by that
in the first. This being admitted, it follows that if the velocity of
propagation ehanges in passing from one medium to another, the wave
length must change in the same proportion, in accordance with the
equation A =¢T. Now it has been observed that when light of a
definite wave length passes from one medium to another, as from air
to water, the colour of the light (say sodium light) remains unaltered,
s0 that the natural inference is that the colour impression on the eye
depends on the vibration frequency rather than on the absolute wave
length.

We have now three methods of detecting solar radiation or wave
motion in the ether. If the frequency of the vibration lies within
certain limits, it affects our sight, and we call it light. Outside these
limits the vibration may be too slow or too rapid to affect our eyes.
In the former case we can detect the wave motion by its heating
effects. [t imparts its energy to material substances and to our own
bodies, exciting vibrations in them and producing physical changes,
and we term it radiant heat. It is not to be understood that it is only
the waves too slow to affect our eyes that possess any heating power.
This property is possessed by the luminous waves also, but generally
in a smaller degree, so that those waves which affect our sense of sight
may be called lwminous heat waves, and those which do not may be
termed non-luminous, or dark, heat waves. Both the ultra-violet and
infra-red waves may be converted into luminous waves. The con-
version of the former is termed flugrescence and of the latter calorescence
(Arts. 289, 290).

Heat and light are consequently reduced to the same canse, viz,
wave motion in the ether, and any ether wave may be, at the same
time, a light wave and a heat wave. It is not that there are two
classes of waves, heat waves and light waves, but that we have two
senses by which we can detect the same waves. They affect our
bodies with warmth and our eyes with light if their wave period lies
within the range of our sensibility.!

! Evidently in Young's opinion the heat rays and the actinic rays differ from the
light rays only in their wave length or period, for he states that “*. . . we must
therefore call light an influence capable of entering the eye, and affecting it with a
sense of vision., A body from which this influence appears to originate is called a
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The waves which are too rapid to affect our sense of sight are
termed acfinic waves or rays. Their extreme shortness probably
qualifies them to operate between the molecules of bodies and become
effective in producing chemical changes. Beyond this point we have
no means of detecting the very rapid waves. It is otherwise, however,
in the case of long waves,

We have seen that although the ether vibrations may be too slow
to affect our sight (as air vibrations may be too slow to affect our
sense of hearing), still we are able to detect their presence by their
heating effect. DBut there is a limit even to this. The ether waves
may be so slow that they will pass through our bodies without giving
up any sensible portion of their energy. How then are we to detect
these long ether waves? The recent brilliant experiments of Professor
Hertz (see chap. xxi.) have placed the means in our hands. We can
now work with ether waves of any length, from a few inches upwards.
Heretofore we could detect only the radiant heat waves, which are
excessively short, ranging from gls6 to (oo5oe part of an inch.
The Hertzian waves are excited electrically and detected electrically.
They may also be detected by their thermal effects. We have thus,
as it were, acquired another sense, for we have now another means
of investigating the ether, and connecting the various phenomena of
nature.

39. Average Kinetic Energy of a Vibrating Particle.—Let a
particle vibrate according to the equation

y=a sin (wl - a).
Then its veloeity at any instant is given by

iy
v=—, =W cos (wf —al,

and if m be its mass its kinetic energy is lms®. Now the foregoing
expression shows that v varies from zero to aw ; accordingly ‘the mean
energy during a complete vibration will be

T 2w (T
,I{ [ Y= "?*;’;r“" [ 2eosi(at —a)lt=
ol E -

st Zgo”T | g 1\ S
=—— i +—sinPwl —a) ; =Fmaw,
Ii.l. & :;_.BJ L3 :IJ i

e T{ - \
o= s Mot - i
AT Jn 1+ cos 2w ij:

luminous body. We do not inelude in this definition of the term light the invisible
influences which occasion heat only, or blacken the salts of silver, although they
both appear to differ from light in no other respects than as one kind of light differs
from another, and they might probably have served the purpose of light if our organs
had been differently constituted " (Young, *“On the Theory of Optics,” Lectures on
Natural Philosophy).
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where w = 2x/T. Hence the average energy is

matw®  mwtae

TR i
L

Cor.—The mean energy = jmv®=§.Lmv* where v is the greatest
velocity of the molecule. Therefore the mean kinetic energy is half
the maximum kinetic energy.

40. Intensity of Illumination.—We must now define what we
mean by, and how we measure, the infensity of light. Lights generally
differ in two respects, viz. intensity and colour. In photometry we
say that two lights are equally intense if at the same distance away
they produce the same illumination on a screen. If one candle pro-
duces a certain illumination we say that two such candles together
produce twice as much illumination, or that the infensify of illumination
is twice as great. Similarly the intensity of illumination is directly
proportional to the number of candles, provided they are all of the
same power.! Now the average energy of the vibration due to any
source is proportional at each point to the square of the amplitude,
and the average energy due to any number of sources is proportional to
the square of the amplitude of the resultant vibration, and this over any
region is the sum of the average energies due to the sources separately.

This has led to two methods of estimating the intensity of the
illumination in terms of the energy of the vibrating medium. In the
first place, we may take the intensity of illumination as measured by
the energy per unit volume of the medium, and in this case if w stands
for the mass per unit volume the intensity by the foregoing article
will be measured by the formula *

= mea®  mwta®
T I

On the other hand, we 'may measure the intensity by the quantity of
energy transmitted per unit time per unit area across a plane perpen-
dicular to the direction of propagation. In this case the velocity of
propagation will come into account, and the intensity (for a plane
wave) will be measured by the product of the velocity and the energy
per unit volume—that is, by the formula

Wk d . )
I me*a®  mata®\

R ROk

! This may be regarded as the definition of an illumination n times as intense as
a given standard. That the intensity varies inversely as the square of the distance
from the source follows as an experimental fact.

* In this expression we have taken into account only the kinetic energy. In the
case of a vibrating elastic solid the whole energy is half kinetic and half potential,
so that if the whole energy be taken as the measure of I, the expressions in the text
ought to be doubled.

Energy
contained,

Energy
Lrans-
mitted.
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In practice, however, we deal only with the relative intensities, and
it follows from either system of measurement that if the periods of
two vibrations be the same, then their intensities are in the ratio of
the squares of their amplitudes, or

| S

3 ﬂr:!f

The relative intensities of two sounds of the same pitch, or of two
lights of the same colonr—that is, of the same period or wave length
—are consequently compared by the squares of their amplitudes of
vibration. But we cannot so easily compare the intensities of two
lights of different colour, or two sounds of different pitch, for they
produce dissimilar impressions, and the time (T) of vibration enters
the expression for the mean energy of the motion. In the estimation
of the relative intensities of different sources of light (which forms the
subject of photometry) great difficulty is encountered in the fact that
different sources of light are in general differently coloured.!

41. The Intensity wvaries inversely as the Square of the
Distanee.—lLet us now consider a luminous point as the source of a
system of spherical waves diverging from it as centre. Consider any
one of these waves of radius .  This wave travels outward, develop-
ing itself and increasing its radius with the velocity of light. It
carries its energy with it, and after a time it is a sphere of radius +".
Now if I denotes the energy per unit time transmitted across unit area
of the first wave surface, and 1" the energy per unit arvea of the second,
we have, since the energy of the first is handed on to the second, the
whole energy transmitted per unit time across the wave = 4m*I, and
also the whole energy transmitted = 47T

Consequently §

s

=@ O [+%=1"7"2=constant,
or the intensities of the illumination at different distances from a
luminous origin are inversely as the squares of the distances, a relation
which is verified by experiment.

Cor.—Since the intensity is proportional to the square of the
amplitude, it follows that the amplitude of the vibration is inversely as
the distance from the origin, or

= 'y’ =constant.

1 On the comparison of the relative intensities of the different colour throughout
the spectrum see Colour Measurement and Mixture, by Captain Abney.
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42. The Prineiple of Superposition.—When two or more separate
disturbances are simultaneously impressed on the same element of a
medium, the effect may be very complex, but in the case of light the
displacements are supposed to be such that the composition of them
by direet superposition is allowable, for ecalculations made on this
assumption agree with the observed facts, at least to that degree of
accuracy reached by experiment. On this prineiple is based the whole
doctrine of interference discovered by Young in 1801. It follows
from it that any number of separate disturbances may be propagated
through one another in the same portion of the medium, each emerging
from that portion as if it had not been encountered by the others.
Thus rays of light from objects all around us cross each other’s paths
in all sorts of ways, but each travels on as if the others did not exist.
Each portion of the ether is traversed by streams of light from a
multitude of different sources, which are simultaneously propagated
through it. Hence we may conclude that at any instant the dis-
turbance at any point of the ether is that due to the superposition of
all the disturbances which reach it at that instant from the various
parts of the surrounding medium. This is, in a generalised form, the
principle stated by Huygens in 1678. It asserts that the displacement
cansed by any source of small vibrations is the same, whether it acts
upon the medium alone or in conjunction with other sources, provided
the displacements considered are very small. The combined effect of
several sources is therefore the geometric resultant of the displacements
which would be produced by them acting separately.

The nature of this principle may be made more clear by a simple
example. Let a pendulum receive an impulse in any vertical plane
passing through the point of suspension, causing it to vibrate in that
plane. Now when it is at the lowest point of the are of vibration, let
a second impulse be given horizontally in a plane perpendicular to
that in which it already vibrates. This impulse, if it had acted on the
pendulum at rest, would have caused it to vibrate in the vertical plane
of the impulse and through an are depending on the magnitude of it.
Now it is found on trial that the distance of the bob of the pendulum
from either of these vertical planes is the same at any instant as if the
other vibration did not exist, so that each vibration subsists inde-
pendently of the other, although the resultant motion is a compound
elliptic vibration.

The two vibrations are here taken in separate planes in order that
their coexistence may be more easily recognised. When the vibrations
are in the same plane the resultant vibration is also in that plane, and
its amplitude, by the principle of superposition, is the sum of the
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amplitudes of the constituents when their directions conspire, and
their difference when they are opposed.

43. To eompound two Simple Vibrations.—Let a particle be
simultaneously impressed by the periodie displacements represented by
the equations

M=o, sin (wf -a,) and y.=a, 510 (wf - a,),

which agree in periodic time and wave length (0 = 2z/T), but differ in
phase and amplitude. The resultant displacement at any time { is

Y=+ Ya=ay sin (wf ~ a;) -+ @, 5in (wt - a,),
= sin wh{; cos a; 4 @, cos a;) — cos wliae, sin o, -+ a, 51N a,),
= A sin (wl —al,
if A eos a=a, cos a; -+ @, C08 &,
and A sin a =y sin @ + o, 8iN @y,

Therefore by squaring and adding we find

Af=a® + a4 2a,a, cos (a; — ay),
Sopam iy S
and by division *
iy Sina, + a0, 5in ag
tanae= - =l
ﬂ'—l [ E GI g ﬂ...(.'{'-‘ﬂ {h:

! Fresnel, (Ewores complédes, tom. i. pp. 288-203 ; Mémoire cowronnd sur lo Diffrac-
faom, $§ 87-42.

* These results may be obtained geometrically as follows:—Let the parallelogram
OABC revolve round the vertex O with uniform angular velocity. Then since
A, B, C deseribe cireles round O with
a uniform angular velocity, it follows
by Ex. 2, p. 37, that the feet P, Q,
R of the perpendiculars from A, B,
C on any right line OX execute simple
harmonie vibrations along the line
OX. But since AC is equal and
parallel to OB, it follows that PR=
00, and therefore OR = 0P + 00,
Hence the displacement of B at any
instant is equal to the sum of the
displacements of ' and Q; or, in
other words, the motion of R is the
resultant of the motions of P and
() superposed. Now R executes a simple harmonic vibration of amplitude OC
and phase XOC—that is, il the amplitudes of the vibrations of P and Q be repre-
sented by the lines OA and OB, while the phases of the same vibrations are repre-
sented by the angles OA and OB make with a fixed line OX, then the amplitude of
the resultant of the two will be denoted by OC, the diagonal of the parallelogram on
OA and OB, and the phase of the resultant will be represented by the angle OC
makes with OX. The analytical method in the text is given in order that the
student may become armed at once with a direct and powerful instrument of attack.
[Compare Art. 36, Ex. 2. Figure 10 illustrates the cosine formule. The sine
formule may, however, be dednced from the figure by supposing the phase
measured clock-wise from the vertical OY,]

Fig. 10.
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This determines the amplitude A and the phase wf — « of the resultant
vibration. If we denote the difference of phase of the component
vibrations by & we have 8 = a, —a,, and the resultant amplitude is given
by the equation

Cor. 1.—If 6 =0 or 2n=—that is, if one wave is retarded on the
other by any number of wave lengths—we have cos §= 1, and

A= (a, + ay)s

Cor, 2.—If § == or (2n + 1)m, one wave is retarded an odd number
of half wave lengths on the other, and

A= {ﬂ. - 11'._..','*..

If in addition a, = a,, we have A = 0, and the waves in this case destroy
each other.

Cor. 3.—If & = 1= or (n + })m, one wave is retarded a quarter wave
on the other, or (n + })lA and

] . -
Af=al+ag.

44. Distribution of the Energy.—In the case of a medium
simultaneously disturbed by two sources of similar vibrations, we have
seen that the amplitude of the resultant vibration at any point P is
determined by the equation A®=a*+a,’ + 2a,a, cos 3, where § is the
phase difference of the vibrations reaching P, and depends on the
difference of its distances from the sources. If this difference is to
remain fixed, then P may lie anywhere on a hyperboloid of revolution,
having the sources for foel. The whole space around the sources may
be divided up by a system of such surfaces, each determined by a value
of 8 and a corresponding value of A. The average energy of the
vibration of the elements of the medium at any one of these surfaces
is measured by A® which, from surface to surface, varies from a
maximum (@, + a,), for 8= 2nm, to (¢, —a,), for 8=(2n + 1)x. The
average value, however, of A* throughout the whole medium will be

- ]
"+ Aoy

or the sum of the average energies of the vibrations excited by the
sources acting separately.

Thus when a medium is disturbed simultaneously by two. similar
sources O, and O, the amplitude of the resultant vibration at any point
is the sum of the amplitudes of the vibrations which the sources would
excite if each acted separately only when the vibrations at this point
are in the same phase. The amplitude at any other point will depend
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on the difference of phase, so that in some tracts of the medium there
is a large amount of energy, while in others there is very little. The
interfering action of the two sources causes no destruction of enerzy,
but merely a redistribution of it in the medinm around them.

For example, if a, = a,, that is, if the sources be of equal power,
then at some parts of the medium the energy will be (2u)*, or quad-
rupled, while at others it will be zero, but the average value through-
out the medium will be 207 viz. the sum of the average energies of
the two equal sources.

Example

Any number of waves of a given type compound into one of the same type.

For if
Y= +at. « - F¥a=Za,sin(w—aq;),
=) sin wf — P co3 wf= A sin (wf — a).
Where P =Zu, sina;, Q= Zq; cos a,,
. 3 ¥
fanne =0 i b
Zigcosey )
and A= Ea‘.“' s Efﬂ.ﬂ._, oS =ty = P2 ()=
If the epoch angles a; and a,, ete., vary irregularly, the chance is that the term
involving cos (a; - a,) will be as much positive as negative,' and will disappear from
the result, so that the average value of A* will be Za®, or
average intensity =sum of component intensities.

45. Graphic Representations of the Resultant of a System of
Vibrations.— From the equation A® =a* + a,® + 20,4, cos § it appears
that the resultant amplitude A is the diagonal of a parallelogram of

which the sides are a, and a,, and § the angle between them.
Again the equation for tan « may be written in the form

iy sin (o — a;) +a, sin (o - ay) =0,

from which it follows that if we draw a line making an angle « with
the diagonal A, it will make angles «; and a, with the sides o, and a,

%
P & i
\ P,
0 X

Fig. 11.—Reznltant of two Fig. 12.—Resnltant of a system of
similar Vibrations. similar Vibrations.

of the parallelogram. Thus we have the following construction. Take
any fixed line OX (Fig. 11) and draw OP equal to a,, and making an

! On this point see Ewey. Brif. ninth edition, art. *Wave Theory,” by Lord
Rayleigh. Al=o Phil. Mayg., Aug. 1880.




ART. 45 GRAPHIC REPRESENTATIONS 49

angle o, with OX, similarly draw OQ equal to e, and making
QOX = a,, then if we complete the parallelogram OPR(Q) the diagonal
OR 1is equal to A, and the angle ROX which it makes with OX is
equal to a, while POQ is equal to the difference of phase & or a; — a,.
Or if POX and QOX represent the phases ¢, and ¢, of the component
vibrations, ROX will be the phase ¢ of the resultant vibration. The
amplitudes, therefore, compound like forces.

To compound several vibrations by this method we have only to
draw OP,, OP,, OP,, etc. (Fig. 12), from O, equal to a,, a,, a., etc., the
amplitudes of the vibrations, and making angles P ,0X, P,0X, etc.,
equal to phases ¢, ¢,, etc. ; then, as in the case of a system of forces
(Minchin’s Sfafics), the resultant amplitude is equal to #.0G, if there
are n amplitudes, and if G is the centre of mean position of the points
P, P, Py ete.

It may be more instructive, however, to employ the method of the
polygon of forces. Thus draw OP; (Fig. 13) equal
to a,, and making an angle ¢, with OX, and from
P, draw PP, = a,, and making ¢, with OX. Then
OP, represents the resultant of the vibrations a,
and @, Similarly for a third draw P,P, =a, and
making an angle ¢, with OX, and so on for any 'x
number. The line joining O to P, the extremity rig 15— whe vibration
of the line last dvawn, represents in magnitude the SUHROIL
amplitude,” and its direction makes an angle with OX equal to the
phase of the resultant vibration.

These graphic methods we shall find of great utility in the theory
of diffraction.

Cor. 1.—When the system of vibrations to be compounded forms a
series in which the phase difference of any two consecutive terms is
infinitesimal, but varying continuously from term to term, then the
angle between any two consecutive sides of -the vibration polygon
will be infinitesimal. The polygon will consequently become a con-
tinuous eurve, as shown in Fig. 14, such that the element of length at
any point M of the curve represents the amplitude of a corresponding
constituent vibration, and the angle which tangent at this point makes
with OX represents the phase ¢ of the same vibration. The line
joining O to M represents the resnltant of the system of vibrations
between O and M; the length of the line OM representing its
amplitude, and the angle MOX its phase. 1f P be a point on
the curve such that the tangent at P is parallel to OX, then the
arc OMP represents a system of vibrations varying continuously
in phase from zero to w—that is, over half a period—and OP

E

Vibration
curve,
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represents the amplitude, and XOP the phase of the resultant of the
system.

Cor. 2.—If the system of vibrations forms a series of equal ampli-
tude and equicrescent phase, then the sides of the vibration polygon
will be equal and equally inclined to each other. In other words, the
vibration polygon will be regular and inscribed in a circle. Hence,
when the number of terms is very great and the constant phase differ-
ence very small, the polygon will, in the limit, coincide with its cir-
eumseribing circle, and it follows that the resultant of an infinite
number of vibrations of equal amplitude, and varying uniformly in
phase, may be represented in amplitude and phase by the chord of a
circular arc. The general curve of Fig. 14 becomes in this case a
cirele, as shown in Fig. 15. The arc OM of this circle represents a
system of vibrations of equal amplitude and phase varying uniformly

P P

/,,-'—

u ‘M
o b X 5 g %

Fig. 14. Fig. Mk

from zero to ¢ The chord OM represents the resultant, and the

amplitude is therefore
OM =2r singe,

while the phase of the resultant is
MOX =1¢.

That is, the phase of the resultant is the arithmetic mean of the initial
and final constituents of the series, and it is consequently the same as
the phase of the constituent corresponding to the middle point of the
are OM ; for, in the case of a circle, the tangent at the middle point
of the arc is parallel to the chord of the are.

The diameter OF of the circle represents the resultant of a system
of vibrations of equal amplitude, and phase varying uniformly between
the limits 0 and =. The phase of this resultant is l=, and it is
therefore a quarter period behind the first constituent of the series, or
the same as the middle term of the series. If the amplitude of each
constituent of the series be ¢, and if there be » terms in the series,
then if the series be represented by any are OM of a circle, we have
in the limit for the length of the are

Arc OM =na.

R —
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Henee, if » be the radius of the circle and ¢ the difference of phase of
the first and last terms of the series, we have

=1,
Consequently the amplitude of the resultant is

Sin 4¢b
i

OM =2rsin i¢p=na

If the phase varies from 0° to =, the arc will be a semicircle and the
amplitude of the resultant will be 2r-—that is,

pLITTS
m

46. Waves of Different Lengths.—We have good reason to
believe that the velocity of propagation in air is very nearly the same
for light waves of every length, just as we know that sound waves of
different lengths travel with the same velocity. Still whether v be
constant or not it is generally impossible for two vibrations of different
periods such as '

iy =y sin (wif-+ay), and y,=a, sin (wt + a,)

to completely destroy each other. We have seen that when o, = w, = o,
any number of such waves combine to form a resultant wave A sin (of — «)
of the same period as the constituents, and containing no trace of
their distinction. The two waves given above cannot, however, be
so compounded unless their periodic. times be the same—that is,
unless we have # /A, =v,/A, The consideration, therefore, of waves
of different lengths may be kept perfectly separate, for their ultimate
effect will be the superposition of their separate effects, each possessing
+ its own individuality.

This point is illustrated by sounding two notes of different pitches
together (for example, a note and its fifth) ; or by the mixture of two
colours.

47. To compound two Reetangular Vibrations.—If a particle he
subjected simultaneously to two simple harmonic vibrations of the
same period, but in perpendicular directions, the resultant vibration is
in general elliptic.

Let the superposed vibrations along OX and OY (Fig. 16) be given
by the eguations

x=asin b,
y=>0sin (§ + §)

when ¢ for brevity denotes the phase of one of the vibrations and &
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their difference of phase. Now ¢ is a variable containing the time,
and to eliminate it we have

y==b(sin # cos §+cos # sin §),

and sin #=ax/a,
therefore R Jf'r .
b N, az’

T I A2 el

Hence (; — " cos a) ::-xi'rr:a(t : "]
i ir (i
.': -~} '_,'I‘ i S

or ﬁll'ri-]]j.' J_ ¥ Y cos 5= sin? 3.

ar ' B oab

This equation denotes an ellipse having its centre at O, which is con-
sequently the curve described by the particle under the simultaneous

Fig. 15.

action of two rectangular vibrations of the same periodic time, of
amplitundes a and 4, and difference of phase 3.
If & be increased by = the equation becomes

ar o= ey - ik
SIS = C0& 0 = 51N 0.
[ Lo I.Fl" !-'!‘-'

The greatest values of # and y are @ and b respectively, hence if
tangents AE and BF be drawn parallel to the axes of reference, we
have (Fig. 17)

DA=g, and OB=5,

Also by putting #=0 and y =0 successively in the equation of the
Curve wae ﬁl]d
OC=asind, and OD=bsin 8.

Hence
_0oC_0D
" 0OA OB

in d

Again if we replace 2 by its maximum value a, we find ¥ =5 cos & for
the ordinate of the point E ; and if we replace y by its maximum value
b we find x =« cos 8 for the absecissa of the point F, therefore
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_AE_BF

OB i= s =Th

Cor. 1.—If the difference of phase & be zero or 2ax the equation
of the resultant vibration becomes

This represents a right line passing through O (Fig. 18) and
making an angle with the axis of y, the
tangent of which is a/b.

Cor. 2.—If the difference of phase be = or
(2s + 1)wr, which corresponds to a retardation

tA or (2n+ 1}3:, the resultant vibration is
represented by Figs. 18 and 19.—Phase Differ-
x chice o Multiple of .
a’ b
This 1s the equation of a right line passing through O (Fig. 19) and
inclined to the axis of y on the other side at an angle whose tangent
is /b,

Thus we see that if two simple rectangular vibrations be com-
pounded, the resultant vibration is a simple rectilinear vibration if
they differ in phase by any number of times 27 (or a retardation of
any number of times A), and if a difference of phase equal to any odd
multiple of = or a retardation of any odd multiple of half a wave
length be introduced, the resultant vibration is still rectilinear, but its
direction is turned through an angle 26, if # be the angle the first
vibration makes with either axis.

This remark is of importance in the theory of polarised light.

Cor. 3.—If & = =, or any odd multiple of }=, that is, if there is a
retardation of 1A, we have

@ R I
Fig. 20. —FPhase Difference a Right Angzle, Fig. 21.—Circular Yibration,

In this case the axes of the elliptic vibration coincide with the
directions of the component vibrations (Fig. 20).
In the first cases the two rectangular vibrations pass through their
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middle points at the same instant, and in this case one passes through
its middle point when the other is at its extremity.
If, in addition, a = b, we have

24yt =a?,

and the resultant vibration is circular (Fig. 21).

Thus two rectangular vibrations of equal amplitude and periodie
time will compound into a circular vibration if they differ in phase by
any odd multiple of 1=, or if one be retarded on the other by any odd
multiple of JA.

48. Vibration of Permanent Type—Polarised Light.—It has
been remarked already that the phenomena of interference lead us to
believe that light is propagated as a periodic disturbance or a periodic
change of some sort in the condition of a medium. This periodie
change is referred to as the vibration; but as to the nature of the change,
whether 1t 1s simply a periodic displacement of the elements of the
medium, such as oceurs in a vibrating elastic solid, or as to whether
it is something of quite a different nature must remain a matter of
speculation. In representing the vibration by an equation of the form

y=a sin (wl+a)

no particular assumption need be made as to what it is that y
represents, except that it is the change of condition at the time f, It
is perhaps simplest to regard » as a displacement in the medium such
as occurs in ordinary wave motion. This is the ordinary notion, but
there is no advantage in imposing such a limitation on the nature of the
disturbance, except for the purposes of distinet coneeption in the mind.

In representing a periodic change by a simple equation of the fore-
going form it should be remembered, however, that this equation
embraces an infinite succession of similar changes—that is, an infinite
train of waves of invariable type. Light is said to be polarised when
the type of the vibration is maintained invariable. If the ether vibration
consists in a periodic displacement, all the elements of the vibrating
ether in the wave front describe similar, and similarly situated, eurves
which remain perinanently the same. Thus if all the elements describe
similar and similarly situated ellipses for any time the light is said to
he elliptically polarised during that time. If they describe cireles it
is cireularly polarised, and if they describe parallel rectilinear paths it
is called plane-polarised light. The essential feature of polarised light
is then that all the elements of ether in any wave front continue to
deseribe exactly the same kind of orbits, or the nature of the disturb-
ance remains permanently the same.

Bl e | i

s e W e )
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ART. 48 EXAMPLES

Examples

1. Any number of simple harmonic vibrations in different directions, differing
in phase but having the same periodic time, compound into an elliptic vibration.

2. Any simple harmonie vibration is equivalent to two opposite circular vibra-
tions. :

[For x=acos wf, y=0sin wl,

is a circular vibration, viz. 2* 4+ y* =« so also, changing the sign
of w we have
z=acoswt, y= —a sin wf

as a circular vibration in the opposite direction. Adding the

w-components, and also the y-components, we find for the

resultant vibration Fig. 22
e=2acoswt, y=0.

Consequently the two opposite cireular vibrations compound into a simple rectilinear
vibration of double the amplitude.
Conversely, if we start with the simple vibration x=ua cos w!, we may write it in
the form
(1) =dacoswt, y= 1asinw!,
(2) e=ducoswt, y= —dasin wi.

The first pair represent a circular vibration of amplitude e, and the second pair
represent an opposite circular vibration of amplitude }a.

This result is of importance in the theory of cireularly polarised light.

An inspection of the fizure shows at once that a particle moving with simple
harmonic motion along a line OY may be supposed actuated by twe equal and
opposite cirenlar vibrations of half the amplitude, for the veloeities perpendicular to
this line destroy each other, while the velocity along it is doubled. ]

3. Two simple harmonic vibrations, in rectangular directions, compound into a
parabolie vibration if the periodic time and phase of one is double that of the other.

[The equations of the component vibrations are

a=acos 2wl + a)=a cos 20
y=beos(w +a)=lcos 8,

therefore eliminating 8, we find
25° =

&5 —_'1"]..
W o

If the phase of one is not double that of the other, the resultant vibration is of the
fourth degree.

The above vibration is that obtained by compounding a note and its octave. A
further exercise is that of compounding a note and its fifth (periods in the ratio 2:3),
or any note and another at an octave + fifth interval from it (periods in ratio 1:3).
Diagrams of these cases will be found in treatises on Sound under the head ¢ Lis-
sajous’ figures.”]

4. If a system of vibrations differing in amplitude and wave length (or periodic
time) be superposed, we have for resultant

_ £ . i
y:a,s1nﬂr(1,-+ul)+n2511121r(—+u2)+ o= BEC
1

2
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which may be written in the form

5 £ i
1=ty muﬂr(mTlt +ul) +:r2$luﬂr(Txg -]-u.z) L

where T=m,T,=m,T,=cte., 5, o, etc., being integers. This shows that y is
periodie, for it remains unaltered when for { we substitute ¢ +T. The periodie
time of the resultant vibration is therefore T, the L.C.M. of T,, T,, T, etc.

5. The components of an elliptic vibration are

r=asinw! and y=~=bsin (wf+s),

find the direction of the axes of the ellipse.

[The directions are given by tan ﬂiﬁ#ﬁffibﬁecﬂﬂﬁ where tan "f-':i]

6. Two elliptic vibrations, given by the equations

=y sin (w403} 2=, sin (wt +a,)
th=bysin(wt+8)) )  y,=b,sin (wi+ 8,

are superposed, find the resultant vibration.
[If the components of the resultant vibration be

x=asin(wl+a) and y=>5sin(wt+3),

we have
as= ﬂ.lgé- R 2"1'1“-3 COs {“I = l:"'-"}
P=b24 02+ 2bbocos (8, - B)
_msing taysine o by sin B, + by sin B,

tan a S
fhy COS @, + fhy COS A byeos @, +b,c08 3,

7. The elliptic vibration
r=asinwl, y=bcoswl

is equivalent to the two superposed circular vibrations

#y=Ma+b)sinat| wa=14{c-Db)sinwt
i=%a+bcoswl | wy,=-%a->b)coswt]’

consequently the elliptic vibration may be regarded as the resultant of two oppositely
directed civenlar vibrations of amplitudes, 4{a-+5) and 4(x — &) respectively.

8. Systemn of Discrete Particles—Minor Limit to the Periodic Time.—A system of
pellats, each of mass m, is attached to a weightless string at equal intervals @. The
string is stretehed with tension T along a smooth horizontal plane, so that the foree
of gravity does not enter the question of the horizontal tranverse disturbances,
disenss the motion (P, G. Tait, Eney. Brif. art. ** Waves ).

Let the transverse displacement of the nth pellet be y, at the time £, The
equation of its motion is
"'"'!ﬁTHﬂ“ =, #.m:— Yn _ eyl = .:h_"l

d d

a. T

LIy =fla), then 4, =Rz +a)=¢ “flz), consequently we have iy,,,=¢ iy,

2 «

e _T (5 ~" i d%y

*n. Hence n :E(ﬂ *~2+e "y, which reduces to Tﬂ'&’;ﬁ*

when @ is very small, so that we recover the equation of vibration of a continuous
cord.

-t
and g,—;=e d
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Again, if 3, = A cos (wf=kx) where x=na, we have, from the above equation,

_ muw® cos (et - .!:.rjz%[ms fwt = k{z+a)} -2 cos (wf - kx)+cos{wl — k{z—a)}]

=5 E:.'ms (wl— k2)(1 - cos Ka).

Henee L sin®} k.
[

The greatest possible value of w is consequently 2 ,/T/mae—that is, we must have
w=2ufa, if v be the velocity of a disturbance in a cord under the same tension and
of the same mass per unit length. The time of oscillation of a pellet is 2rjw and is
= mafv or w5 Jam/T.

This question is closely connected with Stokes's theory of fluorescence. TFor if a
disturbing foree of shorter period than the limit given above be applied continuously
to one of the pellets, there will be an accumulation of energy in its neighbourhood ;
and this energy, if we suppose the disturbing force to cease, will be transmitted
thronghout the system by vibrations of equal or greater period than the limiting
value above, corresponding to light of lower refrangibility than the incident, but
having a definite superior limit of refrangibility.

9. On the Group Velocity of o Train of Waves.—When a group of waves advances
into still water, the velocity of the group is less than that of the individual waves
which constitute it. The individual waves appear to advance through the group,
dying away as they approach its anterior limit. Sir G. G. Stokes first explained
this by regarding the group as formed by the superposition of two infinite trains
of waves, of equal amplitude, and of nearly equal wave lengths, advancing in the
same direction, and the same explanation has been developed by Lord Rayleigh.

If two infinite trains of waves be represented by cos {vf — &) and cos (v'¢ - &)
where k=2x/\ and &' =2=/\, their resnltant is

cos Aot =)+ cos &' (vl =x)

=2 cos ("‘ ”“A"-‘t_k -A‘I) i (.{-. v -g-ah:E K+ ;..J:)

2 2 2 2

=2 cos da cos [k{et - x) + 1a] where a=d(kr) . t - xdk.

Now, if &' =k and ¢' - ¢ be very small, we have a train of waves whose amplitude
varies slowly from one point to another between the limits 0 and 2, forming a sevies
of groups separated from one another by regions comparatively free from disturbance,

At any time ¢ the position of the middle of that group which was initially at the
origin is given by a=0, or

(' = e} - (k' - k)xe=0.

Hence the velocity of the group is

x ko' —kv

e S

t K-k

or in the limit when the number of waves in each group is infinite, the relation
between the group velocity V and the wave veloeity v is

; _d(ke) d'-l[lﬂ'_}
el TR g s )
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remembering that kv=2x/T and that =2x/A, or, as it may also he written,

V__ dlogr__ dlogrv
v-1+{I]ugI{:-1 d log X
Thus if v == An
V=(1-n)h.

Cases—
wee A, V=0, Reynolds's disconnected pendulums
ves A, V=1L Deep-water gravity waves
vecM,  V=w  Acrial waves, etc.
vec A=Y, V=3, Capillary water waves
vec k=1 V=2p Flexural waves.

The theory of capillary water waves (V =3%¢) has been given by Thomson (FPhil.
Mag, November 1871).  Their wave length is so small that the force of restitution
due to capillarity largely exceeds that due to gravity. The flexural waves (V=2v) are
those corresponding to the bending of an elastic rod or plate (Rayleigh, Theory of
Sonad, § 191).

Professor Oshorne Reynolds (Nafwre, 23rd August 1877 ; also Bwit. dssee. Ply-
mouth) gave a dynamical explanation of the fact that a group of deep-water waves
advances with only half the rapidity of the individual waves. In this case the
energy propagated across any point, when a train of waves is passing, is only one-
half of the energy necessary to supply the waves which pass in the same time, so
that if the train of waves be limited it is impossible that its front can be propagated
with the full velocity of the waves, as this would imply the acquisition of more
energy than can in fact be supplied. Professor Reynolds did not contemplate the
cases where more energy is propagated than corresponds to the waves passing in the
same time, but his argument applied conversely to the results already given shows
that such cases must exist. The ratio of the energy propagated to that of the
passing waves is V/e. Thus the energy propagated per unit time is V/v of that
existing in a length », or V times that existing in a unit length., Accordingly -

Energy propagated per unit time _d(kv) _d(1/T)
Energy (average) per unit length & — d(1/A)

[Lord Rayleigh, Note on *° Progressive Waves” (Proceedings of the London
Mathematical Society, vol. ix. No. 125 ; also Theory of Souwnd.]



CHAPTER III

ON THE APPROXIMATE RECTILINEAR PROPAGATION OF LIGHT

49. The Principle of Huygens—Secondary Waves—Wave
Envelopes.—T1he first function of any theory of light is to account
satisfactorily for the so-called rectilinear propagation of light in a
homogeneous medium. The commonest observations on the shadows
cast by opaque objects or on the beams of light transmitted through
apertures show roughly that light is propagated in right lines or rays,
and, as we have already mentioned, this apparent rectilinear propaga-
tion would seem at.first sight to. argue strongly in favour of the
corpuscular theory. When the facts are more closely scrutinised,
however, it 1s found that the rectilinear propagation is only approxi-
mate, for when the source of light is small, such as a narrow slit, then
the shadow of an opaque obstacle (a wire, for example) is not so wide
as the obstacle, for the light bends round the edges of the obstacle
into the geometrical shadow, just as sound bends round corners, only
in a much smaller degree.

Hence any proposed theory must account, not for an aceurate
rectilinear propagation, but for an approximate rectilinear propagation
in which there is a slight bending round corners. The apparent
superiority of the emission theory consequently breaks down, and in
the explanation of this and other phenomena connected with the
passage of light through narrow apertures, and past the edges of
opaque obstacles, the wave theory obtains a decided advantage.

It is well known that large obstacles cast more or less distinet
sound shadows, still in such cases there is considerable bending round
corners, but the question at once arises as to how far the possibility of
observing this bending depends on the wave length. If the wave length
is very small will the amount of observable bending be also very small?
It will be seen from the following considerations that this question must
be answered in the affirmative, and that the approximate rectilinear pro-
pagation of light is a consequence of the minuteness of the wave length.
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According to the wave theory each point of a luminous body is a
centre of disturbance, or a source from which waves are propagated in
the ether. It is therefore necessary to form some conception of the
manner in which a wave is propagated.

Let O (Fig. 23) be a centre of disturbance, and let ab be the front
of a spherical wave diverging from it. The radius of the wave
increases with the velocity of light, so that
the disturbance now at b will an instant
later be at a'l, and the single wave ad in
travelling out will disturb all the elements of
the medium over which it passes, Thus the
disturbance of any one element of the medium
causes a subsequent disturbance of all the
other elements, and we may regard the dis-

Fig. 23.—Propagation by placements of the elements of the wave

Sepandpry; Wate. front ab as the cause of the subsequent
displacement of the elements of o', With M, M/, etc, as centres,
describe a series of equal small spheres! to represent the wavelets
developed by the centres of disturbance M, M’ ete. All these
small spheres touch a sphere «'d’ having its centre at O, and in
this manner we get a new wave front «’. In this manner the wave
ab is propagated to «'b” by the small secondary waves arising from the
front of the original wave ab. The envelope of these secondary waves
is the grand wave, and in this view of wave envelopes Huygens regarded
a wave as being propagated. The effective part of each secondary
wave in generating the primary wave he supposed confined to that
portion of it which touches the envelope.

The energy of ab is thus handed on to a'h, and in the same
manner from a't’ to a"l", ete. Consequently each point of the wave
front in any of its anterior positions may be considered as a centre of
disturbance from which a secondary wave diverges, and the agoregate
effect of these secondary waves at any point must be the same as that
of the primary wave itself, when passing through that point.

Or, more generally, if round the origin O-any ideal closed surface
be described, the whole action at any point outside this surface, of the
waves diverging from O, may be regarded as due to the motion pro-
pagated aeross the various elements of the surface—that is, each
element of the surface, as a centre of disturbance, sends waves to the
point under consideration, and the disturbance there is the resultant
of their combined action. The general problem, therefore, is to deter-
mine the nature of the disturbance at any point, when the full

! This assumes the medium to be isotropic.

%)
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partienlars of the displacement at each point of any surface surrounding |

the origin O are known. It is convenient, however, to choose the wave
front as the surface of resolution, for the vibrations at it at any instant
are all in the same phase.

Thus if ab be the front of a wave diverging from O, then all points
on the surface of ab are in the same phase of motion at any instant,
and, as time progresses, each point passes through all the phases of the
vibration originated by O. Each point of ab must, therefore, be
regarded as the origin of an infinite frain of waves, and in caleulating
the displacement at any point outside ab, we must consider all the
waves which reach that point simultaneously from the various points
of ab. These waves will have left the various points of «b at different
times previously, and will, therefore, be in different phases when they
reach the point. The general problem, therefore, is to find the
resultant of a system of vibrations of different amplitudes and phases,
determined by the distances of the various points of ab from the point
in guestion.

In order to make this clearer let AB (Fig. 25) represent the trace of
a plane parallel to the front of a system of plane waves travelling
towards 0. At any instant the various points M,, M,, M,, etc., of
AB are in the same phase of motion, and this phase changes periodic-
ally as the time progresses. Each point of AB, regarded as a centre
of disturbance, is the origin of an infinite train of waves (which diverge
as spheres around it if the medinm be isotropic), so that at any
instant the displacement at O is the resultant of an infinite series of
disturbances propagated from the various points of AB. The phases
of these disturbances are determined by the distances of O from the
various points of AB, and their amplitudes depend upon the inclination
to the wave front of the line joining O to the corresponding centre of
disturbance. Thus, if # be velocity of propagation, the waves reach-
ing O at any instant are—the wave which left I’ at the time OP/u
previously, the wave which left M, at the time OM, /v previously, the

wave which left M, at the time OM,/r previously, ete. ete., so that if

the variation of phase with time be known, then the phases of all the
disturbances reaching O at any instant are known, and their ampli-
tudes can also be calenlated if the law of variation of amplitude be
known, so that the resultant effect at O can be estimated.!

1 Huygens endeavoured to explain the rectilinear propagation of light by the
principle of wave envelopes alone. Thus if ab (Fig. 23) be an aperture, and Oab a
cone of light falling on it from O, he assuwined that the effect of each element of ab
in generating «'h’ was confined to the apex of the secondary wave or that part of it
which touches the envelope. This practically assumed the whole guestion, and it

Inter-
ference.
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The question now arises as to what iz to limit the secondary
waves diverging from each point of the primary wave as origin. In
an isotropic medium the disturbance of each little wave spreads
generally in a spherical form. Are we to suppose the sphere com-
pleted so that each small wavelet is propagated backwards as well as
forwards I

We know that a single wave may be transmitted along a stretched
cord, or through the air. In this case the agitation of any point
causes the future agitation of those in advance of it, but of none in
the direction from which it has been propagated. Thus in Fig. 7 the
wave travelling along the cord AB disturbs in turn all those parts of
the cord in advance of it, but has no effect on those behind it. TFor
this reason it has been supposed by some that each point of the
primary wave sends forward only a hemispherical wave, viz. that half
of the secondary spherical wave which lies in front of the primary
wave. Further, if the disturbance is zero at the base of this hemi-
sphere, it is natural to suppose that the intensity of the disturbance
diminishes gradunally from the vertex towards the base. This would
be the case, for example, if the intensity in any direction varied as the
cosine of the obliguity, or inclination to the wave normal.

The law which determines the intensity at each point of a
secondary wave has been investigated by Sir G. G. Stokes.! He has
shown that the effect of an elementary wave at an external point
varies as (1 + cos @) where ¢ is the obliquity, or angle between the
wave normal and the line joining the point to the centre of the
elementary wave. This factor will vanish only when =, that is
for points directly behind the wave. According to this law the
seeondary wavelet must be regarded as a complete sphere, the dis-
turbance varying gradually from a maximum at its forward apex to
zero at the diametrically opposite point in its rear. The effect pro-
duced at any point by a wave element depends also on the direction
of vibration in the element. Professor Stokes finds it proportional to
the sine of the angle between this direction and the radius vector to
the point.

It will be sufficient, however, for our present purpose to admit
that the effect produced at any point by a secondary wave depends
upon the obliguity, and diminishes as the obliguity increases.

was lelt to Fresnel ((Kuveres, tom. i. p. 174) to show that the secondary waves diverg-
ing from the various points of «b must be taken into account, and that these by
mutual interference may neutralise each other in some regions of space, and hence

produee darkness and shadow.
1 On the Dynamical Theory of Diffraction, Math. and Phys. Fapers, vol. ii. p.

243 ; Camb. Phil. Trans, vol. ix. p. 1, 1849,
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 50. Definition of Poles and Half-period Elements.—The pole
of a wave with respect to any external point O is that point of the
wave which is nearest to O, or more accurately, that point of the wave
from which the disturbanece reaches O in the least time. If the wave
is plane the pole of O is the foot of the perpendicular drawn from it
to the wave front, and if the wave is spherical, the pole is that point
where the wave is intersected by the line joining O to the centre of
the sphere.

In general, if the wave be neither plane nor spherical, we define the
pole (or poles) of a wave as the point (or
points, or continuous locus of points) on the
wave front, from which light is propagated
to O in either a minimum or a maximum
time.

Let P (Fig. 24) be the pole of a wave
with respect to the point O, and denote
OP by & The disturbance from P reaches O
sooner than the disturbance from any other
point of the wave. With O as centre and a
radius b+ JA describe a curve on the wave
front. This curve is the intersection of the
wave front with a sphere of radius b+ 3a Fie 24— Haltperiod Elements.

and centre O, and will include a small element of area on the wave
front around P which we shall call the first half-period element or zone.
With O as centre and a radius b + A deseribe another sphere meet-
ing the wave front in a second eurve which with the first curve will
include a little annulus or strip or area on the wave front. This area
we term the second half-period element. Similarly by describing other

i by A .
spheres of radii b + 35, b+ 4, ete., we obtain curves on the wave front

-

including the 3rd, 4th, ete., half-period elements, the nth half-period
element being intercepted between the spheres of radii b+ (n—1)5A
and b+ nlX. A half-period element with respect to any point O is
then a narrow strip of the wave front surrounding the pole P of that
point, and such that the difference of the distances of its inner and
outer edges from O is half a wave length.

51. Comparison of two Consecutive Half-period Elements.—Let
us now consider the mutual effect of two consecutive half-period
elements, M, M, and M,M,, at the point O (Fig. 24). For this purpose
let the annulus M M, be divided into a series of concentric circular
rings of infinitesimal area. This may be supposed to be done by a
system of spheres deseribed round O as centre with radii », » + §,
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7+ 26, v + 36, ete., where 8 is a very small quantity (a submultiple of
JA) and 7 is the distance of the inner edge of MM, from O. Then,
if M,M, be divided up in the same manner, the first ring of M, M, will
be half a wave length nearer O than the first ring of 'M,M,, and being
consequently opposite in phase they will nentralise each other at O if
the amplitudes of the vibrations which they transmit are equal. In
the same way the second ring of M, M, will be opposite in phase to the
second ring of M,M_, the third to the third, ete, so that the consecu-
tive strips of one half-period element tend to neutralise the corre-
sponding strips of the other, and if their amplitudes are equal they
will destroy each other completely.

We have now to examine how far equality in this respeet is
realised and on what quantities approximate equality depends. For
this purpose it is necessary to remember that the elementary rings
into which the half-period elements have been divided are such that
they are at uniformly increasing distances », v + 8, » + 24, ete. from O,
and they consequently send vibrations of uniformly increasing phase
to O. Rings constructed in this manner will not be rigorously equal
in area, and the amplitudes of the vibrations they transmit to O may
differ accordingly. In order to find an expression for the area of any
such ring let XX (Fig. 25) be the width of the annulus, and let
OX' = 0X =8 where & is a very small
quantity. Then if # be the mean radius
of the annulus its area is 2maXX'; but
by similar triangles XX:8::v:2, where
ris the mean distance of the strip from
0, hence x. XX'=#8, and the expression
for the area becomes

2.

This expression shows us that if the
rings are so constructed that 8 remains
constant, then their areas increase as they
recede from the centre; but the increase

i of amplitude arising from this increase of
area is exactly counterbalanced by the diminution of amplitude arising
from increase of distance from O, if we take as a first assumption that
the amplitude of the vibration transmitted to O by any ring is propor-
tional to the area of the ring and inversely as its mean distance from O.
Since the area of the annulus is 278, this assumption leads to the con-
clusion that the amplitude of the vibration due to any annulus is

proportional to
2ma,

s it i e
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and therefore the same for all the rings. The corresponding rings of

two consecutive half-period elements would thus produce equal and
opposite effects at O and would appear to neutralise each other com-
pletely, but as yet we have not introduced any consideration as to how
far the amplitude of the vibration due to any element depends on the
obliquity—that is, upon the inclination of the wave normal to the line
joining O to the element in question. At present we shall merely
assume that the effect of obliquity is to diminish the amplitude so that
the effect produced at O by any element diminishes as the radius of
the ring increases. The result of this assumption is that the element-
ary rings of the half-period element M,M, are more effective at O than
the corresponding rings of M,M,, and instead of complete neutralisation
we have an outstanding difference for every consecutive pair of zones,
and the resultant of these outstanding differences is the integral effect
of the wave,

It is interesting to notice the effect of this diminution of amplitude
on the resultant of a single half-period element. If such an element
be divided, as above, into a great number of concentric rings of
equicrescent phase, and if there were no diminution of amplitude
arising from increase of obliquity, then, when represented graphically,
thé resultant of the whole zone would be represented by the diameter
OP of a circle OMP, as shown in Fig. 15, p. 50, the phase of the
resultant being 90° behind that of the vibration coming from the inner
edge of the zone. The effect of diminution of amplitude, however, is
such that in constructing the curve OMP the elements of length
diminish as we proceed along it by revolving the tangent through
equal increments of angle. This leads to an increase in the enrvature
of the amplitude curve corresponding to any given portion of the zone,
and, as a consequence, the phase XOP (Fig. 14) of the resultant is less
than 90° behind that of the inner edge of the zone. The phase of the
resultant of a single half-period element may thus be less than that of
the central element of the zone and may correspond to a ring of the
zone situated between the central ring and the inner edge.

Before concluding the comparison of two consecutive half-period
elements it will be useful to examine the outstanding difference

arising from obliguity in so far as it depends on the wave length. We.

have found that the amplitude of the vibration due to any elementary

ring is proportional to 2x8, when the obliquity is neglected, and if we

denote the obliquity by # and the distance OP by p we have cos 0 =p/r,

and consequently any function of ¢ may be expressed in terms of  and

the constant p. Hence, if the law of variation of amplitude with

obliquity be known, it may be expressed as a function of r, and the
F

Effect of
obligquity.
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amplitude of the vibration due to any elementary ring may be written
in the form

A=aflr).

The amplitude of the vibration due to the corresponding ring of the
consecutive zone will therefore be

A’ =aflr 4+ IN) =afr) + La)f(r) + ete.
As these are opposite in phase their joint effect will be
A'— A=LaN(r) +ete.,

50 that if X is small the outstanding difference will be a small quantity
proportional to A, viz.

Janf ().

Hence when A is small, the resultant of two consecutive zones is small
compared with either.

For example, if we assume that the amplitude varies simply as the
cosine of the obliquity, we have f(r)=p/r and f(r) = - p/+% so that

A - A'=}apNjit

Thus with this law of variation (or with Stokes’s law, p. 62) the
outstanding difference varies directly as A and inversely as the square
of the distance; in other words, as the zones recede from P their
effects become smaller and more nearly equal to each other.

52. Plane Wave.—In order to estimate the whole effect of a
plane wave at any point O we divide it, as in the foregoing article,
into a system of half-period elements with respect to O. Let m,
denote the resultant effect at O of the first half-period element, m,
that of the second, and so on. Then since the corresponding rings of
two consecutive half-period elements are opposite in phase at O, the
whole effect of the plane wave is represented by the series

8=y — Wy + 1ty — m, + ete.

The only definite knowledge which we have as yet deduced concerning
this series is that the consecutive terms are very nearly equal and
gradually grow less and less in absolute value as they recede from the
beginning of the series, and setting out with this information, it may
be easily shown that its sum S approximates in the limit to the value
tm,. For since the successive terms decrease continuously according
to some law, from the beginning to the end of the series, it follows
that if ordinates Omy, ete. (Fig. 26), be erected at equal distances along
a right line OX, so that the lengths of the ordinates represent the
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terms i, ", i, ete., of the series S, then a smooth curve may be
" drawn through the extremities of these ordinates which will be either
concave or convex towards the axis OX, according to the law of varia-
tionof the constituents .

of the series. Nowob-

£ T
viously mya =m, —m, @ o
and nigh = iy — iy, g
and consequently S }

L‘.mi

is the sum of the I M
intercepts mga, myb, |

; % 9 X
etc., and this sum in-
cludes the alternate
steps only of the stairs leading down from m, to X. DBut the sum of
all the steps (my —my) + (i, — my) + ete. is obviously m, hence the

sum of the alternate steps must in the limit be half of the whole—
that 1s

Fig. 26.

S=1m,.

In deducing this result the only condition that has been introduced is
that the terms gradually diminish to zero, so that the curve gradually
approaches, and ultimately touches the axis OX.

The same reasoning proves that the sum of all the terms after the
n' approximates to lm,, and consequently the error introduced by
neglecting all the terms after the n'™ does not exceed Y,

Now, if the wave length be very small, a small area around P will
contain a large number of half-period elements, and the resultant
effect of this portion of the wave will be approximately the same as
that of the complete wave, the error being less than half the value of
the last half-period element, which, when » is large, becomes vanish-
ingly small. We conclude, therefore, that when A is small, the
efiective portion of the wave is confined to a small area around the pole
of the wave. If this area be intercepted by an opaque obstacle the
remainder of the wave will have no appreciable effect at O—that is, a
small obstacle at P will sereen O almost entirely from the wave, and
this is what we mean when we say that light is propagated in right
lines.

The approximate rectilinear propagation of light is, therefore, a
consequence of the extreme shortness of the wave length, and is ex-
plained by the principle of interference combined with Huygens's sup-
position concerning secondary waves. When the wave Iengfh is large,
as in the case of sound, the bending round corners becomes very
noticeable, but in this case also fairly distinet shadows are cast, and
screening occurs, when the obstacle is large compared with the wave

Maximum
Error,

Bending.
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length. The only difference i1s that when the wave length is small
the intensity falls off muech more rapidly as we recede within the
geometrical shadow, and as the limits of observation are determined
by the intensity, the extent to which bending is observable is enor-
mously less in the case of light than in that of sound.

The foregoing results, deduced from the series 8, may be also
derived in a very convenient and instructive manner by aid of the
elegant graphic method of Art. 45. Thus, if we construct the ampli-
tude curve for the first half-period element, it will be represented, as
we have already seen, by an are Oa’a (Fig. 27), which is very nearly

Fig. 27.—Yibrmation ﬁ]ritil?.

a semieirele, and in the same way if the construction be extended the
second half-period element will be represented by an are al’d, which is
also nearly a semicivele. The resultant of the first half-period is

ity = Oa,
and the resultant of the second is
o =eh,
while the resultant effect of the pair taken together is
iy = e = O,

the difference Ob being small compared with either m,
larly, if the construction be extended to the other half-period elements,
s0 as to embrace the whole wave front, the third half-period will give

or M, Smi-

rise to the arc be'c, the fourth to cd’d, ete. ete. Hence the complete
enrve representing the whole wave is a spiral of an infinite number of
nearly cirenlar convolutions of ever-decreasing radius swrrounding a
point J on the line Oz, very approximately halfway between O

and .
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Sinee OJ represents the amplitude of the vibration execited by the
whole wave, and since Oa = 1m,, it follows that in the limit we have

S=1im,.

50 also the figure informs us (as does also the series 5) that the effect
of the first two, or any even number of half-period elements, is less
than the effect of the whole wave, while the effect of any odd number
of elements is greater than the effect of the whole wave. In either
case, as the number of elements is increased, the deficit or excess of
effect over OJ gradually diminishes—that is, the lengths Oc¢, Od, ete.,
become more nearly equal to OJ.

We are consequently led to the conclusion that if the whole wave
is screened off, except the first half-period element, the intensity at
the point O under consideration will be about four times as great as
that produced by the whole wave, whereas, if the aperture be increased
50 as to transmit two half-period elements, the intensity at O will be
reduced almost to zero. By increasing the aperture so as to transmit
three half-periods the intensity again rises to a maximum, and by
further increasing it go as to transmit four elements the intensity falls
to a minimum. By still further increasing the aperture the intensity
at O passes through a succession of maxima and minima, but these
become less and less pronounced as the number of elements is increased,
so that after the aperture reaches a certain limit further increase will
produce no noticeable effect in the illumination at O. Now a large
number of these elements is included in a small area around P, the
pole of O, and we consequently conclude that the effective portion of
the wave is restricted to a small area around P in so far as the illumi-
nation at O is concerned,

On the other hand, if we consider the effect of placing a small
screen, instead of an aperture, at the pole of the wave, we see at once
that when the screen just covers the first zone, the amplitude of the
vibration at O will be represented by aJ, for the part Oa'a of the
amplitude curve is cut off while the remainder of the spiral remains
effective.  Similarly, if the sereen covers two elements, the intensity at
O will' be represented by the square of bJ, and so on. We conclude,
therefore, that as the screem increases in size the intensity at O
gradually diminishes to zero without passing through maxima or
minima, and that when the screen is large emongh to cover a con-
siderable number of zones the illumination at O falls below the limits
of observation. '

These theoretical deductions are fully confirmed by the results
obtained by experiment, as will be seen later on, and it may be well to

Effect of
sereening.
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remark that there is no complementary relation, such as might at first
sight be imagined, connecting the intensity at O when part of the
wave 1s transmitted through an aperture with that obtained when the
same part 15 obstructed by a screen, and the remainder transmitted ;
for, in the former case, the illumination passes through maxima and
minima as the size of the aperture is varied, whereas, in the latter case,
no such maxima or minima oceur.

53. Spherical Wave.—In the same manner we may calculate the
effect of a spherical wave at an external point. Let C (Fig. 28) be
the centre of the wave, P the pole of O,
and let OM’ — OM = 8, where 8 is a very
small quantity.

The area of the annulus intercepted
on the surface of the wave by two spheres
deseribed round O with radii OM and
OM’ is .

2re sin & . MM,

Fig. 28.—spherical Wave.

where @ denotes the angle OCM. For since MM’ is very small the
annulus is a cirele of mean radius ¢ sin #, viz. the perpendicular from
M on OC, a being the radius CM of the wave.

Now if N be the foot of the perpendicular from M on OM/,

NM' NM'

=gin OM'C, .. OM' ——
Jp =2in OMC, .~ OM' 35,

= OM’ sin OM'C=0C sin OCM’,

or since the angle MCM’ is very small and NM'=3§, we have
ré=(a-+bH)MM sin 8,

consequently the area of the annulus is

xrs_ 2.
o+ b

For a plane wave a =a + b= o, and the area becomes as before
Derrd.

Hence if we neglect the variation of amplitude arising from
obliquity and take it to vary directly as the area of the strip and
inversely as the distance 7, we find that the amplitude produced at O
by any annulus, such that the difference of the distances of its inner
and outer edges from O is §, is simply proportional to ?

Dwrf——s

' Or thus: v*=a’+(a+5b7 - 2a{a+b) cos 8, .. vdr=a(e+b) gin 848, but here
dr=8 and MM'=add, therefore at onee 6 =(a + &) MM’ sin 8.

2 Or if ¢ is the phase difference, the amplitude is proportional to Aga/(a +1b).
For a given phase difference the intensity is proportional to A2

B T e
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and consequently all rings for which & 1s the same produce effects of
equal magnitude at 0. We find, therefore, as before that when the
effect of obliquity is neglected the consecutive half-period elements
destroy each other at O, but when the obliquity is taken into account
the effects of the various zones at O gradually diminish as they recede
from the pole P, and the whole effect is the sum of the series

B =iy — g+ wig — iy +ete.,

" in which the terms gradually diminish from left to right. From this
stage all the reasoning of the foregoing article applies together with
graphic construction, and we conclude that the whole effect is approxi-
mately the same as half that of the first half-period element, or

e !Hﬁ.

O

54. Wave of any Form.—When plane or spherical waves are
reflected or refracted at curved surfaces the wave front in general
becomes of a more complicated character ; hence, in order to complete
the problem of the rectilinear propagation of light in isotropie media,
it is necessary to consider the case in which the wave front is a surface
of any form. The first point to be remarked about such a surface is
that it may present several poles with respeet to any point O, for it
may be such that the radius vector drawn from O to a variable point
on the surface passes through several maxima and minima as the point
traverses the surface. These poles are the points in which the surface
is touched by a sphere of variable radius described round O, and they
may be isolated from each other, or they may in some cases be con-
secutive points on the surface and form a continuous locus or curve of
poles.

Now since the radius vector from O to any pole P (Fig. 29) is
either a maximum or a minimum, it follows that the line OF is a
normal to the surface at P. For this
reason the element of surface in the
immediate neighbourhood of P will have
sensibly the same effect at O as the cor-
responding element around P taken either
on the tangent plane or on the sphere of
closest contact with the surface at P.
Hence when the wave length is very
small, so that a considerable number of
half-period elements are contained in a small area around P, this
portion of the wave will produce an effect at O which will not be
sensibly increased by increasing the magnitude of the area in question,

Fig. 29.—Wave of any Form.

Pale locus.
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or if this portion of the surface be intercepted by a screen, the dark-
ness at O will not be sensibly increased by increasing this size of the
screen. \

As we recede from P the obliquity increases, and as hefore we
can see from general considerations that two consecutive half-period
elements at a distance from P very approximately neutralise each
other. For if we consider two consecutive half-period elements
intercepted on the surface by spheres deseribed round O with radii
r—1%X r, and 7+ }A then, if A be small, any two neighbouring
portions of these elements will be related to each other as the
neighbouring portions of two conseeutive half-period elements on a
plane or spherical surface, at a distance from the pole such that the
obliquity is the same. When this obliguity is sensible the outstand-
ing difference of effect between two consecutive half-period elements
will consequently be vanishingly small when X is small, and the whole
effective portion of the wave will be limited to a small area surround-
ing each pole.

In the general case, therefore, the whole illumination at O will
appear to come from the immediate neighbourhood of certain points
on the surface, and this illumination will not be appreciably influenced
by sereening off the remainder of the surface. These points may be
isolated and can be treated as separate sources when they are removed
from each other by a large number of half-period elements, the effect
of each being approximately the same as half that of the first half-
period element, or they may be close together and form continuous
loci on the surface, so that the illumination may appear to come to O
from certain curves traced on the surface.




CHAPTER IV
REFLECTION

55. Reflection, Regular and Irregular.—When light falls upon
the surface of separation of two media, part of it is generally turned
back or reflected.  Thus when a pencil of light, admitted into a darkened
room by a hole in the shutter, is allowed to fall upon a polished
metallic mirror, a reflected beam may be seen? leaving the mirror
and travelling along a certain definite path. This portion of the light
is said to be regqularly reflected, in contradistinction to another portion
of the light, which, after falling upon the mirror, is seattered at the
surface in all directions—or déregularly reflected. This scattering is
due to the inequalities of the reflecting surface, and it diminishes as
the polish of the surface is made more perfect.

It iz by means of this scattered light that we see most of the bodies
around us which are not self-luminous. Thus if the light were all
regularly reflected from a mirror the eye would be affected only when
placed in the reflected beam, and then a bright image of the sun wonld
be seen in the mirror. If the eye were elsewhere, no light would enter
it and nothing would be seen. The scattered light, however, is diffused
in all directions from ordinary objects and enters the eye from all parts
of the surface, so that they can be seen in every position of the eye.

In speaking of reflected light in future we mean that light which
is regularly reflected according to the laws which we are about to
enunciate. The so-called irregularly reflected light, when there is any

! By means of reflecting dust particles in the air which scatter the light in all
directions. We cannot, of conrse, see light travelling through space. It only affects
the eye when it enters it, and therefore must either enter it directly from the source
or be reflected into it. ;

* The expression ** irregularly reflected ™ is here rather an abuse of terms. There
is no irregularity in the reflection. The irregularity is confined to the reflecting
surface, The ordinary laws of reflection are obeyed in full, and are not departed
from unless the linear dimensions of the reflecting surface, or of the rugosities on it,
are small compared with the wave length.
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oceasion to speak of it, will be specially referred to as scattered or
diffused light.

56. Laws of Refleetion.—The beam of light falling upon the
mirror is termed the incident light, and the angle which its direction
makes with the perpendicular (or, as it is often called, the normal) to
the surface at the point of incidence is named the angle of incidence,
while that part of the light which is reflected is known as the reflected
light, and the angle which its direction makes with the normal to the
surface is the angle of reflection. The relations between the angles of
incidence and reflection have been known from the earliest times, and
are stated in the Laws of Reflection : “ The angles of incidence and re-
flection are in the same plane, and are equal.”

The first part of this statement affirms that the reflected ray lies
in the plane containing the incident ray and the normal to the surface
at the point of incidence, while the second expresses the equality of
the angles of incidence and reflection.

The intensity of the reflected light generally increases with the
angle of incidence and with the polish of the surface. It also depends
largely on the nature of the medium from which it is incident, and on
that from which it is reflected. For example, much more light is
- reflected, under the same circumstances, from a plate of glass in air
than from the same plate immersed in water. The variation of the
reflecting power of a surface with the angle of incidence is well illus-
trated by comparing water and mercury. At perpendicular incidence
water reflects about the fiftieth part of the ineident light, while
mercury reflects about the two-thirds; but at an incidence of 895
they each reflect about 72 per cent of the incident light.

An acenrate experimental proof of the laws of reflection is furnished
by observations with such an instrument as the Meridian Circle. Adjust
the telescope to observe a star directly, and then observe the reflection
of the same star seen in the horizontal surface of a basin of mercury.
The telescope in these two observations will be found to make the
same angle, on opposite sides, with the vertical line.!

The graduation of such an instrument is the most perfeet that can
he accomplished by human skill, and yet the smallest divergence from
the preceding law has never been detected.

57. Illustration of Reflected and Refracted Waves.—I1f a perfectly
elastic ball impinges directly on another of equal mass at rest, the
second ball will exaetly take up the motion of the first, while the first

! [Systematic observations of this kind are made in several observatories. The
minute discordance observed has never been attributed to inaccuracy in the law.
See the annual volume of Greenwich Observations. ]
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comes to rest at the spot where it impinged on the other. The whole
process is as if the first ball moved on throngh the other without dis-
turbing it or being disturbed itself.

So again, if a number of similar balls be placed in a row (Fig. 30, a),
and if the one at the end (A) be struck in the direction of the row, it
will move forward and impinge on the second and come to rest there,
while the second moves forward to strike the third, and comes to rest
in turn. In this manner the blow
is communicated by each ball to ()
its sucecessor, and the disturbance (5 g
travels along the whole line, leaving
all the balls at rest except the last Fig. 80.—Diract.anid Reflected Waves.
(B), which moves forward with the velocity and energy initially
communicated to the first (A). This is the case of a compressional
wave travelling in air (as in sound) along a uniform straight tube.
Now let us suppose that after the row AB we have another row
A'B’ (Fig. 30, 8) of heavier balls. When the ball B moves forward
it strikes A" and rebounds (since its mass is less than that of A’).
At the same time A’ moves forward and strikes its neighbour,
which in turn performs its part, and the disturbance travels along
the row of larger balls A'B’, each coming to rest when it impinges
on its suceessor, becanse they are all of the same mass. But the
state of things has now altered in the row AB, for B has rebounded
from A, and, travelling backwards, has struck its neighbour and come
to rest. This disturbance is handed on from ball to ball as a disturb-
ance along the row in the backward direction BA. Hence the dis-
turbance in the first row (AB) has given rise to two other disturbances,
—a direet one in the second set A'B’, and a reflected one in the back-
ward direction BA in the first set.

In the same manner we may suppose the disturbance to arise in
the row of larger balls. Thus if B’ be struck the impulse will be
communicated along the line to A’, and A’ in its turn will move
forward and impinge on B, but as B iz of less mass than A’, the
ball A® will not come to rest, but will follow after B, and, therefore
(if the balls be imagined connected with weightless threads), A" will
pull its successor after it, which in turn will act upon its neighbour,
and so on. A second disturbance is set up in the row AR, which
consists of a further motion of the balls in the same direction as the
original disturbance.

We may now liken the two rows of balls to two media separated
by a common surface. The smaller lighter balls will correspond to
the rarer medium and the heavier balls to the demser. When any
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disturbance originates in one of the media it is propagated through
it, and when it arrives at the surface of separation two new disturh-
ances are set up, one (refracted) in the second medium, and another
(reflected) in the first medium. It therefore follows from the wave
theory that when light, travelling in one medium, comes to the surface
of another, part of it should penetrate into the second medium, or
we should have a refracted wave, and part of it should be prﬂ;iagated
backwards in the first medium in the form of a reflected wave.

Since the phenomena of the reflection and refraction of light exist,
we must admit that the ether is modified in some way by the presence
of matter, and differently in different substances. For example, the
ether in glass cannot be in the same condition for vibration as the
ether in air or water. Its so-called elasticity and density—that is to
say, those properties which enable it to propagate wave motion—are
modified by the substance which it permeates.

58. Deduction of the Two Laws of Reflection.—Let AA" (Fig. 31)be
the surface of separation of two media, and AB the front of a plane
wave incident on it. Each successive portion of the surface as soon
as the wave reaches -it becomes the centre of two diverging waves,
one (reflected) in the upper medium, and the other (refracted) in the
lower. These waves travel with different veloecities, but if the medium
be homogeneous and isotropie the secondary waves will be spherical.
At present we shall confine our attention to the reflected wave.

1f BA" and MP be perpendicular to the wave front AB, then B is
the pole of A" and M is the pole of P, so that A" is illuminated by the
element of the wave at B, and P by
the element at M ; or, in other words,
BA" and MP are in the direction of
what we call the rays of light. When
the light from B reaches A’ the light
from M has arrived at P some time
hefore, and would have reached N if
it had not been obstructed by the
Pig. 81, —Reflection of a Plane Waveata Surface, but on reaching P a reflected

Plane Burface. wave is developed which diverges into
a sphere of radins PM’ = PN, and similarly the reflected wave at A
has diverged into a sphere of radins AB = AD.

If the plane of the wave AB and the surface of separation AA’
be perpendicular to the plane of the paper, the line through A" per-
pendicular to the plane of the paper is the intersection of the surface
of separation with the wave front at A’. Through this line draw a
plane to touch the reflected wave diverging from A and let the point




ART. 58 LAWS OF REFLECTIOXN T

of contact he B'. Now since AB is the radius of this wave, at the
instant the light from B reaches A’, it follows that AB = BA'= AD,
since the reflected light travels with the same wvelocity as the
incident. Hence the triangle AA'B’ is equal in all respects to the
triangle AAB or to AA'D. Consequently if from P we let fall a
perpendicular PM’ on A'B” we will have PM'=PN, and therefore the
reflected wave diverging from P will touch at M’ the tangent plane
A'B" to the wave from A. Similarly the waves diverging from
every point of the surface will touch the same plane. This plane
is therefore the reflected wave envelope, and A'B’ is the trace
of the reflected wave at the instant the light from B reaches the
point A,

The angle A’AB is the angle between the plane of the incident
wave front and the surface ; it is therefore equal to the angle between
the normal to the wave front, or the ray, and the normal to the surface.
Hence A'AB is equal to the angle of incidence. Similarly AA'B’ is
equal to the angle of reflection, but these angles are equal by the
equality of the triangles ABA" and AB'A". The lines AB, PM, etc.,
are the normals to the reflected wave front, that"is the reflected rays.
Any one of these rays obviously lies in the plane containing the
corresponding incident ray and the normal to the surface. The two
laws of reflection are thus completely accounted for by the wave
theory.

Let us now investigate the matter a little more closely. It appears
from what has been already said that the effective portion of the wave
AB in illuminating P is confined to a very small element around M,
the foot of the perpendicular from P on the wave front. So in like
manner, if A'BE" were the incident wave, AB would be the reflected
wave, the path being exactly retraced, and P would be illuminated by
the element of A'B’ around M. We should therefore expect that the
element M’ of the reflected wave is illuminated by the point P of the
surface, or further back still, by the element M of the incident wave.
[t is easy to show that this is the case.

On the line AA’ find points P, P,, P,, ete. (Fig. 32), such that the
path MP,M" exceeds the path MPM’ by half a wave length, the path
MP,M" exceeds MPM' by two half wave :

lengths, ete.; that is, each path exceeds its __,;-*5‘!1

predecessor by half a wave length. Tt is well \//

known, of course, that the path MPM" is less _HH

than any other if the lines MP and PM’ are < J; E T =
ig. 82,

equally inclined to the surface. Therefore
the path MPM’ is that along which it takes the light the least time to
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reach M’ from M after reflection from the surface AB. Therefore in
egtimating the illnmination at M’ by the reflection from AA" we may
consider each point of AA”as the origin of a disturbance propagated to
M, and find the resultant effect. The surface being divided up into
half-period elements, as indicated above, we can easily show as before
that of these elements those immediately around P are the greatest, and
that the elements diminish! rapidly at first and then more slowly till
they become practically equal, and being opposed in effect at M’ they
produce no illumination there. Consequently the effective portion of the
surface AA” in illuminating M’ is confined to a very small element of
the surface at P.  If M is a single luminous point an eye placed at M"
will perceive a bright point in the direction M'P. The illumination
which reaches M’ from M is propagated in the same time and as if it
came from a point situated at an equal distance on the other side of
the surface. Similarly every point of the reflected wave is illuminated
by a corresponding point of the incident wave as if the light came
from the corresponding point of a line through A parallel to A'B’
(Fig. 31). This line is the reflection of AB in the surface. We see
then that each point of the reflected wave is illuminated by that point
of the ineident wave which sends light to it in the least time. This is
an example of “the principle of least time,” which is of very wide
application and fertility in the theory of light.

We have now proved that the disturbance at any point M of the
incident wave is propagated along MP, and after reflection at I it travels
to M’, a corresponding point on the plane A’'B. The plane A’B’ is the
locus of the points which are simultaneously disturbed. It is the re-
flected wave, while PM and PM’ are rays obeying the laws of reflection
enunciated above (Art. 56).

Cor.—The time taken by light to travel from any point of the
incident wave to the corresponding point M" of the reflected wave is
the same for all rays and a minimum. For MP + PM'= MN =BA".

59. Reflection of a Spherical Wave at a Plane Surface.—Let us
now consider the case of spherical waves diverging from a centre O
and falling upon a plane reflecting surface AB (Fiz. 33). Let the
wave front at the instant under consideration meet the surface at A
and B in the plane of the fizure. Each point of the surface between
A and B will have become by this time the centre of a reflected wave.
Thus if the surface had not been present the wave would have pro-

"' The decrease in the elements PP, P\P,, ete., is well exhibited by deseribing a
system of ellipses with M and M’ for foci and major diameters equal to Z+3X, I+,
i+ 8\, ete., where I=MP+M'P. If the line AA'isa tangent to the inner ellipse the
intercepts made on it by the other conies are the half-period elements,
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ceeded unobstructed, and would occupy the position ANB, The effect
of the surface, however, is such that M, the foot of the perpendicular
from O on AB, has become the centre of a spherical reflected wave of
radius MN'=MN, and any other point P i1s the centre of a spherical
reflected wave of radius PO’ = PQ.

It is clear that all these reflected waves will touch a sphere of
centre O and radius O'N’, where MO"=MO. For join O to P, and
produce the joining line to meet this
sphere at Q. Then O'Q'=0'N'=
ON =00Q, and OP =0P, therefore
PQ =PQ, or PQ" is equal to the
radius of the wavelet diverging from
P, and it is also normal to the sphere
ANB. Hence the reflected wave
diverging from P touches the sphere
AN‘B, and this sphere is therefore
the envelope of the reflected waves,
or the limit to which the reflected disturbance has been propa-
gated when the incident wave meets the surface at A and B. The
reflected wave front is consequently a sphere diverging from O as
centre, or the reflected light appears to diverge from a point O on the
other side of the surface, and at the same distance from it as 0. This
point is termed the image of O in the surface.

Before dismissing this case it may be noticed that the effect of a
plane surface in reflecting a spherical wave is simply to reverse its
curvature. Thus the incident wave ANDB diverging from O is con-
verted into a wave of equal radius diverging from 0,

60. Measurement of Curvature.—As the effect of reflection, or
refraction, is in general to change the curvature of a wave, it will be
convenient to define the measurement of curvature before dealing with
waves reflected or refracted at curved surfaces. In the case of a
uniformly bent eurve (such as a circle) the curvature is measured by
the bend per unit length—that is, by the angle between the tangents

Fig. 43,

at the extremities of a unit length of the eurve. In the case of a eircle
this is numerically equal to the angle subtended at the centre by a unit
length of the circumference, -or the same as the ratio of any angle at
the centre to the arc subtending it. Thus the general measurement
of the eurvature of a circle 15—

angle 1

Cuarvature = ==,
arc p

where p is the radius of the circle, and the angle is expressed in
circular measure.
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When the eurve is not a circle the rate of bending varies from
point to point, but the curvature at any point is still measured by the
limit of the above ratio when the are and angle are taken very small.
The curvature of a curve at any point is thus the reciprocal of a
length—namely, the radius of curvature, that is, the radins of the
circle osculating the eurve at the point in question.

The curvature of a small are, AB (Fig. 34), may be conveniently !
expressed in terms of the sagitfa PM. Thus we have PM »x M(Q) = MA2,
but when PM is small MQ = 2p approx.,, and consequently
PM = MA®/2p—that is, for an arc of given chord, the sagitta PM is
directly proportional to the eurvature. And this is what would have
been expected, for in the limit PM clearly measures the bulge or
bend of the are. It follows, therefore, that if two ares, APB and

A A M PO
pl—M 0 P M
B B N
Fig. 4. Fig. 35. Fig. 36.

AQB (Fig. 35), have the same chord AB, their curvatures are directly
as their sagittee PM and QM. Or if the ares touch each other, as in
Fig. 36, and if a tangent be drawn at the point of contact, then the
intercepts PM and QM made by the ares on a perpendieunlar to the
tangent are proportional to the curvatures of the ares. For in the
limit these intercepts clearly measure the amounts of bend of the ares.

Er.—If the curvature of a cirele be ¢ when its radius is p, prove that when the
radius becomes p + ¢ the enrvature becomes

(18
1 +¢a

[In this case we have ¢=1/p and

Ll i e :l
p+e l+gfp l+er

61. Reflection of a Plane Wave at a Spherical Surface.—We

shall now consider the reflection of a plane wave at a spherical surface.

Let AMB (Fig. 37) represent the reflecting sphere, and XABY the

trace of a plane parallel to the front of the ineident wave. As the

1 This method of treating the problems of reflection and refraction was given in

full by Professor 8. P. Thompson in 1889 (Phil. MWeay. 'ml xxviii. p. 232), and was
partially employed in the first edition of this work.
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wave approaches the surface (from left to right) it comes into the
position of a tangent plane to the surface, first touching it at some
point M. At this instant M becomes the centre of a reflected wave,
and as the original wave moves farther to the right, each point of the
surface in turn becomes the centre of a reflected wave. Thus when
I the incident wave occupies the position XY, the part between A and
B will have been reflected by the surface into the wave AN'E, such
that MN’'= MN, for MN’ is the distance to which the reflected dis-
turbance travels, while the incident wave travels over the distance
MN.

Now when the arc AB is small, MN is proportional to the curva-

'Y

Fig, 28,

|| ture of the surface and NN’ is proportional to the curvature of the

reflected wave. But
NN'=2NM,

|| and we conclude that the curvature of the reflected wave is twice that
of the reflecting surface, The action of the surface in reflecting a Impressed
plane wave is therefore to imprint on the reflected wave a curvature ©'r¥ature
equal to twice the curvature of the surface. In other words, when a
plane wave is reflected at a convex spherical surface, the reflected
wave diverges from a point F halfway between the centre of the
‘mirror and its surface. This point is called the principal focus of the
mirror, and the distance MF is termed its focal length. The focal

length f of a spherical mirror of radius p is consequently determined
by the equation

e

F=1p.

Since 1/f measures the curvature impressed on a plane wave by
reflection at a spherical surface, this quantity measures the eurvature Pocal
: ; ; : oo
producing power of the mirror and is termed the focal power. Tt is power

(x
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clear, therefore, that the focal power is equal to twice the curvature of
the mirror.

The case of a concave spherical mirror is shown in Fig. 38, in
which MM represents the reflecting surface and XY is the trace of a
plane parallel to the face of the incident wave, supposed travelling
from left to right. If the reflecting surface had not been present
XY would represent the incident wave in one of its positions, but by
the reflecting action of the surface NN is converted into N'N', where
obviously in the limit MN = MN', and therefore the curvature of the
reflected wave N'N” is twice that of the reflecting surface. The centre
I of N'N’ is consequently halfway between O and the surface, or the
action of a concave reflecting surface is to convert a plane wave into a
spherical wave, of twice the eurvature of the surface, which converges
to a point halfway between the centre of the mirror and its surface.

62. Reflection of a Spherical Wave at a Spherical Surface.—
We have seen that a plane surface in reflecting a spherical wave
simply reverses the curvature of the wave, and that a spherical sur-
face imprints twice its own eurvature on a plane wave in reflecting it,
we might therefore suspect that a spherical surface in reflecting a
spherical wave would reverse the curvature of the incident wave, and
in addition impress it with twice the curvature of the reflecting surface,
That this is the case is very easily proved. Thus if we suppose a

Fig, 30, Fig, 40,

spherical wave ANB (Fig. 39), diverging from a source O,, to be re-
flected at the surface of a spherical mirror AMB, then the wave which
would have occupied the position ANB, if unobstructed, will be con-
verted into the wave AN'B by the reflecting action of the mirror, and
the relation between the two waves is determined by the equality
MN = MN".
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From this it follows at once that
DN+ DR"=2DM,

or the sum of the curvatures of the incident and reflected waves is
equal to twice the curvature of the mirror.

In the case. of a convex reflecting surface, if ANB (Fig. 40) re-
presents the position which the incident wave would have gained if
unobstructed by the retlecting surface, AN'B the reflected wave, then
MN = MN’, and consequently

DN’ - DN =2DM.

But if we remark that in this case the eurvature of the incident
wave is opposite in sign to that of the reflected wave and of the
mirror, we may write this equation like the foregoing in the form

DN +DN'=2DM,

that is, with proper attention to sign we may say in general that the
curvature of the reflected wave is equal to the curvature of the incident
wave reversed added to twice the curvature of the mirror. This may
also be expressed by saying that the curvature of the mirror is the
arithmetical mean of the curvatures of the incident and reflected waves.

Denoting the curvatures of the incident and reflected waves by
o, and o, respectively, and that of the mirror by o, the fundamental
equation for the reflection of a spherical wave at a spherical surface

takes the form
a4+ 0a=20.

Hence the sum of the eurvatures of the ineident and reflected waves is
equal to the focal power of the mirror.

The interpretation of this equation is that if the incident wave
diverges from a point O, at a distance p, from the mirror, the reflected
wave will converge to (or diverge from) a point O, at a distance p,
from the mirror such that

1B

4 - =
M P P

where p is the radius of curvature of the mirror.

The points O, and O, are termed conjugate foci with regard to the
mirror, and are such that a wave diverging from either will after
reflection converge to (or diverge from) the other.

Cor.—When O, is at infinity the wave becomes plane—that is, p,
is infinite, and the incident light forms a parallel beam, so that
oy =1/p,=0; and we have the equation of Art. 61, viz. ¢, = 20 and

pe=dp=1f.
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63. Wave of any Form reflected at any Surface.—In the
preceding articles we have considered the reflection of plane and
spherical waves, but the theory may be applied to a wave PQ (Fig. 41)
of any form reflected at any surface AB. Consider the light incident
at any point A of the surface. This
point is illuminated by the element of the
wave at P where P is the pole of A, or
that point of the wave from which it
takes the light least time to reach A, If
the curvature of the surface at A is not
infinitely great the light will be reflected
at A as from an element of the tangent
plane at this point, so that the reflected
light travels from A along a direction AP, such that AP and AP’
malke equal angles with the normal at A, and lie in the same plane
with it according to the ordinary laws of reflection.

It may happen that the wave P(Q) has more than one pole with
respect to A, that there may be several points P such that the time
required by the light to reach A from them is either a maximum or a
minimum. In this case the light will appear to come in rays from
each of these points to A, and we will have a corresponding set of
reflected rays. There might be a curve on PQ such that each point
of it is a pole of A, the light then would appear to travel to A from
the whole of this curve. Examples of such cases will appear in the
sequel.

To find the form of the reflected wave take any system of points
A, B, ete., on the reflecting surface and determine their poles P, ), ete.
With A, B, ete, as centres and radii », ¢/, ete., such that PA +r=
BQ + »" = ete., describe spheres. These spheres touch the reflected
wave P'Q" at the points P, Q. The reflected wave may therefore be
described either as the envelope of these spheres or as the locus of the
points P, ete., taken on the reflected rays such that PA + AP'=QB +
B(Q)" = constant. Hence if a set of rays be drawn perpendicular to any
wave front in a homogeneous isotropic medium, they will after reflee-
tion (or any number of reflections) be perpendicular to the new wave
front,! and the length of any ray from wave front to wave front will
be constant and the same for all the rays. The same proposition holds
likewise for refraction.

Rays.—From what has been proved we see that it is approximately
legitimate to regard the light emitted from any point as made up of
very narrow pencils or rays, and that after reflection each little beam

Fig. 41.

1 Malus, Jowrnal de U Ecole Polytechnigue, cah. xiv. p. 1, 1808,
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or ray is reflected on the other side of the normal to the surface at an
angle equal to the angle of incidence. In dealing with problems in
the reflection of light we may therefore consider the light propagated
in rays if it facilitates the solution. Yet we must carefully bear in
mind that rays have no physical existence, for it is waves that are
propagated and not rays. The following examples are added for the

sake of comparison :—

Examples

1. If a plane mirror on which a pencil of light is incident be turned throngh any
angle about an axis perpendicular to the plane of incidence, the reflected light is
deviated through twice that angle.

[The direction of the incident light remains fixed in space, hence if the plane
reflecting surface be turned through any angle # the normal will be turned through
the same angle, consequently the angle of incidence ¢ becomes ¢£48. The angle of
reflection is also altered by the same quantity, therefore the angle between the
incident and reflected rays is 2i20, but originally it was 2i, therefore the reflected
ray has been turned through an angle 26,

This theorem is of wide application in practice, for plane mirrors are extensively
used to indicate, by the change in the direction of a reflected ray, the motions of
magnetised or electrified needles, and for many other purposes in physical apparatus.]

2, Show from Ex. 1 that when a plane wave is reflected at a spherical surface
the enrvature of the reflected wave is equal to twice that of the surface.

3. Light emanating from a Inminous origin O is reflected at a plane surface, prove
from the doctrine of rays that the reflected light appears to come from a point 0’
on the other side of the surface, such that the line 00 is perpendicular to the
surface, and O and O are equally distant from it (Fig. 42).

Fig. 43.

[The lines joining O and O to any point of the surface are equally inclined to it,
hence every refleeted ray passes through 0. An eye placed in the reflected light
will receive a cone of light of which O’ is the vertex. The light will consequently
appear to come from O'. This point is called the image, or reflection, of O in the
surface. The reflected waves are spheres with O as centre. ]

4. Light diverging from a point O is reflected at a conecave spherical surface, find
the conjugate focus by the doctrine of rays.

[Let C (Fig. 43) be the centre of the sphere and p its radins, and let PP be a point
on the surface at a distance from A small compared with the distance OA or p.
Then if OP be any incident ray and PF a reflected ray, CP is the normal to the
surface, and therefore bisects the angle OPF. Hence

OP :PF: : OC : CF.
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But approximately OP =0A =p,, and FP=FA =p,, therefore

pilp = pa)=palp = p)s

1 PR |
or + —=?,
M P2 P

which is the algebraic statement that the row [AFCO] is harmonic—a property at
once evident, for PA and PC are the bisectors of the angle OFF.

The reflected rays therefore pass through the point F determined by the above
equation, and the reflected waves are spheres round F as centre. OF course this is
only an approximation. When O is infinitely distant the light falls upon the
mirror in a parallel beam, and the point F, to which it converges, is termed the
principel focus. 1t lies halfway between C and A, or the principal focal distance f
is equal to 4p. This follows from the above equation, for 1/p,=0 and p,=f. For a
plane mirror p=eo, so that p,= - p..]

5. The equation of Example 4 may be written in the form

(ps =S NP =S} =17,

where f* is the principal focal distance, or 2f=p. f is therefore a geometric mean
between the distances of the conjugate foei O and F from the principal foeus.
— 6. Light diverging from a point O falls upon
LY - = - = ]
A a convex spherical mirror, find the position of the
o P conjugate focus F.
A R [Here the point O (Fig. 44) and the centre of
O A r ",_r_i the mirror lie on opposite sides of the surface.
\ The radius p is therefore to be reckoned negative,
Henee if p, is positive p, will be negative, and
O and F will lie on opposite sides of the mirror,
The focus F is in this case virtual, that is, the reflected light appears to diverge from
it and the reflected wave is a sphere diverging from F as centre.]
7. If p and ¢ denote the distances of two conjugate foci from the centre of a
spherical mirror, prove that

Fig. 44.

1 B [
Ia==.
r qp

8. Light diverges from a point F, find the form of the surface' which will acen-
rately reflect it to another point F".

[The surface must evidently be such that the lines from F and ¥’ to any point of
it are equally inclined to the tangent plane at that point. Now a fundamental
property of an ellipse is that the lines joining the foci to any point of the curve are
equally inclined to the tangent at that point. Hence light proceeding from one
focus will be reflected to the other, and the surface generated by the revolution of an
ellipse round its major axis will therefore satisfy the conditions of the problem. The
surface is therefore any spheroid having F and F’ for foei.  If the surface is a hyper-
boloid of revolution then one foeus is the wvirtual image of the other, and if the
surface is a paraboloid of revolution, the second foeus being at infinity, the light
proceeding from the first focns will after reflection travel in a parallel beam in the
direction of the axis of the surface.

We arrive at the same conclusion by regarding conjugate focl as two points such
that the time taken by light to travel from one to the other, l::,r reflection at the

e —_—

3 El’ln]l a mirror is said to be aplanalic. A spherical su:'j‘a:ze is apla.natm for rays
diverging from its centre only.
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surface, is constant, or the same for all paths. For if p and p’ be the distances of
F and F' from any point of the surface we have

p+ p' =constant,

but this is the fundamental property of an ellipsoid of revolution.

If merenry be placed in an elliptic dish and disturbed at one focus the reflected
waves may he seen converging to the other focus. ]

9. A luminous point is situated between two plane mirrors inclined at a given
angle #, find the number and position of the images formed by successive reflections
at the mirrors.

10. Show that when an eye is placed to view any image formed by successive
reflections at two mirrors, the apparent distance of the image from the eye is equal
to the distance actually travelled by the light in coming to the eye from the luminous
point.

11. A luminous point is placed between two plane mirrors inclined at an angle
of 27°.  Prove that the number of images is thirteen or fourteen, according as the
angular distance of the point from the nearer mirror is less than or greater than 9°.

12, If the light of the sun be admitted through a small hole an image of the sun
is depicted on a screen placed to receive it, but if it be admitted through a-large
aperture we obtain an image of the aperture. Explain this.

[Each small portion of the aperture depicts an image of the sun, and the com-
plete system of these images forms the image of the aperture. |

13. If the fraction of light reflected at the first surface of a parallel plate be «
(there being no regular interference), that transmitted by the first surface, reflected
by the second and again transmitted by the first, is a(l —a)®>. That reflected three
times and transmitted twice is a®(1 —a)%, ete. Hence the whole reflected light is

2a

R=a4(l-affia+a?+a*+. . )= .
a+(l-afa+a’+a e

14. The intensity of the light reflected from a pile of plates has been investi-
gated by Provostaye and Desains (Ann. de Chemie, xxx. p. 159, 1850).  If ¢(m) be
the reflection from m plates the reflection from i +1 plates, as above, is

glin+1)=a=+(1=alp(it) {1 + ap(m) + a*(¢(m) }*+, ete.}
_ -+ (1= 2a)p(m)
= 1-ap(m)

But ¢(1)=a, therefore we find ¢(2), ¢(3), ete., and generally

e
14+ (m—1)a

Stokes has extended this to the case in which the plates exercise an absorbing in-
fluence (Proc. Roy. Soe. xi. p. 545, 1862).

13. A system of rays being such that they all cut a given surface orthogonally,
construet a mirror which will reflect the system to a given foeus (Sir Wm. R.
Hamilton, Trans. Roy. Irish Acadeny, vol, xv, p. 80, 1828).

[Take on each ray a point such that the sum (or difference) of its distances from
the orthogonal surface and the given focus is constant. The locus of these points
is the surface of the required mirror.]

16. If rays diverging from a point are reflected at any surface the reflected rays
are cut orthogonally by a system of surfaces, and after reflection at any number of
surfaces the whole length of each ray from the source to any orthogonal surface is
the same for each ray (Hamilton, ibid.).

[The medium is supposed isotropic and the orthogonal surfaces are the wave
surfaces. ]

i) =



CHAPTER V
REFRACTION

64. Refraction, Snell's Law.—When light is incident on the
surface of a transparent medium a portion is reflected ; but another
portion enters the medium, pursuing there in general an altered diree-
tion. This portion is said to be refracted. Generally we may say that
when light is incident at the surface of separation of two media one
portion is reflected back and propagated in the first medium, while
another portion is refracted and transmitted through the second
medium, if it be transparent, but absorbed immediately at the surface,
or within a very small distance from it, if it be opaque.

The angle which the refracted ray makes with the normal to the
surface is called the angle of vefraction. 1f
the first medinm is rarer than the second,
for example, air and water, the angle of
refraction is less than the angle of in-
cidence, the refracted ray is bent fowards
the normal (Fig. 45); on the other hand,
it is bent or deviated from the normal if
the first medinm is optically denser—
that is, more highly refracting than the second.

The relations connecting the angles of incidence and refraction are
known as the Laws of Refraction. These were arrived at by Snell about
1621, but first stated by Descartes in the form—* The incident and
refracted rays are in the same plane with the normal to the surface ;
they lie on opposite sides of it, and the sines of their inclinations to it
bear a constant ratio to one another.”

Denoting the angles of incidence and refraction by ¢ and # respect-
ively, the relation between them is stated in the formula

Fig. 45.

sin & L5
sinr

The constant ratio p is called the index of vefraction. 1t is in general
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greater or less than unity according as the first medium is rarer or
denser than the second. When light passes from vacuum into any
medium the ratio iz termed its absolufe index of refraction, but when it
passes from one medium to another it is termed the selative index.

65. Deduetion of the Laws of Refraction.—The theoretical dedue-
tion of the laws of refraction is in all respects similar to that of the laws
of reflection. Let AB (Fig. 46), as before, be the trace of the incident
plane wave, and AA’ that of the surface
of separation, both planes being per-
pendicular to the plane of the paper.
Let # be the velocity of light in the
first medium and ¢ that in the second.
Then if ¢ be the time required by the
light to traverse the distance BA', we
have BA'=u#f= AD, and if the wave
had been unobstructed by the second
medium, it would occupy the position
A’ND (parallel to AMB) at the end of the time { However, since
the disturbance travels with a velocity #" in the second medium, the
point A becomes the centre of a spherical wave of radius +'# = AC, or
such that AD:AC::v: ¢, for AD=vf. Similarly, at the end of the
time ¢ any point P of the surface will be the centre of a refracted
wave of radius PM’, such that PN :PM"::v:¢. Therefore

Fig. 46.

AC _AD AA
PN~ PN~ PA"

and hence if a plane be drawn through A’ perpendicular to the plane
of the paper to touch the sphere diverging from A, it will also touch
that diverging from P, or from any other point of the surface AA". The
plane through A’C, perpendicular to the plane of the paper, is therefore
the wave envelope or the locus of those points which are just about to
be disturbed at the end of the time £. As in the case of reflection, we
may show that the point M’ of the refracted wave is illuminated by the
point P of the surface, that is, the disturbance at M is propagated along
the path MPM’ from M to M, and we shall show immediately that
this path is that along which it takes light the least time to travel from
M to M, and that the principle of least time is obeyed in refraction as
well as in reflection.

The angle AA'D is the angle of incidence and the angle AA'C is

! It is not universzally true that the denser media are the more highly refracting,
for example water, of unit density, has a refractive index 1-3336 for yellow light,
whereas oil of turpentine, density 0°885, has an index 1-4744 for the same light.
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the angle of refraction; denoting these by 7 and r respectively, we
have

AD sini -w

AC sinr o
Hence we have the law of refraction, viz. “the sine of the angle of
incidence bears a constant ratio to the sine of the angle of refraction,”
while we have also the additional information that this constant ratio,
or the refractive index, is equal to the ratio which the velocity in the
first medium bears to the velocity in the second.

The bending or deviation of a ray of light in passing from one
medium to another is then due to the difference of the velocities of
light in the two media. The greater the change of velocity the greater
the bending. If light travels more slowly in the second medium than
in the first, ¢ is greater than ', i is greater than r, p >1, and the re-
fracted ray is deviated towards the normal; the reverse is the case
when # is less than .

Now we know by direct observation that the deviation is towards
the normal when light passes from a rare medium like air to a dense
medium such as glass or water. The wave theory therefore indicates
that the velocity of light in air is greater than its velocity in glass or
water in the ratio of their refractive indices, and experiment proves
this to be the case.

The emission theory, on the other hand, points to the opposite
conclusion.  According to it sini/sin»='/v (Art. 23), so that in those
media where the bending is towards the normal the light travels with
increased velocity. Here then the conclusions of the two theories are
contradictory, and experiment, which alone can decide between them,
supports the wave theory conclusively. The emission theory is conse-
quently untenable in its original form, and requires serious modifica-
tion in its fundamental tenets in order to meet this difficulty.

Examples

1. If the veloecities in two media be v, and », while the velocity in vacuum
is #, the absolute velractive indices of the media are

pi="[v,, and po=vjr,
while their relutive refractive index, or the index of the second with respect to the
fivst, is
=1y Ta= phafptr.

The law of refraction may consequently be written in the form

py SN = e, S1N 7
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2. For any number of media we have

e s oz = = - Ha—1s n :-"PNEFFI:

or the continued produet of the relative refractive indices of # substances is equal to
the ratio of the absolute refractive index of the nth to that of the first.

66. Construection for Reflected and Refracted Waves (Huygens).
—We have now the following construction for the wave fronts of the
two portions into which a beam of parallel light is divided when it is
incident on the surface of separation of two transparent isotropic
media.

Let the plane of the paper be perpendicular to the plane of the
incident wave, and also to the plane surface of separation of the
media.

Let AB (Fig. 47) be the trace of the incident wave on the plane of

Fig. 47.

the paper. The plane of the wave is a plane through AB perpendicular
to the plane of the paper, and the surface of separation is a plane
through AA’ perpendicular to the paper. With A as centre deseribe
two spheres of radii v/ and ¢4, where { is the time of propagation from
B to A, and » and ¢ are the velocities of propagation in the first and
second media respectively.

The radius AB" of the upper sphere is equal to A'B, and the radius
AC" of the lower is A'B/px. The ratio of the radii is equal to the
ratio of the velocities in the two media, or equal to the relative
refractive index.

From A’ draw planes perpendicular to the paper to touch these
spheres, and let A'B" and A'C’ be the traces of these tangent planes.

These tangent planes are the limits to which the disturbance is
propagated at the instant the wave from B reaches A". They are the
reflected and refracted wave fronts respectively. The perpendiculars
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AB" and AC’ on them from A are the reflected and refracted rays
arising from the ray incident at A.

The media here considered are isotropic, and the waves diverging
from any point are accordingly spherical. This is not the case in all
media, yet the construction for the wave fronts remains the same: viz.
with A as eentre describe the waves, whatever shape they be, which
have diverged from it at the instant the wave from B reaches A,
Through A’ draw tangent planes as before to these waves. These
planes are the reflected and refracted wave fronts.

67. Total Refleetion.—If the first medium be rarer (less refracting)
than the second, the radius of the second sphere is less than that of
the first, but the radius AB’ of the first is equal to BA', which is less
than AA’, hence the radius AC’ of the second sphere is always less
than AA’, consequently A’ lies outside it, and it is always possible to
draw a tangent plane to it from A’. There is then always a refracted
wave. It is otherwise when the second medium is rarer (less refract-
ing) than the first. In this case the
veloeity in the second is greater than
in the first, and the radius of the
second sphere is greater than the radins
of the first. It is therefore greater
than A’B, and may he greater than
AA’ if the incidence exceeds a certain
limiting value. If the radius of the
second sphere is greater than AA’, the point A’ will lie inside if, and
it will be impossible to draw a real tangent plane to it from A’
Consequently there is no refracted wave, and the light is all reflected
back into the first medium, as shown in Fig. 48,

The light in this case is said to be totally reflected. This limit is
reached when the radius AC’ of the lower sphere is equal to AA". In
this case

A'B_ A'B »

M R T AL T

so that the limiting angle of incidence at which total reflection occurs
is given by the equation
sin i=p,

where p is the refractive index of the rarer medium with respect to the
denser. If, however, p denotes the relative refractive index of the
denser medinm, the limiting angle is given by

sin i=1/u.

This angle is known as the Critical Angle, and total reflection oceurs in
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the case of light passing into a less refracting medium if the angle of
incidence is greater than the critical angle.

The existence of total reflection is frequently taken advantage of
in the construction of optical instruments, and notice of it often comes
within reach of ordinary observation, as when the surface of water is
viewed in a glass held above the head, the silvery brilliancy of the
surface being due to the total reflection of the light.

For water the critical angle is about . : - - < A8 2 400

For erown glass 5 - - ; : : 3 o 40 a0

For chromate of lead it is"only : : ; : - . 19 28" 20"
Lirample

If light is refracted at a plane surface, prove that the deviation—that is, the
difference of the angles ¢ and r—increases as the angle of incidence increases.
[When 4 is small we have i=pur, and therefore the deviation isi-r=(u-1)r=

i{p = 1}u. The deviation conse-
quently inereases with the angle ‘
i‘\ -
7, P

of ineidence. When ¢ is not
small it follows at once from the
law of refraction that sin ¢ in-
creases more rapidly than sin »,
or that ¢ increases more rapidly
than r—that is, that ¢-» in-
creases with ¢, This may be
shown geometrically as follows :
—Let OP (Fig. 49) be any line
representing the veloeity in the
first medium, and on the same
scale let OM represent the veloeity in the second. With O as centre and OM as
radius describe a circle. Then if the angle OPM be the angle of refraction the angle
OMN will be the angle of incidence, for we have

OP #  sini sin OMN

OM ™ %, ““sinr sin OPM
Hence OMN =4, and if OP be parallel to the refracted ray and PM parallel to the
normal then OM will be parallel to the ineident ray. The angle POM is consequently
equal to ¢ - and therefore represents the deviation. Now it is clear that POM
increases as r increases—that is, as { increases, until the line PM becomes a tangent
to the circle. At this point, in the case of light refracted from the second medium

into the first, the limit is reached beyond which total reflection cceurs and refraction
ceases. |

Fig. 49,

68. Relation connecting the Intensities of the Inecident, Re-
flected, and Refracted Waves—The Energy Equation.—Since the
incident wave is divided into a reflected wave and a refracted wave,
its energy must be equal to the sum of the energies of the other two.
The reflected and refracted waves derive their energies from the
incident, and it is clear that a pencil of length v of the latter gives
rise to a reflected pencil of length » and a refracted pencil of length ¢,
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and the widths of the pencils are proportional to AB, A’B’, and A'C’
respectively (Fig. 47). Hence if a, I, ¢ be the amplitudes of the
corresponding vibrations, the energy per unit volume will be propor-
tional to pa?, pb% p'c®, where p and p’ are symbols for the two media
representing what we may call the density of the ether, or that
property of it which corresponds to the density of ordinary matter,
and by which it possesses energy when in motion. Hence the energy
of an incident beam of length » and width AB 'i"i"lll be proportional to
rpie? . AB, and we have the equation

vpa? . AB=vph*. A'B' +2'p'c%. A'C'.
Hence
wp cos = opl® cos 1+ 1p'e® cos

or, since »/¢" = sin i/sin , we have1

pla®—%) sin 2r
pet " sin 2§

It is not unusual to find it asserted that the square of the ampli-
tude of the incident vibration is equal to the sum of the squares of
the amplitudes of the reflected and refracted vibrations; but this
could be true only if p/p’=sin 2r/sin 2i, a law which might exist if
sin 2r/sin 2i were constant instead of sin i/sin . We would then
have a refractive index measured by the ratio of the densities of the
ether in the two media. The amplitude of the refracted vibration,
however, depends on the mean energy per unit volume, and this, we
have seen, depends on the density p’ of the ether in the second
medium or on the velocity of propagation.

Cor.—Two suppositions have been made with respect to the
quantities p and p’, one by Fresnel, that the velocity of propagation
is inversely as the square root of the ether density, or that

p_v" _ sinr

p o sin%
by which the energy equation reduces to

P tant - . .
o L_!..‘. =ti“ - (Fresnel's energy equation.)

The other supposition, made by MacCullagh, is that p=p, or the
ether density is the same in all substances ; we have then

a®*— b =in 2r
: B

o {MacCullagh's energy equation, |

1 T]lm equation may be written dﬂ-“h at once by observing that the energy in
the triangle ABA' (Fig. 47) is equal to the sum of the energies in the triangles AB'A’
and AC'A".
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69. The Principle of Least Time or the Law of Fermat.—When
light passes from any point M to another M (Fig. 31) by reflection at
a surface, we have seen that the rays PM and PM’ are equally inclined
to the surface, and consequently their sum is less than the sum of the
lines joining M and M’ to any other point on the surface. The path
MPM’ is that which will be traversed in the least time in passing
from M to M’ by reflection at the surface.

A similar law governs the refraction of light, viz. if light pass
from any point M (Fig. 50) to any point M’ in another medium, the
path MAM’ traversed by the ray is such that the
time oceupied in travelling over it is a minimum.

For if the time along the path MAM' is a mini- \\ﬁ
mum, the time over this path must be eqgual to

that oceupied in traversing the consecutive (very

near) path MA'M". Hence if AB and A'C be

drawn perpendicular to MA"and M’A respectively, | M
it follows that the times of travelling over the FiE

distances AC and A'B are equal, since MA =MB and M'A"= M'C,
Hence

r

A'D _ AC ; AA'sini_ AA'sinr
T R T TR g
that is,
sint_ v _
smr @

Hence if the time occupied in traversing the path be a minimum, the
ordinary law of refraction is obeyed, and conversely.

Denoting the rectilinear paths in the two media by [ and I, the
law of Fermat asserts that

Eo it St
+ — =aminimum,
Y v
o1
I+ " =a minimam.

If the same ray passes through several media we have X(I/v), that is,
Zpl, a minimum, and if the refractive index of the medium changes
from point to point, the path of a ray becomes a continuous ecurve,
and the length [ in the above formula becomes a small element ds of
the eurve. The principle of least time, according to which the wave
front is always as far advanced as possible, may, for a medium of
variable refractive index, be written in the form

f - minimum, or ,',m’s = minimum.

We are to observe, therefore, that in all cases of refraction through
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prisms, lenses, ete., when light travels from one point to another the
ray pursues that path which requires least time. For example, when
the various rays pass from one focus of a convex lens to its conjugate,
those which travel through the centre of the lens transverse a greater
distance in glass, and a less distance in air, than those which pass near
the edge ; but all rays require the same time to travel from one focus
to the other, viz. the minimum time.

70. Refraection of a Plane Wave through a Prism.—A prism of
any material is a wedge-shaped portion of it contained between two
planes called its faces, which interseet in a line termed the edge of the
prism. The angle between the faces is called the angle of the prism.

Let ABC (Fig. 51) be a section of a prism by the plane of the paper,
supposed perpendicular to the edge of the
prism. Consider a plane wave of light incident
on the face AB in the direction P(), the plane
of incidence being the plane of the paper, and
thus perpendicular to the edge of the prism,
The light being refracted into the prism in

Fig. 51. the direction QR, making an angle » with the
normal, will suffer a deviation ¢ — r at the face AB. If the angle of
incidence of QR on the second face be 7/, and the angle of emergence
along RS be ¢, the light will suffer a further deviation ¢"-+. The
light will now emerge in the direction RS (if the angle of incidence +’
on the second face be less than the critical angle) and the total devia-
tion & from the original course PQ is

F=(i+0) = (r+r)=i+i - A,

where A is the angle of the prism, which is equal to »+ ¢, since it is
equal to the external angle between the normals at Q and R to the faces.

A plane wave BM (Fig. 52) incident on the face AB is refracted
into the prism, and travels through it as
a plane wave AD. It then emerges from
the second face AC as a plane wave CN.
Any point S of the wave CN 1s illumi-
nated by a corresponding point P of the
incident wave, and the law which governs
the propagation of the disturbance is
that the time of propagation along all
paths joining pairs of corresponding points on BM and CN is the
same. For example, the time along MAN = time along PQRS = time
along BC. Hence we should have

MA + AN =uBC=(BD + DC),

Fig. 6f.
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01
ABsin i+ ACsin i =p(AB sin++ AC sin +'),

which is true if the law of refraction (sin i = psin#) is obeyed.

Hence NC is such that the disturbances reach it from MB in the
same time ; they are therefore in the same phase, that is, NC is the
wave front after refraction through the prism. The rays which pass
near the edge of the prism traverse a shorter path in glass, but a
longer path in air, than those which pass near the base, the long air
path MAN occupying the same time as the shorter glass path BC, and
the ratio of the lengths of these paths is the refractive index of the
glass.

The deviation (8) is measured by the angle between MA and NA
produced ; but MAB = 90 — i, and NAC =90 -4¢"; hence d=4+1¢ — A.

Now if p be increased while the angle of incidence ¢ and the angle of
the prism remain the same, the angle of refraction » will be diminished,
for sini=psins. Henee the angle of incidence +* on the second
face will be increased, for »+ 1+ = A, and consequently the angle of
emergence ¢ will also be increased to obey the relation sini’ = psin’,
Hence if, while i and A remain the same, the refractive index be
increased, the angle of emergence ¢ will be inereased, and the total
deviation 4 + ¢ — A will be increased by the same amount.

The amount of deviation, therefore, depends on the refractive
index, that is, upon the velocity of propagation in the prism. We
should consequently expect that if ordinary solar light contains many
constituent waves which travel with different velocities in the prism,
they should be deviated by different amounts on emerging, and a
beam of parallel light incident on the first face should be a dispersed
beam on emergence from the second face. That this is the case was
first demonstrated by Newton.!

71. Colour and Veloeity.—The experiments of Newton prove in
a clear and masterly manner that lights of different colours are refracted
by different amounts in passing through a glass prism or on entering a
new medium, the red light being deviated least, the violet most, and
the intermediate colours (orange, yellow, green, and blue) in continu-
ous transition by intermediate amounts. But we have seen that the
bending of the ray on entering a new medium is a econsequence of the
difference of veloeity in the two media, and the greater this difference
the greater the deviation.

We therefore conelude that the velocity of the violet light is least
and that of the red greatest in the prism, while the intermediate

1 See extracts at end of chapter.
H

Dispersion,
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colours travel with intermediate velocities. We have reason to believe
that all the colours travel with the same velocity in free space, and
with practically the same velocity in air, for if the red travelled faster
than the violet it would follow that a star reappearing after eclipse
should at first appear red, as the red light would reach us first, and
then gradually change tint till it finally became white when all the
colours have had time to arrive. Similarly, when the star is just
disappearing at eclipse it should be violet coloured, as the violet would
be the last to reach us. :

Now as no observation of this nature has ever been made it follows
that the violet waves must differ in some respect from the red, and this
difference must exist either in the wave length or the periodic time of
vibration, or both, for if they all had the same periodic time and wave
length there would be nothing left by which we could distinguish the
red waves from the violet. The waves then in air must have different
periodie times and different lengths, for since they travel with the
same velocity, the equation

tT=A

shows that the periodic times are proportional to the wave lengths.

In the case of refraction there is one element which is likely to
remain unaltered, viz. the periodic time of vibration. For the vibration
in the second medium is excited and forced by the vibration in the
first medium, and these will in general be executed in the same time.
The time T then is the same in the incident and refracted wave, so
that if the velocity changes in the second medium the wave length
changes proportionately by the equation

L =

Hence it follows that when refraction occurs

v_M_
i s
and the quantities
=
v v

remain unaltered.

So far as we have yet gone the theory has not indicated whether
the red waves are longer or shorter than the violet; all we have
arrived at is that the shorter the wave length the shorter the periodie
time is in a vacuum. Further on experiments will be given which
show that the red waves execute about 395 billion (395 x 10'%) vibra-
tions per second, while the violet vibrate about 763 billion (763 = 10'%)
times per second, or nearly twice as fast as the red.
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The dispersion of the colours (as it is called) by a prism shows
that although all the waves travel with the same velocity in free space,
vet in dense media, like glass and water, the velocity of propagation
depends upon the wave length or periodic time.

Exercise.—Light incident at an angle ¢ is refracted through a parallel plate of
glass. Waves of lengths A, and A, are refracted at angles » and 7, respectively,
find the relative retardation by transmission through the plate.

Let PQ (Fig. 53) be the front of a plane wave incident on the face of the plate
at an angle 4, and QO the direction of the incident
light. Let PM and PN be the directions of the
refracted rays. The planes OMR; and ONR.,
perpendicular to PM and PN, are the refracted
wave fronts, which on emergence, if the plate be
parallel, will proceed parallel to I'Q). Thus the
emergent wave fronts are ;B and R,C, and if the
plate had not been present the original wave front
would have been propagated to OLA. Hence the
effect of the plate is to retard one wave by an
amount AB and the other by AR,. The relative
retardation of one on the other is therefore R,B. Fig. 83.

But if ¢ be the thickness of the plate, we have R,D=¢ cot r;, R,D=¢ cot r,, hence

R,B=R,R,sin i=sin i(R,D - R,D),
=¢ sin #(cot ry - cot 1),
=6y COS Ty — 2y COS 7).

This example will be of use hereafter in the consideration of the colours of mixed
plates and of doubly refracting crystals.

Cor.—When {=r=0, the light is incident normally, and we have the retardation
=¢{pe = iy ), a8 is otherwise directly obvious.

72. Refraction of a Spherical Wave at a Plane Surface.— Let
spherical waves diverging from a centre O (Fig. 54) fall upon the plane
surface AB of a transparent substance. If the wave had not encoun-
tered the second medinm it would
at some instant occupy the position
ANB, a sphere of radius OA and
centre O. The velocity in the second
medinum is, however, different from
that in the first, so that M has
become the centre of a wave in the

second medium of radius MN’, where
MN:MN'=v,:v, or

Fig. od. MN =g. MN'.

Similarly any other point P will be the centre of a spherical wave
of radius equal to PQ/u, and the refracted wave will be the envelope
of all these spheres. In the figure we have supposed the second
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substance more refracting than the first, so that their relative index p
1s greater than unity. The consequence i1s that the inecident wave
ANB is flattened down into another AN'B of less eurvature.!

Now MN and MN’ are proportional to the curvatures of the two
waves. Hence the relation between the curvatures iz determined by
the foregoing equation, and may be expressed by saying that the cur-
vature of the incident wave is p times that of the refracted wave.
Denoting these curvatures by o, and o, respectively, this relation may
be represented in any one of the following forms :—

Gy =poy,  OF 6yfdy =10y, O pyoy = pyoy,

where p, and p, are the absolute indices of the first medium and
second medinum respeetively.

If p; and p, represent the radii of curvature, we have o, =1/p,
oy =1/p,, and consequently the relation between the distances of the
points O and O from the surface is

Pa=ppy O pi0y=psty,  OF py/py=phy[py.

73. Refraction of a Plane Wave at a Spherieal Surface.—
The case of a plane wave incident on a spherical refracting surface
is one of extreme simplicity when considered from the point of view
of the wave theory. Thus let AMB (Fig. 55) represent the surface of
a refracting sphere and XABY the trace of a plane parallel to the
front of the incident wave. If the refracting sphere had not been
present XY would represent the incident wave in one of its positions,
but by the action of the sphere the portion ANB of the plane wave is
retarded and takes the form of the curve AN'B, which is approximately
an are of a circle when AB is small. Now MN and NN’ are propor-
tional to the eurvatures of the surface and refracted wave respectively,
and the relation between these is determined by the equation

MN =uMN'=pu{MN - NN").

That 1s
uNN'=(u - 1)MN,

Hence if « be taken to represent the curvature of the surface and o
that of the refracted wave, we have

' If AB is small the arc AN'B will be approximately a circle having its centre at
0. The true form of the refracted wave is not a sphere, however, but a parallel to
2 hyperboloid, so that the curve AN'B is a parallel to a hyperbola (see Ex. 1, p. 111).
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The case of concave refracting sphere is shown in Fig. 56, where
N'N’ is the front of the refracted wave and NN is the corresponding
position of the incident wave. Here again we have MN=puMN’
from which we derive the same formula as that obtained for a convex
surface. In both cases therefore the action of the refracting sphere is
to imprint on the refracted wave a curvature equal to (u— 1)/p times
that of the refracting sphere. This impressed curvature o’ is always Impressed
less than that of the refracting surface o, and when p is greater than °'rvature
unity—that is, when the sphere is more highly refracting than the
medium in which it is immersed—the curvature of the refracted wave
is of the same sign as that of the surface, but of opposite sign when p
is less than unity. Hence when p is greater than unity the focus F,

- Er e ot
Fig. 55. Fig. 5Si.

to which the refracted wave converges (or from which it appears to
diverge), lies on the same side of the surface as its centre C; but when
p is less than unity the focus and centre lie on opposite sides of
the surface. The relation hetween the focal distance f=FM and the
radins p of the refracting surface is, since ¢'=1/f and o=1/p,

. M
fF= !
J ,u—]'p

If the absolute indices p, and g, be used instead of the relative
index p=p,/p, the above formule hecome

T .
g'="0_Tlg  andf=—"2 .
M e = Ly

The curvature o’ impressed on a plane wave by refraction at a spherical p,..1
surface is called the focal power of the surface. It is measured by the power.
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reciprocal ol f, and means the curvature impressing power of the
surface.

It has now bheen proved that the refraction of a spherical
wave at a plane surface changes its curvature from oy to o,=oy/p,
while the refraction of a plane wave at a spherical surface impresses
a curvature o(x — 1)/p on the refracted wave, and we shall see in the
following article that when a spherical wave is refracted at a spherieal
surface the curvature of the refracted wave is the sum of these two
fuantities.

74. Refraction of a Spherieal Wave at a Spherical Surface.—
Let the surface AB (Fig. 57) of the refracting medium be a sphere of
centre C, and let a spherical wave
AN'B diverging from O meet it at A
and B. If the second substance be
more refracting than the first, the
spherical wave, which at any instant
would have oceupied the position
ANB, will be flattened into the surface
AN'B. This surface is the envelope
of the sphere deseribed with any point
P of the surface as eentre and radius
PQ/p. It is the wave surface, and such
that the disturbances from O reach every point of it in the same time,
viz. the interval required to travel directly from O to A or B. The
refracted wave AN'B is propagated normally in the second medium,
and if ONN' be a common normal to both waves, in any position we
have

MN =pMN’,

The effect of the refraction is therefore to diminish or increase the
curvature of the wave surface according as the veloecity is less or
greater in the second medium.

In the same manner we may construct the refracted wave when
the incident wave and the refracting surface have any form.

If the angle AOB be very small the refracted wave will be
approximately a sphere diverging from a centre O, and the relation
connecting the curvatures of the two waves with that of the surface
may bhe easily determined, for the equation MN=pMN’ may be
written in the form

DN - DM =u(DN'- DM).

That is
DN —uDN’ - (u—1)DM.,

e =P

L
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Hence if the curvatures of the incident wave, refracted wave, and
surface be denoted by o, o, and o respectively, we have the relation

= (=1l ul‘ﬂ_d]—
1= prg — (g » EF—EF.E_

Therefore o, is determined by the equation

| T |
pog— oy =(p—1)e, or ﬂ'2=;- i = 2

The relation between the conjugate focal distances is consequently

If the relative index p be replaced by p,/m, the ratio of the
absolute indices of the two media, the relation between the eurvatures
takes the symmetrical form

o1 = Bt = (1 = i),
and the relation between the conjugate focal distances becomes

My Mg =iy
PL P P

The same formula holds good for a convex refracting surface if the
sign of the curvature of the incident wave be reckoned opposite to
that of the surface.

Cor.-——If p and ¢ denote the distances of the conjugate foei O
and O° (Fig. 57) from the centre C of the refracting surface, then
py=p =9 py=p—1q and the foregoing formula becomes

by Ky E— Ky
q@ » P

or in terms of the relative index p we have

w1 u=1
P g P

Example

A pencil of light diverging from a point falls directly on a refracting sphere of
radius p and passes through it, find the focus of the transmitted rays.

75. Refraction through a Lens.—A lens is a portion of a trans-
parent substance, such as glass, quartz, or rock-salt, bounded by two
surfaces of such a shape that light diverging from a point O (Fig. 58)
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and falling on one face, will after transmission converge to, or diverge
from, another point O,  That is, the surfaces of the lens are so shaped
that a wave which is spherical before transmission remains spherical
after transmission. The surfaces of the lens itself are not accurately
spherical, but only approximately so. The true curve of the surface
which will accurately refract to a point light diverging from another
point is the Cartesian oval (see Ex. 7, p. 113). A surface which refracts
to a point the light diverging from another point is called an aplonatic
surface, and the points are called conjugate foci with respect toit. The
fundamental relation connecting conjugate foei O and O is that the
time of propagation is the same along all the paths by which the light
reaches O° from O. Thus in Fig. 58 if light diverging from O is
refracted by a double convex lens AB to the point O, any spherical
wave diverging from O emerges from the lens as a spberical wave con-

Fig. H8.— .\:1![:“!'.1.1.5!:‘ Lens.

verging to O'. Every point of this wave is a pole with respect to O,
and all the disturbances which simultaneously reach O’ are in the same
phase. The illumination at 0 is consequently very intense. At points
outside the cone O'AB there is destructive interference and darkness.
The relation connecting the conjugate focal distances, or the
curvatures of a wave before and after transmission through a lens,
follows very simply from the principles of the wave theory. In the
first place, let us consider the case of a concavo-convex lens (Fig. 59)
in which the thickness MN and the aperture AB are small compared
with the focal distances. This is taken as a typical case because the
eurvatures of its surfaces are of the same sign, whereas in the double
convex lens (Fig. 58) the curvatures of the faces are of opposite signs.
The relation which we are about to dednee might be obtained im-
mediately by applying the formula of Art. 74 to the two faces of the
lens in suceession, but for the sake of illustration we shall approach
the problem directly from fundamental principles. The prineiple on
which the present investigation is based is that the time required by
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light to traverse the path OAO’ is the same as that required for the
path OMNO'. The air equivalent of the latter path is OM + pMN + NO',
Hence the fundamental equation is

OA +0'A=0M +0O'N 4 ubN.

With centre O and radius OA describe a circle cutting OO at P,
and with centre O° and radius O’A describe a circle cutting 00" at Q,
then, writing the foregoing equation in the form

(OA - OM)+(O'A - O'N)=uMN,

we have
~ PM+ QN =uMN,

__Q:DP MSIN

which, expressed in terms of the sagitte, gives at once
DP =DM +D0Q+ DN =n( DN - DM).
Consequently the relation connecting the curvatures of the waves
entering and emerging from the lens with the curvatures of its faces is
DP - DQ=(x-1)(DN - DM),

or denoting the eurvatures of the waves as before by ¢, and o, and
the curvatures of the surfaces by o and o', we have

oyt o, =(p—-1)oe- o)

where o refers to the surface of greater curvature, which in Fig. 59 is
the second : that on which the light is incident being regarded as the
first surface of the lens,

When expressed in terms of the corresponding radii of curvature
the foregoing equation furnishes the relation between the conjugate

focal distances, viz.—
1 | S |
i -£ - ."" - ] ( - )1‘
pa e P

™
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where p, and p, are the distances of O and O” from the lens, and p and
p are the radii of curvature of its faces ANB and AMB respectively.

If the point O from which the light emanates be infinitely distant
the incident wave will be plane—that is, its curvature o, will be zero,
and the eurvature of the transmitted wave will be

oz = (1 - 1)(e = o).

The function of the lens is consequently to change the curvature of a
wave by an amount (u— 1)(o =), so that this quantity represents
the curvature producing power and is termed the focal power of the
lens.  In general, therefore, we may say that the curvature of the
transmitted wave is equal to the algebraic sum of the curvature of the
incident wave and the focal power of the lens—that is, the final curva-
ture of the wave is equal to the algebraic sum of its initial and
impressed curvatures.

The point to which a plane wave or a parallel beam of light is
concentrated is termed the principal focus of the lens, and its distance
from the lens is termed the focal length. Denoting the focal length

l F P

which expresses the focal power in terms of the refractive index and
the curvatures of the faces of the lens.

In this caleulation the thickness of the lens has been supposed to
he greatest at the centre. In some lenses, however, the thickness
increases from the centre towards the edge, so that their thinnest part
is at the centre. Lenses are accordingly divided into two classes
according as their greatest or least thickness is at the centre. The
former are termed convexr and the latter concave lenses,

An examination of the motion of 0" as O moves along the axis of
the lens will be a useful exercise, and the deduetion of the formuls
for the various forms of lenses presents no further difficulty.

Examples

1. Prove that the distance between two comjugate foci with respeet to a lens
cannot be less than four times its focal length. '

[Since the sum of the reciprocals of two conjugate distances is equal to 1/7, and
therefore constant for a given lens, it follows that the produet of these reciprocals
is greatest when they are equal, and consequently the sum of the distances themselves
must be least when they are equal. Thus )

el =
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which shows that the product of the reciprocals is greatest (i.e. pp, is least) when

P1= Po Eut}rz}. .{_i =P.L+_P'?-_

Pi P PiPa

Henee p; 4+ p, must bear a constant ratio to p,p,. and consequently p, + p, is least
when p;p, is least, which is when p, =p,=2/. In other words, the least distance
between two conjugate points is 47.]

2. A lens is employed to cast an image of an object on a screen, show that in
general there are two possible positions of the lens for given positions of the object
and sereen, and prove that the length of the object is a geometrical mean between
the lengths of the two images.

[In order that any image may be possible the distance between the object and
screen must be greater than 4f. This being the case, let the lens produce a distinet
image on the screen when placed at a distance p; from the object and p, from the
screen. Then if 7 be the length of the object and 7, the length of the image, it follows
that

L i

. : : - : (1)
&P

Now since conjugate foci are interchangeable it follows that the lens will also
produce a distinet image on the screen when the distance of the lens from the object
is py and from the screen p;, so that if [, be the length of the image in this case we
have

I _ps -
T . . : : : - (2)
Multiplying (1) and (2) together we have
B=LL, orl= .4l

Henee if I, and 7, be measured, the length ! can be determined when the object is
not accessible for the purpose of direct measurement.

This method of obtaining the length of a luminous object, or the distance between
two luminous points is of practical importance in measurements of the wave length
of light (p. 144).]

3. Ifalens of absolute index p, be situated between two media of absolute indices
#y and g, prove that the curvatures o, and o, of the waves entering and emerging
from the lens are connected with the eurvatures ¢ and ¢’ of the two faces of the lens
by the equation '

My T ey = (1 = pyla = (g = pg)o”.

[In this case we have, by the principle of least time (Fig. 59),
4 0A + 0" A = p, OM + p MN + puaO'N,

which may be reduced at once, as in Art. 75.]
w« 4. Find the relation connecting the curvatures of the incident and emergent
waves in the ease of a lens of which the thickness ¢ is not small.

[As before let oy be the eurvature of the incident wave when it reaches the first
surface o of the lens, then the eurvature ¢'; of the wave when it just enters this
surface is given by the equation (Art. 74)

= ke=li~pdr = = = = . AN

Now the wave when it enters the lens travels a distance ¢ before it meets the second
surface, and consequently its curvature ¢”, when it meets the second surface is by
the Ex. of Art. 60

(2)
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But by Art. 74 the eurvature o, of the wave emerging from the lens is connected
with ¢, the curvature of the second surface and with ¢", by the equation

Ha"y — pygy = (s — 1y}’
and this by (2) becomes

ot AT
i WFE ‘uld-ﬂ_h'r‘] F‘IJF"

Substituting for pe’, from (1) we have at once

0y + (s — o
1+ {yey+ (g — oy )} ol

= = [F-_a = 1“1}5'-
This equation connects the distances, p, =1/, and p,=1/e,, of any pair of conjugate
foci from the surfaces of the lens with the radii of curvature of its faces and the

thickness ¢. If the incident wave be plane we have o, =0, and the focal power of the
lens is given by the equation

}zﬁz(&;jpl) { 1+Ulgf#uwmz-f}'

This expression shows that the foeal power is not the same when the light falls on
the surface ¢’ as when it falls on &, so that the focal power changes when the lens is
reversed with regard to the incident light. When the thickness is neglected this
reduces to the expression of Art. 75, and the focal length remains unaltered when
the lens is reversed. )

5. Determine the focal power of a combination of two thin lenses situated at a
distance ¢ apart.

[Let j; and £, be the focal lengths of the two lenses, then if a plane wave falls
upon the lens 7}, its curvature when emerging from it is 1/f,, and its curvature when

: Tl i

it reaches the second lens is e Hence the curvature of the wave emerging from
1

the second lens is

1 1
f1'|'¢+f2}

which expresses the equivalent foeal power of the combination. Denoting this by ¢
and denoting the focal powers of the lenses by ¢, and ¢, respectively we have

The focal power when the combination is reversed is obtained by interchanging ¢,
and ¢, or f; and £ in the foregoing expressions.

If a wave of eurvature ¢ [alls upon the combination its enrvature after trans-
mission will be o+ ¢, ]

CAUSTICS

76. Evolute of Wave.—The reflected and refracted waves which
we have so far considered have been either plane or spherical in form,
g0 that the reflected and refracted rays converge to, or diverge from,
a point. In the case of plane waves this point is infinitely distant.
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In general, however, when light diverging from a point is reflected or
refracted at a given surface, the front of the reflected or refracted
wave is neither spherical nor plane, and the rays will not pass through
a single point, but will envelop a surface called the caustic. This
want of convergence of the rays is termed astigmatism.

Now the rays are normals to the wave, and the normals to a curve
(or surface) envelop another curve (or surface) called the evolute.!
Consequently the reflected or refracted rays envelop the evolute of the
reflected or refracted wave. The evolute of the reflected wave is
therefore the caustic by reflection, and the evolute of the refracted wave
is the caustic by vefraction.

It will be sufficient for our present purpose to confine our attention
to surfaces of revolution, the incident light diverging from a point on
the axis of revolution. In this case the caustics will also be surfaces
of revolution about the same axis, and the section of the ecaustic
surface by any plane through the axis will be the caustic curve of
the generating curve of the surface at which the reflection or refraction
OCCUTS.

Thus if a surface be generated by the revolution of the curve APQ
(Fig. 60) round the axis
OA, and if O be the origin
of light, then rays OP, OQ
falling upon the surface will
be refracted in directions
PM and QN. The ecurve
BMN entting these refracted
rays at right angles, or rather
the surface formed by the
revolution of BMN around
OB, will be the refracted
wave.  The evolute of the
- enrve BMN is the envelope
of the rays refracted at APQ, that is, the caustic swrface is formed by
the revolution of the caustic curve around OA.

77. Primary and Secondary Foci.—Let the refracted rays P'M and
()N, produced backwards, intersect at F,; then F, is a point on the
caustic eurve if the rays PM and QN be considered infinitely near.

Fig. 60,

! In the general case when the wave is not a surface of revolution the canstic
surface consists of two parts, or sheets, generated by the two principal centres of
curvature. The caustic is simply the surface of centres of the wave surface, and
when the surface is one of revolution one of the sheets of the surface of centres
degenerates to the axis of revolution.
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Now if the whole figure be revolved round OA through a very small
angle, PQ will deseribe a little element of the refracting surface, MN
an element of the refracted wave surface, and F, a short line on the
caustic surface perpendicular to the plane of the paper. The element
of the surface formed by the revolution of P(Q round OA receives a
cone of light from O. This cone gives rise to a refracted cone which
falls upon the element of the wave surface generated by MN, and the
rays of this latter cone produced backwards pass through a short line
on the caustic surface at F..

This line is an element of the circle described by F, in revolving
round the axis OA. It is consequently perpendicular to the plane of
the paper—that is, to the primary plane of the refracted cone. (The
plane containing the axis of the cone and the axis of the surface is
termed the primary plane of the cone, while a plane perpendicular to
this through the axis of the cone is called the secondary plane.) The
cross section of the refracted cone at F, is consequently termed the
primary focel line of the cone.  Now in the case of a surface of revolu-
tion it is clear that every normal to the surface meets the axis of
revolution, and the point in which any normal NF, meets the axis
remains fixed while the curve BMN revolves. The point F, is there-
fore the vertex of a cone of rays passing through the circle deseribed
by N about the axis OAB. Similarly every other point on the axis
is the vertex of a right circular cone of rays entting the wave surface
orthogonally. Hence the wave normals at two adjacent points M and
N meet the axis of revolution at two adjacent points, embracing be-
hetween them an element of the axis which remains the same while the
curve BMN revolves round the axis. The elementary refracted cone
of rays previously considered consequently passes through a second
line at F,—namely, an element of the axis of revolution. This is the
secondary focal line of the refracted cone. It lies in the plane of the
paper, and is consequently perpendicular to the primary focal line.!
The cross section of the refracted cone at I, by a plane perpendicular
to its axis is not a line, but in general a figure-of-eight-shaped curve.

As the seetion of the refracted cone degenerates to a line at F, and
again to a line at F,, and as these lines are at right angles, it follows
that any cross section between F, and F, will be an oval curve having
diameters in and perpendicular to the primary plane, which reduce to

1 In the general case when the wave surface is not one of revolution the normals
io the surface (i.e. the rays) intersect each other only when taken along the lines of
curvature. These lines form two orthogonal systems on the surface, and the corre-
sponding intersections of rays form a surface of two sheets (the caustic surface or

surface of centres). The primary focal line F) iz an element of a line on one sheet
and F, is an element of a line on the other.
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zero as the cross section moves to F, or F, respectively. Consequently
at some place between F, and F, the diameters of the cross section
will be equal. The section will here be a circle, or approximately
such. This section is called the circle of least confusion.

The existence of the focal lines and the circle of least confusion
can be easily ascertained by reflecting obliquely from a concave mirror
a cone of light diverging from a bright point, and receiving the re-
flected cone on a white screen or sheet of paper. For one position of
the screen a well-defined line perpendicular to the primary plane is
depicted. This is the primary focal line. As the screen is moved
away farther from the surface the line broadens out into an oval spot,
which in one position of the sereen is very nearly a circle—the circle
of least confusion. On moving the screen farther away the oval
narrows in perpendicular to the primary plane till it again becomes a
line lying in the primary plane. This is the secondary focal line.

When the incidence of a small cone is direct the focal lines and
circle of least confusion all coincide with the geometrical focus C (Fig.
60). This is the point where the caustic meets the axis of revolution,
It is a double point or cusp on the caustic curve.

Caustics by reflection may be easily shown by allowing the light
of the sun or lamp to fall upon a narrow riband of polished steel
such as a watch spring. Placed on a sheet of paper and bent into
any desired curve, the spring shows a well-defined bright caustic on
the paper, the part within being brighter than that without the curve.
By varying the form of the spring a variety of caustics with cusps,
contrary flexures, and other singularities may be exhibited. The
plane of the sheet of paper should pass nearly through the sun or
source of light. The bright curve seen upon the surface of a cup of
tea is a familiar example of the caustic of a circle.

Examples

1. Light diverging from a peint is refracted at a plane surface, prove that the
caustic curve is the evolute of a conic section.

[Let O (Fig. 61) be the luminous point,
PD the reflecting surface, OF any incident
ray. Draw OD perpendicular to the sur-
face, and produce it till DO'=D0O. De-
scribe a circle about OPO’ and produce
the refracted ray PQ backwards to meet
the circle at M. Join OM and O'MAl.
Then since D is the middle point of
00, the arc OP=0PF or the angle
PMO=FM0', that is, the refracted ray =
bisects the angle M. Now PMO= Mg 0.
PO0'=4, the angle of incidence, and FPND=#, the angle of refraction. Hence

Circle of
least con-
fnsion.

Cusp.
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_sin E_(}l‘f _O'N
A= gsinr OM~O'M’

since MN bisects the angle M. Consequently

ON +O'N Ay o 0
oMo °F OM+0M=—"==constant.

The locus of M is therefore an ellipse having O and O’ for foei, and the refracted ray
P(} iz a normal to the ellipse at M. The caustiec is therefore the evolute of this conie.
The major diameter 2a and the eccentricity ¢ of the conie are given by

2e=00"Te, ande=u.

If the refraction takes place from the rarer to the denser medium, the refracted ray
bisects the angle M externally. M lies between O and P, and MO’ — MO is constant.
The locus of M is a hyperbola, with O and O for foei,
major diameter 00 /u, and eccentricity e.

points  such that OF 4+ uPQ=const. The locus of the
points @ will be the refracted wave front cutting the
rays P'Q normally. The caustic surface is formed by
the revolution of the i'n:I't';_{ui ng evolute round OO0,

Thereflected waves in this case are spheres concentric
with (¥, so that the reflected rays all appear to come
from O'.]

2. Parallel raysare reflected froma spherical mirror,
find the canstic.

[Let ACB (Fig. 62) be a section of the mirror, QR
the direction of the incident light, and RP a reflected
ray. With centre O (the centre of the mirror) describe
a eircle of rading OF=30C. Join RO and upon RT as diameter deseribe a ecirele,
centre 0, Then O'T=30T. Let the reflected ray cut this circle at P. Now the
angle PO'T=2PRT =2QR0O =2T0F. Therefore in length the arc TF =are TP.

If therefore the cirele RPT rolls on the cirele TF the Imi!ﬂ. P will trace ont the
L.-!:u'i:‘._",'l'.]ni:i APFB, the cusp of which is at F, and since RPT is '|'ig}|t| and PT is the
normal 1o the ]!rL1_.]I of |}, it follows that RP is a tﬂl]gl'lll to the }lﬂ,[‘]i_ Henee the

Fig. 62,

reflected rays envelop an epicyeloid, the eusp of which is at the prineipal focus of

the mirror. ]

3. Light diverging from a point on the circumference of a cirele is reflected from
the concave are, find the canstic.

[The eaustie is an epicycloid formed by the revolution of a cirele on an equal
cirele. ]

4. Light diverges from a luminous point
sitnated outside a sphere, find the caustic by
refraction,

[A surfaceofrevolution generated by theevolute
of a Cartesian oval whose foei are the luminous
point and its inverse with respeet to the sphere. |

5. Find the geometrical focus of a pencil of
light after direct refraction at a plane surface.

[Let the light diverge from O (Fig. 63), and
let O be any ray nearly parallel to OA, the
perpendicular from O on the surface, Then PA is small, and O =0A nearly.
If the refracted ray produced backwards meets OA at F, then

Fis, 63,

The refracted wave front is g:rt ]‘I“!." ji_“rEi“;_[ a series of

.

o e Wi i e ——— 1
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FA PF sini
OA PO singy '

so that if OA and FA be denoted by p; and p, respectively, we have
P2 =Py

The focus is therefore farther away from or nearer to the surface than the point
O according as p is = or = 1, that is, according
as the light passes from the less to the more
refracting medinm, or wice versi.

To an eye situated in air objects under water
appear nearer the surface than t]w}' really are,
while to an eye placed under water objects in the
air appear farther away. |

6. Find the geometrical focus of a pencil of
rays after direct refraction at a spherical surface.

[Let C (Fig. 64) be the centre of the sphere
and P any point in it, =0 that OP is nearly parallel to OC. Then if the refracted
ray meets OC at F, we have CI’O =1 and CPF=r, and

Fig. 64.

PF s _nf"]"
PO sin F Qu’

or
s _H.{p.J Pl LM 1 [f; 1
P = p) § -P: Py 14
This formula cotneides with that whicl determines the Fm.-:ilinn of the focus h.'!"
reflection at a spherical mirror when we put g 1, a general substitution which

converts formule of refraction into the 1~u|'|'|-3-'.|mi|1iin;_{ formule of t'rt]e:t:!.'in:ru,]

7. Light diverges from a point F;; to find the surface which will refract it
:Ll!l"l.!'l':i‘l.["ll'!.-' to another given ]m:i nt I::-

[If p, and p, be the distances of I, and F, from any point I' of the surface, then
the time :l..l[m;__l: M added to the time along p, must be constant, or

P + P _ constant.
r'-l 1'._.
That is,
Py T s = K

This is the equation of a Cartesian oval of which F, and F, are the foci.

If the light be parallel, instead of diverging from a
_'Emi:n[ ]_"1! this surface becomes a Rlllll:l‘nii_l of u'a\-i_-utr'i::it:.'
1/p, and having F, for a focus.

These surfaces were originally studied by Newton
and Descartes, and are termed aplonatic surfaces (see
Newton's Principia, Look i. § 14, prop. 97). ]

8. A small ebligue pencil is reflected at a spherical
surface to determine the primary and secondary foei,

[Let C (Fig. 65) be the centre of the surface, O the

Fig. &5, origin of light, OP and OQ incident rays, and PF, and
QF, the corresponding reflected.rays. F, the primary and F, the secondary focus.
If OP=p, PF,=p;, PF,=p,/CP=R, PCA=0. Then since CP and C(} bisect the
angles at P and (} respectively, we have

2PC(Q) = POQ + PF,Q,
|
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but the perpendicular from P on O is equal to p. POQ, and also to PQcosi.
Therefore POQ=P@cosifp. Similarly PFQ=DPQcosifp,, while PCQ=PQ/R.
Therefore

g I

S
Further to determine p, we have the triangle OPF,=0PC + CPF,, or pRsin i + Rp,

sin t=ppysin2¢. Hence
1 1 2cosid :I
&P AR

9. A small pencil is incident obliquely on a plane refracting surface, find the
primary and secondary foei.

[Let OF and 0Q (Fig. 66) be two
incident rays, PF, and QF, the refracted.
Then if PF,=p,, PF,=p, QP=p, we
have

sin |"I'I._:. i

" o = ¥ I = "
sinr PO p o el

Fig. 6. which may be written in the form

Again, if we denote the angle PF,Q by dr and PPOQ by oi, we have from the tri-
angles PF,() and PO
I'U e |"I~} ol
= , and .
*y oS F lgj e

But sin ¢ =g sin r, therefore cos édi=p cos rdr, !'unm'iim'llt]_‘.'

an "o
O COEs™ CLEs™

=0,
™ P

ol
P 'ulnli'l.l'!'il" .!'" J

10, A small fll'!lt'i] af |]'gi|'[ is refracted uhlirtun]}" ata :-'-Er]lt‘]'h:ill aurface of radius
R, find the foci.

[Denote the angles subtended by 1)
at O, F,, and C, by a, 8, v, respectively.
Then, since these angles are very small,
we have (Fiz. 67)

PO cos ¢ . PQeosr PG

o= G = e

i " R
But since the triangles PMO and QMC
have equal vertical angles, the sum of the
base angles of one is equal to the sum of

the base angles of the other, or Fig. 7.
ari=y+itdi, . di=a-7.
Similarly from the triangles PNF, and QNC we have

Bir=y4r+dr, . .dr=8-7.

P

i

L T T T ———
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Substituting for a, 3, v, we find

But since sin i =g sin r, we have

cos idi = u cos rdr,
Therefore

x

oS 2 E'-".H-i:—]—)— COs A ])
(p e s

peost ¢ COSTi peos T —cosd

M g K

or

. Again, since the area of the triangle OPC is equal tosthe sum of the areas of OPF;
and CPF,, we have

pR sin i = pps sin (¢ = r) + Rps sin +,
or dividing across by ppoR sin #, we find

E - :i{# COS T = 08 1)+

P2

= | e

ar
g _1_pcosr—cosi
gz P R

Hence both results are incorporated in the equations

peostr cos®i peosr—cost m 1 ]
P p R p: P

11. Determine the foci of a small peneil refracted obliquely throngh a prism ina
principal plane,
[Using 9 and neglecting the thickness of the prism we find
_cos® reost i

= l'.l.'.;.‘.;':--.l.l_(.:lh,hi.é ,;;'F‘

pa=p.

Hence if the prism be in the position of minimum deviation (Art. 78) i={", and
=9, and we have
PL=pa=p,

or the foci coincide. The refracted pencil therefore diverges from a point at the
same distance (p) as the origin from the edge of the prism. This result is of import-
ance in the study of the spectrum.

If the refracting angle of the prism be very small, the angles ¢, ¥, r, ¥ are very
nearly equal, and we have again py=pa=p.)

12. Prove that for a prism of angle A

sin (A +8) _ cos §(r-7')
sindA  Ccosdi-¢)

[We have 6=i+4" - A, and v+ ¢ = A, therefore

sin (A +8) sin (i +1')
~gindA " sind(r+v)’
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But sin ¢ =p sinr, and sin ¢ =g sin 7', therefore by addition we have
sin 3(¢ + &) cos (i — &)= p sin L(r ++") cos (r — ),

ani consequently
) A, e,
sin d(r+r") " cosd(i-—1i)

The least value of cos 4(i — 7")fcos §(¢ — ¢') is unity, and when this happens ¢ = ¢
and r=9", or the deviation is a minimum. For if i={ we have i —r={ =1, or
=1 =r-9". Heneecosi(i—-1¢) is less than cos 4{r—r").]

13. Prove that if the refractive index of a prism be changed by an amount dg,
the deviation § will be changed by an amount da, where

e sin A s

= — |
oS 7 0N T

[We have r+¢'=A, sind=gsiny, sini =usin#’ where A and ¢ are constants,
d=i+i - A, and eonsequently oo =di’.
For the minimum deviation #=+"= LA, and the.above becomes

S 2 gin JA
NI-ptsinfjA

consequently the angle of dispersion of any two colours increases with the angle of
the prism. ]

14, If a ray of light pass through a system of prisms of vertical angles A;, As
ete., and il ajz, ass, ete., denote the angles between the faces of the consecutive
prizsms, prove that the deviation is given by the equation

=i +i' 4+ Za-ZA

where ¢ iz the angle of incidence on the first prism, and ¢, the angle of emergence
from the last.

[We have §=Z(i+1¢ — A), and also the relations @y 4 is = aye, #'2 + i3 = aay, ete., con-
sequently Z(i+4') — i) - i’y = Za, therefore, etc.]

15, Determine when the deviation produced by a given system of prisms will be
a minimum.

[By Example 14 the deviation will be a minimum when

iy 'i'-!’i'l':'" =0,

Now for each prism dr +de" =0, cos idi = p cos rdr, cos £'di’ = p cos r'dy’, and therefore

cosi . cosd .
i+ di' =0,
COS I L0S 3

vi.  CORTCOSE
ar, writing — :
COS & COs T

ete., which with the relations iy + dia=da;2 =0, ete., become

= f, we have the series of relations diy + i’ =0, dia + fodt’s =0,

diy=filia, dia=fulis, ete.
Henee by multiplication and the relation &4 +di’, =0 we have

V=fifafs « o o Jar
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By Example 11 it appears that the primary focal distance is given by the equation
m=r’p, hence for the system of prisms we will have

p=(NSafs - - o fulps

which in the case of minimum deviation becomes

=P

or the system in this case is still aplanatie. ]

16. When rays issuing from a luminous origin are reflected at a given surface the
two sheets of the caustic surface have a finite number of points in common. The
intensity of the reflected light is greatest at these points, and each of them is the con-
jugate focus of an ellipsoid of revolution deseribed with the source of light as one
focus and having contact of the second order with the mirror (Hamilton, Joc. eit. ).

17. Along a given ray the intensity varies inversely as the product of the dis-
tances from the two foei of the penecil (ibid. ).

NEWTON'S EXPERIMENTS

“ Lights which differ in colour, differ also in degrees of refrangi-
bility ” (Newton, Opficks, book i. prop. i. theorem 1).

Exper. 1.—1 took a black oblong stiff paper terminated by parallel
sides, and with a perpendicular right line drawn across from one side
to the other, distinguished it into two equal parts. One of these
parts I painted with a red colour and the other with a blue. The
paper was very black and the colours intense and thickly laid on, that
the phenomenon might be more conspicuous. This paper I viewed
through a prism of solid glass, whose two sides through which the
light passed to the eye were plane and well polished, and contained
an angle of about sixty degrees, which angle 1 call the refracting angle
of the prism. And whilst I viewed it, I held it and the prism before
a window in such manner that the sides of the paper were parallel to
the prism, and both those sides and the prism were parallel to the
horizon, and the cross line was also parallel to it ; and the light which
fell from the window upon the paper made an angle with the paper,
equal to that angle which was made with the same paper by the light
reflected from it to the eye. Beyond the prism was the wall of the
chamber under the window covered over with black cloth, and the cloth
was involved in darkness that no light might be reflected from thence,
which in passing by the edges of the paper might mingle itself with
the light of the paper and obscure the phenomenon thereof. These
things heing thus ordered, I found that if the refracting angle of the
prism he turned upwards, so that the paper may seem to be lifted
upwards by the refraction, its blue half will be lifted higher by the
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refraction than its red half. But if the refracting angle he turned
downwards, so that the paper may seem to be carried lower by the
refraction, its blue half will be carried something lower thereby than
its red half. Wherefore in both cases the light which comes from the
blue half of the paper through the prism to the eye does in like cir-
cumstances suffer a greater refraction than the light which comes from
the red half, and by consequence is more refrangible.

furper. 2,—About the aforesaid paper, whose two halves were painted
over with red and blue . . . I lapped several times a slender thread
of very black silk in such a manner that the several parts of the
thread might appear upon the colours like so many black lines drawn
over them, or like
long and slender
dark shadows cast
upon them. I might
have drawn black
lines with a pen,
but the threads

Fig. 65,

were  smaller and

hetter defined. . . . I placed a candle to illuminate the paper
strongly, for the experiment was tried in the night. . . . Then at a

distance of six feet and one or two inches from the paper upon the
floor I evected a glass lens four inches and a quarter broad, which
might collect the rays coming from the several points of the paper,
and make them converge towards so many other points at the same
distance of six feet and one or two inches on the other side of the
lens, and so form the image of the coloured paper upon a white
paper placed there. . . . The aforesaid white paper . . . I moved
sometimes towards the lens and sometimes from it, to find the places
where the images of the blue and red parts of the coloured paper
appeared most distinet. Those places I easily knew by the images
of the black lines which I had made by winding the silk about the
paper. For the images of those fine and slender lines (which by
reason of their blackness were like shadows on the colours) were
confused and scarce visible, unless when the colours on either side of
each” line were terminated most distinetly. Noting, therefore, as
diligently as I could, the places where the red and blue images of the
coloured paper appeared most distinet, I found that where the red
half of the paper appeared distinet, the blue half appeared eonfused,
so that the black lines drawn upon it could scarce be seen; and, on
the contrary, where the blue half appeared most distinet the red half
appeared confused, so that the black lines drawn upon it were scarce



ART. 77 NEWTON'S EXPERIMENTS 119

visible. . . . The distance of the white paper from the lens when the
image of the red half of the coloured paper appeared most distinet being
greater by an inch and a half than the distance of the same white
paper from the lens when the image of the blue half appeared most
distinet. In like incidences, therefore, of the blue and red upon the
lens, the blue was refracted more by the lens than the red, so as to
converge sooner by an inch and a half, and therefore is more
refrangible.

“The light of the sun consists of rays differently refrangible”
(Newton, Opficks, book i. prop. ii. theorem 2).

In a very dark chamber, at a round hole about one-third part of
an inch broad, made in the shut of a window, I placed a glass
prism, whereby the beam of the sun’s light, which came in at that
hole, might be refracted
upwards towards the op-
posite wall of the chamber,
and there form a ecoloured
image of the sun. The
axis of the prism (that is,
the line passing through
the middle of the prism
from one end of it to the
other end parallel to the
edge of the refracting angle)
was in this and the following experiments perpendicular to the

Fig. 62,

ineident rays. About this axis [ turned the prism slowly, and saw the
refracted light on the wall, or coloured image of the sun, first to
descend and then to ascend. Between the descent and ascent
when the image seemed stationary, I stopped the prism and fixed
it in that posture that it should be moved no more. For in that
posture the refractions of the light at the two sides of the refract-
ing angle—that is, at the entrance of the rays into the prism and
at their going out of it—were equal to one another. . . . The prism
therefore being placed in this posture, I let the refracted light fall
perpendicularly upon a sheet of white paper at the opposite wall of
the chamber, and observed the fisure and dimensions of the solar
image formed on the paper by that light. This image was oblong,
and not oval, but terminated with two rectilinear and parallel sides,
and two semicircular ends. On its sides it was bounded pretty
distinetly, but on its ends very confusedly and indistinetly, the
light thus decaying and vanishing by degrees. The breadth of this
image answered to the sun’s diameter, and was about 2} inches

Minimuom
deviation.
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. . but the length of the image was about 10} inches, and the
length of the rectilinear sides about & inches, and the refracting angle
of the prism, whereby so great a length was made, was 64 degrees.
With a less angle the length of the image was less, the breadth
remaining the same. If the prism was turned about its axis that way
which made the rays emerge more obliquely out of the second
refracting surface of the prism, the image soon became an inch or two
longer, or more ; and if the prism was turned about the contrary way,
so as to make the rays fall more obliquely on the first refracting
surface, the image soon became an inch or two shorter. And, there-
fore, in trying the experiment I was as curious as I could be in
placing the prism by the above-mentioned rule exactly in such a
posture that the refractions of the rays at their emergence out of the
prism might be equal to that at their incidence on it.

Now the different magnitude of the hole in the window-shut and
the different thickness of the prism where the rays passed through it,
and the different inclinations of the prism to the horizon, made no
sensible changes in the length of the image. Neither did the different
matter of the prisms make any; for in a vessel made of polished
plates of glass, cemented together in the shape of a prism and filled
with water, there is a like success of the experiment according to the
quantity of the refraction.

This image of the spectrum was coloured, being red at its least
refracted end and violet at its most refracted end, and yellow and
blue in the inter-
mediate spaces. . . .

I then placed a
second prism im-
mediately after the
first in a cross posi-
tion to it, that it
might again refract
the heam of the
sun'’s light which
came to it through the first prism. In the first prism the bheam
was refracted upwards, and in the second sideways. And I found
that by the refraction of the second prism, the breadth of the
image was not increased, but its superior part, which in the first prism
suffered the greater refraction, and appeared violet and blue, did again
in the second prism suffer a greater refraction than its inferior part,
which appeared red and yellow, and this without any dilatation of the
image in breadth
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FEzper. 6.—In the middle of two thin boards I made round holes
a third of an inch in diameter, and in the window-shut a much
broader hole being made to let into my darkened chamber a large
beam of the sun’s light, I placed a prism behind the shut in that
beam to refract it towards the opposite wall, and close behind the
prism I fixed one of the boards in such a manner that the middle of
the refracted light might pass through the hole made in it and the
rest be intercepted by the board. Then at a distance of about twelve
feet from the first board I fixed the other board in such manner that
the middle of the refracted light which came through the hole in the first
board and fell upon the opposite wall might pass through the hole in
this other board, and the rest being intercepted by the board might
paint upon it the coloured spectrum of the sun. And close behind
this board I fixed another prism to refract the light which came through

the hole. Then I returned speedily to the first prism, and by turning
it slowly to and fro about its axis, I caused the image which fell nupon
the second board to move up and down upon that board that all its
parts might successively pass through the hole in that board and fall
upon the prism behind it. And in the meantime I noted the places
on the opposite wall to which that light after its refraction in the
second prism did pass; and by the difference of the places I found
that the light which being most refracted in the first prism did go to
the blue end of the image, was again more refracted in the second
prism than the light which went to the red end of that image, which
proves as well the first proposition as the second. And this happened
when the axes of the two prisms were parallel or inclined to one
another, and to the horizon in any given angles.

“ Homogeneal light is refracted regularly without any dilatation
splitting or shattering of the rays, and the confused vision of ohjects
seen through refracting hodies by heterogeneal licht arises from the
different refrangibility of several sorts of rays” (Opficks, book i. prop.
v. theorem 4).
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Erper. 12.—In the middle of a black paper I made a round hole
about a fifth or sixth part of an inch in diameter. Upon this paper I
caused the spectrum of homogeneal light described in the former
proposition so to fall that some part of the light might pass through
the hole of the paper. This transmitted part of the light I refracted
with a prism placed behind the paper, and letting this refracted light
fall perpendicularly .upon a white paper two or three feet distant
from the prism, I found that the spectrum formed on the paper by this
light was not oblong, as when it is made (in the third experiment) by
refracting the sun’s compound light, but was (so far as I could judge
by my eye) perfectly circular, the length being no greater than the

breadth, which shows that this light is refracted regularly without any
dilatation of the rays.

Note.—In finding the focal length of a lens by an image cast on a screen,
observe that when the sereen is too near the edge of the image is red, and
when too far the edge is blue ; so by this means the screen can be placed
very accurately.




CHAPTER VI
ON THE DETERMINATION OF REFRACTIVE INDICES

78. Minimum Deviation.—Newton, when investigating the solar
spectrum, always placed the refracting prism so that the incident and
emergent rays were equally inclined to the faces of the prism. In
other words, the pencil of light passed symmetrically through the
prism so that i =i and r =+,

In this case we may easily show that the deviation is a minimum.,
With any centre O (Fig. 72)
describe two eireles CD and
AB with radii proportional to
the velocities of light in the
two media (air and glass)—
that is, the ratio of the radii
is equal to the refractive index
of the prism. Draw OA
parallel to the incident ray, and at A draw CAN parallel to the
normal to the first face of the prism. Then OAN =i, and since

sini_ _OC_sin OAN _ sind
sine © QA sin OCA ~ sin OCA

it follows that OCA =r. Consequently OC is the direction of the ray
within the prism. 1If, therefore, CN" be drawn parallel to the normal
to the second face the angle OCB =+, and since OC/OB = p it follows
as before that OBN" = ¢, and therefore OB is parallel to the emergent
ray. Hence the angle AOB is equal to the whole deviation, while
AOC and BOC are the deviations at the first and second faces respect-
ively, and ACB=A the angle of the prism. The angle ACB is
therefore constant, and the problem is now reduced to finding when
the are AB is a minimum, for AB measures the angle AOB which is
the total deviation.

We shall now show that the arc AB, intercepted on the inner circle
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by the lines CA and CB inclined at a constant angle A, is least when
CA = CB, that is, when the lines are equally inclined to CO. For let
CA and CB be this position, and let CA” and CB’ be a consecutive
position, that is, such that the angle ACA’=BCB =6 where @ is very

small. Then
AN sin 8
A sin AT

Hence if AC=BC we have

and l_-:“-!. a SM[
BC sin B’

AA" sin B

BB’ sin A"

But obviously sin B’ > sin B and sin A" =sin A, B’ being an exterior
and A" an interior angle, and B=A, therefore sin B'>sin A" or
AA'=BBE. Consequently A'B'> AB or the are AB is less than its
conseeutive value on either side, and is therefore a minimum?! (see
also Ex. 12, p. 115).

In practice the position of minimum deviation is easily determined.
Newton, who worked with a small pencil of solar light from an aper-
ture in the shutter, placed the prism edge downwards. Consequently
the refracted peneil was bent upwards, and the spot on the sereen was
displaced towards the ceiling as well as converted into a coloured
spectrum.  He found that by gently turning the prism*round its edge
the spectrum moved down the sereen, and by rotating it in the opposite
direction the spectrum moved up so as to increase the deviation. By
rotating it slowly in the former direction so that the spectrum moved
down, or the deviation diminished, he found that as he turned the
prism the spectrum moved down the screen to a certain position, where
it came to a standstill, and then commenced to move upwards again,
no matter which way he rotated the prism. This position is that of

! Or again, let the circle ecentre C radius CB’ cut the ecircle BA again in A"
Then AATAA"=CA’/CA” because CA bisects A"CA’. Therefore BB’ =AA" = AA'.

Or thus: sinee d=i+i — A,
we have for § a max. or min. O=di4 di’,
also, since r+r' = A, O =dr+dy'.
Again, sin =g sin r and sin " =g sin *,
therefore cos idi =g cos rdr and cos {'di’ =p cos r'dy.
Hence by division we have
cos i cos T . cos*i costr
cos & cosr 0 eoseE oSt

or
1 =gsinr_1-—gin®y sin®y

1-Fsin?y’ 1-sin®e sin®v’

the third expression being obtained from the first and second by taking the ratio of
the difference of their numerators to the difference of their denominators. Hence
r=r', and consequently i=4". It is easily seen that this corresponds to a minimum
rather than a maximum value of 3.




ART. 79 THE SPECTROMETER 125

the minimum deviation, and is, as Newton observed, that in which the
ray passes symmetrically through the prism.

The same principle is used at present, although the method of
procedure is different, the spectrum being now viewed through a
telescope instead of being projected on a screen.

An instrument fitted to observe a spectrum is called a spectroscope,
or a spectrometer if, in addition, it be graduated to measure the devia-
tion of the refracted rays.

79. The Spectrometer.—Fig. 73 represents the outline of a spectro-
meter. The source of light is placed before a narrow slit S in the
end of a telescope tube, or if greater illumination be desired the light

Fig. 73.—=The Spectrometer.

of the sun or electric are is concentrated at S by means of a condensing
lens. At the other end of the tube an achromatic lens L is placed and
focussed on 8, so that the light emerges from L in a parallel beam.
This part of the apparatus is called the collimator, and its function is
to procure a parallel beam of light. The light emerging from the
collimator falls upon the face AB of the prism ABC. The prism is
placed with its refracting edge (A) vertical on a horizontal table, at
the centre of the instrument, which can be levelled by means of three
adjusting screws, In passing through the prism the light suffers
dispersion, and there emerges a parallel beam of red light and also a
parallel beam of wviolet, with beams of the other colours situated
between them. The pencil of red light is brought to a focus R and
the violet light to a focus V by the object glass M of the observing
telescope. The other colours are focussed at points lying between V
and R, so that a real spectrum is depicted in the focal plane of the
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telescope.  This spectrum is then viewed through a suitable eye-
piece N.

Since the property of a lens is to concentrate a system of parallel
rays to a single focus, we see that the use of the collimator is of great
importance in producing a pure spectrum. For since the red light
emerges from the prism in a parallel beam, it will form a red image of
the slit at R, similarly there will be a violet line at V, and the other
coloured images will be spread out between R and V without over-
lapping if the slit be sufficiently narrow. The dispersion, as the
separation of the colours is called, depends on the nature of the prism
as well as its angle (see Ex. 13, p. 116), and can be greatly increased
by allowing the light to pass through several prisms in suceession so
that a very long spectrum may be obtained.

The collimator and telescope are attached to the graduated cirele,
their axes are parallel to its plane, and their directions meet above its
centre. The telescope is generally fitted with cross wires and a
Ramsden’s eyepiece, and turns in a plane parallel to the graduated
circle about its centre while the collimator is fixed. The position of
the telescope with reference to the circle is determined by a vernier.
The table which supports the prism turns round a vertical axis and
carries an arm furnished with a vernier, which slides on the graduated
circle and determines its position.

80. Measurement of Minimum Deviation and Angle of Prism.—
Since the deviation depends on the wave frequency (or colour) of the
light, the prism ean be placed in the position of minimum deviation
only for some selected ecolour at once. To measure the minimum
deviation for any ray the telescope is turned to view the slit of the
collimator directly, and its reading is then taken on the graduated
cirele. The prism of the substance of which we wish to determine the
refractive index is now fixed on the table of the spectroscope, and the
telescope is turned to view the spectrum produced by the prism. The
prism is then rotated (by turning the table which supports it) throngh
a small angle, and this will generally either increase or diminish the
deviation. Turning it in one direction will inerease, and in the opposite
will diminish, the deviation. This latter direction being determined,
the prism is slowly turned, and the spectrum 1s followed by the tele-
scope till the spectrum comes to a standstill, and any further turning
of the prism in either direction will increase the deviation. The
reading of the telescope is now taken, and the difference between this
and the former reading is the minimum deviation of the ray under
consideration.

To determine A, the angle of the prism, turn the table of the
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spectroscope so that the edge of the prism (Fig. 74) is towards the
collimator, and the light from it falls upon and is reflected from both
faces. The telescope M is now turned until the light reflected from
the face AB enters it, and an image of the slit is seen by reflection in
the field of view coinciding with the cross :
wires.

Now turn the telescope into the
position M’, so that an image of the slit is
seen by reflection in the face AC. The
difference between the readings of the
telescope in these two positions, that is,
the angle through which it has been
turned, is twice the angle of the prism,
for this is only an illustration of the
principle that if a plane reflector is turned through any angle the
reflected ray is turned through twice that angle (chap. iv. Ex. 1). Or
thus: the angle between the reflected ray AM and the incident ray
produced is equal to twice the angle between AB and the incident
light, so also the angle hetween AM’ and the incident ray produced is
twice the angle between the face AC and the incident light. There-
fore the angle between AM and AM’, or the angle through which the
telescope has been turned, is equal to twice the angle of the prism.

The prism should be placed on the table, so that the light from
the central portion of the collimating lens falls upon its edge, and
does not pass by it. At the same time it is to be so adjusted that it
is possible to see the slit by reflection from both faces, as described
above. These conditions are generally secured by placing the prism
with its edge a little in front of the centre of the supporting table.

This method of determining A supposes the faces of the prism to
extend right up to its edge, and that near the edge the faces exhibit
no curvature. If any doubt exists us to the faces being truly plane
at the edge we may employ another method of determining A, which
depends upon keeping the telescope fixed and rotating the table,
This method may be used when the table is furnished with a vernier
arm to determine its position.

Clamp the telescope M in any position, so that its axis is inclined
to the axis of the collimator, and turn the table till the image of the
slit is seen in the telescope by reflection from the face AB of the prism.
Read the vernier and then turn the table until the slit is seen by re-
flection from the other face AC. Read the table vernier again. The
difference between the two readings 1= easily seen to he = — A.

Having measured both A and 8, we determine p by the formula of

Fig. 74.
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the following article. A Bunsen burner with a bead of salt in it gives
a yellow sodium light which is very homogeneous. By using it we
determine the refractive index for yellow light and avoid complica-
tions. To ensure accuracy the determinations of A and 8 should in
all cases be repeated several times.

81. Formula for the Refractive Index.
in the position of minimum deviation for any particular ray of light
we have

The prism being placed

d=2i-A, ori=31A+3),
and A=2r, orr=3}A,
but i i = w sin
therefore sin 3(A +8)=p sin 1A
and e

sin 4 A

a formula which determines p when A and é have been measured.®
('or.—If the prism be very thin, so that A and 3 are very small,
the sines of the angles may be replaced by their circular measures,
and the above formula becomes
d=(u-1)A.

Eir, 1, The minimum deviation & varies with the colour or wave length of the
licht. The change duof the index and the corresponding change d of the minimum
deviation ave connected by the equation

eos A(A 4+ 8)
nfu = l:-‘rﬁ.
; 2sin 4A
FEx. 2, A prism of silicate of lead having a refracting angle of 21° 12" produced
a minimum deviation of 24° 46" in homogeneous red light ; find the reflractive index
[L sin &(A +8)=Lisin (22" 59°)=9:50158
Lisin 3A =L sin (10° 36") =9-26470.
Therefore lor p=0-32688 and u=2-123).

82. Liguids.—The refractive index of a lignid may be determined
by enclosing it in a hollow prism the faces of which are plates of

L Method of Descartes.—The method employed by Descartes to determine the
reflractive index of a substance is of consider-
able interest. Transmittine a horizontal
peneil of light through an aperture O (Fig.
75) in a vertical screen AB, it fell upon the
vertical face of a prism placed against an
aperture O in the vertical sereen A'B. In
this case
i=0, r=0,#'=A, andd=¢-A,

and therefore

sin{A+48)=psn A,

The angle 6 which the refracted pencil makes with the horizon is determined by the
equation O'A"=A'P tan & (Dioptrices, caput x. p. 140).
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parallel glass. If the glass sides of the hollow prism be uniform
plates they will not cause any dispersion or deviation of the light.
The whole procedure is consequently the same as in the case of
transparent solids.!

83. Method of Total Reflection.—By measuring the critical angle
(a) of a substance we at once determine its relative index of refraction

by the formula
sin a=1/p.

The advantage of this method is that it does not require the con-
struetion of a prism, and may therefore be applied to a solid substance
which i1t 1s not con-
venient to cut. Wol-
laston® applied the
method to  liquids,
and in this application
it has been perfected
by MM. Terquem and
Trannin® Two plates of parallel glass (Fig. 77) cemented together
at their edges by a little gum or Canada balsam, so as to enclose a
thin layer of air, are immersed in a vessel containing the liquid under
consideration. The vessel, which is a square box with parallel glass
sides, is first fixed on the table of the spectrometer and the telescope
is adjusted to view the collimator slit, the light passing normally
through the sides of the box. The prepared glass plates are now
placed in the liquid with their plane faces vertical (the table of the
spectroscope being horizontal), and so inclined to the light from the
collimator that total reflection just occurs. When this happens the

Fig. 77.

Y Newton's Method.—An ingenions method of measuring the refractive index of a
liquid was employed by Newton. The liquid was placed
in a rectangular vessel with a flat glass bottom M (Fig.
76). This vessel is attached to a frame AB, which moves
freely round a horizontal axis O, carried by a vertical
support OP, A pencil of solar light falls upon the sur-
face of the liquid, and the carrier AB is turned round O
till the pencil emerging from the base of the vessel is
parallel to AB. In this position the refracted beam is
perpendicular to the base M of the vessel. The angle of
refraction is consequently equal to the inclination of AB
to the vertical. This is determined by a graduated cirele
attached to OF. The angle of incidence is the inclination
of the incident ray to the vertical, and this may be
determined by repeating the experiment when there is no
liquid in the vessel,
? Wollaston, Phil. Trans. p. 365, 1820.
* Terquem and Trannin, Jowrnal de Physique, first series, tom. iv. p. 232, 1875,
K

Fig. Th.

Liquids.
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field of the telescope becomes quite dark. It is clear that in this
ease the angle of ineidence on the glass plates is the angle of total
reflection of the liquid and air. By turning the plates round the
vertical in the opposite direction, the light reappears in the telescope,
and then, on continued rotation of the plates, again vanishes. The
angle through which the plates bave been turned is twice the eritical
angle a, and
sin a=1/.

In a similar manner the index of a thin plate of a solid may be
determined by immersing it in a liquid of known index g, greater
than that of the solid. Here we have

sin &=/,

This method has been adopted by Kohlrausch for measuring the
indices of erystals.!

[t is important that the light should fall upon the plates containing
the air film in a parallel heam, for the whole pencil will then suffer
total reflection at the same instant, and the field of the telescope will
become dark suddenly. Care should also be taken to place the plates
vertically. This being secured, with monochromatic (sodium) light,
the disappearance of the image is almost instantaneous, and MM.
Terquem and Trannin estimate the experimental error at less than
fifteen seconds. When white light is used, the image passes through
shades of yellow, orange, and finally the pure red of the extreme
spectrum.  The accuracy of the method is shown by the following
table, where the indices are compared with the determinations of
Fraunhofer, and of Gladstone and Dale, the slight differences being
attributable to the state of purity of the liguid :— '

Ray. Temp. X, T,
| Water . . . C |18 | 97°20 30" 1-3317 | 1:33171 Fraunhofer.
w -+ .| D28 l97° 9v507| 149336 1:33I]1

Benzine : . A 195 847 41° 207 1°4846  1-4860 Gladstone and Dale.
{ Glycerine . .| A |18 |85 55 ED"l 14672 14664 s =

Amyllic Aleohol . A 18° 91°10" 07| 1-4000 13990 o 3

| Sulphide of Carbon A 20°  76° 55" 07| 16078  1'6076 = o

|

When the liquid can be proeured in small quantities only, or when
it is imperfeetly transparent or pasty (such, for example, as the
crystalline lens of the eye), Wollaston’s original method may be nsed.
A small drop D (Fig. 78) of the liguid is attached to the lower surface

V' Wied. Ann. iv. 1, 1878.
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of a right-angled prism ABC, resting on a horizontal table AB fur-
nished with a small hole to receive the drop. The drop is viewed
through the face AC of the prism by means of a telescope T pivoted
at the centre of a graduated circle, which slides on a vertical rod fixed
to the table. The telescope is
first placed at such a height that
the table, or any mark below the
drop, may be seen through it.
As the graduated circle is lowered
the angle of reflection from the
drop is increased, till at last the
rays falling on it from the other
side of the prism are totally re-
Hleeted. The telescope 1s now fixed, and its inclination (#) to the
vertical is observed. In this case NDM is the critical angle «, and
NMD = 90 — @, while TMO =90 - 4. But the refractive index of the
£lass is given by

_ sin TMO ros i
“=gin NMD cos a

Hence

ens U ; r %
Cos a . and sin a o 1= = cos=0.
I

But if the refractive index of the drop be denoted by u', we have
W=psin a \'_i.L: cos i,
An objection to the method is the difficulty of making the angle of

the prism exactly right. To aveid this, Malus worked with an acute-
angled prism, of which the index and angle were accurately determined.

Eramples
1. When the angle A of the prism is acute, prove that
g =sin (0 - A) cos A +sin A~/p”~sin® (0 - A)

where #, as before, is the angle the telescope makes with the vertical.
[The angle of incidence of the ray DM on the face AC is = A —a, and the angle
of emergence is {=A — @¢. Dut sin i=p sin r, therefore sin (A — #) =g sin (A —e), and

p=psine=gxsin (A -7)= —psin » cos A+ p sin A cos », ete.]

2, Determine the refractive index of the prism by the same method,
[Sinee the medinm below. the prism is air, we have p'=1, and

p=cosee A1 +sin® (- A)— 2 cos A sin (- A.)]

84. Gladstone and Dale’s Law—Variation of Refractive Index
with Density.—When a substance is compressed, or its temperaturc
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varied, the density (p) alters, and this is accompanied by a corre-
sponding variation in the refractive index (n). Gladstone?® and Dale
found that these two quantities were related by the equation

e~
i

1
—constant.

The physical interpretation of this law is not far to seek if we
admit that the refracting substance consists of refracting molecules of
constant index distributed through the ether. The quantity p -1
represents the excess of the refraction or path retardation due to the
presence of the molecules, and will be proportional to their number
per unit volume, that is, to the density. Thus if ¢ be the index of a
plate of the substance and e its thickness, the corresponding path in
free space of a ray traversing the plate will be pe, but if the thickness
absolutely occupied by the molecules of the substance be e and the
constant index * of a molecule be m, then a thickness ¢ — € of the plate
is occupied by ether, and the corresponding free space path for the
plate will be ¢ - ¢ + me. Hence

pe=¢ — ¢+ ine,

M £
= p=l=_(m-1)
But e/¢ measures the relative volume ocenpied by the molecules,
and is therefore proportional to the density of the body. Conse-
quently

=1 = constant.

Since the density of a solid or liquid can he changed only very
slightly, experiments on the law are necessarily confined within ex-
tremely narrow limits, and we can only accept it as an approximation
to the truth in absence of other support.

In the case of gases, however, the density can be varied consider-
ably, but on the other hand p—1 is here a very small quantity, and
therefore experiments which sufficiently verify the formula

=1
o0

1
will also verify the formula
n Fﬂ = 'I

— =8y
[

for p+ 1 =2 very nearly, if p exceeds unity by a small amount.

#

! Gladstone and Dale, Phil. Trans. p. 887, 1858, and p, 317, 1863,

* The quantity ¢ is the thickness of the plate of the same face area that the
molecules of the plate e wonld form if arranged with no free spaces hetween them,
and the i is the index of this derived plate.
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The emission theory indicates that for all bodies the quantity p®— 1
should be proportional to the density, and consequently it has been
sought to establish the latter formula. Thus, if +" be the velocity in
a given substance and » the velocity in a vacuum, the work done
on a luminous corpuscle in passing into the substance from vacuum will
be proportional to the density of the substance, but the work done on
the corpusele is proportional to the change in the square of its velocity

or ris viva, therefore
- = up,

That is,

k2= 1=xpf’.
This shows that the index is independent of the angle of incidence,
and that p?-1 is directly proportional to the density of the
substance.

From his experiments on the variation of the index of water under
compression, M. Jamin concluded that (p* — 1)/p was constant, but M.
Mascart found that the results of M. Jamin were more accurately
represented by the formula of Gladstone and Dale, and this conclusion
has been verified by Quincke.?

Effect of Variation of Temperature—If the temperature varies the
molecular index may also vary. If this be so it follows from the
equation

k=1=wv{u-1),
where v is the volume of the molecules in a unit volume of the sub-
stance, by differentiating logarithmically with regard to the tempera-

ture ¢, that
1 dp lde. 1 dm
p-1d0 vdé” m-1dd

But the density of the medium is proportional to ». Hence
1 ur.f,u._ ldp 1 dm
p—-lde pdd m-1d¢
or, what is more commodious for caleulation, if V be the volume at ¢
of a unit mass of the substance, then V=1/p, and

1 du 1dV 1 din

p=1d8 " Vdé m-1do

! Ketteler proposes the empirical formula

fr—; I-(‘L —ap—Bp*—p* . . . )=constant.
The ratio (u®=1)/{u?-1) for the different colours he finds to be sensibly
constant so that a, 8, v, ete. do not depend on the wave length. In the case of
water below 8” they appear, however, to depend on the temperature (Hied. Anu.
XXx. p. 200, 1887 ; Jowrnal de Physique, second series, tom, vii. 1888).



124 DETERMINATION OF REFRACTIVE INDICES CHAP, VI

(:ladstone’s law, which assumes m to be constant, reguires the
second member to vanish. M. Dufet! found it always negative and
very nearly constant for liquids, but greater in absolute value than
indicated by theory when m is a variable. In the case of solids the
sign was positive and the magnitude less than that deduced from theory,
whereas in the case of solutions when concentrated they hehaved as
solids, but when dilute they behaved as liquids.

Or in all liquids the molecular index decreases as the temperature

rises, and in all solids the molecular index increases with the tempera-

. . { a
ture while the quantity mi_l L% remains very nearly constant.

The effect of temperature on the refractive index is shown in the
following table after Gladstone and Dale. The indices are for the D
line, except that of phosphorus, which is for the C line .—

!T' e *"E‘:?.‘l'.lli:;."_rl Water. Bther. | Alecjute il Alcon ,P?F.?Ej’.':&‘?.‘”

I | |
o | 1-6ad2 | 1-3380 S| b

| 10° | 1-8346 | 1:3327 1-3592 1-8658 | 13379

| 20° | 1:626] 1'3320 1:3545 1:3615

| a0° 1°6182 1-3300 1:3495 1:3578 = | 2:0741

| 40° 1°6103 13297 1-3536 | 13207 | 2°0677
no° 13280 1:3491 | 2:0603

| 60 o 1°3259 1°3437 | 240515

85. Indices of Mixtures and Solutions.—The law of Gladstone
may be applied to ealculate the refractive index of a mixture of two
substances which have no chemical action on each other.

Let V, and V, be the volumes, p, and p, the densities, p, and p,
the indices of the components of the mixture, and let V, p, u be the
corresponding quantities for the mixture, we have

PV = Vipr+ Vopa,

and since each of the components oceupies a volume V in the mixture
we can say that V,p,/V and V,p,/V are the densities of the components
in the mixture. Consequently by Gladstone’s law

ey =1 ,F_!’l —]1:1'}!'_]:_1} N

gl ] e P'| il 1I'lr!
_ﬂ-l' l__ﬁl'-._l._l_.r#;f—lj \J
Pa Pa pa Ny

and

1 ¢ Bur la loi de Gladstone et la Variation de 1'Index moléenlaire.” Par M. H.
Dufet, Jowrnal de Physique, November 1885.  See also September 1885.
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where p'; and p', are the new indices of the components in the mixture
according to the law. The index p of the mixture will therefore be
given by (p—1)=(p', — 1) + (p’, — 1), or by the foregoing equations

AY V.
p=1=(m- 1)y +(m-1)

or, finally, if M, and M, be the masses of the components,

=1 =1 -1
M+ Mt =y et
P M

(]

Experiment shows that this formula is very approximately true for
mixtures of liquids and mixtures of isomorphous erystallised salts, but
it ceases to be exact for mixtures of saline solutions.

Effect of Change of Temperature—If the temperature (&) varies, we

have
: dfp=1Y o d ,u..-I) o "L-"-I).
i3 (5 mwig (P gy (A0

But by the (equation p - 1)=#(m - 1) it follows that

i -"pt—!)_rrﬁm_fu--'l] 1 dm
rlrt?‘\ p J pdl p “m-1d#
Hence
w1 1 dmn oy =1 1 dm, =1 1 dm,
a - — = M ; Sy s SR el
(M, +'M'} P s =1 d@ 1 I8 ity =1 dfl = ta=1 df

86. Gases.-—The index of refraction of a gas may be determined,
like that of a liquid, by enclosing it in a hollow prism with faces of
parallel plate glass. The prism is placed on the table of the spectro-
meter, and the gas under consideration is admitted through drying
tubes, if necessary, its temperature and pressure being noted. The
telescope, as usnal, is first adjusted to observe the collimator slit directly,
and if the plate sides of the prism are of truly parallel glass, the prism,
when placed on the table of the spectroscope, will produce no deviation
when it contains free air, This being ensured, any future deviation is
due to the refractive difference between the gas contained by the prism
and the outside air. Any such deviation will in general be very
small, so that the table of the instrument (with the prism attached)
may be turned through 180°. This will throw the deviation to the
opposite side (as the edge of the prism is now turned in the opposite
direction), so that the difference hetween the two readings of the tele-
scope will be 28, and by means of the ordinary formula we obtain the
relative index of the gas.

To obtain its absolute index we require first the index of air at
zero and 760 mm. This is determined by first pumping as much
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as possible of the air out of the prism. Let the pressure of the
residual air be &, its index p/, and the density p|, then by the law of
(ladstone and Dale

= W1 (o= 1 =14 (ko - L ——
if ¢ be the temperature.
But if the exterior air be at a pressure k, density p, and index p,
we have also
p=1_to-1

P Po

= —nE= i ] gy
or p=1+(pg ]}Fu 1+ (g Uflml:]+ﬂﬂl

Experiment gives the relative index of the air in the prism with
respect to the exterior air ; if this be m we have

A _T80(1 +af) (s = L}K
o T60(1 4 af)+ (g = 1)k

. (m=1)760(1 +a8)

Henee Bo= e

To determine the refractive index v, of any gas at zero and 760
(the pressure being /'), we have as before, by Gladstone’s law,

e <l
=1 'i‘{ﬂu— l]{l *i“ﬂ.&}?ﬁ-n:
where " is the index at &’ and 6.
If the outside air be at & and 8, we have for it, as above,

I
m=14 o= D oayico

Consequently if w, be the relative index of the gas with respect to
the air, we have

¥ (L aB)T60 + (v~ 1’
T (14 a8)760 + (g - 1)

from which we obtain

Dulong! worked with a constant deviation. He introduced the
different gases successively into a hollow prism, but varied the
pressure so that each produced the same deviation. Thus for air

! dnnales de Chimie ef de Physique, second series, tom. xxxi. p. 154, 1826,
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ART. 86

at &" and ¢ in the prism, while the exterior air is at b and 6, we have
for the relative index

_ (14-af)760 4 (pg— 1)A

T (1 +af)760 + (g — 1)0°

while for a gas at A', and @, with relative index m,, we have

l{l + nﬂi}-l‘:ﬂ+f#¢
[l—l—n{?,}.rﬁ[l+ {pﬂ

1)k,
1)hy’

hence if the pressure be adjusted to give a constant deviation, we
have m=m,, which determines v, as a funetion of p, a known quantity.
If the exterior pressure and temperature have remained constant
during the experiment, we have ¢, =0 and i, =h, and therefore

1)7" = (v~ 1),

iy =

{4ty =

or the refractive powers (u—1) of two gases are inversely as the
pressures required to produce the same deviation.

The refractive index of a gas may also be determined by delicate
methods depending upon interference phenomena as mentioned in

Arts. 122, 123.
IxpiceEs oF REFRACTION OF GASES

[ Imdex. llh-.naib:.'. I Index. Donsity.

|
Air : ‘ 1000294 | 1000 | Ethylene . 1°000678 | 0-978
Oxygen . . | 1°000273 | 1'106 | Marsh Gas . 1000443 | 0°555
Hydrogen . | 1'000138 | 0°069 | Chloride of Lth:,-l 1001095 | 2-234
Nitrogen .- | 1000300 | 0971 'Hydmc:yamc Acid. | 1-000451 | 0-944
Chlorine ; . 1'000772 | 2-470 | Ammonia . | 1000385 | 0596
Nitrous Oxide 1°000503 | 1-520 I’hnsgum} g 1°001159 | 3-442 |
Nitric Oxide . . | 1°000303 | 1039 | Sulphydrie Acid 1000644 | 1°191 |
FHydrnuhlaric Acid | 1000449 | 1'247 | Sulphurous Acid . | 1000665 | 2-234
Carbonic Oxide . | 1-000340 | 1-957 | Ether . 1-001530 | 2580 |
U&rbmnmﬁnhj'dridﬂ‘ 1-000449 | 1'524 | Sulphide of Carbon | 14001500 | 2644 |
Cyanogen . | 1-000834 | 1-806 ‘l‘]msphurnttedHy{L 1000789 | 1214 |

[Kayser and Runge using a Rowland grating and a prism of com-
pressed air found the following indices corresponding to various wave
lengths :—

IxniceEs For DrRY AR FokR 0° AND 760 MM,

Wave Length. Inidex. Wave Length. | Inidex, |
| J
5630 10002027 i 2860 10003088 E
4430 2955 2850 | 3094
4200 20967 | 2550 2158
2250 035 2380 | 3218
| I






CHAPTER VII
INTERFERENCE FRINGES

87. Destructive Interference.—So far we have been engaged in
considering the mode of propagation of a luminous wave, and the
modifications which it undergoes when it encounters the surface of
a new medium. We shall now proceed to inquire into the effects
produced when two series of waves are propagated simultaneously in
the ether from two small luminous origins close together.

When two waves arrive simultaneously at the same point of
space, the ether there will be thrown into vibration by both, and we
have already shown (chap. ii.) that in this compound motion each
vibration may be regarded as acting independently of the other. If
the constituent vibrations are in the same direction, the effects are
added, and the amplitude of the resultant vibrations will be equal to
the sum of the amplitudes of the constituents, but if they are opposed,
the resultant amplitude is equal to the difference of the amplitudes of
the constituents. In this latter case, if the vibrations are of equal
amplitude, they should completely destroy each other. This is usually
spoken of as destructive interference.

We know from experience that two sets of sound waves may
neutralise each other and produce silence,! so also two sets of water
waves when superposed may produce a dead level. If then there is
any truth in the undulatory theory of light, something of the same
kind should take place with two sets of light waves. That this actually
oceurs is abundantly proved by the following experiments.

In all cases of interference, however, it is to be carefully re-
membered that light (regarded as energy) is never annihilated. The

! Two organ pipes tuned in unison and mounted close together produce only
a very faint sound at external points. They start in opposite phases, and the effect
which would be produced by one is just neutralised by the other. Other examples of
interference oceur in the beats of two notes nearly in unison, in the nodes of organ
pipes, and vibrating strings, ete.

Energy
reilis-
tributed.
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distribution alone is altered, so that the illumination, instead of being
diffused regularly, is concentrated in some places at the expense of
others.

88. Two Small Apertures—Theory of Young’'s Experiment.—
Let us suppose that two sets of waves always exactly alike start from
two near luminous origins A and B (Fig. 79). If the directions of the
disturbances transmitted to any point I’ by the two sources conspire
the amplitude of the disturbance at P
will he doubled, but if the com-
ponent vibrations be opposed at P
they will destroy each other, and no
effect will be produced at this point.
In the former ease the illumination at
P is four times that produced by
either of the sources acting singly ;
in the latter case the illumination is zero. The illumination sent by
one source is swept away by that contributed by the other '—a result
observed in the justly celebrated experiment of Ir. Young, and
apparently opposed to the idea of the materiality of light (see p. 25).

Let us now examine the theory of Young's experiment a little
more closely. The direction of the vibrations sent by A and B to any
point P of a sereen will conspire, and the amplitude of the disturbance
will be doubled, when they arrive at P in the same phase. Now we
suppose the waves to set out from A and B in the same phase, so that
they will arrive at P in the same phase if the path AP is equal to BP,
or differs from it by any number of complete wave lengths. But the
vibrations will be opposed at P if the waves arrive there in opposite
phases, which will be the case if AP differs from BP by one half-wave
length, or any odd number of half-wave lengths. We therefore con-
clude that if

Fig. 70,

AP-BP=n3,

the point PP on the screen will be very bright, or dark, according as
n is even or odd. If then O he the middle point of AB, and if OM be
perpendicular to AB, the distances AM and BM will be equal, therefore
the lights should be in aceordance at M, and it should be very bright.
At M, there will be darkness if the difference of the distances of this
point from A and B is half a wave. At M, there will be brightness
again if the difference of its distances from A and B is two half-wave

1 1t is usually said that the light from one source is destroyed at these places by
that from the other. This is misleading, however, as there is no real destruction,
for the light is merely taken away from some places and heaped up at others.
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lengths, Similarly, darkness will oceur again at M,, brightness at
M,, and so a series of bright and dark points oceur alternately.
The pc}int M, is such that the difference of its distances from A

and B is nz; if then this difference remains constant the point M,
may lie anywhere on a hyperbola (as far as the plane of the paper is
concerned), having A and B for foei.

In space the locus of M, is obviously an hyperboloid of revolu-
tion, viz. that generated by the revolution of the foregoing hyperbola
round the line AB as axis.

On the screen then we have not a series of bright and dark points,
but a series of alternately bright and dark lines, or bands perpendicular
to the plane of the paper. These lines are the intersection of the
screen with the hyperboloid loci just mentioned, which are so little
enrved as to sensibly coincide with their asymptotes,

The distance of any band from the central point M is very easily
calculated. Tor if P corresponds to a retardation of n half-wave
lengths, the distance MP is small. Denote MP by x MO by , and
with P as centre describe an arc of a cirele BC. This are is approxi-
mately a straight line perpendicular to OP, and AB is perpendicular
to OM, therefore the angle ABC is equal to the angle POM. And
hence their circular measures are equal, or

l‘\[ _AC r*ﬂ ﬂh
=~ B¢’ =i

where ¢ represents the disl:ance AB. Hence

and the point P is bright or dark according as = is even or odd.

Examples

1. The apparent angular distance from the centre M of any fringe of order =
as seen from the point O (Fig. 79) is independent of the distance of the screen MP.
[For if &, be the angle POM subtended by the eentral and nth bands at O we
have
By Nk _D

8 = —= =
T a 2 e

which is independent of the distance a.]

2. The distance x, of the nth fringe from the centre M is proportional to the
wave length and to the order (n) of the fringe and inversely as the apparent angle
of the twe sources as seen from M.

[For a:,.—- nx

3 a.nd , measures the apparent angle of the sources. ]

- 89. Colour and Wave Length.—This formula shows that the
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distance of any fringe from the central one M depends on the wave
length being in direct proportion to it. Hence, if composite light be
used, we should expect to find rainbow-coloured bands! instead of
merely bright and dark lines. This is what is actually observed, and,
moreover, the inner edge of each band is violet, while its outer edge is
red, showing that the violet wave lengths are shorter than the red.

Having aceurately determined the magnitudes of &, a, », and ¢, the
formula gives the wave length of any particular kind of light. By this
method the length of the red waves is found to be about 0000266 in.,
the violet about ‘0000167 in., and the mean wave about 00002 or
soooT 1. OF gqgg Min

90. Fresnel's Mirrors.—When Young first published his experi-
ments, seientific men were by no means inclined to admit that the
phenomena observed were due to interference in the manner conceived
by their illustrious discoverer. It was known that the image of a
small lnminous origin, formed by the light admitted through a very
small hole, was surrounded by coloured bands, and that light suffered
a similar modification in passing near the edge of an opaque obstacle
(see Newton’s Observations, p. 227). The bands observed by Young
might then be attributed to this modification (or diffraction). They
might be a variety of diffraction bands.®* Objections were therefore
raised, and to remove them it was necessary to devise some method of
obtaining two small sources of light close together wholly independent
of apertures or edges of opaque obstacles. This was first contrived by
Fresnel, whose experiments are justly ranked amongst the most im-
portant and instructive in the whole range of physical opties,

In his first experiment ® Fresnel used two plane mirrors inclined at
an angle of nearly 1807, so that they almost lie in the same plane. A
beam of light diverging from the focus of a lens or from a very narrow
slit is allowed to fall upon them. Each mirror reflects the light which
falls upon it, and we have therefore two reflected beams whose diree-
tions are inclined at a very small angle.

If S (Fig. 80) be the source of light, OM and ON the two mirrors,
the cone of light reflected from OM appears to come from a vertex
A, the reflection of S in OM ; similarly the light reflected from ON

1 If the colour depends on the wave length., The existence of these bands con-
sequently indicates that each coloured light has a definite wave length and period,
Just like each musical note. '

* Diffraction bands are also due to interference and the principle of their produe-
tion is essentially the same as that underlying interference bands. The latter are
produced by the interfering action of two distinet waves, while the former are pro-
duced by interference between the elements of a single wave as explained in Art. 126.

¥ (Euwres, tom. i. pp. 150, 188, 268.
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appears to come from B, the reflection of 5 in ON. If, therefore, the
mirrors are inclined at a very obtuse angle, the points A and B will
be very close together, and the reflected beams should give inter-
ference phenomena on a screen placed across any part of the region
where they overlap, similar to those which would be produced if A and
B were two small apertures. Here now we have two sources of light
close together without the aid of edges or apertures, and the result is
conclusive in favour of Young's theory. A brilliant system of fringes
is produced, similar to those anticipated by the theory. In order to
satisfy ourselves that these bands are really produced by the mutual
action of the two beams, we have only to intercept one of them hy
covering the corresponding mirror with lampblack and the whole
system instantly vanishes. They also vanish when the mirrors are
parallel.

Fig, 80, —Frisnel's Mirnors.

Suppose the point of light S to lie in the plane of the paper, and
let the line of intersection of the mirrors be perpendicular to it and
meet it at 0. Now SA is perpendieular to the mirror OM, and Am
=Sm. Similarly BS is perpendicular to ON, and meets it produced
at a point n such that Bn = Sn, while the angle ASB is equal to the
external angle between the mirrors, since it is the angle between the
perpendiculars to them from 5.  Also sinece OS = OA = 0B the points
S, A, B lie on a circle having its centre at O, therefore the angle ASB
at its eircamference is half the angle AOB at its centre, or the angle
AOB = 2w if w denote the external inclination of the mirrors. Henee
if DOC be perpendicular to both AB and the sereen, D) is the middle
point of AB and C is the centre of the fringes. If we denote OD hy
a and OC by b we have AB = 2u sin w, since OB is approximately equal
cDh

to O (or sin @ = tan w), and the formula = = N

A .
ns for the distance of

the nth fringe from the centre becomes
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(e+8) AN m+b A
“Zasine 2 Zow' 2
sinee w is a very small angle.

For the success of this experiment very careful adjustment is
necessary. The polished surfaces of the mirrors should extend right
up to the line of intersection of the two faces. If the mirrors are
made of glass it should be black, or else silvered on the first face,
otherwise the reflections from the second surface of the glass destroy
the effect. Polished black glass is commonly used instead of polished
metallic mirrors.

One mirror M is usually attached to a plate, which can be fixed to
one of the uprights of the optical bench. The other mirror N ean turn
round the axis O ; this axis is fixed to a plate through which three
serews pass to adjust the level of the mirror M. Another screw is
furnished with a spiral spring which keeps the mirror pressed against
the three serews. By means of these the mirror M is adjusted till its
edge is parallel to the axis 0. When this is arrived at a serew enables
the mirror N, by turning round O, to vary the angle between the
mirrors. The other mirror can be screwed forward parallel to itself.
This motion displaces A along the line SA, and the result is that the
central band with the whole fringe system is displaced across the
screen. The complete system of fringes may in this manner be caused
to pass in succession over any desired part of the sereen.

The angle between the mirrors may be found by first looking at
the image of a straight line reflected in both mirrors. This image will
be straight when the planes of the mirrors coineide, a position which
is obtained by adjusting the mirror N till the image is straight. The
number of turns of the serew which brings the mirror N from this
position to any other measures the angle between the mirrors in the
latter position. The angle between the planes of the mirrors may be
also brought to zero by viewing the two images of the slit in the
mirrors and adjusting N until the two images coincide. The number
of turns of the screw required to effect this gives the angle between
them. If the screw be not standardised the distance AB between the
images may be found by the method of Ex. 2, p. 107.

The distances @ and b can be measured on the scale of the optical
hench ; the distance = by the micrometer motion of the eross wires in
the eyepiece, and » can be counted. We thus arrive at a determina-
tion of the wave length of any particular kind of light which we may
choose to fix on.

In practice a narrow line of light (an illuminated slit) is used.
The slit must be placed parallel to the line of intersection of the
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mirrors. In Fig. 80 the mirrors are planes perpendicular to the paper
through OM and ON, while the slit is perpendicular to the paper
through .

91. Fresnel's Bi-prism. — In the above experiment a pencil of
light was divided by reflection into two others inclined at a small angle
and these produced the phenomena of interference. It is possible to
procure the same result by refraction, and this is the basis of Fresnel's
second experiment.!

Let CDE (Fig. 81) represent a glass prism with a very obtuse
angle E, and let light from O fall perpendicularly on the opposite
face CD. The whole prism is as if made up of two prisms CE and
DE of very small angle (at C and D) placed base to base at K, and
hence the name bi-prism.

The light which falls upon the upper half of the prism is bent
downwards, and appears after emergence to diverge from a point B,
while that which falls upon the lower half is bent upwards, and appears

Fig. 81.—Fresnel's Bi-prism.

to diverge from A. The less the angles C and D the nearer together
will be the points A and B, so that by diminishing these angles suf-
ficiently the emergent cones of light will be similar to those coming
from two very near origins, and interference effects will be presented
as before.

The distances from the prism of the virtual foei A and B are
very approximately the same as that of the luminous origin 0. For
since the refracting angles C and D are very small, the focal lines of
each refracted cone coincide, and p, = p, = p by Example 11, p. 115.

In practice a narrow strip of light, from a slit, is used. By this
means very much increased brightness is obtained without loss of
definition, as the various parts of the slit, if it be very narrow, give
rise to coincident systems of bands. The length of the slit is carefully
adjusted parallel to the edge of the prism, and the fringes are parallel
to their common direction. The field is uwsually bordered with other

! This experiment has been sometimes wrongly attributed to Pouillet. It was
first described by Fresnel ((Buvres, tom. i. p. 330).
[J
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systems of bands. These arise from diffraction, and will be explained
farther on.

The distance of the nth band from the centre of the system is
easily expressed. Thus if ¢ denote the distance of the origin O from
the prism, and J the distance of the prism from the screen, we have
AE = BE = a very approximately, and consequently if ¢ denote the
distance AB hetween the virtual foci,! and 8§ the angle BEO or the
deviation produced by the thin prisms, we have, if e = angle of prism,

e=2q sin §=2u(w— 1)e,
for since the angle of the prism is small sin 8=8=(p— 1)e. Hence

_esb N asb A
¢ 2 2a(p-=-1)"2

which shows that the bi-prism* is equivalent to a pair of mirrors
inelined at an angle (- 1)e

92. Peculiarities of the Bi-prism Fringes.—The fringes produced
by a bi-prism differ in some respects from those obtained by other
methods.  For, on account of the dispersion in the glass, the foci A
and B will be different for the different colours. Thus the violet light
will appear to come (on account of its greater refrangibility) from two
points A, and B, a little farther apart than the two from which the

! An elegant method of determining ¢ is given by Prof. Glazebrook (Phys.
Optics). Let d be the distance from the prism to the focal plane of the eyepiece
or sereen where the fringes are depicted. Introduce a lens between the prism and
eyepiece. This lens will form images of A and B in the focal plane if it is pro-
perly placed. Now in general two such positions of the lens can be found, and if
dy and o, )’ and ', be the distances of the lens from the focal plane and from the
points AB in the two positions respectively we have

e ey S
finT‘fahf-der‘f-;'

But d, +d,=d,'+d,, therefore d,=d," and ds=d,". Henee if ¢, and ¢, be the cor-
responding distances between the images of A and B in the focal plane of the eye-
piece we have, ¢ being the distance AB,

S At
dy dy ST
Therefore Cite—0C DT f= A fea

¢y and ¢, are measured by a micrometer eyepiece. -

2 If the prisms CE and DE were placed edge to edge instead of base to base, A
and B would be interchanged and the emergent cones would have no common part.
Interferenee bands conld, however, be obtained by interposing a lens in the paths of
the cones bringing them to real foci A’ and B images of A and B. The light diverg-
ing from A" and B® will produce fiinges.
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red appears to come. Denoting these distances by ¢, and ¢,, the formula
for the distance of the uth red band from the centre is (by Art. 88)

ol + b 5 A :
Cr ::..." ;
and for the violet
a+l A,
Ly =— L

The difference between r, and , is consequently greater than if there
was no dispersion by the prism. The iris-coloured bands are therefore
broadened by the dispersion, and the overlapping is proportionately
increased. The fringes of the bi-prism are bright, for the prism allows
a great quantity of the light which falls upon it to pass through.
These fringes are then bright, and very easily procured—the apparatus
requiring very little trouble in setting up.

98. Bi-plates.—A beam of light may be subdivided by refraction
throngh two plates, of the same nature and equal thickness, placed at
an angle as indicated in Fig. 82. Two pieces M and N of parallel

Fig. 82 —<Bi-plates,

alass are cut from the same plate to ensure equality in thickness, and
placed at an angle. On the bisector of the angle between them is
placed the luminous origin O. The light which falls upon the plate
N passes through it in a direction CD, and emerges parallel to its
original direction, appearing to diverge approximately from a point A.
Similarly the light which emerges from the plate M diverges from a
virtual focus B. The emerging cones are received by a lens L which
brings them to real fuei A" and B. After diverging from A’ and B’
the beams will overlap and produce fringes.

The lateral displacement of a ray in passing through a parallel
plate of thickness ¢ is easily seen to be esin (i - #)/cosr, and conse-
quently the distance ¢ between the virtnal foeci A and B is very
approximately

c=%2¢sin (£ - 7r)feos r,
which, if 26 denote the angle between the plates, may be put at once
in the form

¢=2ccos 01 - {p* + (1 - 1) cot®d} -3]

since i = 90° — @ very nearly.
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94. Lloyd’s Single-mirror Fringes.—A convenient method of dis-
playing interference bands cansed by the mutual action of dirvect and re-
flected light was devised by Dr. Lloyd ' of Trinity College, Dublin. A
polished mirror of metal or of black glass is placed so that the rays
from a luminous origin B (Fig. 83), are reflected from it at nearly
grazing ineidence. The reflected rays diverge from a virtunal foeus A
which is the image of the
origin B, so that a point
P on a screen placed be-
vond the mirror receives
light directly from B, and
also by reflection from
the mirror, or, regarding
A as the source of the reflected light, P is supplied by the origins A
and B, which may be brought close together by making the angle of

Fig. 3. —Lloyd's Single Mirror.

incidence nearly 90",

Since the reflected light is confined to the upper side of the mirror,
less than half the complete system is formed, and it might be imagined
that under no circumstances could more than one-half the system be
obtained. However, by interposing a thin transparent plate in the
path of the direct beam, or by holding the magnifier through which
they are examined somewhat excentrically, the bands may be displaced
(see Art. 102) so as to detach themselves from the mirror until the
complete system is seen, as in Fresnel's experiments. The adjust-
ments in this experiment are easily made; it requires no special
apparatus, and the bands are bright and well marked.

Dr. Lloyd states that the centre of the system does not correspond
to the line of intersection of the mirror and sereen, but that the bands
are all displaced through half the interval of a band width from the
mirror edge. This, he suggests, indicates that the reflected light has
heen accelerated by half a wave length, or that its phase has been
increased by « at reflection.

95. Fresnel's Three Mirror Experiment.—Fringes produced by
the use of three plane mirrors have also been obtained by Fresnel?

1 ¢ A New Case of Interference of Rays of Light™ (Lloyd, Trans. Foy. frish
Acadeiny, vol. xvil, ; read 27th January 1834).

Dr. Lloyd's method seems to have been anticipated by Professor Powell in the
following passage : °* Beautiful sets of colours (the theory of which is evidently de-
pendent on interference) are seen on viewing a candle, or line of light, by very oblique
reflection from any moderately polished surface, as ivory, ebony, ete., held close to
the eye” (Rev. B. Powell, Phil. Maq. and Ann. January 1832). These bands may,
however, have been due to diffraction.

2 Fresnel, (Kuvres, tom. 1. p. 703.

i
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Of the two pencils which produce the bands, one is reflected from the
mirror M (Fig. 84) and the other successively from the mirrors L and
N. The planes of the mirrors L and N intersect at O on the surface
of M. Let w and o be the angles they make with it respectively.

Fig. 84.—Fresnel's Three Mirrors.,

Now if the line OS makes an angle @ with the mirror L, the light
reflected from L will appear to come from a point 5" where the arc
S8 = 26, and if this light falls upon N its reflected beam will diverge
from A, where the are S'A = 2(w + o - @), for the mirror N makes an
angle, w+ w’ — 6 with OS". Hence

BA=%w+uw')
So also the light reflected from M will diverge from B where

HH -_:.’I:D.-‘ 1 I?_.

Consequently the are
AB=2aw"-0).

Henee if we denote OS by ¢ we have OA = OB = ¢, and the chord
AB =2 sin (w' - 7).

The system is consequently equivalent to two mirrors inclined at an
angle w' — .

Sinee the mirror M is shaded by the others, the interfering pencils
will be incomplete and unsymmetrical with respect to the central line
OC. The central fringe may therefore be found near one extremity
of the system, or it may lie entirely outside the visible fringes or
common part of the interfering pencils. By increasing the path of the
doubly reflected pencil, or diminishing that of the other, the fringes
may be displaced on the sereen so that the whole system may be
viewed. This is readily done by screwing forward the central mirror
M in the direction of the normal to its plane.
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The angles w and o' may have any value up to 45° for it is only
necessary that o - 6 should be small. Fresnel worked with o= o
and varied the angle between 7° 30", and 40",

If a change = of phase accompanies each reflection the twice re-
Hected beam will be accelerated by half a wave length on that reflected
from the central mirror, and therefore, as in Lloyd’s bands, the central
band or that corresponding to equal distances CA and CB, will be
black. This is confirmed by the experiment. It should also be
further remarked that, as in case of a single mirror, the right side of
A corresponds to the left of B and the left to the right, as if B were
the reflection of A with respect to the central line OC (see Art. 98).

96. The Optical Bench.—Interference experiments are usually
made on an optical bench. This apparatus usuvally consists of a
horizontal bar, accurately graduated, along which three vertical up-
rights can slide freely. Attached to each upright is a vernier, so that
the distance between them can be determined accurately by the scale
on which they slide. Each is also furnished with a headpiece, which
can be raised or lowered or turned round a vertical axis at will.

The first upright is furnished so as to hold a metal piece, which
carries a slit capable of being adjusted to any convenient width by
means of a serew. A fine adjusting motion of the head allows the
slit to be brought accurately parallel to any desired direction. The
second upright carries a frame in which can be placed a metal ring,
which holds the plate eontaining the two small apertures, or any other
apparatus for producing interference or difiraction, such as the bi-prism,
a fine wire, an opaque edge, a diffraction grating, ete. The third
carries a micrometer evepiece furnished with a ecross wire. The axis
of this eyepiece is horizontal—that is, parallel to the bench on which
all the pieces slide. The head of the second upright can be moved by
means of a horizontal serew perpendicular to the length of the scale,
so that each piece which it carries can be brought into the line joining
the slit and observing telescope.

The use of a lens is legitimate in experiments on interference, for
light brought to a focus by a lens is concentrated there without any
relative change of phase in its components ; since all the rays brought
to that focus travel over paths which require the same time.

The eyepiece being furnished with a cross wire and micrometer
screw, the distance 2 of any band from the centre can be measured,
and the value of A can be caleulated accordingly.

97. Conditions necessary for Interferenee.—‘When commencing
these investigations we assumed the waves emitted by A and B at any
instant to be always exactly the same, and the theory indicates that
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this is necessary in order to have interference fringes or points at
which the effects destroy each other confinually. If the phases of the
waves from A varied irregularly a great number of times per second
with respect to those from B, we should have at any given point P
neutralisation and co-operation succeeding each other so rapidly that
nothing but a mean effect would be perceived, and this would be
merely the sum of the mean effects of each source taken separately.
Now if the disturbances come from two independent sources, such as
the two different parts of a flame, the relative phases of the two would
be purely casual, and no fixed and permanent neutralisation could be
expected. Observation shows that no interference effects are mani-
fested unless the two interfering streams of light come originally
from the same source, and subsequently traverse slightly different
paths, and this is what the theory anticipates.

In the experiments of Grimaldi the apertures were illuminated
directly by the sun, and consequently no interference phenomena
could possibly have been observed. This point was particularly
noticed by Young, who allowed the sunlight to pass first through a
narrow slit, and . then through the two small apertures. He re-
marked that the fringes disappeared when one of the apertures was
stopped, and also when the slit was removed, so that the two apertures
were illnminated directly by the sun. In this case each point of the
sun produces a distinet set of fringes, but the multitude of sets
hecome so superposed and interspersed that all visible effect is
obliterated.

An essential condition then is that the two apertures be supplied
from the same source, so that the waves diverging from A and B at
any instant may be exactly alike. To effect this in practice, a narrow
slit is usually placed symmetrically near the apertures with its length
perpendicular to the line joining them. The light from a lamp or
other source falls first upon the slit, or is focussed on it by means of a
condensing lens, and after diverging from it reaches the two apertures.
The slit, being very narrow, is like a single line of light, each point
of which is symmetrically situated with respect to A and B, and sends
waves to each which are exactly alike, so that the whole resultant
wave emitted by A is the same as that emitted by B. These waves,
on arriving at any point P of the sereen, will produce the phenomena
of permanent interference.! The bi-prism and other apparatus for

1 The fringes are only produced distinetly when the source is very narrow. Tha
width of the aperture should be so small that the displacement of the centre of the
system, incurred by using in turn the two edges of the slit as linear apertures,
should be small compared with the width of an interference band.
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producing interference bands are therefore to be regarded as contriv-
ances to procure two similar origins of light in close proximity.

From this it will be easily understood how it is that two lamps, or
two candles, can never be expected to destroy each other’s effects
anywhere when placed close together like two organ pipes tuned in
unison. Two lamp flames have no permanent phase relation. The
waves sent out by one are not necessarily similar to, or in any way
related to, the waves sent out by the other. Each point of a flame is
an independent source of light, and the waves emitted by it continually
vary in character ; while for two sources to produce darkness at any
point the necessary condition is that they should econtinually send
waves to this point opposite in phase, but in other respects exactly
alike.

98. The Corresponding Points of the Soureces.—In Young's
experiment the two apertures are supplied by the same small source,
and in the case of Fresnel's mirrors and bi-prism the interfering
origins are images of the same source, and are therefore similar—the
right-hand side of one corresponding to the right-hand side of the
other and the left to the left. With Lloyd’s single mirror it is some-
what different, for here the two interfering sources are the luminous
origin and its image, but the right side of the image corresponds to
the left side of the ovigin, and wice versi. Now continnous interference
can be expected to ocenr only between rays issning from corresponding
points of the interfering sources, for the waves emitted by the various
points of the source (slit) have necessarily no fixed phase relation
when it is supplied dirvectly by a flame. Hence with the bi-prism and
mirrors it is the right side of one image that interferes with the right
of the other, and the left with the left, but in Lloyd’s experiment the
right side of the source interferes with the left of the image, and
vice versd.  In the latter case when the slit has any sensible width
the centre of symmetry must be the same for the bands produced by
all corresponding points, but the distance ¢ between the corresponding
points is variable. In Fresnel’s experiments, on the other hand, the
distance ¢ is constant, while the centre of symmetry varies. In Lloyd’s
experiment then the central bands are exactly superposed for all the
groups of corresponding points, and the width of the slit does not
interfere with the achromatism of the central line. The widths of
the bands produced by different pairs of corresponding points will,
however, be different (since the band width varies inversely as ¢), and
this results in a confusion which increases from the centre outwards.’

! The measure of the confusion arising from the variation of ¢ in the finite width
of the slit in Lloyd's experiment is easily found. Thus the distance of the nth
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In Fresnel's experiments the band width is the same for all pairs of
corresponding points, and the width of the slit merely leads to a
lateral displacement of the central line of the various systems, so that
the condition for distinctness is that the width of the slit be narrow
compared with the width of a band, and this limiting width of the slit
is independent of the order of the bands.

99. Limit to the Number of Fringes.—The formula (p. 141) for
the distance of any bright band from the centre of the system shows
that the width of any band, mcasurvz;d from darkness to darkness, is

w =alfe.

The band width is therefore directly proportional to the wave length
of the light employed. If the light could be procured absolutely
homogeneous—that is, of a single wave length A—then theoretically
the sereen should be covered with an infinite number of similar bands,
having nothing to distinguish one from another.

With ordinary light the case is very different. Each colour gives
rise to a system of bands, and of these the red bands are broadest
and the violet narrowest, the width of the former being about twice
that of the latter. Hence it happens that after a few alternations the
nth red band coincides with the (r + 1)th violet, or perhaps the dark
spaces of one system are filled up with the bright bands of another, so
that overlapping and superposition of the multitude of systems from
the red to the violet takes place, and this leads to the final obliteration
of all visible effect at a short distance from the centre (Fig. 85).
What oceurs then is that a few
(ten or twelve) bright rainbow-
coloured bands are seen which
become less and less distinetly
marked, finally merging into
one another and fading into
uniform  illumination at a -
short distance from the central L e e U
line. This line is white, as it is a bright line for all wave

band of any system from the centre is x=nalfe, and therefore the interval &z be-
tween two corresponding bands when ¢ varies is

nak
fr= — -!:2— S-C,
or if w be the band width =a)/ec we have
dx i
= = 3 5
s [

therefore the slit must be made narrower as n increases if the distinetness of the
bands is to be preserved.
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lengths. Theoretically there is not a single place of complete dark-
ness, for this wounld entail at that place a complete discordance of
phase for all wave lengths, whereas any point at a distance @ from
the centre will be bright, for the wave length determined by nal = ex.
The very existence of any visible bands with white light depends on
the limited sensibility of the eye, which is confined to about one
“octave,” and on its capability of making chromatic distinctions.

Want of purity in the light is therefore detrimental to the pro-
duction of a large number of visible bands.

100. Interference under high Relative Retardation.—It follows
from the foregoing considerations that the more homogeneous the lightthe
greater the number of observable interference bands, and if perfectly
homogeneous light—that is, light of a single wave length—could he
obtained, the screen should be covered with an infinite system of
similar bands, In practice, however, it has not as yet been possible to
obtain strictly homogeneous light. An approximation to it may be
obtained by casting the spectrum of any source of light on a screen,
furnished with a very narrow slit, in such a way that a narrow strip
of the spectrum is transmitted through the slit. This slit may be used
as the source of light in an interference experiment, and when so
employed, the number of bands directly observable is vastly greater
than that given by a source of ordinary white light. Still, in this
case also, the light is heterogeneous, for the slit transmits a narrow
band of the spectrum, and this band contains a group of waves varying
in length by an amount depending on the width of the slit, and, as
the band width will be different for the different constituents of the
gronp, there will be overlapping, and ultimately obliteration of the bands.

A very convenient source of approximately homogeneouns light is
that of the sodium flame.! This consists of two narrow bands very
close together in the yellow part of the spectrum, so that it econtains a
group of waves of different lengths, and overlapping ultimately oceurs,
With this source of light Fizeau observed 50,000 bands, and more
recently this number has been largely increased by Professors A. A.
Michelson and E. W. Morley.2 Using the light of incandescent sodium
vapour (in an exhausted tube provided with aluminium electrodes)
interference was observed with a retardation of over 200,000 wave
lengths, i.e. over 4 inches. This number was still further inereased by
using the light from Pliicker tubes containing vapour of mereury or

! Proposed by Brewster, dnnales de Chimie ef de Physigue, second series, tom,
xxxvii. p. 437, 1828,

* A. A, Michelson and E. W. Morley, Journal of the dssociation of Engineering
Societies, May 1888, and Address before the American Association, Cleveland Meet-
ing, August 1888, by A. A. Michelson.
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thallinm chloride which gave interference with a difference of path of
540,000 and 340,000 wave lengths respectively. In these experiments
a special form of apparatus, called an inferference refraclometer, was em-
ployed (Art. 123), by which any desirable difference of path could be
easily introduced between the two interfering beams. Experiment
consequently proves that the number of bands directly observable
increases with the purity of the light.

It may also be shown that interference takes place in the regions
beyond the limits of the visible fringes where overlapping exists to snch
an extent that the field appears to be uniformly illuminated. In these
regions any point is a place of brightness for certain wave lengths and
of darkness for others, and consequently the light there is a mixture
in which only certain constituents of the original light are represented.
Hence, if a slit be opened in any part of this region so that the light
falling on it may be transmitted and examined in a spectroscope, the
spectrum will exhibit certain dark bands corresponding to those waves
which are destroyed by interference at the slit. This method was
employed by Fizean and Foucault.! If a narrow slit be opened ® at
the centre M of the fringe system the light which is transmitted
through it will give a complete spectrum, since the central fringe is a
place of brightness for all colours. On the other hand, if a slit be
opened at any other part of the fringe system the transmitted light
will give a spectrum exhibiting those colours for which the slit is a
place of brightness, and consequently crossed by dark bands showing
the absence of those colours which are destroyed by interference at the
slit. Tf « be the distance of the slit from the centre of the system,
the wave lengths of the dark bands satisfy the equation

i A
A o TR -
.E‘—-':{-ﬂ'. i 1}2

In the experiment of Fizeau and Foucault a slit was opened at
the centre of the system produced by Fresnel’s mirrors, and by serewing
forward one of the mirrors parallel to itself, the system of fringes was
displaced gradually across the screen, so that they passed in suecession
over the slit. As the first dark band comes on the slit, a dark band is
seen In the spectrum which passes feom the violet to the red as the
mirror is gradually displaced, then a second suceceeds it, and then
two, three, or more dark bands simultaneously appear ecrossing the

! Fizean and Foucanlt, Annales de Chiinie of de Physigue, third series, tom. xxvi.
p. 138, 1849 ; Comples Hendus, 24th November 1845,

* The width of the slit should not be more than a moderate fraction of that of a
band.

Spectro-
seapic
analysis.
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spectrum, till finally they become so numerous and narrow that to
separate and distinguish them the resolving power of the speetroscope
requires to be increased. Hence the extent to which interference
can he observed is limited only by the resolving power of the spectro-
scope.

If two dark bands appear in determinate parts of the spectrum
corresponding to wave lengths A and X', then by the above equation

(20 +1A=(2n"+ 1)\ =25,

where # and »” are two whole numbers, and § is the difference of the
distances of the interfering origins from the slit in the screen. DBe-
tween these two bands a number N of other dark bands may occur
which can be counted. Then we have

_2n41A=X

:‘q‘"‘ .!-1;' 4 -
TR 5 ~

2\

o 2u41=(N+ 10, o +1=(N41)

Knowing n or »" we can caleulate 8, the relative retardation of the
pencils when they reach the slit. :
101. Aehromatic Interference Bands.—The interference hands

! It has been usually held that even if the number of observable fringes were not
limited by overlapping, vet a major limit to this number would be determined by
certain irregular changes taking place in the source of light. Thus if we consider a
point ' so far from the central line of the fringes, that AP - BF is a large number
of wave lengths, then the light reaching P at any instant from B is a large number
of wave periods in advance of that which reaches it from A. The former wave was
emitted from the source some time before the latter, and if the nature of the waves
emitted by the sonrce has changed in the meantime, the waves reaching P at any
instant from A and B will be dissimilar, and have no constant phase relation,

The érregularity contemplated in this view of the subject does not appear to have
any clearly defined meaning in the case of white light. For example, in the case of
a monochromatic sonree, if the vibration be represented by a simple equation of the
form @ =a sin(wf + a), we deal with an infinite train of waves propagated in a perfectly
regular manner.  If this train be supposed broken up by sudden changes of phase
oviginating in the source, then we have to deal with a system of groups of waves, and
the conditions of propagation will be altered, so that the state of affairs at any point
ceases to be represented by the foregoing simple equation, and the problem becomes
much more complicated. In M. Gony's opinion the nature of white light may be best
understood by assimilating it to a disturbance originated by a sequence of entirely
irregular impulses. The action of a prism is to analyse this complex disturbance into
its constituents in the way a complex periodic function is analysed into its simple
liarmonic components in a Fourier series. That interference bands may be observed
under high relative retardation with white light is merely a proof of the resolving
power of the spectroscope and affords no criterion as to regularity in the vibration
(see further, M. Gouy, Journal de Physique, 2™, tom. v. p. 354, 1886 ; Lord
Rayleigh, Phil. Mag. vol. xxvii. p. 460, 1889 ; Arthur Schuster, Phil. Mag. vol.
XXXviL. pe 509, 1894),
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ordinarily obtained are highly coloured, and this happens because, in
the formula,

the distance ¢ is the same for all colours while A is variable.! If, how-
ever, by some means ¢ be made different for the different colours so
as to be directly proportional to A, we will have A/c=-const., and
the bands will be of the same width for all colours. The fringes will
therefore be achromatic, and the want of homogeneity of the light will
offer no obstacle to the production of a large number of fringes. This
may be easily arranged by using Lloyd’s mirror and a diffraction
grating (Art. 135, ete.) with which to form a spectrum. White
light from a narrow slit falls in succession upon a grating and an
achromatie lens, so as to form diffraction spectra in the focal plane of
the lens. One of these spectra® is used as the proximate source of
light in the interference experiment, and since the deviation of any
colour in the difiraction spectrum varies as A, it is only necessary to
arrange the mirror so that its plane passes through the white central
image in order to realise the conditions for achromatic bands. When
the adjustments are carefully made the whole field is filled with fine
bands, which become coloured only at the edges of the field.

With less perfection the diffraction spectrum may be replaced by
a prismatic one so arranged that A/c is constant for the most luminous
rays. “The bands are then achromatic in the same sense that an
ordinary telescope is so. In this case there is no objection to a
merely virtual spectrum, and the experiment may be very simply
executed by Lloyd’s mirror and a prism of about 20° held just in front
of it.”

“It is interesting to observe the effect of coloured glasses upon the
distinctness of the bands. If the achromatism be in the green, a red
or orange glass, so far from acting as an aid to distinctness, obliterates
all the bands after the first few. On the other hand, a green glass,
absorbing rays for which the bands are already confused, confers
additional sharpness. With the aid of a red glass a large number of
bands are seen distinetly, if the adjustment be made for this part of
the spectrum.” *

102, Displacement of the Fringes—Diminished Speed in Denser
Media.—In the deduction of the law of refraction the wave theory

1 In the case of the bi-prism ¢ varies, being least for the red and greatest for the
violet, and this exaggerates the overlapping and increases the colonting.

* Lord Rayleigh used the second.

¥ Lord Rayleigh, Phil. Mag. vol. xxviii. pp. 77, 159, 1889,
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pointed out that the velocity of light should be less in the denser or
more refracting media, and we mentioned in passing that the emission
theory pointed to an opposite conclusion. This point ean now be
decided by means of the phenomena of interference. It 1s obvious
that the central fringe is situated in that place to which it takes the
light the same time to travel from the two interfering origins. If now
a thin plate of glass (or other transparent substance) be interposed
in the path of one of the beams, the light of that beam will be retarded
or accelerated according as it travels slower or faster in the glass than
in air. The point then at which the two beams will arrive in the
same time will be displaced on the screen. The central band will be
moved towards the path of the beam in which the plate (Fig. 86) is
interposed if the light travels slower in the glass, but to the opposite
side if it travels quicker in it. The
result is decisively in favour of the
diminished velocity of light in the
more refracting media, and the differ-
ence of velocity may be measured by
the amount by which the fringe is
Fig. 86.—Displacement of the Central Band. displaced.

It is easy to calculate the relation between the displacement and
the refractive index of the interposed plate. Let P be the position
of the central fringe when the plate is interposed in the path of
the ray BP. The time of travelling over AP is the same as that
of travelling over BP; hence if ¢ and #" denote the velocities in
air and in the plate respectively, and e the thickness of the plate,

then

I

BP-¢ ¢ _AP

(4 v i

ar BP —e4pe=AP,

Hence e{p—1)=AP 15l’=“3::

if the central fringe is displaced through the distance oceupied by »
fringes, a result which was obvious, for the retardation introduced by
the passage through the plate is (g — 1)e.

103. Application to the Determination of Refractive Indices.—
The amount of displacement in the foregoing important experiment
furnishes us with a method of determining the refractive index of a
substance when the displacement of the central fringe and the thick-
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ness of the plate are known.! Fresnel and Arago* applied it to the
determination of the refractive indices of gases. It is susceptible of
great accuracy, the minutest change in the index of refraction of air
being observed,—such, for instance, as the change due to a rise of J;
of a degree in temperature.

By the same method it was ascertained that the refractive index
of dry air is about one-millionth greater than that of air saturated
with vapour. Arago also pointed out that the scintillation of the
stars is due to interference arising from the changes in the refracting
powers of portions of the atmosphere through which the different
portions of light reach the eye.

M. Billet® has devised a very convenient method of producing
interference fringes, and showing the effect of a plate interposed in
the path of one of the interfering pencils in displacing the fringes. It
consists of a lens cut into two halves, L and L’ (Fig. 87), which can be
separated or brought close together at will by means of a micrometer

Fig. 87.—Billet's Split Lens.

screw. Their sections are brought parallel by turning one of them
round a fixed axis by means of another screw. The luminouns origin
O produces two images A and B situated on the optic axes OA and
OB of the two halves, the motion of which allows the images A and B
to be brought as close together as desired. The light diverging from
these images produces fringes on a screen placed at any part of their
common path, and it is easy to interpose plates of any transparent
substance in the path of either or of both simultaneonsly.

With the bi-prism the thin plate may be placed over one-half of
the prism, or if two plates are to be compared, one may be placed
over each half. These experiments were first executed by Fresnel
and Arago,! and gave rise to the construction of interference
refractometers.

1 Tt also determines ¢ when we know p and the displacement.

? By observing the position of the fringes formed by two rays, one of which
passed throngh vacuum and the other through air.

3 Aun, de Chimie ef de Phys., third series, tom. Ixiv. p. 3835,

¥ (Fuvres de Fresnel, tom. 1. pp. 125, 691, and several memoirs of Arago ((Euvres,
tom. x. pp. 208, 312).
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An ingenious modification of Billet’s experiment has been recently
suggested by M. G. Meslin,® in which fringes of a circular form are
obtained. Thus in all the forms of experiment so far described the
line AB joining the interfering sources is at right angles to the
direction of propagation of the light, and for this reason the fringes
obtained on the sereen on which the light falls are approximately right
lines parallel to AB. This is the case because the surfaces of constant
retardation are hyperboloids of revolution round the line AB, having
A and B for foci. But if by any means the line AB is turned so as to
be parallel to the direction of propagation of the light—that is, if it is
turned so as to pass through O—then the axis of revolution of the
surfaces of interference will be perpendicular to the sereen, and their
cross sections on the sereen will be a system of coneentric circles. In
Billet’s experiment AB is at right angles to the central line, because L
and L are separated by displacement at right angles to this line, but
if the displacement were made parallel to this line, then the line AB
would pass through 0.

This is shown in Fig. 88, in which the lower half of the lens is
displaced through an interval CC’ parallel to the central line. With
this arrangement the light which passes through L is brought to a
focus A on the line joining O to its optic centre C, while the light
passing through L. is brought to a focus B on the same line, and if a
sereen PQ be placed anywhere between A and B, interference fringes
will be depicted on it in the region of the overlapping heams of light.
The surfaces of constant retardation in this case are not hyperboloids
but ellipsoids of revolution round the line AB, and having A and B
for foci. For if we consider any point X on the screen which receives
light from both L and I, the light reaching it from L. will have
travelled over a path 8+ AX, where & represents the equivalent path
from O to A and is the same for all rays passing throngh L.  Similarly
the light reaching X from L’ will have travelled over a path & — BX,
where & is the equivalent path from O to B throngh 1. The differ-
ence of path at X for the two constituents is consequently

(5+AX)-(¥-BX)=(5-8)+AX +BX.
But 8" —d=ADB =const.,
consequently the path retardation at X is

AX +BX - AB,

VG Mesling Compfes Rendus, 1893 ; and Jowrnal de Physique, 3™¢, tom. ii.
p. 205, 1893,
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and if this is to remain constant we must have
AX 1+ BX =const.

That is, X must lie on the surface of an ellipsoid of revolution, having
A and B for foci. The cross section of any one of these ellipsoids by
the plane PQ is a circle, and bright and dark bands are accordingly a

system of concentric eircular rings. These circles are not, however,
complete, for the beams of light overlap only on one side of the
central line, and at most only half of the complete system, i.e.
semicireles can be obtained.

f::_mmﬂr:f.r-

For a gi'k'u:p ]mHitilJIl of the sereen rove that the radii of the consecutive l‘itl;_fh'
are proportional to the square roots of the whole numbers 1, 2, 3, ete.

['T'ukq: the middle ]H.‘li.llt-ll!- AB as Ori and the line AB as axis of &, S0 hat the
erquation of any one of the ellipses may be written in the form

i : 3.1"' M
q-'.‘ .: r{: =

where AX 4+ BX=2z. Henee if AB=2¢ the relative retardation at X is
G=AX+BX-AB=2(a-c¢).

But #*=a®~ ¢*, and consequently, since é is small compared with either a or ¢, we
have approximately
F=la-cllet+cl=40la+c)=ch:

ginee a=0c4 Lﬁ ia Iu:eu'l}‘ c—.qu;;] to &, Henee, in the l:dll]ﬂtil'll! of the L*.Hi}l:il"_.

= a? — o

@y / »
L 2 ‘\"

we may write a=¢ and 8= ,/cé, so that we have

But  is the radius of the ring corresponding to the retardation 8, and for the
bright and dark rings §=4ak, according as » is even or odd.
When the screen passes through the middle point of AB the rings reach their
maximum size, when x=c they degenerate to zero. ]
M
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104. Abnormal Displacement of the Central Band.—It has heen
pointed out by Sir G. G. Stokes! that the method of determining the
refractive index of a plate by the displacement of a system of inter-
ference fringes is subject to a theoretical error depending on the
dispersive power of the plate. In the absence of dispersion the
retardation (8) introdueed by the plate would be independent of
A, and would therefore be completely compensated at the point
w=ad/c. Dut when there is dispersion the retardation & depends on
A, and the different colours are unequally retarded by the plate.
The violet fringe system will consequently be most displaced, and the
red least. If u be the linear displacement of the fringe system of
wave length A, we have w=adfc and 8= (px— 1)e = f(A) suppose, con-
sequently

e LM SR iy

The centre of the complete displaced system is therefore not neces-
sarily at the point reached by the two pencils in the same time, but is
determined by the coincidence of bright bands of the most brilliant
parts of the spectrum. Measured from the original centre, the position
of the nth bright band of wave length A will be
[

w=an + -u::{-u:u-m}} S
When this quantity is as independent of A as possible, the best coin-
cidence of the various bright bands will occur, and the position will
correspond to the centre, or, as Cornu terms it, the achromatic band
of the displaced system. This will happen when du/dX = 0, or when
i iz the nearest integer to

e du

=N =-= o

Substituting this value of # in (2) we find for the displacement of
the central white hand

.a;:f:‘.{;m M"tl‘.-} St o R e

where f(X) = (p— 1)
This when expressed in terms of u gives by (1)

it
x__ﬂ_h:?:h - - - : : < (4}

L Beit. Assoc. Reportf, 1850 ; also Meatk, and Phys. Papers, vol. i1, p. 361.
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and when expressed in terms of the band width w=w«l\/c, we have
Airy’s ! formula
oy
T=u— 0 . - : : : : (5)
The final term on the right-hand sidé of each of these equations
is inherently negative, for since the refrangibility increases as the wave
length decreases, it follows that the displacement of the bands corre-
sponding to a given wave length must increase as the wave length (or
band width) decreases. Hence du and d\ (or dw) must have opposite
signs. The final term in the foregoing equations (which represents
the abnormal displacement of the central white band caused by disper-
sion) will consequently be additive, and will ifncrease the normal effect
of the interposed plate.

Exereise.—Assuming the truth of Cauchy’s formula,

L B

pE=A4 sataat ..
the relative error is
MM 1 (2B 4C
AXY ~ p=l\ME M ’)'

2 C
woi(mAr )

105. Abnormal Displacement of the Fringes by a Prism —
Potter’s Experiment. — Repeating an experiment of Professor
Powell's,> Mr. Potter® found that a prism interposed in the pencils
of light reflected from Iresnel’'s mirrors, arranged to produce inter-
ference bands, systematically deviated the fringes towards the thick
end of the prism by an amount greater than that of the caleulated
centre of the interfering pencils. This he considered inconsistent

I ““Remarks on Mr. Potter's Experiment on Interference ” (G. B. Airy, Phil.
Mayg, March 1833).

* Powell's experiment was a simple variation of that of Art. 102. The interposi-
tion of the thin plate is attended by difficulties on account of the extreme proximity
of the interfering pencils. Powell suggested the use of a thin prism of 4” or 5° re-
fracting angle, the edge of the prism being parallel to the line of intersection of the
mirrors. The two pencils then pass through different thicknesses of the prism.
Powell says, *‘ The whole set of stripes are seen in the deviated image, unaltered,
except by a trifling degree of colour and a slight shifting towards the more refrangible
end of the spectrum, obviously due to prismatic refraction” (Rev. Baden Powell,
Phil. Meg. and Ann. Jannary 1832).

# The prism used by Potter was an ordinary glass prism of 43° angle (K. Potter,
jun., Phil. Mag. February 1833},
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with both the wave and emission theories, but Sir G. B. Airy!?
showed at once that this phenomenon followed as an immediate con-
sequence of the wave theory. The investigation is that which we
have already applied to determine the position of the central or
achromatic band when the fringes are displaced by a plate inter-
posed in the path of one of the pencils. If » be the linear displacement
of the fringes corresponding to a wave length A and w the width of a
hand, the displacement of the achromatic band is

W — ”_f!{'lf

il

as hefore. The quantity du/dw being negative, the abnormal effect is
added to the regular deviation produced by the prism.

The abnormal displacement of the central band is therefore a con-
sequence of the heterogeneity of the light. In fact, with perfectly
homogeneous light we would have nothing whereby to distinguish the
central band, for the fringe system would consist of a set of perfectly
similar bands. The effect of the prism is to displace the apparent
centre of the system. The wnth band is rendered achromatie, but
the system is no more achromatic than before, for the widths of the
component bands and the overlapping remain unaltered.

If a diffraction grating be used instead of a prism, the deviation
will vary as the wave length—that is, » varies as w, and consequently
a — wdu/dw = 0.

106, Talbot's Bands.—A remarkable system of bands was dis-
covered by H. F. Talbot,> and their complete explanation was first
given by Airy,® whose calculation is very complicated, but his final
result may be obtained from very elementary considerations, which
are given in the theory of diffraction (see Art. 153). At present we
shall merely give Talbot’s general account. He describes his experi-
ment as follows: “Make a circular hole in a piece of card of the size
of the pupil of the eye. Cover one-half of this opening with an
extremely thin film of glass (probably mica would answer the purpose
as well, or better). Then view through this aperture a perfect spee-
trum formed by a prism of moderate dispersive power, and the spectrum
will appear covered thronghout its entire length with parallel obscure
bands resembling the absorption produnced by iodine vapour.”

In Fiz. 89 the thin plate is represented in three different positions.

! ¢ Remarks on Mr. Potter's Experiment on Interference™ (G. B. Airy, Phil.
Mg, March 1833).

2 H. F. Talbot, Phil. Mag. 1837, part i. p. 364.

* Airy, Phil. Trans. 1840, part ii. p. 225, and 1841, p. 1.



ART. 106 TALBOT'S BANDS 165

At L it is situated directly between the eye of the observer and the
eyepiece of the telescope,
at M it is placed between
the prism and the object
glass, and at N between
the prism and the colli-
mator.

An imperfect explan- Fig. 80.—Talbot's Bands.
ation of the bands was given by Talbot on the principle of simple
interference. Thus if & be the retardation suffered by any ray,
of wave length A, in passing through the plate, then one-half of
the light passing through the aperture will be retarded relatively to
that which passes through the other, and if the quotient 3/A is a
whole number, the two halves will agree in phase, but if 8 is equal to
(2n + 1)4A, they will be opposite in phase and destroy each other.
Now &/A varies from one colour to another, so that agreement and
opposition in phase will recur alternately as we pass from one end
of the spectrum to the other. It is consequently traversed by a
system of dark bands,

A similar experiment is that of Brewster,! by which he imagined
he had discovered what he termed a new polarity of light. “ While
examining the solar spectrum formed in the focus of an achromatic
telescope after the manner of Fraunhofer, he placed a thin plate of
olass before his eye in such a manner as to intercept and retard one-
half of the pencil which was entering one-half of the pupil. He was
then surprised to find that when the edge of the retarding glass plate
was turned towards the red end of the spectrum, intensely black lines
made their appearance . . . but upon turning the plate of glass half
round (still keeping its plane perpendicular to the axis of the eye), so
as to present the edge past which the rays entered the eye to the
violet end of the spectrum, the dark bands disappeared.” In inter-
mediate positions the bands appeared more or less distinet, according
as the edge was more presented to the red or to the violet end. The
thinner the glass the more distinet the lines, and they were formed in
any part of the spectrum. Brewster remarked that “ An examination
of these lines affords the very best means of determining the dispersive
powers of substances; for their distance from one another increases
or diminishes exactly as the entire length of the spectrum is increased
or diminished, and the number of them in the same part of two spectra
of different lengths is always the same.”

! ““On a new Polarity of Light™ (Sir D. Brewster, Brif. Assoc. Report, 1857).
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107. Powell’s Bands.!—In a hollow glass prism (Fig. 90) con-
taining some highly refractive liquid, such as oil of sassafras, anise, or
cassia, a plate of glass is inserted with its lower edge parallel to the
edge of the prism, and so that its plane nearly bisects the angle of the
prism, while it extends only through the upper half of the liquid,
leaving the lower or thinner part clear. The light from a slit being
transmitted through it in the usual manner, the spectrum thus formed
is crossed by a number of dark bands parallel to the slit or edge of
the prism.

With some liquids and plates the bands are sensibly equidistant ;
in others they increase in number and fineness towards one end of the
spectrum. In most cases they extend throughout, but in some they
are deficient at one part of the spectrum.

[f the thickness of the plate exceed a certain limit the bands
beecome too numerous and too fine to be seen ; if less than a certain

i, o0, —Powells Bands, Fig, 91,

limit they become too few, broad and faint; while for some inter-
mediate thickness they appear most vivid and distinct.

When the plate is inclined either way, even to being in contact
with the side of the prism, the bands arve still seen, but they suffer a
slight displacement downwards as the plate is inclined.

Some combinations of liguid and plate, such as glass with oil of
turpentine, or water, give no bands with this arrangement. Stokes
pointed out that in this case bands are produced by placing the plate
in the thinner part of the prism, leaving the wider part clear
(Fig. 91).

With plates of crystallised substances, such as Iceland spar, two
sets of bands, one finer than the other, are presented. On applying
a Nicol's prism (chap xi.) each set disappears alternately, leaving the
other visible at each quarter of a revolution of the analyser, showing
that they are due to the two oppositely polarised pencils. The finer
bands belong to the extraordinary, and the broader to the ordinary

ray.

L 4 0m a new Case of Interference of Light” (Baden Powell, Phil. Trans. 1848).
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The explanation of the general® formation of the bands is afforded
by the simple interference theory. The plate having a refractive
index differing from that of the liquid, causes one part of the pencil
passing through the prism to be retarded relatively to the other, by
an amount which increases from one end of the speetrum to the other ;
and as this difference of phase amounts successively for the varions
colours to an odd or even multiple of =, the two parts will be in
discordance for some or accordance for other waves, and produce
corresponding dark or bright bands in the spectrum.

These phenomena are analogous to those observed by Fox . Talbot
and Sir D. Brewster, on partially intercepting the spectrum by a plate
of mica covering half the pupil of the eye.
Here the retardation is that due to the differ-
ence of refraction of a plate of glass and an
equal thickness of liquid, and in the other
cases it is the difference between the mica
and the displaced air. Hence Stokes has
varied the experiment by inserting the glass plate in a vessel with
parallel sides, and allowing the light from a prism to fall upon it
(Fig 92).

Fig. 2. —=5tokes's Maditication.

Eramples

1. Aszsuming?® the truth of Cauchy’s law of dispersion, determine to what degree
of approximation Afe can be made independent of X by means of a prism in the ex-
periment of Art. 101,

[J"Ll"!lll'{lillg ti [.‘l!,l].l:h"',-".-: law we may tnkee= A H_ A and therefore

l o :\'.!‘: :
¢ AN-DB

Hence if Afe is to be stationary when X has a preseribed value A, we must have
d(Afe)=0, that is,
AN2=3B.

The proportional deviation of Afe from the preseribed value N/, is consequently

LA 2 A® :I
—_ = w e u
L b PR R W
2. If the achromatism is to hold good in the neighbourhood of the D line
(Ap=-H8890), find the proportional variation of Ae for the C line (A, = "65618).
[Using the formula of Ex. 1 we have A, =-38890 and A=-65618, therefore
llr. s
ﬁ =1-0155.]

! The complete investigation has been given by Stokes (Phil. Trans. p. 227,
1848 ; Math. and Phis. Papers, vol. ii. p. 14).
? These Examples are taken from Lord Rayleigh's article, loe. eit.
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3. In Ex. 2 determine the order (#) of the band at which the C-system is dis-
placed through half a band width relatively to the D-system.

[The relative displacement at the nth bright band is dz=mna(Ne - Ny/e,) = Sakfe,,
if the displacement is half a band width.

Hence
R L
Afe = Agfeo

Using Ex. 2 this reduces to #=32—that is, after 32 complete periods the bright
bands of one system coincide with the dark bands of the other.]

4. If the prism be not employed, prove that the bright bands of one of the
systems of Ex. 3 will coineide with the dark bands of the other when n=4"2.

[When the prism is not employed ¢ is constant and the formula for # in Ex, 3
beeomes

= e
= =42

§. If the two systems differ in wave length by a small amount 8\, prove that
the formula for # in Ex. 3 becomes approximately

_f M\ -6\

w=i(R) [+
[This formula gives the order of the band at which complete diserepance first
oceurs between the systems A, and A, + 8, and it shows that when 8\ is small the

order of the band is inversely proportional to the square of 8i.
The corresponding effeet will ocenr without a prism at the band

~ 3 N
e R T

so that the effect of the prism is to increase the number of bands in the ratio

2, : 36\, )




CHAPTER VIII
INTERFERERNCE BY ISOTROPIC PLATES
SEctioN I.—THE Conours ofF THix PLATES

108. General Statement of the Phenomena.—The examples of
interference which we are now about to discuss are noteworthy on
account of the peculiarities which they present and their frequent
occurrence to ordinary observation. Here it is no longer necessary to
have a very narrow source of light.

When ordinary white light falls upon a thin film of a transparent
substance, such as a soap bubble or a film of oil spread on the surface
of water, brilliant colours are generally observed, and sometimes all the
tints of the rainbow are exhibited. These colours were first observed
by Boyle and Hooke, and the latter succeeded in blowing glass
sufficiently thin to exhibit them distinetly.! They are often developed
in mica and other minerals which possess a lamellar structure, but the
most familiar instance of their exhibition is in the froth of liquids and
films of oil. The colours vary with the thickness of the film, and
disappear altogether when it exceeds certain limits. This is well
exhibited by dipping the mouth of a wine glass into soap water. The
viseid aqueous film which adheres to it after immersion displays the
whole succession of these phenomena. When the film covering the
mouth of the glass is held in a vertical plane it appears at first uni-
formly white, but as it grows thinner by the gradual descent of the
fluid, colours begin to be exhibited at the top, where it is thinnest.
These colours form horizontal bands which become more and more
brilliant as the thickness diminishes, but when the thickness is reduced
to a certain limit at the upper part the film becomes 4quite black, and
it has at this place arrived at such a stage of tenmity that it is no
longer able to support its own weight, and the film bursts.

Every one is familiar with the fact that polished steel becomes

1 A novice in the art of glass-blowing may succeed in this experiment.



170 THE COLOURS OF THIN PLATES CHAP. VIII

coloured in various shades when exposed to the air. These colours
are due to a thin film of the oxide of the metal which is gradually
formed on the surface.!

The same appearances are displayed in a still more striking
manner when two plates of glass (which contain a thin film of air
between them) are pressed together, or when a convex lens is laid on
a plate of glass. Around the point of nearest approach snccessions of
coloured rings of great brilliancy are presented, which dilate as the
pressure is increased so as to diminish the thickness of the included
air film.

109. Thin Plates—Retardation.—Let us now consider the case of
homogeneous light falling upon a thin uniform plate or film of a trans-
parent isotropic substance, for example, a film of air enclosed between
two parallel plates of glass,

The light incident in the direction A B, (Fig. 93) on the first
surface of the film is divided there into two portions, one reflected
parallel to BC and the other transmitted
parallel to B,C,. This latter portion is
further divided at the second surface, one
part being transmitted and the other re-
flected back along C,B to suffer refraction at
B and emerge in part from the plate again
in the direction BC, making an angle with
the normal equal to the angle of incidence.
The direction BC is therefore the same
as that of the light which is divectly reflected at the first surface. In
this direction we have therefore two streams of light, one coming
from the first surface by the reflection there of the incident light,
and the other emerging from the first surface after it has been re-
fracted into the plate and reflected at the second surface. This latter
stream of light having traversed the plate, will be retarded relatively
to the light which is reflected directly at the first surface. The two
streams will reinforce or weaken each other according as they are in
the same or in opposite phases.”

Fig. 98, —Thin Plate, Retanlation,

! This oxide is formed rapidly when the temperature is high, and the thickness
of the film depends so invariably on the temperature that artists are in the habit
of estimating the temperature by the colour developed. Thus steel in the process
of tempering is spoken of az having received a vellow heat or blue heat, ete.

? “This mode of explaining the phenomena of thin plates was pointed out by
Hooke in a remarkable passage in his Micrographia some years before the subject
was taken up by Newton. In this passage he very clearly deseribes the manner in
which the rings of successive orders depend on the interval of retardation of the
second ¢ pulse” or wave with respect to the first, and therefore on the thickness of

=Ty
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The ealeulation of the difference of phase of these two streams of
light is very simple. Draw B,D and BD, perpendicular to AB and
B,C, respectively. Thus B,D and BD, are the fronts of the incident
and refracted waves respectively. At the instant the light from D
reaches B the disturhance from B, has travelled to D, in the second
medium.  Accordingly the first pencil of light is about to leave the
surface at B along BC at the same instant as the refracted ray is
leaving D, to traverse D,C,B. The retardation is therefore

§=C,D, +C,B.

Produce B,C, to meet at E the normal drawn to the plate at B.
Then if » be the angle of refraction into the plate it is obvious that
BEC, =+ C,B = C,E, and therefore

d=DE=BEcosr=2ccosr,

where ¢ is the thickness of the film.

So far the theory seems to indicate that the brightness will be
greatest when the difference of path 2ecos» is an even number of half
wave lengths, and least when this difference is an odd number of half
waves, but the results of observation show that the conditions of light
and shade are exactly reversed.

Now if the difference of phase depends only on the difference of
path traversed by the pencils, when this difference vanishes (which is
the case when the thickness of the film is infinitesimally small) the two
pencils should be in the same phase and the illumination should be a
maximum. But we know that if at any point the thickness of the
plate is zero there will not be any light reflected there, and the point
will appear dark ; the light passes straight through. Hence we have
arrived at two opposite conclusions, and of these two the latter is
undoubtedly correct. The difference of phase therefore must depend
on something else as well as on the difference of path traversed by the
pencils, This second element is not far to seek.

It has been shown (Art. 57) that when a pulse travels along a row

the plate. But he does not seem to have had any distinet idea of the principle of
interference itself, aud his conception of the mode in which the colours resulted from
this ‘duplicated pulse’ is entirely erroncous. Euler was the next who attempted
to connect the phenomena of thin plates with the wave theory of light, but the
attempt, like all the physical speculations of this great mathematician, was signally
unsuecessful, and the subject remained in this unsetiled state until the principle of
interference was discovered by Young. When this principle was combined with the
suggestion of Hooke the wiwle mystery vanished. The application was made by
Young himself, and all the principal laws of the phenomena were readily and simply
explained ” (Lloyd, Elemenfairy Treafise on the Wave Theory of Light, third edition,
p. 138). -
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of halls (or a cord) and passes into another row of different density, it
is subdivided into two pulses, one traversing the second system and
the other reflected in the first system. Let us confine our attention
to the reflected wave. Suppose the first pulse to be propagated as a
forward displacement, then the reflected pulse will be propagated as a
displacement in the direction of propagation or the reverse, according
as the first system is less or more dense than the second. In the first
case the pulse is reflected without change of sign, in the second it is
reflected with change of sign. The displacement in one case is in the
opposite direction to that in the other, so that if the two were super-
posed they would neutralise each other. This is expressed by saying
that the waves are in opposite phases (see further, Art. 112).

Now.in the case of the thin plate, if the light at the upper face is
reflected in passing from a dense medium to a rare, then at the
second surface it is reflected in passing from rare to dense. The two
portions are reflected under opposite conditions, so that if one is
reflected without change of sign, the other is reflected with change of
sign, and the two reflected waves are in opposite phases. Accordingly
the aet of reflection under the opposite conditions introduces half a
period difference of phase. IHence the whole retardation is

2e cos v+ 4N

measured in the medium of which the plate is composed. If p be the
refractive index of the material of the plate, the air distance which
corresponds to this is

Dpe 08 7 SN

where A is now the wave length in air. The illumination of the plate
will consequently be a maximum if 2¢ cos r=an odd number of half
waves (measured in the plate), a minimum if 2e¢ cos r=an even
number of half wave lengths. If ¢=0, or the thickness of the plate
is infinitely small, the retardation is half a wave and the illumination
is & minimum, which agrees with experiment. If the wave length be
measured in air the brightness will be greatest when 2pe cos r is an
odd number of half wave lengths, and least when the same quantity is
an even number,

In the foregoing we have been considering homogeneous light—
that is, light of a definite wave length A. If, however, the incident
light is heterogeneous, and contains many wave lengths for which A, g,
and 7 are different, it will happen that the condition for brightness
will be satisfied by some of the constituent waves, while the condition
for darkness is satisfied by others. It follows, therefore, that in the
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reflected beam only some of the constituents of the original light will
be represented.

Thus when ordinary solar light is incident on a thin film the
licht which eomes from any point of it to the eye will not include
any of the wave length satisfying the equation (A being the wave
length in air)

2ue cOs 7=\

where n is any whole number. The light from this point will be
accordingly coloured, the colour at any point depending both on
the thickness of the film and on the angle of incidence. If the
angle of incidence or the thickness varies from point to point of
the film, corresponding variations of colour will oceur, but if the
incidence and thickness be constant, the colour will be uniform. If
the light returning from any point of the film be analysed in a spec-
troscope the spectrum will consequently be crossed by certain dark
bands corresponding to those waves which have been neutralised by
interference. The number and closeness of these dark bands will
increase with the thickness of the plate, and when the thickness
reaches a certain limit they become so fine and close that the
resolving power of the spectroscope may fail to separate them.
This means that interference has ceased to be observable by reason of
excessive overlapping. This overlapping increases with the thickness
of the plate, and leads to the obliteration of the bands, but it should
be remembered that interference takes place in thick plates just as in
thin, in the same way as interference exists in Fresnel's experiment
in the regions distant from the central line. The thinner the plate
the less the overlapping, and the more observable the phenomenon.
This overlapping will be diminished, and the limiting thickness of the
plate at which interference can be observed will be increased by
increasing the homogeneity of the light.

A simple case is that in which the film is a thin wedge bounded
by two planes inclined at a small angle. The lines of equal thickness
are parallel to the edge of the film, consequently with monochromatic
light it will appear crossed by a system of parallel bright and dark
bars, and with white light these are replaced by a system of parallel
coloured bands.

In general, however, it is not necessary to resort to any particular
contrivance in order to obtain interference fringes by reflection from
thin films. If a film of uniform thickness could be proeured it would
appear uniformly coloured when a beam of parallel light is reflected
from it. In practice, however, it is impossible to secure perfectly
plane surfaces, and the film of air enclosed between two so-called

{ ]"'.:'l.-'['.
lapping.

Fringes.
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parallel plates of glass is not of uniform thickness throughout. As a
consequence the film, instead of being uniformly coloured, generally
exhibits coloured fringes forming curves which encircle the points of
nearest approach of the plates. We are thus furnished with an
exceedingly delicate optical test of the planeness of the surfaces. On
pressing the plates closer together so as to reduce the thickness of the
film the bands dilate, showing how the colour at any point depends
upon the thickness of the film.

110. Influence of Dispersion on the Colour of a Film — Con-
dition for Achromatism.—The order of the colours in fringes pre-
sented by thin films (or the series of tints passed through by a film of
uniform thickness as the thickness is varied) may differ considerably
from that exhibited in the interference bands produced by the mirrors
of Fresnel and Lloyd. This arises from the fact that in the latter
case the path retardation (8) at any given point is the same for all
wave lengths, and consequently the phase retardation 8/A varies from
colour to eolour by reason of the variation of A alone. In the case of
a film, however, there is a second agency through which the phase
retardation may be altered, namely, the dispersion within the film,
and the change arising from this cause may be either of the same or
of opposite sign to that arising from the variation of A when there is
no dispersion, so that the colour effect may be either increased or
diminished by it.

Thus, let us consider a definite case in which a uniform film,
enclosed between two infinite media A and B, is viewed by an eye
gituated in A, and let a parallel beam of white light traversing the
medium A fall upon the film so as to be reflected to the eye in ques-
tion. In this case the angle of incidence is the same for all wave
“lengths, but the angle of refraction into the film is different for the
different colours. As a consequence the path retardation 2ecosr
varies from colour to colour, and the expression for the phase retarda-
tion for a given colour (namely, 2¢ cos r/A) varies both in its numerator
and denominator. When the variation of cos r is the same as that of
A for all values of A, the phase retardation will be the same for all
colours—that is, all the colours will be equally affected by interference,
and the dispersion in the film will have produced achromatism. This
will happen when

[ S
_;\ == ﬂnﬂﬁtﬂ.ﬂt.

and the corresponding angle of incidence is determined by this
condition, where A is the wave length measured in the film.
It can be easily seen that achromatism may be produced in this
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manner when the film is less refracting than the media between which
it i1s enclosed. For in this case the angle of refraction into the film
inereases with the refrangibility of the light—that is, » increases, or
¢os 1 diminishes, as A diminishes, and consequently there may be
some angle of incidence for which the variation of cos s is the same
as that of A from colour to colour, and cos /A may be the same
for all. When the film is more highly refracting than the enclosing
media, on the other hand, the value of cos+ diminishes as A in-
creases, and that the effect of dispersion in the film is to exaggerate
the colour effect which would be produced by the variation of A
alone.

At nearly perpendicular incidence the variation of cos# for the
different colours is very small, and the effect of dispersion on the
colour of the plate is not very sensible, but as the angle of incidence
approaches the angle of total reflection from the film, the angle of
refraction approaches 90% and the variation of cos# with A becomes
much more considerable, and may even pass the limit at which colour
compensation is produced. If perfect compensation should ocenr, the
bands produced by a film of variable thickness will be simply black
and white, and a uniform film will pass through alternations of black
and white as its thickness is varied.

In order that perfect achromatism may be produced it is clear that
the refractive index of the film must be related to the wave length in
some particular manner—that is, there must be a particular law of dis-
persion in the film. This law is contained in the achromatic condition
cos /A = const. Thus, if we write cos r = k), we have

sin®r=1 - A3,

and consequently if ¢ be the angle of incidenee (which in the foregoing
case is the same for all colours) at which achromatism oceurs, we have
sin r = p sin 4, where g is the refractive index of the film with respect
to the medinm A, and consequently the law of dispersion required is

psin® i=1 - N3,
which may be written under the more general form
P = BAZ,

It should be observed that the common case of a film of air enclosed
hetween two parallel plates of glass does not satisfy the conditions
demanded by the foregoing investigation unless some special contriv-
ance be adopted to cause the light to enter the glass so as to fall in a
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parallel beam on the film.1  If no such precautions be taken a parallel
heam of white light falling upon the first glass plate will be dispersed
within the plate, so that the angle of incidence on the film will vary
from colonr to colour, while the angle of refraction into the film will
be the same for all colours, and equal to the incidence on the glass
plate. In this case the light falling upon the film is not a parallel
beam of white light, but a dispersed beam, and the dispersion which
oceurs in the glass is corrected by an equal and opposite dispersion in
the film, so that the light within the film is a parallel beam of white
light. The path retardation 2e cos 7 is consequently the same for all
colours, and the phase retardation 2¢ cos #/\ varies to the full extent
from colour to colour without compensation of any sort. The series
of tints passed through by such a film, as its thickness is varied,
should therefore be the same as that presented in the interference
fringes produced by Fresnel's mirrors.

Eeample

If the refractive index u be related to the wave length A by the equation

[/}
M=k A2 (1)
prove that achromatism will be most nearly approached when®
cot? r= =) - (2}

[Colour compensation will take place when cos /A is stationary—that is, when
Asinvdr+cosydh=0 . : - - - (3)

But siné=sinr, therefore since 1 is the same for all colours, we have sin r/u=con-
stant, and consequently

peosrdr - sinpdp=0 . : : ‘ ; (4}
Combining (3) and (4) we obtain
ot Aedp
b= = o (5)
Now by equation (1) we find
e 2k 2
& e

consequently (3) reduces at once to the required relation (2).

! This may be easily arranged by using a prism and a plate (as in Fig. 99) instead
of two plates. A parallel beam of white light incident normally on one of the faces
of the prism will fall on the film as a parallel beam of white light, and it may be so
arranged that the reflected light falls normally on the second face of the prism so as
to emerge to an eye in air in the condition in which it leaves the film.

* Lord Rayleigh, Phil. Mag. vol. xxviii. p. 192, 1889 ; and Ency. Brif. Art.
“ Wave Theory.” _
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In the case of Chance’s ** extra-dense flint " glass

h=-084 x 10~ and for the sodium lines p=1"65,
A=5"89 x 10~%, consequently achromatism occurs when
r=79"30".]

111, More Complete Investigation— Multiple Reflections.— The
theory of thin plates as it came from the hands of Young laboured
under an imperfection which, however, was soon removed. Thus it is
easily seen that the intensities of the two portions of light reflected
from the two surfaces of the plate are not equal.l These two portions
therefore can never wholly destroy one another, and the intensity of
the light in the dark rings can never entirely vanish, as it appears to
do when homogeneous light is employed. Poisson was the first to
point out and to remedy this defect in the theory. It is evident,
in fact, that there must be an infinite number of partial reflections
within the plate, at each of which a portion is transmitted, and
it is the sum of all these portions that must be taken into
account.

In the foregoing discussion we assumed that the only light which
emerged from the plate along BC (Fig. 94) is that ray which after
refraction at B, is reflected at C,. It is obvious, however, that there
is a multitude of other rays which
also emerge in this direction. For if
we take BB, = B,B,=B,B,, ete,, it is
clear that a ray incident at B, will
after refraction pass along B,C,B,C,B
and part of it will emerge at B along
BC. Similarly a ray incident at B, :
will, after alternate reflections at the Fig. 94.—Multiple Reflections.
two surfaces of the plate, emerge in part along BC. It is thus
evident that the complete stream of light which issues along BC
from the interior of the plate consists of several parts, the first of
which is by far the most powerful and the others diminish rapidly to
zero. The foregoing calenlation is therefore only approximate, and it
becomes necessary to calculate each of the components and to sum
their effects. If the retardation suffered by the ray A B,C, in the
plate is 8, we have & = 2¢ cos 7, and it is obvious that the retardations
of the consecutive rays incident at B,, B,, B,, ete., are 23, 35, 44, etc.,
respectively. We thus know the phases of the components as they
arrive at B, but to caleulate their joint effect it is necessary also to

! The condition for the equality of these two portions wonld violate the condition
of Art. 112,

N
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know their amplitndes. For this purpose it is necessary to examine
the relation connecting the reflection and refraction coefficients,

112. Relation connecting the Refleetion and Refraetion Co-
efficients.—If the amplitude of the incident ray AB be 4, then the
amplitude of the reflected ray BC may be denoted by ab where 0 is a
proper fraction ; similarly the amplitude of the refracted ray may be
denoted by ac n-hm ¢ ¢ 1s some other proper fraction.! Thus if a ray of
amplitude « be ineident at B along AB (Fig. 95), it will give rise to
two rays BC and BD of amplitudes ab and ac respectively, and if these
rays be reversed they should combine again to
give a ray along BA of amplitude . But if
we reverse BC it will give us two rays, one re-
flected along BA of amplitude «#* and another
refracted along BE of amplitude albe. Now in
reversing the ray BI) we cannot suppose that
the amplitudes of its reflected and refracted
components are obtained by multiplying its own
amplitude by b and ¢ respectively, for it is

Fig, 0% —Refleetion and Re- i E
© fraction Coeflicients. passing from the lower to the upper I]lﬂdlllm,

whereas the ray AB passes from the upper to the lower. We will
therefore suppose that the components of BID reversed, along BJ‘L and
BE, are a¢f and ace respectively. We must then have

acfralf=a,

and
ace + abe =10,

since the two rays BC and BD reversed must give a ray along BA
alone of amplitude «. The above equations give

ef=1-F=1-~¢,

and
b= =g,

The last equation, if the incidence is ¢ in one medium and r in the
other, shows that the amplitude of the ray arising from reflection at
the surface in passing from the upper medium to the lower iz equal to
the amplitnde of the reflected ray which would arise if the same ray
were reflected in passing from the lower medinm to the upper, but of
opposite sign.  The refleetion under the different conditions therefore
changes the phase of the vibration by half a period. There is half a

! This investigation was given by Stokes (**On -the perfect Blackness of the
central Spot in Newton's Rings,” Cambridge and Dublin Math. Jowr. 1849, vol, iv,
e 1 or Matlhematical and Physical Papers, vol. ii. p. 89).
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wave lost by one relatively to the other. DBeyond the critical angle
we have f=0, and e=1.

If the amplitude of the light incident at B is «, and its phase o,
the amplitude of the reflected vibration is ab, and its equation is

w=ab sin ¢,

if we assume that no change of phase is introduced by the act of re-
flection,! while the equation of the vibration reflected in passing in the
reverse direction DE—that is, from the second medium to the first—is

y= —ab sin ¢.

Cor.—Using the energy equation of Art. 68 we obtain at once

p 1-F sin 2»
o i 2

Hence by the equation (1 — #*)=¢f, we have

£ _p'sin 2r
¢ psin 2
as the relation connecting the refraction coeflicients ¢ and f.
Using Fresnel’s form of the energy equation, we have

J_tan & ucos
¢ tanr - cosi

and using MacCullagh’s, we have

f_sindr  cosr

¢ sin 2 pcosi

113. Caleculation of the Intensity.— We can now caleulate the
intensity of the light reflected from the plate.

The amplitude of the light which emerges at B (Fig. 94) after
incidence at B, is acef, and its phase is ¢ + & ; similarly the amplitude
of the light which emerges from B along the path B,C,B,CB is
are’f, and its phase is ¢+ 26, The amplitude of the next ray is
aee’f and its phase is ¢+ 38, The equations of these vibrations are
yy=acef sin (p +8), ¥, =ac’f sin (b + 28), ;;,,:m:fj"_lf sin (¢ + né).
Their sum 1s, writing - b for e,

G f‘f [62sin (¢ + 8) + b sin (b +28) + L sin (p+38)+ . . . ].

L Stokes shows that the same relations hold between «, ¢, ¢, 7, if reflection and
refraction are aecompanied by a change of phase, p. 183 #nfia.
2 Bir G, Anvy, Trans, Camb. Phil, See. vol, iv. p. 419, 1830,
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The expression inside the bracket may be written by expansion in the

form
P sin ¢+ () cos ¢,

where
P=Feosd+bcos26+-WPeosBas+ . . .

aml
Q=050 6+ M sin 26+ M5 sin 36+ .

o ; & —und
Therefore wnting cos #d in the form é{em re ), we find

28, 46,00 T T L R

ol -5 o
e e cos § — 02
3 E(1 - Er“e:"s) % %( l.__ ;;;,,"3) _4521 — 20# pos &4 b

0= I sin &
Y= 2 cos 5 4 B

P=4(0%° + b

Similarly

Now the equation of the resultant displacement due to the two
streams of light along the direction BC is

=absin ¢ — (I sin ¢ + () cos "ﬁ]ﬂ%f

=X sin ¢+ Y cos ¢
where

e eos §—IF _ ab(l + ) sin® §d
K=ab=alef; o cmad it 1= cos b

since ¢f =1 = ", and similarly

- aboy sin & — ab(1 - 1¥)sin
1-20Fcos 6% 1-20cosd+ 0"

Hence

4o b7fzin® 18

SR e e

— 11 + 5)* sin® 15 + (1 — °)* cos® 30}

- e ¥sic 40
" 1-28cos 5+
Now the vibrations y=X sin ¢, and y=Y cos ¢ denote two whose
difference of phase is 90°, therefore the amplitude of the resultant vibra-
tion is &/X*+ Y% or the intensity of the resultant light in this case is
measured by X?+ Y2 Hence the expression for the intensity is
4a”b* sin® 46 4a®l sin® 15

I=1 o cos 6+ 18 (1 — 122 + 4b° sin® 15,
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where & is the phase retardation and is given by the equation
2,
i= = e cos 1,

and A is the wave length in the material of the film. The intensity
will be zero when 6= 2nr—that is, when

2e cos F=u\.

Hence when 2e¢ cos r is any even number of half wave lengths, there
is no light of wave length A reflected from the plate. The light re-
flected from the upper face is entirely destroyed by that reflected from
the lower, and the plate appears perfectly black.

Again, the second form of the value of I shows at once that it is
greatest when 8=, or any odd multiple of =, for in this case sin }é=1
and dividing above and below by sin® 1§ it appears at once that the
denominator is at its least value. The whole fraction is therefore at
its maximum value.

It follows then that if

A
2¢ cos r=(2n+1)

the two streams of light are in the same phase, and the plate appears
brilliantly illuminated.
The maximum illumination is measured by

" Y=l
|:|_ 2 !‘2}2-

This investigation of course applies only to light of a definite wave
length. If solar light is used some of these waves will attain their
maximum value while others are at their minimum and absent altogether,
and the resultant light from the plate will be a mixture of colours
which will vary with the thickness of the plate and the angle of
incidence. For example, if 8 and ¢ are such that the red light is
absent from the emergent beam, then the film will appear of a bluish-
areen hune. By altering the angle of incidence the light of any
particular wave length may be extinguished, and the colour of the
film will vary accordingly.

114, The Transmitted System.—So far we have taken no account
of the light which passes completely through the film, and this we
should @ prieri surmise to be complementary to that which is reflected,
and therefore the appearance of the film as seen by the transmitted
light should be exactly complementary to the appearance presented
under the same condition by the reflected light. For the whole light
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incident on the plate is divided into two portions, one of which returns
from the first face, while the other emerges from the second. That
this surmise is supported by theory will be readily seen. Consider
all the light which emerges from the plate at C,. The first ray is
A,B,C,.  Its amplitude is acf, and if its phase at C, is ¢, the equation
of its vibration on leaving C, is

=l sin ¢.

The next ray which we must take account of is A ,B,C,B,C,, which
after incidence at B, is reflected at C, and B,, and finally comes to C,.
This ray reaches D, (the foot of the perpendicular from B, on B,C,) at
the instant the ray A, B, reaches B, consequently the difference of path
is D,C, + C,B,, which is as before, 2¢ cos . The difterence of phase at
C, corresponding to this! will be 2=/ . 2e cos », which we have already
denoted hy 8. The equation of the vibration is therefore

1 = wefes sin (¢ + ).

Similarly the equation of the vibration which comes from B, along the
path B,C,B,C,B,C,; will be

o= ncfed sin (¢ + 28),
and so on.
Summing the series as bhefore, and remembering the relations
b= —¢and ¢f=1 - ¥, we find for the square of the amplitude of the

resultant vibration
a1 - b2y

b = ey

The intensity of the transmitted light will therefore be a maximum
if 6= 2um, for then cos = + 1 and the denominator of the expression
for 1" is least, This greatest value of I is simply ¢®. The maximum
value then of the transmitted light is equal to that of the incident,
and takes place when 2¢cosr=ud, but in this case we have found
that the intensity of the reflected light is zero. The transmitted light
then is a maximum when the reflected light is zero.

Similarly the transmitted light is a minimum when the reflected
light is greatest, for when cos §= — 1, the denominator of the expres-
sion for I' will be greatest. The least value of 1" is then when
8= (2n + 1), or 2¢ cos r=(2n + 1)1A, and
a1 - i#)?

min. I'= A+

The transmitted light is then never zero, but is always such that when

! A is here the wave length in the plate.
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added to the reflected light their sum will be equal to the incident
light, for we have always

1T _ 4a®h sin® 36+ o*(1 - )2
s = 1 — 26°cosd -+ i

L]
= .

The transmitted and reflected lights are therefore always comple-
mentary, or the sum of the lights which come from the two faces of
the plate will exactly make up the incident light. The difference
between the maximum and minimum intensities is the same in both
cases—rthat is, the total variation is the same but the percentage varia-
tion is much greater in the reflected system, and the phenomena are
consequently much better marked.

Ezample

Show that if a change of phase is introduced by the act of reflection or
refraction, the equations
b+e=0, ef=1-1

still hold, and that the sum of the accelerations of phase at the two reflections is
equal to the sum of the accelerations at the two refractions, and the accelerations at
the two refractions are equal to each other (Stokes, Math, and Phys, Papers, vol, ii.
p. 83

[If the ineident vibration be asin 8, the reflected and refracted «bsin (8 +3) and
a¢ sin (# + ) respectively, then on reversal the signs of 3 and 4 must be changed, so
that we have

bsin(0=F+y)4esin{@-y+¢)=0,

and er'sin (0 - y+ @) =(1 - 1) sin f.

Fach of these equations must hold for general values of #, so that the angles added
to it in the two terms of these equations must either be equal or differ by some
multiple of =.  We may therefore take

¢==, and therefore ¢r=1 -1,

and BH+e=2% 1 be=0.]
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SECTION II.—ThE CorovreEp RiNgs oF THIN PLATES

115. Newton’s Rings.—It has been already mentioned that when
two pieces of ordinary plane glass are pressed together the thin film of
air enclosed between them generally
exhibits a series of highly coloured
fringes running in curves round the
point of nearest approach of the glasses.
When one of the pieces of glass has a
spherical surface while the other is
plane, as shown in Fig. 96, the layers
of equal thickness in the film form a
system of concentric cireles around the
point of nearest approach, and, when
viewed in ordinary daylight, a system
of highly coloured rings are seen encircling the eentral spot. These
appearances are known as Newton’s rings,! and they form one of the
most beautiful and easily produced examples of interference.

The laws according to which these rings are formed are very easily
deduced by remarking that the thickness of the film varies approxi-
mately as the square of the distance from the point of contact. Thus
if OQM be the spherical surface (of radius R) of which the lens is a
part, and O its point of contact with the plate of glass, then

Fig. i, —XNewton's Rings.

OP2=PQ x PM=2Re,

since PM is very approximately equal to 2R, the diameter of the
sphere, and P'QQ =e¢ the thickness of the film at P. Now the film con-
sists of circular rings of uniform thickness. Thus at all points of the
circle of radins OP around the point of contact the thickness of the
film will be the same, and equal to P). Denoting the corresponding
radius OP by p we have the general relation

p?=2Re,

I Newton, in studying the formation of these rings, ** took two object-glasses, the
one a plane-convex for a fourteen-foot telescope, and the other a large double convex
for one of about fifty foot ; and upon this laying the other with its plane side down-
wards I pressed them slowly together to make the colours successively emerge in
the middle of the circles” (Opticks, book ii. p. 172).

SEFIEL IRV SRR
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consequently if ¢ satisfies the equation
2¢ cos r=niA

the ring will appear bright or dark according as n is odd or even.
The radii of the bright rings are therefore given by

= [Eescr GaT )N,
and the radii of the dark rings by
p= /R secr.

when # is any whole number, and A is the wave length in the film.

If n=0, then p=0and the centre of the system is dark, as we should
have expected, since we have supposed that the thickness of the film
is zero at this point. The radii of the sucecessive bright and dark
rings are proportional to the square roots of the consecutive numbers,
the bright rings corresponding to the odd and the dark rings to the
even number,

Since the thickness of the film at any point varies as the square
of the distance from the centre, it follows that the thicknesses which
correspond to the successive rings are proportional to the natural
numbers, at the dark rings to the even numbers, and at the bright
rings to the odd.

These laws were arrived at with great accuracy by Newton ' him-
self, but he did not stop here. He found that in his experiments the
absolute thicknesses of the film corresponding to the dark rings were
TTETe Trsgos i, ete., when the angle of incidence was 4°. From
this we find A= 155 inch approximately, which corresponds to the
most luminous part of the spectrum in the neighbourhood of the
yellow. These measurements are the first from which the wave lengths
of light might have been determined, and Newton made use of them
for the purpose of ascertaining the length of a fit, his attention being
concentrated on the development of the emission theory.>

[i water instead of air be placed between the glasses the radii of
the rings are observed to be much smaller. This then is a proof that
light travels slower in water than in air, for here the thickness of

1 Newton, Opticks, book ii.

* ““If the rays which paint the colour in the confines of the yellow and orange
pass perpendicularly out of any medium into air, the interval of their fits of easy
reflection are the zzlsgth part of an inch.  And of the same length are the intervals
of their fits of easy transmission™ (Newton, Opficks, book ii. part iii. prop. 18).

For the thicknesses at the dark rings were &35, trebss, ete. This obviously
corresponds to half a wave length, so that we have for yellow light the first deter-
mination of A=g¢};5 in.

Wave
length de-
terminel,

Velocity
test.
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water required to retard one component on the other by a definite
amount is less than the thickness of air, which produces the same
result. The formula which determines the radii of the rings also
points to the same conclusion, for the wave length in any medium is
proportional to the velocity, and we infer that the radius of any ring
varies approximately as the square root of the velocity in the film
when the incidence is nearly normal. Thus, from the contraction
exhibited by the rings when water or any other fluid replaces air
between the lens and plate, it is possible to compare the velocities of
light in these media.

When violet light is used the rings are smaller! than with red
light, and the theory points out that the ratio of the radii are as the
square roots of the wave lengths ; hence we have again arrived at the
conclusion that the violet waves are shorter than the red, and we can
again not only compare their magnitudes, but absolutely determine
their lengths in any given substance.

When ordinary solar light is used a series of iris-coloured rings
are exhibited, violet at the inner and red at the outer edge. The
order of succession of the colours laid down by Newton ® from the
centre outwards for the successive rings was: (1) black, blue, white,
yellow, red; (2) violet, blue, green, yellow, red ; (3) purple, blue,
green, yellow, red ; (4) green, red ; (5) greenish-blue, red ; (6) greenish-
blue, pale red ; (7) greenish-blue, reddish-white. This list is generally
referred to as © Newton's Scale of Colours.”

Thus we read of the red or blue of the “third order,” meaning
thereby that red or blue which is seen in the third rainbow-coloured
ring which encireles the central dark spot.

With white light the alternations are few, for the coloured rings
soon hecome superposed and overlapped, so as to obliterate all traces
of interference and colour, and the rings fade gradually into uniform
illumination.

116. The Transmitted Rings.—The rings we have spoken of so
far are produced by the interference of the streams of light reflected
from the two surfaces of the thin film. It is obvious that the light
transmitted through the film shonld also exhibit interference pheno-
mena, but of a complementary character, the maxima and minima
of one system corresponding to the minima and maxima of the
other. Thus when the film is looked at from the other side a system of

! This may be observed (following Newton) by illuminating the glasses with
light from different parts of the spectrum, or more simply, by looking at the rings,
formed by ordinary light, throngh differently coloured glasses.

* Opticks, book ii. obs. 4 ; see also table, p. 228,
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rings is observed, complementary in character to those observed by
reflection, and consequently encircling a white centre. These rings
are much paler than the reflected system, for on account of the great
difference in the intensities of the interfering pencils,' there are no
points of absolute darkness, so that the bright rings do not stand out
so prominently as.in the reflected system.®

If the two ring systems are viewed at once it follows that uniform
illumination should be the result. This
has been verified by Arago.® Placing a
glass plate and lens in contact in a
vertical position over a horizontal sheet
of uniformly illuminated white paper, an
eye situated at E (Fig. 97) will receive
light from B by reflection at C, and also
light from A by transmission. DBoth the reflected and transmitted
systems are in the field of view, but being exactly complementary, the
result is uniform illumination.

Specimens of ancient glass sometimes show transmitted colonrs of
areat brilliancy. Brewster's explanation is that owing to superficial
decomposition of the glass we have here to deal with a series of thin
plates of nearly equal thicknesses. With such a series the transmitted
colours shonld be much purer, and the reflected much brighter than is
usual with a single plate.?

117. Rings with a White Centre.—The system of rings pro-
duced by the transmitted light as we have observed starts from a
white centre, but the feature of the reflected system is that their

! When light is incident perpendicnlarly on glass about 4 per cent is reflected ;
the intensity of the first reflected beam is therefore about o5 of the incident beam.
The rest enters the glass and loses 4 per cent again by reflection at the second
surface, so that (96)% or “92186 of the original light passes through. The light trans-
mitted after being twice reflected inside the plate is I(-96)* (#%)% or about } per cent.
That four times reflected inside will only be 15 of this, and so on.  The diffienlty
then is to understand how such a small quantity of light when superposed on the
strong direct beam should produce any perceptible rings at all. However the
intensity of the weaker beam is (3%)? if the intensity of the stronger is unity, hence
the amplitude of the weaker is &', and the maximum and minimum intensities in
the transmitted beam will be

{l:l:.;,'_-‘ :"-'= 1 :t'."::- ey

so that the difference is as much as & of the stronger beam. (For the complete
calenlation see Art. 113.)

? Noticed by Newton, Opticks, book ii. obs, 9.

® Arago, (Euvret complifes, tom. x. p. 16 (note).

1 The analytical investigations of Stokes for a pile of plates ( Proc. Roy. Soe. vol. xi.
p. 545, 1860) may be applied to this question.
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central spot is black. The theory accounts for the black spot by
showing that the two interfering streams of light are reflected under
different conditions, one in passing from dense to rare, and the other
in passing from rare to dense, the result being that a difference of
phase of half a period is introduced between the two beams.
l.et us now consider the case of two plates enclosing a film of a
refractive index intermediate between those of the plates themselves.
Thus suppose the film to be denser (more refracting) than the first
plate, and less refracting than the second plate, then the reflection at
the first surface of the film will take place when the light is passing
into a more refracting medium, and the same will be the case at
the second surface also. The light is therefore reflected under
similar cirenmstances at both faces, and no difference of phase is
introduced. It follows, then, that in the system of rings formed
under these cireumstances the central spot should be white.

Young verified this anticipation of the theory by enclosing oil of
sassafras between two lenses, one of which was of flint glass, and the
other of crown glass. By this experiment Young justified the hypo-
thesis of the loss of half an undulation.

The oil of sassafras may be replaced by a mixture of essence of
cloves and essence of laurels. If the film be of higher index than the
object-glasses between which it lies, the eentre of the rings should still
be black. Arago verified thizs by using oil of cassia, of which the
index is superior to that of flint glass.

When the third medium differs from the first, the theory of thin
plates becomes more complicated. In one case, however, no colours at
all should be exhibited, viz. when the film is backed by a perfect
reflector, such as polished silver covered with a film of gelatine. In
this case the waves are veflected in fofo, so that the reflected and trans-
mitted systems become superposed.

118. Conditions for Large and Bright Rings.—The formmula of
Art. 115 shows that the diameter of the nth ring increases with
the radius of curvature of the lens—that is, with the tenuity of the
film. Hence, in order to obtain wide rings, a lens of very small
eurvature should be employed, but with a given piece of apparatus
there is still another factor to be considered in estimating the magni-
tude of the rings, viz. the angle of refraction into the film. The
diameters of the rings depend on the secant of this angle, and they
therefore increase with it. With a simple piece of apparatus, such as
that shown in Fig. 96, when the angle of incidence is increased, there
is great loss of light by reflection at the first or upper surface of the
glass, and only a small fraction of the incident beam reaches the film,
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so that a large angle of incidence is detrimental to brightness, and the
rings obtained will be very faint. This difficulty may be avoided by
using a prism and a lens, as shown in Fig. 98, instead of the plate and
lens employed by Newton.
One face of the prism is
placed on the eurved surface
of the lens so that light falling
nearly perpendicularly on one
of the other faces will enter
the prism in large quantity,
and in such a direction that
the angle of refraction into the
film is also large. Viewed through the third face of the prism the
rings obtained in this manner are both bright and large. The same
result is obtained with a glass plate and a prism having one face
polished into a spherical form of small curvature.

The chief peculiarity of the rings obtained in this manner is
not so much the brilliancy, or the diminished influence of the
thickness of the film, as the more or less perfect achromatism
produced by dispersion, especially in the neighbourhood of total
reflection, so that the bright rings are nearly white instead of being
highly coloured. This happens because the more refrangible rays
are more deviated by the prism, and therefore ‘enter the film at
a greater angle, so that for a given thickness of film they have a
smaller path retardation, as explained in Art. 110. This means
that the dispersion increases the diameters of the rings corresponding
to the more refrangible rays, and when the diameters of the rings of a
given order are the same for all wave lengths there is perfect achro-
matism, and the rings are black and white. This compensating effect
of dispersion diminishes the confusion which arises from overlapping,
and increases the number of visible rings. As the incidence augments
the violet rings may become larger than the red, and a reversal of
colour occurs. This takes place near total reflection, which happens
first for the violet light, and is attended by a rapid change in the value
of cos r (see further, Art. 120).

119. Examination of Newton's Rings through a Prism.—When
Newton’s rings are examined through a prism some remarkable pheno-
mena are exhibited. They are described in his twenty-fourth observa-
tion, Opficks (book ii.) :—

Fig. &,

* When the two ohject-glasses are laid upon one another so as to make the rings
of the colours appear, though with my naked eye I conld not diseern above eight or
nine of those rings, yet by viewing them through a prism I could see a far greater

!

Achro-
matising
eflect of
lispersion.
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multitude, insomueh that I conld number more than forty . . . and I believe that
the experiment may be improved to the discovery of far greater numbers. . . . But

it was on but one side of these rings, namely, that towards which the refraction was
made, which by the refraction was rendered distinet, and the other side became more
confused than when viewed with the naked eye. . . .

““The ares where they seem distinetest were only black and white successively,
without any other colonrs intermixed.

[ have sometimes so laid one object-glass upon the other that to the naked eye
they have all over seemed uniformly white without the least appearance of any of the
coloured rings ; and yet by viewing them throngh a prism great multitudes of those
rings have discovered themselves. Andin like manner plates of Muscovy glass and
bubbles of glass blown at a lamp furnace, which were not so thin as to exhibit a
great variety of them, ranged irregularly up and down in the form of waves. And
so bubbles of water, before they began to exhibit their colours to the naked eye of a
bystander, have appeared through a prism, girded about with many parallel and
horizontal rings ; to produce which effect it was necessary to hold the prism parallel,
or very nearly parallel, to the horizon, and to dispose it so that the rays might be
refracted upwards, ™

Newton attributes these “odd ecircumstances” to the dispersing
power of the prism. The blue being more refracted than the red, it
is possible that the nth blue ring may be so displaced relatively to the
nth red ring that, at part of the circumference, the displacement may
compensate for the difference of diameters. A white strip may thus
be formed in a situation where without the prism the mixture of
colours would be complete, so far as could be judged by the eye.

A simple case is that in which the thin film is a wedge bounded
by plane surfaces inclined at a small angle. If the edge of the prism
is parallel to the intersection of the faces of the plate, by drawing back
the prism it will be possible to adjust the effective dispersing power
50 as to bring the ath bars to coincide for any two assigned colours,
and therefore approximately for the entire spectrum. The formation
of these achromatic bands depends upon the same principles as the
fictitious shifting of the centre of a system of Fresnel’s bands when
viewed through a prism (Art. 104).

120. Herschel's Fringes.—A very simple and effective method of
obtaining coloured fringes by reflection from a thin plate of air was
first pointed out by Sir William Herschel.! On a perfectly plane
piece of glass or a metallic mirror, before an open window, place an
equilateral prism. The light falling upon the exposed face of the
prism is reflected at the base and emerges from the other face (Fig. 99).
To an observer looking in through the latter face the field appears
divided into two parts, one brightly illuminated, which arises from
the occurrence of total reflection at the base of the prism, and the
other comparatively dark, the light there being partly transmitted.

b Sir William Herschel, Phil. Trans, 1809, p. 274.
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The line of separation of the two parts would be circular to an eye
situated in the prism, but the apparent shape of the curve seen by the
eye outside is the distorted form of a circle seen by refraction through
the prism. Since total re-
flection occurs at slightly
different inecidences for
the different colours, it
follows that the curve of
separation will be iris-
coloured.  Inside this
coloured band, and run-
ning parallel to it, we
have, in addition, a
system .of beautifully
coloured fringes, the breadth and number of which vary with every

change of pressure.

These bands do not require for their formation a perfect polish
in the lower surface nor extreme thinness in the air film, for they
may be seen very well when the prism is separated from the lower
plate by the thickness of thin tissue paper or a fibre of cotton wool.

That excessive thinness of the air film is not necessary to the
production of tolerably broad fringes when the angle of incidence
approaches the angle of total reflection may be inferred at once from
the expression 2ecos r, which gives the path retardation of the
interfering pencils in the case of a film of thickness ¢. Near the
critical angle r is nearly 90°, and cos r is very small, so that the
retardation may be small even with a sensible thickness of film.}

When the prism and plate combined are held up to the light a
transmitted iris is seen, lined with a similar system of fringes, on
looking through the plate and the base of the prism.

The experiment may also be conducted by merely looking through
two prisms placed in contact (Fig. 100). In this form it was repeated
by H. F. Talbot.> If the prisms be equal, isoseceles, and right-angled,
then when placed with their hypothenuses in contact their ends will
form squares. Looking through the combined prisms at the sky, a
system of bands is seen, and looking at the interface so as to see the

I These fringes may also be obtained very conveniently from a film of air enclosed
between two plane glass plates which are separated by two fragments of the same
thread of platinum wire (about % mm, in diameter), cemented around their edges,
anid plunged vertically in water contained in a rectangular glass vessel in the manner
deseribed in Art, 83,

= H. F. Talbot, Phil. Mag. 1836, p. 401.
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light reflected there, another system is observed, the latter being
complementary to the former.

Fox Talhot describes a modification of the experiment as follows :—
“But the beauty of the appearances may be surprisingly increased by
transporting the apparatus into
a dark chamber and suffering a
peneil of the brightest solar light
to pass through the prism, or to
be reflected from the face AC.
If then a sheet of white paper be
held up, at any distance from the
prism, the coloured bands are
depicted upon it with the greatest
vivacity and distinetness. The

Fig. 100. transmitted bands have altogether
a different charocter from the reflected ones, so that it is impossible to
mistake one for the other, even without reference to the path of the
T'JI}T.

“The coloured bands are not, as has been supposed, isochromatic
lines. The deviation is sometimes very marked, so that a band in the
course of its progress acquires very different tints from those which it
possessed originally.  This fact may be considered of some importance
with respect to the theory. It takes place when the prisms are in
close contact and the bands few in number. But the following is still
more deserving of attention. When the contact of the prisms is
diminished by interposing a hair between them (still pressing them
together), the coloured bands depicted upon the paper become more
numerous, narrow, and crowded. Frequently they alternate a great
number of times with two complementary colours. This appeared to
me so remarkable that 1 repeated the experiment with additional
care. The radiant point of solar light was made smaller by trans-
mitting the ray through a lens of short focus, and the position of the
combined prisms was slowly altered by turning them round their
centre. The appearance of the bands on the paper was all the time
carefully noted. 1 soon found a position of the prisms in which
the remarkable phenomenon oceurred of a complete ecompensation of
colour—that is to say, that the bands were black and white. At the
same time they were become exceedingly narrow and numerous. .
They resembled more than anything else the closely-ruled parallel
lines by which shadows are produced in some kinds of engraving, and
which are often employed in maps to represent the sea.

“Now it requires in ordinary cireumstances the employment of
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very homogeneous hght, in order to produce bands anything like these
in number and distinctness. In the present instance, on the contrary,
common solar light was employed. . . . These bands are best seen in
the light reflected from the face AC.”

The achromatism here referred to is accounted for by the disper-
sion which takes place in the glass, and which becomes highly effective
when the light falls upon the film at an angle nearly equal to the
critical angle, so that the angle of refraction into the film is nearly 907,
as explained in Art. 110.

In the first place, it may be remarked that when the prism is
isosceles, so that the angle A is equal to the angle B, then a ray enter-
ing the first face AC (Fig. 99) at any angle will leave the second face
BC at the same angle, and consequently a heam of white light entering
the face AC will leave the face BC without dispersion. In other
words, the dispersion produced in the angle A will be compensated in
the angle B. The funection of the prism is therefore to vary the angle
of refraction r into the film in such a way that cosv/A is approxi-
mately the same for all the colours. When A is not equal to B there
will be a further displacement of the fringes such as would be produced
by regarding them through a prism of angle A—B, as described in
Arts. 105 and 119.

Let the angle of incidence on the first face of the prism be ¢, and
the corresponding angle of refraction #;. Then if i and » be the angles
of incidence and refraction for the film, we have

sing,=psinr, {1)
sinr=gsiné . ; : . ; . 2y
i+ =A (3)

where p is the refractive index of the prism, and the film is supposed
to be air. When the film is other than air, equation (2) can be
modified accordingly. These equations combined with the achromatic
condition

s 7

—, —vomst. . : : i - - (4]

determine the angle of incidence at which achromatism takes place,
when the law of dispersion in the glass is known.

Thus in Talbot’s form of the experiment a parallel beam of white
light was used, so that i, is the same for all wave lengths ; hence hy
differentiating the foregoing equations we obtain

o cos rliry Hsinrdp =0 | : : ; - SRy
pcos tli + sinddp = cos rdi . : : : L
ditdr, =0 . - : - : = ran

A sinpde 4 cos rdh =10 (47

0]



104 NEWTON'S RINGS CHAP, VILI

Combining these equations we obtain at once M. Mascart’s relation !

- gim A i
col= = -

which may be written in the equivalent form *

sin A A adu

P o0 R Lt
HERS sy cos ey u ok

The foregoing applies to Talbot’s form of the experiment in which
the angle of incidence 7, is constant, and all the light of a given colour
is refracted at the same angle, so that the bands arise from variations
of the thickness of the film, such as when a hair is placed between the
prisms to produce a wedge-shaped film.

In Herschel's form of the experiment the prism is placed before
the open sky, so that the angle of incidence is variable and light of a
given wave length is not all refracted at the same angle. These bands
are broad and richly coloured, and they are produced near the limit of
total reflection by the variation of the angle of incidence when the
thickness of the film is constant. Of course bands of an intermediate
character are produced when the angle of incidence and the thickness
of the film both vary.

The theoretical condition for constant thickness is better satisfied,
if, after Mascart, we place the layer of air in the focus of a small
radiant point (electric arc). In this case the area concerned may be
s0 small that the thickness in operation can scarcely vary, and the
ideal Herschel’s bands are seen depicted on a screen held in the path
of the reflected light. It will, of course, be understood that bands
may be observed of an intermediate character in the formation of
which Dboth thickness and incidence vary. Herschel’s relate to one
particular case—that of constant thickness; Talbot’s to the other
especially simple case of constant angle of incidence.

From the present point of view there is one very important dis-
tinction, because one is achromatic and the other i1s not. To under-
stand this, we follow Herschel's bands in greater detail.

In the same notation as before

d=2e cosr=nh,
and the question to be investigated is the relation of i, ton. The

band of zero order (n=0) occurs when »= 907 that is at the critical
angle. For two successive bands we have

nh=2ecosr, (#4+1A=2ecos (»+dv),

! M. Mascart, Traité d' Optique, tom. i. p. 449,
* Lord Rayleigh, Phil. Mayg. vol. xxviii. p. 196, 1889.
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therefore
A= = 2¢ sinrdr.

Also

cos §di; = p cos iy,
50 using previous results we find

[EeOBTy  —COST -k ax Cos 1, 3
cosi, =~ peosi  Zesinry  46% cosipcostsing

diy =

Near total reflection sinr =1, (¢.p.) and the factors cosr,,cos?,, cosi
vary but slowly with the order of the band and also with the wave
length. Hence the width of the band is approximately proportional
to the order, the square of the wave length, and the inverse square
of the thickness.

When the light is white, the centre of the system will be where
there is coincidence of bands of the order # in spite of the variation of A
About the achromatic centre thus determined the visible bands will
be grouped. At the central band = is the same for the various colours,
consequently the widths of the various systems are at this place
approximately proportional to A*. Hence these bands are less achro-
matic than ordinary bands or Newton's rings, in which the width is
proportional to A, and this theoretical conclusion is in harmony with
observation (see Lord Rayleigh’s paper, Phil. Mag. Sept. 1889).

Newton's Observations on the Colowved Rings of Thin Plates

Opticks, book ii. part i. obs. 4: *‘I took two object-glasses, the one a plane-
convex for a fourteen-foot telescope, and the other a large double convex for one
of about fifty foot ; and upon this laying the other with its plane side downwards I
pressed them slowly together, to make the colours successively emerge in the middle
of the circles, and then slowly hfted the upper glass from the lower to make them
successively vanish again in the same place. The colour, which by pressing the
glasses together emerged last in the middle of the other colours, would upon its first
appearance look like a cirele of a colour almost uniform from its cireumference to its
centre, and by compressing the glasses still more, grew continually broader till a new
colour emerged at its centre, and thereby it became a ring encompassing that new
colour, And by compressing the glasses still more the diameter of this ring would
increase, and the breadth of its orbit or perimeter decrease until a new colour emerged
in the centre of the last ; and so on until a third, a fourth, a fifth, and other follow-
ing new colours suecessively emerged there, and became rings encompassing the
innermost colour, the last of which was the black spot. And, on the contrary, by
lifting up the npper glass from the lower, the diameter of the rings would decrease,
and the breadth of their orbit increase, until their colours reached successively to the
centre ; and then by being of a considerable breadth, I could more easily discern and
distinguish their species than before. And by this means I observed their succession
and quantity to be as followeth.
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““ Next to the pellucid central spot made by the contact of the glasses succeeded
blue, white, vellow, and red. The blue was so little in quantity that I could not
discern it in the cireles made by the prism, nor could I well distingnish any violet
in it, but the yellow and red were pretty copious, and seemed about as much in
extent ag the white, and four or five times more than the blue. The next eireuit in
order of colours immediately encom passing these were violet, blue-green, yellow, and
red ; and these were all of them copious and vivid, excepting the green, which was
very little in quantity, and seemed much more faint and dilute than the other
colours, Of the other four the violet was the least in extent, and the blue less than
the yellow and red. The third eircuit or order was purple, blue, green, yellow, and
red ; in which the purple seemed more reddish than the violet in the former cireuit,
and the green was much more conspicnous, being as brisk and copious as any of the
other colours exeept the yellow ; but the red began to be a little faded inclining very
much to purple. After this succeeded the fourth circuit of green and red. The
green was very copious and lively, inclining on the one side to blue and on the other
side to yellow. But in this fourth cireunit there was neither violet, blue, nor yellow,
and the red was very imperfect and dirty. Also the other colours became more and
more imperfect and dilute, till after three or four revolutions they ended in perfect
whiteness,”

“ Obs, b.—To determine the interval of the glasses, or thickness of the inter-
jacent air, by which each colour was produced, I measured the diameters of the
first six rings at the most lucid part of their orbits, and squaring them, I found
their squares to be in the arithmetical progression of the odd numbers, 1, 3, 5, 7, 9,
11. And since one of these glasses was plane and the other spherical, their intervals
at those rings must be in the same progression. [ measured also the diameters of
the dark or faint rings between the more lucid eolours, and found their squares to
be in the arithmetical progression of the even numbers, 2, 4, 6, 8, 10, 12.  And it
being very nice and diffieult to take these measures exactly ; I repeated them divers
times at divers parts of the glasses, that by their agreement I might be confirmed in
them. "

“Obs. 10.—Wetting the object-glasses a little at their edges, the water crept in
slowly between them, and the cireles thereby became less and the colours more faint ;
insomuech that as the water erept along, one half of them at which it first
arrived would gppear broken off from the other half, and contracted into a
less room. By measuring them I found the proportions of their diameters to the
diameters of the like cireles made by air to be about seven to eight, and consequently
the intervals of the glasses at like ecircles, caused by those two mediums water
and air, are as about three to four. Perhaps it may be a general rule that if any
other medinm more or less dense than water be compressed between the glasses,
their intervals at the rings caused thereby will be to their intervals caused by
interjacent air, as the sines are which measure the refraction made out of that
medium into air,”
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SeEcTioN III.—THE Corours oF THICK PLATES

121. Brewster's Bands.—\When a pencil of light falls in succes-
sion upon two transparent plates which are not very thin,! some of
the many portions into which it is divided by partial reflections at
their bounding surfaces are frequently in a condition to interfere and
produce coloured bands. These fringes were observed by Sir D.
Brewster 2 in 1815. The apparatus employed in the experiment con-
sisted of a straight tube (Fig. 101) blackened on
the inside and closed at one end by a disc con-
taining a small aperture O. Two uniform? glass
plates of equal thickness were placed near each
other at the other end of the tube, one of them o 16
being at right angles to the axis of the tube, and the other inclined to
it at a very small angle. This angle could be varied by means of a
micrometer screw.

In order to understand the formation of these fringes it is only
necessary to notice that when the aperture O is illuminated and
viewed through the plates the light which reaches the eye consists of
many distinet components arising from successive reflections within
and between the plates, and a corresponding series of images of the
source is consequently presented.

This series of images may be divided into a system of groups.
Those of the first group correspond to light that has traversed the
space between the plates once, so that they are formed by light that
has not been reflected from one plate to the other, but which may
have suffered reflection within either plate. The first image of this

1 A thick plate in optics means one of thickness large compared with the length
of a wave of light.

2 Brewster, Edinb. Trans. vol. vii. p. 435, 1815,

8 A plate of perfectly uniform thickness cannot be procured in practice, and it is
difficult to obtain plates sufficiently uniform to give good fringes by this method.
A plate of glass generally has its faces inclined to each other so as to form a prism of
very small angle. The lines of constant thickness in such a plate are approximately
rectilinear and parallel, and can be seen when the plate is viewed by reflection in
monochromatic light. The interference fringes follow the lines of constant thick-
ness, and if the plate be eut in two along a line perpendicular to the direction of
the fringes, the two parts when superposed by folding them round the line of
section will readily exhibit Brewster's bands, for in this case the corresponding rays
of the interfering pencils traverse the plates at places of equal thickness.
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group may be called the principal image, and it is formed by light
that has been directly transmitted through the plates, such as AA in
Fig. 102. Behind this there is an image formed by light that has
suffered two internal reflections in one of the plates, such as the rays
BB and CC, and so on for multiple internal reflections. Now the
mmage formed by BB will coincide with that formed by CC when
the plates are parallel and of equal thickness ; but when the plates are
slightly inclined the thickness traversed by the light in one of them
will differ by a small amount from that traversed in the other, and
there will be a small relative path retardation introduced between the
penecils BB and CC, so that interference bands will be produced.
liegarding the image as a source of light we may say, then, that the
image formed by BB interferes with the image formed by CC, and

Fig. 102,

produces an image crossed by fringes. The image formed by AA
presents no fringes, for there is no other pencil of light of approxi-
mately the same path. The other images of this group are also
crossed by bands — for example, the light that has suffered four
reflections in the plate M interferes with that which is four times
reflected within the plate N, ete. The second group consists of light
that has traversed the space between the plates three times. The
first image of this group is formed by light that has traversed each
plate only once, such as the ray DI, and, like the first image of the
first group, it presents no fringes. A little behind this, however,
comes the image formed by EE, and this is interfered with by ¥F, so
that fringes are presented. Other images are formed by rays, such as
G+, that have sulfered four or more reflections, and they also present
bands which are explained in the same manner. The third group is
formed by light that has traversed the space hetween the plates five
times, and so on.

The relative retardation of the pencils forming the interference
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hands on the second image of any group is easily expressed in terms
of the angles of refraction into the plates. For if ¢ be the common
thickness of the plates it is clear that the ray EE suffers a relative
retardation 2ecosr in the plate M, while FF suffers a relative
retardation 2c¢cos+’ in N. The two transmitted pencils have
consequently a relative path retardation of

8 =2¢(cosr - cosi').

This vanishes when #=#"—that is, when the light is incident on
the two plates at the same angle, or is parallel to the plane bisecting
the obtuse angle between the plates. The light incident in this
direction consequently determines the central fringe of the system.
Brewster describes the experiment as follows :— '

““In order to observe the phenomenon to the greatest advantage, let the light of o
cireular image subtending an angle of 1° or 2° be incident perpendicularly, or nearly
80, upon two plates of parallel glass placed at a distance of one-tenth of an inch, and
let one of the plates be gently inclined to the other, till one or more of the reflected
images be distinctly separated from the bright image formed by transmitted light
and received upon the eye placed behind the plates. Under these cireumstances the
reflected image will be crossed with about 15 or 16 beautiful parallel fringes .
the direction of the fringes is always parallel to the common section of the four
reflecting surfaces.

““All the preceding experiments were made with plates which were cut out of
the same piece of glass, and had therefore the same thickness. I now tried plates of
different thicknesses, both when ground parallel and when cut from a common plate
of glass ; but I could never render the coloured fringes visible, unless when the glass
was parallel, and exactly of the same thickness in both plates.”

122. Jamin’s Interference Refractometer.— The interference
bands obtained by Brewster's method have been turned to account
by M. Jamin! in the construction of a very delicate refractometer.

Two plates of parallel glass as nearly as possible of equal thickness
(about 1 em.) are silvered on their backs and supported (on an
optical bench or otherwise) so that the distance between them can he
altered at will. Their plane faces can be placed in the vertical, which
15 supposed perpendicular to the plane of the paper in Fig. 103,

The first plate AB is fixed, and the light of the sun or any other
source falls upon it. After reflection it is received on the second
plate CD, which can be turned round a horizontal axis by means of
a serew situated at its back, and round a vertical axis by means of
the serew (). The displacement of this plate round the vertical is
measured by the movement of an arm on a graduated arc at V. Part
of the light incident on the first face AB is reflected there, and
after penetrating the second plate is reflected at its second surface

! Jamin, dun, de Chim. ef de Phys. third series, tom. lil. p. 163, 1858,
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and emerges from the plate. A second part of the light penetrates
the first plate, and after reflection at its second surface it is reflected
from the first surface of the second plate. Thus of the two beams
one 1z reflected at the front of the first plate and the back of the
second, while the other is reflected at the back of the first plate and
the front of the second." Hence if the plates be parallel, the two
pencils will traverse equal and similar paths, and they will therefore
be in the same phase on leaving the second plate ; but if the second
plate be turned through a small angle the ray which is refracted in it
will pursue a path slightly different from that traversed by the ray
refracted in the first plate: there will therefore be a difference of

Fig. 103.

phase between the beams as they leave the second pla.te and the
phenomena of interference will be presented.

If we start with the two plates parallel and the plane of incidence
horizontal, then by turning the screw at the back of CD the plates
will become inelined to each other and their line of intersection will
be horizontal. A system of horizontal fringes will consequently
appear in the field, increasing in width as the inclination of the
plates is diminished. When the plates are rigorously parallel the

' There is of course a whole system of images formed by suecessive reflections
within the plates and at their Imunfhug snrfaces Thus an image is formed by light
reflected dirvectly from the face AB and then from CD. Behind this there is the
image considered in the text and which is crossed by bands because it consists of two
nearly coincident images—namely, that formed by reflection from AB and C'D’
combined with that formed by reflection from A'B’and CD. The next image is
bright and may be considered the prineipal image of the system, and is formed by
the light reflected from the metallic surfaces A'B’ and C'IY, This is followed by
other fainter images produced by light that has suffered two or more internal
reflections within the plates. These are also crossed by interference bands, and the
whole system is sitnated sensibly on the perpendicular to the plates drawn through
the source.-
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- bands should disappear entirely and give place to a uniform illumina-

tion. As this stage is approached, however, the bands generally
become deformed and form undulating curves indicating want of
homogeneity in the glass or imperfections in the planeness of the
surfaces,

The ecentral fringe corresponds to zero retardation and, as in
Brewster’s experiment, is formed by those rays of the interfering
pencils which make the same angle with the two plates. These rays
are consequently parallel to the plane bisecting the obtuse angle
between the plates. The effect of moving the screw Q is to displace
the central band vertically and raise or lower the whole fringe system
in the field of view.

When a slender pencil of light (from a slit) is used, tubes con-
taining gases or thin plates of different substances may be placed in
the paths of the pencils between the plates, and the relative speeds of
light in these substances determined by the corresponding displacement
of the fringes. The apparatus may thus be used as a refractometer.

The retardation produced by the passage of one of the peneils
through a thin plate of any substance, or through a tube of gas, of
which it is desired to measure the refractive index, is determined by
means of a compensafor IX. Thus if a tube of gas or a thin plate be in
the path of one pencil, a thin plate of parallel glass may be intro-
duced across the path of the other, and if this latter be of the proper
thickness, there will be no resultant displacement of the fringes. The
one will compensate the other. The proper thickness of the parallel
glass plate may be adjusted by constructing it of two slender prisms
of equal angle, placed on each other with their edges in opposite
directions. Placed thus they form a parallel plate, the thickness of
which may be varied at will by sliding one prism upon the other. This
may be done conveniently by keeping one fixed, and displacing the
other by means of a secrew. When the instrument is once standard-
ised we know immediately the retardation produced by the substance
in the path of the first peneil.

The compensator used by M. Jamin consisted of two glass plates
(shown Fig. 104), fixed to a eommon axis, and inclined to each other
at a small constant angle. One pencil passes through one plate, and
the other through the other plate. The retardation produced by a
plate depends on the angle of incidence, and is least when the ray
passes through it normally. When the rays fall on the plates
perpendicularly to the plane bisecting the angle between them, they
introduce equal retardations, and therefore no displacement of the
fringes. In any other position the plates displace the fringes by an
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amount depending on their thickness and the angles of ineidence ; so
that, by rotating the axis to which they are fixed, any desired
dizsplacement of the fringes can be produced, and any previous
displacement compensated. The sensi-
tiveness of this compensator can he
varied at will by altering the angle
between the plates, and the retardation
introduced by it may be easily caleulated,
but it is best to graduate it by experi-
ment, which shows that the relative
retardation is very nearly proportional
to the angle through which it is turned
from the position of zero displacement.
M. Jamin by this method has determined
the index of refraction of several gases,
and compared that of dry and moist air. By the same process he also
investigated the effect of compression and change of temperature on
the refractive index of water.!

123. Michelson and Morley's Interferometer.—An interference
refractometer has been deseribed by Professors Michelson and Morley *
which readily permits of the introduction of any relative retardation
between the interfering pencils, and consequently allows of the
observation of interference bands corresponding to a large difference
of path. This apparatus is the same as that employed in their ex-
periments on the relative motion of the earth and the ether (Art. 315).

Light from a source of light (a sodium flame) S (Fig. 105) falls
upon a plane glass plate A inclined to it at any angle (usunally 45°).
Part of this light is transmitted in the direction ‘AB and part is
reflected in the direction AD. Both of these beams are received
perpendicularly on plane mirrors C and D, so that they return to the
plate A along their original paths and pass in part into the observing
telescope T. Now the pencil reflected from I) traverses the plate A
three times before it reaches T, and in order to compensate for this a
similar plate of glass B is introduced into the path of the pencil
reflected from C.  Hence if AC = AD, and if the plates are parallel,
the two pencils will have traversed paths of equal length, but it is to
he observed that they have both suffered reflection at the same face of
A, one internally and the other externally, and consequently when

Fig. 104, —The Compensator.

V Jamin, Aui. e Chim. cf de Phys. third series, tom. lii. p. 163, 1858 ; and tom.

Ixi. p 385, 18861,
= Professors A. A. Michelson and E, W. Morley, Jouraal of the Adssocintion of
Engincering Socictics, May 1888,
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the adjustment of the mirrors i1s exact the whole field will be dark.
In this case the image of the mirror C in A coincides with ).  When
the adjustment is altered there will be a path retardation between the

Fig. 105,

pencils equivalent to that of an air film of thickness AC - AD, and
whose angle is equal to that between D and the image of C in A,

One of the mirrors 1s furmshed with a micrometer serew by which
it can be moved parallel to itself so as to introduce any difference of
path desired.

124. Newton's Diffusion Rings. — The preceding cases of inter-
ference may be produced with tolerably thick plates and are known as
the interference colours of thick plates. The coloured rings of thick
plates are phenomena of a distinet kind. These were discovered and
described by Newton.!

He allowed a pencil of sunlight to fall perpendicularly upon a glass
mirror, ground concave on one side and convex on the other, to a
sphere of nearly six feet radius, and silvered on the convex surface.
Holding at the centre of the sphere a screen of white paper, with a
amall hole at its centre to allow the beam of light to pass and repass,
he observed four or five rainbow-coloured rings on the paper, encireling
the aperture through which the light poured. These were similar to
the fransmifted rings of thin plates, the squares of the radi of the
bright rings being proportional to the even numbers, while those of
the dark rings were in the ratios of the odd numbers.

When the mirror is inelined a little so as to throw the reflected
image slightly to one side of the aperture the rings are formed as
before, but their centre is at the middle point of the line joining the

I Newton, Oplicks, book ii. part iv.
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aperture and its image. This central spot changes its appearance in a
remarkable manner as the image recedes from the aperture, being
alternately bright and dark when homogeneous light is used, but with
white light it assumes every gradation of colour.

Newton endeavoured to account for these rings, like those of thin
plates, by the emission theory: but it is to Young we owe the
application of the wave theory to their explanation. His work was
afterwards completed by Herschel, Stokes, and Schiifi.”

The rings are much better marked when the surface of the mirror
is slightly dimmed, as, for example, by coating it over with a weak
mixture of milk and water. This suggests that the phenomena are
due in some way to the light which is scaffered at the surface of the
mirror, for we know that the effect of dimming the surface is to
inerease the quantity of light seattered
or irregularly reflected at it.  We will
therefore attempt on this supposition
to explain the phenomena in the more
general case when the light comes
from a point L (Fig. 106) of the
screen not far from the axis of the
mirror, the plane of the screen passing
through the centre O of the mirror

Fig. 106. and being perpendieular to its axis
ON.  Denote the distance LO by w, the radius OA of the first surface
of the mirror by a the radius ON of the second by @ + ¢ where ¢ is the
thickness of the mirror. Consider the illumination at any point Q
(not in the plane of the paper) on the screen.

A ray of light LM, after incidence at M, will be refracted in part
along MN, and after suffering reflection at N it will arrive at P, where
a portion will he regularly refracted and some of it will be scattered.
Let PQ be the scattered ray which reaches ).  Now another stream
of light will also reach . For consider the ray incident at P, part of
it will he scattered on entering the plate, and some one PR of these
irregular rays will after regular reflection and refraction at I and S
respectively reach ) along SQ. It will thus have traversed a path
LPRSQ differing little from that traversed by LMNPQ. The two
peneils will therefore be in a condition to produce interference effects.

1 These rings are due to the interference of the light scattered or diffracted by
the seame particle of dust. It has been shown by Stokes that no regular interference
is to be expected between portions of light diffracted by different particles of dust,
for the diffnsion is accompanied by a difference of path which varies from point to
point {Camb, Trans. ix. p. 147, 1851).  In this memoir there is a complete diseussion
of the whole case.
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It may be observed that both the rays have suftfered the scattering at
the same point P of the surface, the first at emergence and the second
at incidence. The two have therefore passed over similar paths and
suffered similar transformations. They are consequently beams of the
same nature, and may interfere.

It only remains now to caleulate the difference of the paths tra-
versed by the rays. We have

24 1 2
LM =, a*+ ﬂ-*zf-‘(] -!-::2 )"' =+ r'—ﬂ' (approx. )

since # is very small compared with a. Again, if ¢ be the angle of
incidence (LMO) of the ray LM, its sine is approximately equal to its
tangent or circular measure, and consequently

OL
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OM &’
and therefore
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But = MNA, therefore
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But the path MN + NP is traversed in glass, so that the equivalent path
in air will be p times as great ; the whole equivalent air path is then

LM + p(MXN + NP) -+ I'Q,
or

i
=

e ) i i
o — 43 e = per e
B ‘:."'u"u”'*} it

From this the value of the path LPRSQ may be written down at once
by observing that the first ray travels regularly till it emerges at P,
where it is scattered. DBut if the second path be traversed in the
reverse direction we see that, setting ont from () along QS, refraction
and reflection take place regularly at S and R till emergence at P,
where scattering takes place. Traversing the second path in the direc-
tion QSRPL is then the same as the first path in the direction LMNPQ
with this difference, that the point () is at a distance » from O, whereas
the distance of L from it is ». Consequently the second path may be
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written down from the first by interchanging » and ». It is therefore

-

1 e e
4 — + 2uef 14 Y Hhn
Cehion Hr (] 2,;1."(:5') o

The difference of the path is consequently

L i
a =E2[i"’ — u?).

When this difference is an even number of half wave lengths the two
beams are in the same phase, and all points at the distance v from O
are bright. If the difference is an odd number of half waves this
eircle is dark.

There is therefore a series of alternately bright and dark rings
encircling the point O. The radii of the rings are the values of p,
which satisfy the equation

;;-_-{P"’ — 4=} = e
the bright rings corresponding to even values of # and the dark rings
to the odd values,
If # =0, we have then

a formula which embraces the laws laid down by Newton for the case
in which the origin of light is at the centre of the mirror.

Thus the diameter of any ring varies inversely as the square root
of the thickness of the mirror, while, as in the transmitted rings of
thin plates, the diameters of the bright rings are proportional to the
square roots of the even numbers, and the diameters of the dark rings
to the square roots of the odd numbers. Finally, the squares of the
radii vary directly as the wave length, so that with white light the
cireles arve rainbow-coloured bands, changing from violet at the inner
to red at the outer edge.

When uw=v the retardation is zero for all wave lengths, conse-
quently the circle with eentre O, and passing throngh the luminous
point L, will be bright for all colours, and will therefore be white, and
(opposite to L) at the other extremity of the diameter of this circle
there will be an image of the point L. formed by regular reflection at
the surface of the mirror.! This white circle is surronnded by another

! With regard to these Newton observes: ““The incident and reflected beams
of light always fell upon the opposite parts of this white ring, illuminating its peri-
meter like two mock suns in the opposite parts of an iris"” (Opticks, book ii. part
iv. obs, 10),
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system of coloured rings. The difference of the squares of the radii
of any two consecutive rings is constant, and the area of the annulus
between any consecutive pair is therefore the same for all pairs and
is equal to
w(p® - P-.:E}:ﬂ;{ﬁ . :-',::*

The suecessive circles therefore approach each other more and more
closely the farther we go out from the centre, so that at a short distance
from the centre the appearances become so confused that all effect is
obliterated. These rings may be also observed either with a plane
glass mirror or with a convex mirror, but they are more faint. With
a convex mirror it is necessary to use a convergent pencil of light in
order to obtain a real image of the source.

They were obtained by the Duc de Chaulnes' with a concave
metallic reflector, in front of which he placed a very thin plate of glass
or mica dimmed with a mixture of milk and water. The metallic
reflecting surface plays the part of the silvered back of Newton’s
mirror, while the plate of glass or mica acts as its first face, and the
air space between the plate and the reflector corresponds to the glass
of the mirror.

The rings may also be well observed without a screen, as suggested
by Stokes.* All that is required is to place a small flame at the
centre of curvature of the mirror, so that it coinecides with its image.
The rings are then seen surrounding the flame.

Dr. Whewell ® observed a similar system of coloured bands formed
when the image of a candle, held near the eye, is viewed by reflection
in a plane glass mirror placed at a distance of some feet. This
observation was communicated to M. Quetelet,* by whom it was
published. In repeating the experiment together they found it
essential that the mirror should not be perfectly bright, and to ensure
the production of the bands it was sufficient to breathe gently on the
surface of a cool mirror. Instead of moisture, which quickly evaporates,
M. Quetelet recommended a tarnish of grease.

125. The Colours of Mixed Plates.—When the space between two
glass plates is filled with a mixture of two substances in a finely divided
state—such as water and air, or water and oil—light will in general
traverse the different parts of the mixture in different times, and the
interval of retardation will depend upon the difference of the velocities

I De Chaulnes, Mémn. de ' dead. des Se. p. 136, 1755,
* Stokes, Phil. Mag. p. 419, 1851,
* Stokes, Camb. Phil. Trans. pp. 148, 149, 1851.
i Quetelet, Corresp. Phys. ef Math, tom. v, p. 3094, 1829,
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of light in the two media, and upon the varying arrangement of the
media between the two plates. Portions of the transmitted light will
therefore be in a condition to interfere, and coloured rings are seen
when a luminous object iz viewed through the glasses.

The colours of mixed plates were first observed by Dr. Thomas
Young and described in the Philosophical Transaclions for 1802 He
produced them by interposing small globules of water, or butter,
hetween two glass plates, or two object-glasses, pressed together so
as to give the ordinary colours of thin plates. In this way little
cavities of air were surrounded with water or butter, and on
looking through the combination he saw fringes or coloured rings
several times larger than those of thin plates which would have been
produced had air alone been contained between the glasses. The
rings were seen by the direct light of a candle, and began from a
white centre like those produced by transmission through an air
film. On the dark space next the edges of the plate he observed
another system of fringes complementary to the first and beginning
from a dark centre like those produced by reflection. This latter
system was always brighter than the former. Brewster® in repeating
the experiments * tried transparent soap and whipped cream, which
gave tolerably good results; but I obtained the best effect by nsing
the white of an egg beat up into froth. To obtain a proper film of
this substance I place a small quantity between the two glasses, and
having pressed it out into a film I separate the glasses, and by holding
them near the fire I drive off a little of the superfluons moisture. The
two glasses are again placed in contact, and pressed together so as to
produce the coloured fringes or rings, they are then kept in their
place either by screws or by wax, and may be preserved for any
length of time.”

If a dark object be behind the glasses and if the incident light be
somewhat oblique, the rings change their character and resemble the
ordinary reflected system of Newton. One of the portions of the
interfering light in this case suffers reflection, and accordingly half a
period difference of phase is introduced. These rings contract as the
obliquity of the light is increased. The opposite oceurs in the case of
Newton’s rings.

The colours of mixed plates were attributed by Young to interfer-
ence, on the snpposition that part of the transmitted light passes
through one of the constituents of the mixture and part through the

! Also vepublished in 1807, Elewmenis of Natural Philosophy, vol. i. pp. 470, 787;
vol. il. pp: 635, 680.
2 Bir D. Brewster, ““On the Colours of Mixed Plates,” Phil, Trans. p. 73, 1838,
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other, and the explanation from this point of view has heen followed
up by Verdet.! Thus if part of the incident light be refracted through
the plate at an angle r,, and another part at an angle r,, then by Ex,
Art. 71 the relative retardation between these parts is

d=e(p; CO8 T} = 5 COS T3),

and when this is an even or an odd number of half wave lengths there
will be a corresponding increase or diminution of intemsity. For
normal incidence d=e(p, — p,), and the bright and dark rings will
correspond to

2e(py = pa) =mA,

according as w is even or odd.
In the case of the coloured rings of thin plates seen by transmitted

light the bright and dark rings correspond to thicknesses
2"‘=i!-§:"u

according as n is even or odd.
Henee the thicknesses ¢ and ¢, at which rings of the same order

(n) oceur in the two experiments, are in the ratio

g
= - Ha ).
= Spey = pa)

Eramples

1. If the constituents of the mixed plate be water and air, we have approximately
py =4 and py=1, therefore
e 1
=g
But the squares of the diameters of the rings are proportional to the thicknesses,
consequently the diameters of corresponding rings of the two systems are in the
ratio 1: /g,
2. The expression g, cos 1, — i o8 v, increases with the angle of incidence, and
the rings consequently contraet in diameter. For

= e, sin rodi, — py sin rydry) = ¢ sin i(dr, - dry),

but dr, is greater than dr,, therefore o5 is positive and & increases with 7.

Newton's Observations on the Diffusion Rings of Thick Plates

Opticks, book ii, partiv.: ““There is no glass or speeulum how wellsoever polished,
but, besides the light which it refrdets or reflects regularly, scatters every wax
irregularly a faint light, by means of which the polish’'d surface, when illuminated

! Verdet, Optique Physique, tom. i. p. 155.
F
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in a dark room by a beam of the sun’s light, may be easily seen in all positions of the
eve. There are certain phenomena of this seattered light which, when I fivst observed
them, seem’d very strange and surprising to me. DMy observations were as follows.

“ Obz. 1.—The sun shining into my darken’'d chamber through a hole one-third
of an inch wide, I let the intromitted beam of light fall perpendienlarly upon a
glass speculum ground concave on one side and convex on the other, to a sphere of
five feet and eleven inches radius, and quick-silvered over on the convex side. And
holding a white opake chart, or a quire of paper at the centre of the spheres to which
the speeulum was ground—that is, at a distance of five feet and eleven inches from
the speculum—in such a manner, that the beam of light might pass through a little
hole in the middle of the chart to the speenlum, and thence be reflected back to the
same hole : I observed upon the chart four or live concentrie irises or rings of colours,
like rainbows, encompassing the hole much after the manner that those which {in
the fourth and following observations of the first part of this third book) appear’d
between the object-glasses, encompassed the black spot, but yet larger and fainter
than those. . . . When the sun shone very clear there appeared faint lineaments of a
sizth and seventh. If the distance of the chart from the speculum was much greater
or much less than that of six feet, the rings became dilute and vanished. And if
the distance of the speculum from the window was mueh greater than that of six
feet, the reflected beam of light would be so broad at the distance of six feet from
the speenlum where the rings appeared, as to obseure one or two of the innermost
rings. And therefore I usunally placed the speculum at about six feet from the
window ; so that its focus might fall in with the centre of its concavity at the rings
upon the chart.”

“ (bs. 3.—Measuring the diameters of these rings as accurately as I could, I
found . . . the squares of the diameters of the (bright) rings in the progression, 0,
1, 2, 3, 4, ete. I measured also the diameters of the dark circles between these
luminons ones, and found their squares in the progression of the numbers §, 14, 24,
33, ete.” (that is 1, 3, 5, 7, ete.).

“Ohs. 5.—. . . If the speculum was illuminated with red (light), the rings
were totally red with dark intervals, if with blue they were totally blue, and so
of the other colours. . . . In the red they were largest, and the indigo and violet

least, and in the intermediate colonrs, yellow, green, and blue, they were of several
idtermediate bignesses.”

“ Obs. 7.—By analogy . . . it seemed to me that these colours were produced
by this thick plate of glass much after the manner that those were produced by
very thin plates. For upon trial I found that if the quicksilver were rubbed off
the backside of the speculum, the glass alone would eause the same rings of colours,
but mueh more faint than before ; and therefore the phenomenon depends not upon
the quicksilver, unless so far as the quicksilver by increasing the reflexion of the
backside of the glass increases the light of the rings of colour. I found also that a
speculum of metal without glass . . . produced none of these rings, and thence I
understood that these rings arise not from one specular surface alone, but depend
upon the two surfaces of the plate of glass whereof the speculum was made, and upon
the thickness of the glass between them."

Experimenting with specula of different thicknesses, Newton found that the
squares of the radii of the rings varied inversely as the thickness of the glass (see
Ohservation 9).

“Obs. 12.—When the colours of the prism were cast successively on the specu-

lum, that ring which in the two last observations was white, was of the same big-
ness in all the colours, but the rings without it were greater in the green than in the
Lilue, and still greater in the yellow and greatest in the red. And, on the contrary,
the rings within that white eirele were less in the green than in the hlue and less in
the vellow and least in the red.”




CHAPTER IX
DIFFRACTION
SectioN I.—THE ELEMEsTARY THEORY

126. Diffraction—Introductory.—By far the greatest difficulty
encountered at the outset of the wave theory was the explanation of
the rectilinear propagation of light. This difficulty confronted the
early founders of the theory, and those who feared to encounter it
became partisans of the emission theory from which the principle
flowed as a natural consequence. A closer examination of the facts,
however, shows that light suffers some deviation from the rectilinear
course in passing by the edge of an opaque obstacle ; that it does bend
round corners as required by the wave theory, but, as the wave length
is excessively small, the intensity falls off rapidly within the geometri-
cal shadow, and the amount of bending observable is so slight that
careful examination is required to detect it. When light passes
through a very small aperture, the dimensions of which are comparable
with the wave length, it is not propagated through the aperture as a
definite ray or pencil, but diverges in all directions just as sound does
when passing through an aperture of a few feet in diameter.

On the other hand, wellmarked sound shadows are formed by
huge obstacles, such as mountains or large buildings, and the existence
of these may bhe often noticed by the most casual observers,

The phenomena which occur when light passes through a very
narrow aperture or close to the edge of an opaque obstacle, and which
arise from the ligcht deviating from the rectilinear path, are classified
and studied under the title of Diffiraction. These appearances are de-
picted at the boundaries of the geometrical shadow, and while all
other theories have failed to account for them, the wave theory
explains and even predicts the phenomena truly.

The first observations on diffraction were made by Grimaldi,! about

! Physico-mathesis de lumine, coloribus ef iride, Bononie, 1665,

Bending.
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the middle of the seventeenth century. Having admitted a cone of
light into a darkened chamber through a very small aperture, he
found that when a small opaque obstacle was placed in the cone
its shadow on a sereen was much larger than its geometric projection,
so that the light suffered some deviation from the rectilinear course
in passing the edge of the obstacle. On observing the shadows
attentively he found that they were bordered by three iris-coloured
fringes, running parallel to the edge of the shadow, and decreasing
in width and intensity as their distance from it increased. Similar
fringes may also be observed, under favourable conditions, within the
shadows of narrow obstacles such as a fine wire or hair.

The phenomena of diffraction were subsequently examined by
Hooke® and Newton.® The experiment of Grimaldi was varied
by Newton, who transmitted light through a very narrow aperture
between two knife edges and observed the image it cast upon a
screen. The image was bordered by three iris-coloured bands, in
which the colours succeeded each other as in the rings of thin
plates—violet nearest the shadow and red farthest removed from
it. He observed the same appearances in the exterior of the
shadows of many obstacles, but he does not mention the brilliant
fringes which occur in the interior of the shadows of narrow obstacles,
althongh Grimaldi had observed the crested fringes at the angles of
shadows.

The first application of the wave theory to the explanation of
diffraction phenomena was made by Dr. Young,® who attributed the
fringes to the interference of the direct light which passes very close
to the edge with the light reflected by the edge at grazing incidence.
That the effects are not produced by the interference of two pencils of
light, such as Young imagined, is proved by the fact that they do not
depend on the degree of polish or sharpness of the edge. Fresnel
observed that whether light passed over the back or edge of a razor
the fringes produced were the same, and this he confirmed by exact
experiments.* If the fringes depended in any way on the light
reflected at the edge of the obstacle, they should vary in intensity or
position when the degree of polish er the material of the edge is

altered.
To ascertain whether the form of the edge had any effect on

I Hooke, Posthumous Werks, p. 190, London, 1705,

2 Newton, Opticks, book iii.

* Young, * On the Theory of Light and Colours,” Fhil. Trans. p. 12, 1802 ; Lec-
tures on Natural Philosophy, pp. 342, 365, 1807.

i Fresuel, (Euvres compléfes, tom. 1. pp. 148, 280.
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the fringes, Fresnel took two plates of steel, the edge of each
being rounded off in one half of its length, but sharp in the
remaining half. He placed the rounded portion of each opposite
the sharp part of the other. If the position of the fringes
depended on the sharpness of the edge the effect would here
be doubled, and the fringes would appear broken in the midst.
On the contrary, they were found perfectly straight throughout
their entire length. Young’s explanation is therefore incorrect, and
it is to Fresnel that we owe the true solution of the problem, and the
deduction of general expressions for the effect of a wave at any point.

According to Fresnel the phenomena of diffraction are to be
attributed to the mutual interferenée of the secondary wavelets which
diverge from the wave front. Each element of the primary wave,
when it reaches the obstacle, is considered as the centre of a diverging
wavelet, and the resultant of all the secondary waves he expressed by
means of two integrals taken within limits determined by the parti-
cular nature of the problem under consideration. The problem of
diffraction was thus solved by the principle of Huygens combined with
the principle of interference.!

Diffraction phenomena are, therefore, due to the mutnal interfer-
ence of the disturbances propagated from the various elements of a
single wave, just as the interference phenomena described in the fore-
going chapters are due to the mutunal interference of two trains of
waves. The bright focus of a lens exists because the disturbances
propagated there by the wave passing through the lens agree in phase
and produce an intense effect. At other points destructive interference
of the wavelets occurs, and there is no illumination.

In the hands of Fresnel® the theory was developed to such
perfection that little room was left for addition, and by the exact
agreement of the results of careful observation with the anticipations
of analysis, the evidence furnished in its favour is so overwhelming that,
to those who impartially examine it, little doubt is left as to its truth,

In this section we shall confine ourselves to a general explanation
of the phenomena by elementary methods, so that we may become
acquainted with the general facts of some important cases before
entering npon the more intricate investigations.

! Marian (MWém. de U Adcadémic des Sciences, p. 53, 1738) and Dutour (Mém. de
U Aeadémie des Scicnees, tom. v. p. 365, 1768) conceived that the fringes depended on
the refraction of the light by a thin layer of condensed air on the edge of the obstacle,
but that this is not the case is proved by the fact that diffraction takes place in
vacuum exactly as in air.

* [Tt appears [rom a note of Prof. Preston’s that his opinion of Fresnel's work on
diffraction was considerably modified after the publication of the second edition, )

Fresnel.
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127. A Straight Edge.—The first case of diffraction which we
shall consider is that presented when light, diverging from a luminous
point (such as the image of the sun produced by a lens of short foeal
length), passes' by the straight edge of an opaque screen. Let O
(Fig. 107) be a luminous point emitting spherical waves, AB an
opaque obstacle perpendicular to the plane of the paper, then if the
light be propagated accurately in right lines
from O there should be uniform illumina-
tion above the line OAM, and complete
darkness below it on a screen P() placed to
receive the light after it passes over the
obstacle AB. It is obhserved, however, that
the illumination does not become zero im-
mediately below M, but that it fades away
continuonsly and rapidly, and there is complete darkness at a small
distance below M. Immediately above M, on the other hand, the
illumination is not uniform, but passes through a series of maxima and

Fig. 107.

minima, giving rise to a series of brilliant fringes parallel to the edge
of the obstacle AB. These fringes become less distinctly marked the
farther we recede from M, the boundary of the geometrical shadow,
till at length they are wholly obliterated and merge into uniform
illumination at a short distance from M. j

The shadow is thus not distinctly marked by the line OAM, as
the geometrical theory of opties would indicate, but the light fades
away gradually on one side, and passes throngh many alternate sue-
cessions of brightness and darkness, forming fringes, on the other.
The appearance of these fringes is independent of the distances of the
two sereens from the luminouns point, the scale merely varying accord-
ing to cirenmstances, and from their constant character they may be
readily recognised in experiments in which they occur associated with
other fringes.

Let us now consider the illumination at any point P on the screen
outside the geometrical shadow. We have already found (chap. iii.)
that the effect of the wave SA at P is confined to a limited number
of half-period elements around the pole R. If therefore P is so far
removed from M that none of the effective elements of the wave at P
are intercepted by the sereen AB, then the illumination at P will be
affected in no way by the obstacle AB. But if P be so near M that
the are RA contains only a portion of the effective elements of the
lower half of the wave, the other part being intercepted by the
obstacle, we may roughly consider the illumination at P as consisting
of two portions, one the entire half wave RS and the other the part
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RA consisting of a few half-period elements. Now if RA contains an
even number of these elements they will mutunally interfere in pairs Fringes
and should have little effect at P. Whereas if RA contains an odd °"tside
number the effect should be mué¢h greater at P. We are led to infer
then that the minimum at P is a maximum or a minimum according
as the arc RA contains an odd or an even number of half-period

elements. That is, if
AP - RP=(22+1)) (maximum brightness)

and if
AP -RP= En; (minimum brightness)

the difference of the distances AP and RP remaining constant, the
point P will move along a hyperbola having A and O for foei, for

OP - AP=0R - (AP - RP),

and OR is constant, therefore the difference of the distances of P
from the fixed points O and A is constant. P therefore describes a
hyberbola, but its curvature is so small that it almost coincides with
its asymptotes.
Denoting OA by @ and AM by b we can easily calenlate the distance
2 = PM of any bright or dark band from M ; for!
,2

OP=a+b+ 2{&:_-“, and AP=5-+ 1{,

Therefore
a1 1
Ab=hEb= ﬁ(lr_tc-!- !-I)J
or
A A

3 Wa i) = {for a bright or dark band).

Hence for maximum brightness
= ,\/b[ﬂi;_i'mi:ﬂu-!-l}h_.

and for minimum brightness
" _gl-i--’_l] ‘}_..
= ;\/ romsts 2.

' Or thus: the angle PAM is very small and equal to twice the angle ARD,
where D is the point in which a circle, centre P, radius PR, cuts PA, therefore

=—— .  or JP’:EM .4,
i g i

2 AD 5 p
b~ “AR™ “a..LAOR™

i
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When the screen PM is moved nearer to or farther from the
obstacle AB, the distance ¢ remains constant while b varies ; the corre-
sponding values of x are the ordinates of the hyperbola mentioned
above.

To determine the illumination at any point P inside the geometrical
shadow, we must observe that the part of the wave which propagates
light to P is only a fraction of half a wave. The point R (Fig. 108)
is now below the edge of the obstacle, so that some of the powerful
elements are intercepted by the secreen.
The light from the point A is, however (of
the effective part of the wave), that which
requires least time to reach P. If there-
fore we divide the part AS of the wave
into half-period elements with respeet to P
beginning at A, the first element AM, will
be the most powerful, and the others will be
smaller and become rapidly equal to one
another, so as to destroy each other’s effect at P. The resultant effect
at P is therefore confined to a few half periods near the edge A of the
obstacle, and these will give a resultant illumination at P. However,
as P sinks farther into the shadow, the obliquity of the line PA to
the wave front will increase, and the consecutive half-period elements
AM,, M,, My, ete. with respect to P will gradually become smaller and
more nearly equal in effect, till finally when P is a small distance
below M, the whole effective portion of the wave is cut off and the
resultant at P is zero,

Consequently we conclude that the light falls off continuously but
rapidly within the geometrical shadow, and alternations of brightness
and darkness do not oceur.

It is not difficult to see that diffraction fringes can be exhibited
only when the angular diameter of the source of light is small. For
if the Inminous origin subtends any considerable angle at the eye, each

Fig. 108,

point of it will give rise to a corresponding set of fringes, and” the
multitude of sets will be so superposed and intermixed as to obliterate
all visible effect.

In practice a strip of light from a narrow slit is used, and the fringes
are viewed throngh an eyepiece mounted on an optical bench.

128. Narrow Wire.—Let us now consider the case of a very
narrow opaque obstacle, such as a hair or a fine wire. Let the opaque
screen AB of the preceding article be limited on the lower side, so
that it becomes a narrow strip intercepting the light from O. The
shadow on the screen MN (Fig. 109) will be bounded externally on
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each side by a system of fringes similar to those just deseribed, and
accordingly attributable to the same cause. The system on either side
is produced by the light which passed that side of the obstacle acting
independently of that which passed the
other side. The upper system is due to
the diffraction of the light from O over the
upper side A of the obstacle, and the lower
system is produced by the diffraction of
the light at the lower side B.

In addition to these two systems of
fringes, however, there is another set of Fig. 100.
brilliant bands situated inside the geometrical shadow (MN) of the
obstacle (if it be sufficiently narrow). This system is finer than the
others, and, unlike them, of equal width throughout. It remains
therefore to account for this internal system by the theory.!

In the preceding article we have seen that the effect of the portion
AS of the wave at any point P inside the geometrical shadow is due
entirely to a few half-period elements at A, the others mutually de-
stroying each other. The portion AS of the wave may therefore be
replaced by a small luminous source near A, so far as its effect in
illuminating P is concerned. Similarly the lower portion BT of the
wave, in illuminating P, is equivalent to a small luminous source near
B. Thus any point P within the shadow is illuminated by both sources
at the same time ; these sources will, therefore, like two small near
apertures, produce the phenomena of interference inside the shadow,
and the fringes which oceur there are accordingly accounted for,

If the obstacle AB is not very narrow, then there will be no internal
fringes, but a gradual fading away of the light at each side of its
geometrical shadow and the usnal system of external diffraction fringes
on each side. When the obstacle is narrow, however, the illumination
inside M overlaps that inside N, and interferes with it. Or we might put
it, thus: with the straight edge any point inside the shadow is illuminated
by a small source at A. If the obstacle be narrow this point is also
illuminated by a small source at B, and if the distance AB between
these sources is small enough, they will interfere and produce fringes

1 Diffraction fringes may be exhibited on a minute scale by candle light, with no
other apparatus than a small lens having a fine wire stretched across in contact with
its surface. Holding the other surface next the eye, if we look through the lens at
the flame of a eandle at some distanee, or, what is better still, at its light admitted
through a narrow slit, the wire being parallel to the shit, the dark image of the wire
will be seen edged by the external fringes, and the shadow marked by the internal
fringesz in a remarkably beautiful and distinct manner (see B. Powell, Phil. Mag.
and Ann. January 1832).

[ ]
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in the interior of the geometrical shadow. It is clear that these fringes
are given by the equations

AP-BP=u ;, and 2= "n
i

A
3
where # is even for the bright bands and odd for the dark ones.

That the internal fringes are due to the interference of the two
portions of light which pass over the edges of the narrow obstacle was
proved conclusively by Dr. Young. He showed that when the light
from one side was intercepted by an opaque screen either before or
after it reached the obstacle, the whole system of internal fringes dis-
appeared, and the ordinary external diffraction fringes alone remained
on that side over which the light was allowed to pass. It is clear
therefore that the internal fringes are due to the joint working of
the light which passes both sides of the obstacle, whilst the external
fringes on the upper and lower sides of the shadow are due to the
independent action of the portion of the light which passes on these
sides respectively.

129. Narrow Rectangular Aperture.—Let us now turn to the
quasi-complementary case,—that in which the light from a source O is
admitted to a sereen through a very narrow slit or rectangular aper-
ture.!  First consider the illumination at
any point P (Fig. 110) of the screen outside
the boundary of the geometrical image of the
aperture. As before, we divide AB into a
series of half-period elements with respect to
I, beginning at A, as the light reaches P
from this point first. Then the point P will

Fig. 110. be the centre of a bright or dark band
according as the difference BP — AP is an odd or an even number of
half-wave lengths. If the difference is equal to an even number of
half waves there will be an even number of half-period elements in
AD, which will mutually interfere at P, and the effect will be less than

! The fringes of an aperture may be very distinctly seen by merely placing a
narrow slit near the flame of a candle, and viewing it through another slit held close
to the eye and parallel to it at the distance of a few feet.

Diffraction spectra, images, or patterns may, however, be observed without the
aid of any subsidiary apparatus, by partially closing one’s eyes so as to view through
the eyelashes a candle flame or any ordinary source of light. The lashes in this case
play the part of a diflraction grating, and speetral images are produced on each side
of the flame. Similar phenomena may be observed by viewing any ordinary source
of light, such as a lamp flame or a gas jet, through a pocket-handkerchief. These
cifects are best marked when the edge of the flame is presented to the observer so
that it may have its smallest angular subtense.

A star which is probably a vast body gives diffraction rings as a point source
becanse its angular subtense is very small.
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if there is an odd number of half-period elements in AB. There will
thus be two systems of fringes, one on each side of the geometric image
of the aperture, the bright and dark bands of which correspond to odd
and even values of n respectively. This is just the reverse of what
takes place in the fringes formed in the interior of the shadow of an
opaque obstacle. The position of these fringes is given as usual by
the equations

BP-AFP= 34':3, and x '—-ﬂ‘u

by >

where n is even for the dark and odd for the bright bands.

Now if the screen is so remote from the aperture that AM - BM 1s
less than half a wave, then the first band will lie outside the edge of
the image, and the systems of fringes already mentioned will represent
the complete phenomena. But if the screen is so near the aperture
that the difference of the distances of M (or N) from A and B s a
number of half waves, fringes are visible within the projection of the
aperture also. The illumination at any point ) of this image is due
to the two portions into which OQ divides the wave AB. These por-
tions are sensibly different in magnitude as well as obliquity, and their
joint effect at Q requires a more complete investigation (Art. 150).

130. Cireular Aperture.—Among the most striking of the pheno-
mena of diffraction are those produced when light, diverging from
a luminous origin, passes through a small circular aperture such as a
pinhole in a sheet of lead. When the aperture is viewed through a
lens it appears as a brilliant spot surrounded by a series of vivid rings,
and as the distance between the aperture and the eve is altered these
rings vary in the most beautiful manner. The central white spot con-
tracts to a point and vanishes as the eye approaches the aperture while
the rings close in upon it in succession, and the centre passes in
succession through a series of most
beautiful hues similar to those pre-
sented in the colours of thin plates.

The points of maximum and mini-
mum intensity on the central line are
easily determined. Thus let O be the
lnuminous origin (Fig. 111), AB a sec-
tion of the aperture, and OMP a line
through its centre M. -The illamination Fig. 111.
at P i1s found by dividing the wave into half-period elements as
it diverges through AB. Thus let M, M, M, etc, be a series
of points on the wave front marking the half-period elements.
Then, as shown in Art. 53, the consecutive zones approximately destroy
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each other, and if the aperture transmits an even number of them, the
illumination at P will be very feeble, whereas if it transmits an odd
number the illumination will be largely increased. Hence as P travels
along the axis of the aperture the intensity of the illumination at it
passes through a succession of maxima and minima. The distance
of any point of maximum or minimum intensity from the aperture is
easily caleulated. For if we denote OM and PM by a and b respectively
it follows at once from the expression of Art. 53 that the area of each
half-period element is very approximately equal to

wilik
a+d’

sinee the radius of the aperture is small compared with either a or b.
Denoting this radius by r, the area of the aperture will be =+%, and if
this contains n h:t]f-periud elements we have appl'nximatel:,r

e el
a+b

The positions of the points of maximum and minimum intensity
along the axis are consequently given approximately by the equation !

~ars
naX - r*

where r is the radius of the aperture. The dark points correspond to
the even values of n, and the brightest points to the odd values.

Since the distance of any bright point from M depends on A, it
follows that when white light is used points of maximum hrightness
for the different eolours will be sitnated at different distances from M,
the red being nearest M and the violet farthest away ; there will not,

! This result may be casily dedueed directly by expressing the path retardation
of the ray PAO, which passes the edge of the aperture, relatively to the ray PMO
which passes through the centre. Thus since r is small we have

— 5 1‘;: i — _I‘FE
Consequently the retardation is
21 1
5=(0OA+PA)-(a +b}—.g(& +b)1
That is

= 2ehd
-+ b

where 8= Leh when the aperture contains a whole number of half-period elements.
This expression alzo gives mab\/(z +b) as the approximate area of each half-period
element.
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therefore, be any points of complete darkness, but the centre of the
image will pass through a succession of richly coloured hues, following
each other nearly in the order of Newton’s scale.

The dark points correspond to the even values of n, but a closer
calculation shows that in this case, as in the case of a rectangular
aperture, the points of maximum brightness are not exactly half-way
between the points of darkness. DBoth these questions will therefore
be resumed in the next chapter, and be more fully dealt with.

131. Zone Plates.—We have seen that the consecutive annuli
into which the circular aperture AB is divided approximately destroy
each other in pairs at P. If then the alternate annuli, e.g. the 2nd,
4th, 6th, ete., be covered with some opaque substance, the others
would be left free to have their full effect, and we should expect P to
be brightly illuminated. The theory here is in complete accordance
with the results of observation. Such plates, with alternately opaque
and transparent annuli, may be obtained by photography, and it is
found that, although there is an important difference, they resemble
a lens in bringing light from any orgin O to the same point P as focus.
The difference is that the light which passes through the second trans-
parent annulus arrives at P a complete period later than the light
from the first. Similarly the path of the light from the third is a
wave length greater than the path of the light from the second, and
so on. Whereas in the case of a lens the characteristic is that all the
light which reaches the focus from O arrives there in the same time.
The phases of all the waves which reach the focus are the same, and
the times occupied by them in travelling there from O are also the
same for all. A zone plate has therefore the property of a con-
densing lens.’

To construet a zone plate it is only necessary to describe on a
slip of white paper a series of concentric circles of radii proportional to
the square roots of the natural numbers, ie. 1, /3, /3, V4, ete.
The areas of these circles are directly as the natural numbers, and the
area included between any pair of consecutive circles is constant,
hence if the alternate annuli be blackened over, the others remaining
white, we will have a sketch of a zone plate, but on much too large a
scale. A miniature photograph of it may now be made on a thin plate
of glass, and it is found that when this plate is interposed in the path
of a beam of light it produces the effect described.* The light is

1 A fourfold effect would be obtained if it were possible to provide that the
light stopped by the alternate zones were replaced by a phase-reversal without loss
of amplitode.

¢ Bee Glazebrook's Physical Optics, p. 182,
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brought to a focus at a point P such that the rings on the plate are
half-period elements with respect to it. The focus of the red light is
of course, as before, nearer the plate than the focus of the violet light.
The reverse holds in the case of a lens, for the violet, being most
refrangible, comes to a focus nearest the lens.

132. Opaque Cireular Dise.—In applying the theory to the case
of diffraction by an opaque cirenlar dise, Poisson was led to the
startling conelusion that the illumination at the centre of the shadow
should be the same as when the disc is removed, and Arago showed
that this was verified by experiment.! Without entering into a com-
plete investigation we can see that the illumination along the axis of
the disc should be uniform and approximately the same as when the
dise is removed. For, take any point on the axis of the dise, and
divide the wave into half-period elements with respeet to it, beginning
at the edge of the disc. The first half-period element, which immedi-
ately surrounds the edge of the dise, is the most powerful, and plays
the part ordinarily taken by the centre zone of the wave. As in
chap. iii., it follows that the resultant effect is approximately equal to
half that of the first existing zone, and when the obliquity is very
small this will be very nearly the same as im (Art. 52), which
represents the effect of the whole wave. The illumination, however,
must fall off gradually as the point under consideration approaches
the disc, for when the point is near the dise the obliquity of the first
zone passing the edge is greater than when the point is farther away.
In other words, the effective portion of the wave is to some extent
eut off when the point is near the dise.

This result is easily understood by remembering the bending, or
diffraction, of the light which takes place into the geometrical shadow.
When the obstacle is a small cirenlar dise this diffracted light overlaps
from all sides at each point on the axis. At any one of these points
all the diffracted light is in the same phase, and there is consequently
no destructive interference at any point on the axis. At a point not on
the axis the components of the diffracted light differ in phase, and
there is interference, so that, when white light is used, what is
observed is a system of rings surrounding a white centre, the intensity

! This experiment is difficult to perform satisfactorily, since even when the dise
is ent with the utmost care, each of the minute inequalities in its edge is magnified
and aceompanied by fringes which mix and cross so as to totally confuse the whole
appearance, ‘[ have succeeded by taking up a small quantity of thick ink on the
point of a pen, and dropping it on a clear plate of glass, by which means a suffi-
ciently even cirenlar edge is produced, the disk being about ¢ of an inch in
diameter 7 (Rev. B. Powell, Phil. Mag. and Ann. Jannary 1832). The difficulty
may often arize from the fanlty nature of the glass to which the dise is attached.
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at the centre being practically the same as if the dise were
removed.

133. Babinet's Prineiple.—When light is transmitted through a
very small aperture we have seen that there will be illumination at
points considerably outside its geometrical image. But when the
aperture is of sensible magnitude, an image of it iz depicted on the
screen, and at the borders of this image the illumination falls off
gradually. Now at any point outside the image, or at any point of
the pattern where the illumination is zero, the effect produced by any
part or parts of the aperture must be exactly equal and opposite to
the effect of the remainder of the aperture. Thus if S, be the area of
any portion or any number of portions, isolated or continuous, of the
aperture, S, the area of the remainder, and S the whole area, we have

stl '!'S._E,

and if the vibration produced by S, at P, a point eufside the image, be
3, = a sin ¢, then the vibration produced by 5, will be y, = —a sin ¢,
for the resultant is zero. Hence it follows that if any part or parts S,
of the aperture be supposed opaque, the remainder S, being left trans-
parent, so that diffraction may ocenr when light is transmitted through
the transparent parts, the vibration and illumination at P will be
determined by the equations

iy =asing, and I,=a%

while if the foregoing opaque portions S, be supposed transparent, and
the transparent portions S, opaque, the illumination at P when the
light is transmitted through S, will be determined by

o= —asing, and L.=a%

that is, I, = I, =" or the illumination is unalfered when we suppose
the transparent parts of the aperture to become opaque and the
opaque parts transparent.

This principle is due to Babinet,! and applies to any point at
which the illumination due to the whole aperture is zero.

If the point P be illuminated, then the whole aperture S transmits
a vibration represented by the equation

y=A sin (ef +a),

while any selected portion S, of it produces the vibration

¥, =, sin (wf + a,),

! Babinet, Comptcs Rendus, tom. iv. p. 638, 1837.
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and the remainder of the aperture produces

o=l SiN {wf 4 ay).

The vibrations due to the portions 8, and S,, in general, will differ
in phase and amplitude, but they will be connected with the vibration
due to the complete aperture S by the equation (Art. 43)

A =" 4 agt + 2ay, 008 (a) — o),
or denoting the corresponding illuminations by I, I,, and I, we have
I=1I, + I,+2,/1,1, cos (a; — a)).

If @, —a,=1m, then I=1, +1,. It should be remarked therefore that
we have the equation I, + I, = [ only in the special case when the vibra-
tions from S, and S, differ in phase by a quarter period. Attention is
directed to this point, for it is not unusual to find it assumed that
[ =1, + I, universally, or that the illumination in one case is exactly
complementary to that in the other.!

When we know the vibration y produced by the whole aperture,
and the vibration y, produced by any part, we can calculate by the
above equations the vibration #,, and illumination I, produced by the
remainder. Thus if the aperture S be supposed very large, so that
practically the whole wave may reach any point P on the screen, then
if ¥ be the vibration excited at P by the complete wave, y, that when
any area S, of the wave is stopped by an opague obstacle, %, that of
the remainder, viz. the vibration due to that part of the wave which
passes the obstacle, then we have

¥=m+ ¥

The vibration y will be practically uniform all over the screen, so that
we have
iy + y.=constant,

but I, + I, is not constant, for we have seen that I, + I, is not equal to
I except in a very special case. If y, be the vibration at any point
when light passes through a narrow rectangular aperture, and y, the
vibration at the same point when the aperture is replaced by a wire of
the same width, then #, + », =¥, which is constant over the screen, but
we cannot say that the illuminations at any point are complementary

! [These results are well illustrated by Fig. 10 on p. 46 if we suppose the circle
C deleted and the angle AOB variable. OFP, 0Q, OR represent u,, ¥, and =, + i,

respectively, and OA, OB, OC are proportional to /T, /I and ~/I. If I=1,+1,
the angle AOB (the phase difference) must be right. If /I, and /I are known as

well as the difference BOC of the corresponding phases, /L, is found as being
proportional to CA or OB.]
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in the two cases. The same remark applies to the case of a cireular
aperture and an opaque disc of the same dimensions.!

Such screens are called complementary sereens, but the term must
not be understood to refer to any complementary relation between the
illuminations ; it merely signifies that the transparent portions of one
screen are replaced by opaque parts in the other, and wice versdé.  In
the case of an opaque disc we have seen that the illumination is
approximately uniform along the central line, while in the case of the
circular aperture it passes through a series of maxima and minima. So
again it is the outside of the image of a large obstacle that is bordered
with diffraction fringes, whereas in the case of the corresponding aper-
ture the fringes lie within the geometrical image and the patterns are
not complementary.

134. Coronas—Young's Eriometer.—We have already seen that
when light, diverging from a luminous point, passes by the edges of
an opaque obstacle, systems of coloured fringes are formed parallel
to the edges of the shadow. In the case of a circular dise, or a
cireular aperture, the fringes form a system of concentrie ecircular
rings. Instead of a single aperture if we have a large number of
irregularly distributed small equal apertures (or of a large number of
equal circular dises) in an opaque screen it may be shown (see Art. 158)
that the diffraction pattern is the same as that produced by a single
aperture multiplied in intensity by the number of apertures. \

Instead of opaque discs we might equally have small regular
globules of condensed vapour, as in a clond, and it is to the diffraction
by these globules that the coloured rings seen around the sun and
moon, when observed through a thin cloud, are due. These rings are
observed close to the surface of the sun and moon in hazy weather,
and must not be confused with the larger rings or halos formed at
some distance away. The halos are often seen in northern latitudes,
and are due to ice erystals floating in the atmosphere, the angular
radius of the first being from 22" to 23°,

Newton observed coloured rings around both the sun and moou,
and he was the first to attribute them to the action of water globules
in the air. He describes them as follows (Opficks, book ii. part iv.) :—

“For in June 1692 1 saw by reflexion in a vessel of stagnating water three halos,
crowns, or rings, or colours about the sun, like three little rainbows, concentrick to
his body. The colours of the first or innermost crown were blue next the sun, red
without, and white in the middle between the blue and red . . . these ecrowns

1 1f I, corresponds to a cirenlar aperture and I, to a dise, then (Art. 182) L=1,
and I, +2 /L1, cos §=0, or cos 5= — 4 ./1,/L.
Q
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enclosed one another immediately, so that their colours proceeded in this continual
order from the sun outward. . . . The like crowns appear sometimes about the
moon, for in the beginning of the year 1664, February 19th, at night, I saw two such
crowns about her. The diameter of the first or innermost was about three degrees,
and that of the second about hive degrees and a half. . . . At the same time there
appeared a halo about 22° 35" distant from the eentre of the moon. It was elliptical,
and its long diameter was perpendicular to the horizon, verging below farthest from
the moon. I am told that the moon has sometimes three or more concentric crowns
of colours encompassing her next about her body. The more equal the globules of
water or ice are to oue another, the more erowns of colours will appear, and the
colours will be the more lively. The lialo at the distance of 22°} from the moon is
of another sort. By its being oval and remoter from the moon below than above, I
conclude that it was made by rvefraction in some sort of hail or snow floating in the
air in a horizontal posture, the refracting angle being abont 58° or 60°."

Fraunhofer confirmed Newton’s views by showing that these
coloured rings may be produced artificially by looking at a source of
light through a plate of glass covered with fine globules of condensed
vapour or with lycopodium dust. The condition necessary for the
success of the experiment is that the globules should be of sensibly
uniform size. He also obtained them with a large number of small
metallic dises of equal size placed between two plates of glass, and he
found that the diameters of the rings varied directly as the wave
length, and inversely as the diameters of the discs.

M. Verdet! reproduced the same phenomena by covering the
object-glass of a telescope with a copper plate containing a large
number of small circular holes distributed irregularly. On observing
a distant source of light, he saw at the focus of the telescope a system
of rings similar to the coronz,

These appearances were also observed by Young* who in a very
ingenious manner contrived to apply them to the measurement of the
diameter of fine fibres, or small particles of any kind.

The apparatus invented by Young consisted of a metal plate per-
forated with a small hole of about J; inch (‘5 mm.) in diameter.
Around this aperture was a circle of smaller holes nearly half an inch
in radins. The flame of a lamp was placed immediately behind the
aperture, and the plate viewed throngh the substance under examina-
tion. The central aperture is seen surrounded by a ring, which can
be brought to eoincide with the cirele of small holes in the plate by
moving the substance backwards or forwards along a graduated scale.
The distance between the substance and aperture is read off on the
scale, and this varies inversely as the diameter of the ring, but theory

! Verdet, (Kuvres, tom. v. p. 314,

= For an aceonnt of Young's Eriometer see Art. ** Chromaties,” vol. iii. of Supple-

ment to Ewecy. Brit, 1817 ; see also Phil. Mag. March 1881, and vol. xx. p. 334,
1885.
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shows that the diameters of the rings, produced by different sized
particles, vary inversely as the diameters of the particles (see Art.
163). Consequently it follows that the diameters of the particles are
directly proportional to the distances between the substance and aper-
ture when the ring appears to coincide with the circle of small holes
perforated in the plate. An experiment is therefore made with
particles of a known diameter, and this gives the constant of the
instrument from which the diameters of any other small particles may
be determined. Thus if ¢ he the distance between the plate and
substance containing particles of known radius », when the ring and
halo appear to coincide, and if 8 and p be the corresponding quantities
for any other substance, then

P =
2 TrlE

Newlon's Observalions

Ohticks, book iii. part i. fourth edition, 1730.—** Grimaldo has informed us that
if a beam of the sun’s light be let into a dark room through a very small hole, the
shadows of things in this light will be larger than they ought to be if the rays went
on by the bodies in strait lines, and that these shadows have three parallel fringes,
bands, or ranks of color'd light adjacent to them. But if the hole be enlarged the
fringes grow broad and run into one another, so that they cannot be distinguished.
These broad shadows have been reckon'd by some to proceed from the ordinary re-
fraction of the air, but without due examination of the matter. For the circum-
stances of the phenomenon, so far as I have observed them, are as follows,

“Obs. 1.—1 made in a picce of lead a small hole with a pin, whose breadth was
the 42d part of an inch. For 21 of those pins laid together took up the breadth
of half an inch. Through this hele I let into my darkened chamber a beam of the
sun's light, and found that the shadows of hairs, thread, pins, straws, and such like
slender substances placed in this beam of light were considerably broader than they
- ought to be if the rays of light passed on by these bodies in right lines . . . a hair
of a man’s head, whose breadth was but the 280th part of an inch, being held in
this light, at the distance of about twelve feet from the hole, did cast a shadow which
at the distance of four inches from the hair was the sixtieth part of an inch broad-
that iz, above four times broader than the hair, and at a distance of two feet from
the hair was about the 28th part of an inch broad—that is, ten times broader than
the hair, and at the distance of ten feet was the 8th part of an inch broad —that is,
35 times broader.

“Nor is it material whether the hair be encompassed with air or with any other
pellucid substance. For I wetted a polished plate of glass and laid the hair in the
water upon the glass, and then laying another polished plate of glass upon it, so
that the water might fill up the space between the glasses, I held them in the afore-
said beam of light, so that the light might pass through them perpendicularly, and
the shadow of the hair was at the same distances as big as before. . . . Therefore
the great breadth of these shadows proceeds from some other cause than the refrac-
tion of the air.”

He further observed that *‘The shadows of all bodies (metals, stones, glass,
wood, horn, ice, ete.) in this light were border'd with three parallel fringes or bands
of coloured light. . . . The colours proceeded in this order from the shadow : violet,
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indigo, pale blue, green, yellow, red; blue, yellow, red ; pale blue, pale yellow,
and red,”

“Obs. 8.—I caused the edges of two knives to be ground truly strait, and
pricking their points into a board =o that their edres might look towards one
another, and meeting near their points contain a rectilinear angle, I fastened their
handles together with piteh to make this angle invariable. The distance of the
edges of the knives from one another at the distance of fonr inches from the angular
point, where the edges of the knives met, was the eighth part of an inch ; and there-
fore the un:_{]v contained ]-:u.' the .;l!f__{i-r; was about one |lq*':_:'1‘|;|_- 54°. The knives thiis fixed
[ placed in a beam of the sun’s light, let into my darken’d chamber throngh a hole
the 42d part of an inch wide, at a distance of 10 or 15 fect from the hole, and let
the light which passed between their edges fall very obliguely upon a smooth white
ruler at a distance of half an inch or an inch from the knives, and there zaw the
fringes from the two edges of the knives run along the oilges of the shadows of the

Fig. 112,

knives in lines parallel to those edges without growing sensibly broader, till they
met in angles equal to the angle contained by the edges of the knives, and where
they met and joined they ended without crossing one another. But if the ruler was
held at a muel greater distance from the knives, the fringes where they were farther
from their place of their meeting were a little narrower, and became something
broader and broader as they approach'd nearer and nearer to one another, and after
I]w.'l.' miet 1]”'.'3" crozs'd one another, and then ill'i'.'i.i_]!{' much broader than before.

“Whenee I gather that the distances at which the fringes pass by the knives are
not increased nor alter’d by the :15-'!!'11-:11'IL of the knives, but the aneles in which the
rays are there bent are much inereased h:'..‘ that zllnpl‘um:]t, and that the kmfe which
is nearest any ray determines which way the ray shall be bent, and the other knife
inereases the bent. ™

s, 10, —When the nwes of the shadows of the knives fell [|L'|'!I-l_"j]_l'l_iull]_ﬂ.]_‘]}"
upon a paper at a great distance from the knives, they were in the form of hyper-
bolas. . . . Of these h:_{jwl‘]lu].'l.-‘. one asymptote 15 the line I}l":_, and their other
asymptotes are parallel to the lines CA and CB.”

(In Fig. 112 CA and CB are parallel to the edges of the knives, and DE is the
bisector of the external angle between them. )

Allowing the light from the small hole to pass through a prism and form a
spectium on the opposite wall, he found that the shadows of objects placed in the
light between the prism and the wall were bordered with fringes of the colour of that
light in which they were held.  *° And comparing the fringes made in the several
colour'd lights, I found that those made in the red light were largest, those made in
the violet light were least, and those made in the green were of a middle bigness,”
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SECTION II.-—DIFFRACTION (GGRATINGS

185. The Diffraction Grating.—We now proceed to the elementary
explanation of the appearances presented when a distant source of
light is viewed through a system of very narrow, equal, and equidis-
tank, rectangular apertures. Such a system is named a grafing or a
diffraction grating. Gratings are ordinarily formed by tracing a number

Fig. 113.

of parallel equidistant lines on a glass plate with a fine diamond point.
These lines act like a system of fine opaque wires, in that the light
incident on them is reflected back in all directions and refused trans-
mission, while it passes freely through the transparent spaces between
the lines. Such gratings frequently contain as many as 20,000 or
even 40,000 lines to the inch, the ruling being so fine that the striwe
are invisible exeept under a powerful mieroscope.

When a luminous origin is looked at through a grating a central
or direct image is seen, and on either side of it there are several
spectral images richly coloured with all the tints of the rainbow,
These spectra increase in breadth and diminish in brilliancy as they
recede from the centre, and as already remarked, they may be seen by
merely viewing an ordinary candle Hlame or gas jet through the eye-
lashes, or through a pocket-handkerchief, or through a piece of ordinary
wire gauze (see footnote, p. 218).

To observe the spectra to advantage a telescope should be first
focussed on the luminous origin.  The grating being then placed before
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its object-glass, the spectra are formed in its focal plane, and are
viewed with all the advantages of amplification and distinctness
through the eyepiece. In the following elementary explanation we
shall therefore suppose the light after passing through the grating BM
(Fig. 113) to fall upon a lens, which we may regard as the objeet-
glass of a telescope.

Let M,N,, M,N,, M_N,, ete. (Fig. 114), be the apertures—that is,
the transparent portions—of the grating, supposed perpendicular
to the plane of the paper, and let the width of each of *the
apertures be « while the width of each ruling is &, and for simplicity
suppose the light to be incident perpendicularly to the grating.

Now consider the light which falls upon the lens in any direction
OP (Fig. 113) where O is the optic centre of the lens. Streams of
light fall upon the lens in this direction from the apertures and are
brought to a focus at P, consequently the disturbance at P will be the
resultant of all the disturbances sent to it by the various streams
from the apertures. Draw M,D, (Fig. 114) perpendicular to the
direction OP. Each stream is propagated from
this line to P in the same time. But the light is
incident in the same phase at every point of the
grating, since we have supposed the incident wave-
front parallel to it, consequently the light which
reaches P from the second aperture will be retarded
on that which reaches it from the first and inter-
ference will oceur. Thus the difference of path
between the first element of the first aperture
and the first element of the second is equal to
M,D,, and the same difference exists between all the corresponding
pairs of elements of these apertures, while the same remark applies
to every other consecutive pair of apertures. If, therefore, M,D,
is an even number of half-wave lengths, the light from all the
apertures will arrive at P in the same phase, and will reinforce
each other, and the illumination at P will be very great; but
if M,D, is an odd number of half-wave lengths, the light from the
first aperture will be destroyed by that from the second, the light
from the third by that from the fourth, and so on. Hence in this case
the illumination at P will be zero.

Now M,D,=(«+ b)sin 6 if the direction OP makes an angle ¢
with the normal to the grating ; hence P will be very bright if

Fig. 114.

(&4 &) sin 8 =2nik,
and dark if
(w4 0)sind=(2n+1)5N
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Let us now suppose € to increase from zero while n takes the consecu-
tive values, 0, 1, 2, 3, ete. The value @ = 0 corresponds to n =0, so
that there is no retardation, and the light from all the apertures
arrives in the same phase at M on the central line OM (Fig. 113).
This then is a bright point for all wave lengths, and with ordinary
light will be white. An interval of darkness now occurs as # increases
from zero to the value 6#,, given by the equation

sin &, =Mf(a + b).

If OP, be drawn in this direction, meeting the focal plane at P,, then
P, is a very bright point. Another interval of darkness occurs till #
reaches the value determined by

sin 8,=2\f(a + b),

which gives another bright point P, and so on. We have therefore
a succession of bright places P,, P,, P, ete., with dark intervals
between them, and like appearances also on the lower side of the
central line OM. The direction from O to the nth bright point is
given by the equation

sin 8, =aN\f(a +b).

What has been said so far applies to light of a definite wave
length. When white light is used a brilliant rainbow-coloured band
or spectrum appears at each of the points P, Py, P, ete. For the
angle 6 corresponding to any bright point increases with the wave
length, consequently the points of maximum illumination for the
red light are farther removed from the centre than the corresponding
points for the violet licht. What were bright points at P, P,
ete., with monochromatic light, are now drawn out into exquisitely
coloured spectra, violet at the inner and red at the outer edge.

Several spectra are formed on each side of the central image ; the
first pair being separated from the second pair, and from the central
image, by completely dark bands. Overlapping of the spectra will
occur when the deviation of the violet of any order is less than that
of the preceding red. This will take place between the spectra of
order higher than the second, for since the deviation is proportional to
the wave length, and since the wave length of the red is approxi-
mately twice that of the violet, it follows that the deviation of the red
of the second spectrum will be approximately the same as that of the
violet of the third spectrum, while the red of the third will be more
deviated than the violet of the fourth, and so on. The separation of
the superposed parts of the spectra at any place may be effected by
means of a prism.

White
light.

Uhver-
lapping.
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aamples

1. Explain how the lens gives only one bright point on the screen when the
opaque parts of the grating are made transparent.

2. Show by Babinet’s principle (Art. 133) that when a lens is used the bright-
ness of the lateral speetra remains the same when the opague and transparent
parts of the grating are interchanged.

186, Light ineident obliquely — Minimum Deviation. — If the
incident light be not perpendicular to the plane of the grating,
but falls upon it at an angle ¢ with the normal, the retardation
is given by the equation

0 = (a4 b)(sin O+ sin €).
For if MD and MDY (Fig. 115) be drawn perpendicular to the inei-
dent and transmitted beams respectively, the retardation will obviously
he NID + NIV ; but ND = (« + l)sini and MD’' = (a + b)sin#. There-
fore, ete.

The position of the nth spectrum in this
case is determined by the equation

(ee 4 B)(sin 8, + sin ) = n\.
The angle of incidence i may be determined
by measuring the angle 2¢ between the direct
light and that reflected regularly from the face

Fiz. 115. of the grating.
Diffraction spectra, like refraction spectra, exhibit a minimum
deviation. The deviation suffered by the light of the nth spectrum is

given by the equation

But

]] i - H".
(e + ) (sin i+ sl ) = nk,

hence the deviation of the nth spectrum will be a minimum ! when
i = #,~—that is, when D) = 2i, or when the angle of incidence is equal
to the angle of diffraction. We have then

2(a -+ b) sin D =),

In the position of minimum deviation the definition of the spectrum

! For a maximum or minimum value of D we have
dD =di+df, =0,
and from the second equation, when N and # are given, we have
cos idi 4 cos B a8, =0.

Therefore cosi =cos #,—that is, ¢=48,, for each is less than 90°.
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is considerably augmented. It has consequently been used by M.
- Masecart ! in his determination of A.

137. Purity of the Spectra.—We have explained how it is that
when a Iuminous origin is viewed through a grating a series of spectra
are seen on each side of the central image. We shall now show that
there is no overlapping of the colours in these spectra—that, in fact,
the spectra are pure. To do this let us again revert to the case of
monochromatic light. With such light a series of bright images are
depicted in the focal plane. If the origin be a point, we have a series
of bright points ; if a line parallel to the lines of the grating—such as
a narrow slit—we have a series of bright lines, images of the slit.

Now we may show that the images P, P,, P, etc., are really of very
small dimensions, and are not drawn out or fuzzy, but are clear and
well defined. For let P be a point of maximum brightness and consider
light incident on the lens in a direction differing very little from OP,
This light will be brought to a focus at a point very close to P, and
our object is to show that at this point there is no illamination. Now
since P is a bright point the retardation M,D), is an even number of
half-wave lengths, consequently the retardation M,D’, for the new
direction, very close to M,D,, is the same number of half waves plus
or minus a small fraction of a wave length. Let us suppose this
fraction very small, say g% A, which will correspond to a point
exceedingly close to P. The light from the first aperture is in advance
of the light from the second by an amount

(% + yolsa N

consequently it is in advance of the light from the 501st aperture by
500 times this amount, or by

(500 3+ )N,

that is, by an odd number of half waves. The light therefore from
the first aperture is destroyed by the light from the 501st, the light
from the second by the light from the 502nd, and so on, so that if P
be a bright point there is no illumination at points even very close to
it. If a narrow slit be used as the source of light, and if the lines of
the grating are parallel to the slit, then for. monochromatic light we
will have bright lines at P, P,, P, etc., parallel to the lines of the
grating ; but if white light be used each particular wave length gives
an image of the slit, and all these are arranged side by side in a
continuous spectrum withont sensible overlapping or blurring.

! Mascart, Anun. de U Ecole norm. tom. i. et iv. ; Comptes Rendus, tom. lvi. p. 138;
tom. lviii. p. 1111.-
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138. The Dispersion in the Speetrum.—The directions to the
red and violet of the ath spectrum being given by the equations

sin #.=ulf(a +5),
sin 8, =n\ /(@ + b),

it follows that if (a + &) is decreased in any proportion, then sin 6, and
sin 6, will be increased in the same proportion. If these angles are
small their sines are approximately equal to their tangents, so that
the difference of the sines will be equal to the difference of the tangents,
which will consequently be also increased in the same ratio. But the
difference of the tangents is proportional to the distance between the
red and violet of the spectrum, and this distance measures the amount
of dispersion in the spectrum, consequently by decreasing (a + ) in any
ratio we increase the dispersion approximately in the same ratio. If
the lines of the grating are very close and very fine, the colours of the
spectrum will be widely spread out or the spectrum will be long. By
this means the absence of any particular colour or wave in the solar
light is exhibited, and by ruling the gratings very closely spectra have
been obtained and mapped which show that the solar spectrum is not
continuous, but is deficient in many places, being crossed by numerous
dark lines, indieating that the corresponding wave either was not
emitted by the sun, or else that it was lost by absorption or otherwise
before it reached us.

When the incident light makes an angle ¢ with the normal to the
grating, and the difiracted light an angle #, we have for the nth spee-
trum (¢ + b)(sin i + sin ¢) = nA. Hence if the angle of incidence remains
constant, the variation # of the angle of diffraction is connected with
the corresponding variation X\ of the wave length by the equation

(e + ) cos 88 = nd).

[f 6 is nearly zero the factor (« + b) cos § remains sensibly constant
from one end of the spectrum to the other, and the variation of & is
therefore proportional to the variation of A only, if the angle of
diffraction be small. In this case the separation, or dispersion, of the
rays corresponding to the different kinds of homogeneous light is
directly proportional to their difference of wave length.

When @ is not small the above equation shows that the angular
variation «# is directly proportional to the order » of the spectrum,
and inversely as cos#. Consequently the higher the order of the
spectrum and the greater the angle of diffraction the wider the dis-
persion. The dispersion, being defined as the ratio of the angular
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interval d# to the corresponding variation dA of the wave length, is

given by
ag 7t :
d\" (o+b)cos @

Hence the finer the ruling of the grating the higher the dispersive
POWer.

139. Normal Speetrum.—We have seen that a spectrum formed
by a grating is pure,—there is no overlapping or mixture of colours.
This is not generally the case with the spectra formed by glass prisms,
but with proper arrangements they also may be made to give pure
spectra. The grating spectra, however, have a great advantage over
refraction spectra in another respect. We have seen that the disper-
sion depends ! merely on the wave length and on the distance (a + b)
—that is, on the number of lines to the inch in the grating. Hence
the spectrum formed by any grating is exactly similar to that formed
hy any other, one being an exact copy of the other on a larger or
smaller scale,—the ratio of their lengths being a + 1" : a + b, for the
dispersion is inversely as a + b. Consequently the ratio of the widths
occupied in the spectrum by any two colours is invariable. This is
not generally the case with the spectra formed by different prisms.”
The relative dispersion of any two colours, the orange and blue say,
may be very different with prisms made of different glasses, while some
substances even reverse the order of the colours. Thus one may
separate the blue and orange very much, while the other separates
these colours very little. This is known as the imationalily of disper-
sion, and on account of it we are unable to compare refraction spectra,
the spectrum obtained with one prism not being similar to that
produced by another.

On the other hand, all spectra produced by gratings are exactly
similar, and the observations made by any one at any part of
the earth may be repeated and verified at any other station. The
diffraction spectrum is therefore taken as the standard or normal
spectrum.

! This neglects the variation of cos #. _

2 If two prisms of different substances such as glass and water, and having
refracting angles such that they give speetra of the same length, be placed with
their refracting edges in opposite directions, then in a beam of light transmitted
through the pair the red and violet rays will be reunited, yet the intermediate
rays will be somewhat dispersed. Henee if a white line be examined through such
a combination instead of being seen colourless after refraction it will form a small
spectrum, purple at one end and gréen at the other, the water prism refracting the
green or middle rays more in proportion to the extremes than the glass, These
spectra formed by the irrationality of the dispersion have been called secondary
spectra by Herschel (Ency. Metr., art. ** Light ).
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140. Absent Speetra.—The general conclusion which we have
drawn is that if (¢ + &) sin & or M,D, is any even number of half-wave
lengths—that is, any whole number of wave lengths—then the illumi-
nation at P is a maximum, and a spectrum is formed there. We will
now show that it may happen that M,D, is an even number of half-
wave lengths and yet there is no illumination at P, in fact, the
spectrum is wanting.  This will happen when the direction OP is
such that there is an even number of half-period elements in each
aperture. Each aperture will then produce zero effect at I, and there
will be no illumination at that point. Now suppose that « and 8 are
the two smallest whole numbers which measure the ratio of « to &, then
a =k and 3= kb, so that if M,D, = (a + B)A we must have N, D, = a),
since MLD,: NI}, =a+l:a=a+ :a Hence there is an even number
of half-wave periods in the aperture M N., and therefore in every
aperture, consequently each aperture produces no effect at P, and the
result is darkness at that point. Hence if we say that M,D, =a\
corresponds to the nth spectrum, we may say that the

(a+@)th, 2({a+gith, ete., (a+B)th

spectra are wanting.

141. Refleetion Gratings.—Spectra similar to the preceding may
also be obtained by reflection, and first-class gratings may be formed by
ruling very fine parallel grooves on a polished metallic surface. The
streams of light regularly reflected from the polished infervals between
the rulings proceed from a virtual image of the source as if they came
through the intervals from behind the surface. If the surface be
plane the case will be analogous to that of the transparent grating
just considered, and the expression for the retardation, when
the light is incident at an angle ¢ and diffracted at an angle &,
hecomes

d=(a+Hz1in £ =X sin #).

Appearances of the same nature and attributable to the same canse
are often observed when a metallic surface has been polished with
a rather coarse powder. The powder leaves minute strie which
affect the light as described above. A simple way of producing
a similar result is by passing the finger over the surface of a
piece of glass moistened with the breath. The exquisite colour
of mother-of-pearl and other striated substances (formed of a vast
number of very thin layers) are natural instances of the same
phenomena.

142, Curved Gratings.—Let the surface on which the lines are
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ruled be not plane, but have any curved section AB (Fig. 116) per-
pendicular to the lines of the grating. If light from a source S fall
upon it at an angle ¢ with the normal, and be diffracted at an angle #,
the retardation will be

PO sin ¢ £ sin &),

Consequently for brightness we have as

before, if PQ = (« + b),
fh=(a 4+ 0)(sin ¢ £ sin 0,

the negative sign being taken in the case
of reflection, if S and S’ lie on opposite
sides of the normal (as in Fig. 116). Fig. 116,

To obtain the image 8§ of 8, virtual or real, let us consider two
rays SPS" and SQS’ incident at angles ¢ and i + di, and diffracted at ¢
and @ + d0 respectively, and let the normals to the curve at P and ()
meet at C. Denote the small angles at 3, C, and 8" by «, 8, and v
respectively. Then clearly we have

a+1i=F+i+di=supplement of angle at M,
4 0 =70 +di =supplement of angle at N.

Consequently di=a - 3, and dg =3 - .
But if 5" is a focus, § must be stationary, and this condition gives

sin # — sin # = const. ,

or
08 108 — cos 8dd =0,

Hence, substituting for i and 6, we obtain

(a=Bleosi—(8-v)cos =0 {1
Now if we write
PS=p, PC=R, PS'=p’, PQ=¢,
we have
pa=ccosi, RB=e, py=ecosp.

Therefore (1) becomes

s E(r“l: ?.—-:{)—i'ﬁ.-s ﬂ(;{“:? ﬂ):l’} {2],

from which we find at once

G Rp cos® #
~ pleos 8 +cosi) — Reos* i

p (8).

Here we may regard p and ¢ as the polar co-ordinates of S, and p’
and ¢ those of S'; hence if S describes any eurve, S will describe
another, the focal curve, defined by the above equation,
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Cor. 1.-—If p=R cos i, then p' = R cos &—that is, if S describes a
circle on R as diameter, 5" will move on the same circle. Hence if the
grating curve be a circle of radius R, a source situated on a circle
described on R as diameter will give spectra situated on the same circle,

This important deduction has been utilised in a masterly manner
by Professor Rowland in the construction of his concave gratings.

Cor. 2—When i= =6, if p=R cos i (as in Fig. 117) we have
p =p. Hence in the position of minimum deviation, as for prisms, the
source S and its image S’ are equidistant from the grating. Con-
sequently the diffracted rays returning to S form an image superposed
on the source.

Cor. 3.—1f the grating be plane R is infinite, and

p = —pcos® 0 cos® 4.

143, Rowland’s Coneave Gratings.—Professor Rowland has sue-
cessfully ruled fine gratings on a concave spherical surface of polished
speculum metal. The lines are the intersections of the surface with
a series of parallel equidistant planes, one of which (the central one)
passes through the centre of the sphere.

Let PM (Fig. 117) be the surface of the grating, C its centre, and
M the middle point of the ruled surface. On CM as diameter describe
a circle. Then, as shown above (Cor. 1),
a source S on this circle will give an
image at S’ on the same circle, defined by
the equation

A= (a+b)(sin i - sin §),

the negative sign occurring here because
we have taken S and S’ on opposite sides
Fig. 117, of the normal MC.

Real diffraction spectra will consequently be formed on the circum-
ference of the circle SCS', having their lines parallel to the lines of the
grating. If three arms of equal length be hinged at F, the principal
focus of the spherical surface, one to carry the grating G, another the
slit or luminous origin S, and the third an observing telescope or screen,
by rotating this latter all the spectra may be successively observed.
The length of each arm is half the radius of curvature of the grating.
In the third arm, instead of the screen or photographic camera, a
sensitive radiometer may be substituted, and the heating effects of the
various parts of the spectrum studied, as has been done by Professor
3. P. Langley.’

L &. P. Langley, Phil. Mag. vol. xxi. p. 394, May 1886,
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In order that a large part of the field of view may be in focus at
once Professor Rowland places the eyepicce at C, so that ¢ =0, and
the value of ¢ for the nth spectrum is then given by

(@+b) sin i=nk\.

This arrangement is secured mechanically by placing the slit at S
(Fig. 118), the intersection of two arms SG and SC set at right angles.
At the extremities G and C of these arms the grating G and the camera
or eyepiece C are placed. This arrangement is specially advantageous
for photographing the spectrum. Rails are placed on SG and SC for
the locomotion of the grating and camera box.

SG and SC are heavy wooden beams of which SG is fixed, while
SC has a slight freedom of rotation about S, controlled by serews at C,
The rails for the grating-holder and camera-box are of iron and fastened
to these beams by serews which admit of adjustment, so that the rails
may be straightened if the beams warp. GC is a tubular wrought-
iron girder pivoted at its ends directly over the rails, on two iron
carriages. Its length is approximately equal to the radins of the
arating, and has a range of ad-
justment of about six inches
The carriages have wheels resting
on the iron ways, and these
enable the girder to be easily
moved from one position to
another. The ecamera-box and
grating are themselves movable
along GC, and have freedom of
motion, but can be finally
clamped in place.

The slit, which is generally Fiz. 118.—Coneave Grating.
open not more than "001 inch, can be adjusted parallel to the lines of
the grating. This adjustment is one of the last to be made in
mounting the grating, and is executed by turning the slit until the
definition is the best possible, a condition very important in photo-
graphing the spectrum. If the slit be out 05 the definition is spoiled.

Stops can be placed at the top and bottom of the slit, thus causing
the grating to be illuminated only by the centre of the solar image ;
otherwise the definition may be endangered by the rotation of the
sun. The image of the sun on rthlt slit should consequently be large.
With the apparatus in the Johns Hopkins University it is 12 em., and
this is reduced one-half by the stops. For solar work the light is
thrown on the slit by means of a condensing lens and a totally reflect-
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ing prism."! Between the lens and the prism absorbing solutions can
be placed. For ordinary purposes a 10,000 grating is sufficient, but
tor photographing in the ultra-violet it is best to have a 20,000 grating
with a ruled space of 5} inches on a 6-inch polished surface. The radins
of curvature is generally 215 feet. The photographic plates are 19
inches long, 2 inches wide, and {; inch thick, which allows them to be
bent to the required radius without breaking.

144, Speetrum Photographs—Choiee of a Grating.—Most gratings
give a brighter spectrum at one side than at the other; and so before
placing the grating in the holder it must be examined to see which
side should be used. Every grating has spectra of different brightness
on the two sides; and one should be used which is bright in the par-
ticular spectrum desired for observation. The ved of one speetrum may
be bright and its violet faint. Further, the varions parts of the grating,
especially if it be concave, may give spectra of varying brightness.
I'or instance, the second spectrum may be uniformly bright for all parts
of the grating, while one end of the grating may give a bright third
spectrum and the other a faint one. Having selected the grating
which we wish to use, it is mounted in its holder and the colli-
mating eyepiece is put in place. The focus is then carefully adjusted
by altering the length of p till the cross-hairs are exactly at the centre
of curvature of the grating. On moving the bar the whole series of
spectra are seen in exact focus. The rail SC on which the carriage
moves is graduated to equal divisions representing wave lengths, since
the wave length is proportioned to the distance SC. The instrument
may thus be set to any particular wave length we desire to study, or
the wave length may be obtained by a simple reading. By having a
variety of scales, one for each spectrum, we can immediately see what
lines are superimposed on each other, and identify them when we are
measuring their relative wave lengths. Replacing the eyepiece by a
camera, the spectrum may be photographed with the greatest ease.
“We put in the sensitive plate either wet or dry and move to the part
we wish to photograph. Having exposed that part we move to another
position and expose once more. We have no thought for the focus,
for that remains perfect, but simply refer to the table giving the proper
exposure for that portion of the spectrum, and so have a perfect plate.
Thus we can photograph the whole spectrum on one plate in a few
minutes from the F line to the extreme violet, in several strips each
20 inches long, and we may photograph to the red rays by prolonged

I In Fig. 118 the light is thrown on the slit by means of a totally reflecting prism.
This of course is necessary only when the aspect is such that the light cannot be
thrown on the slit directly.

e i it adptin i 5
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exposure. Thus the work of days with any other apparatus becomes
the work of hours with this. Furthermore, each plate is to scale, an
inch on any one of the strips representing exactly so much difference of
wave length. The scales of the different orders of spectra are exactly
proportional to the order. Of course the superposition of the spectra
gives the relative wave lengths. To get the superposition, of course
photography is the best.” !

Between the slit and the camera-box no lens is interposed. Besides
the saving of light and cost, there are no corrections necessary for
spherical aberration, imperfections of lenses, etec. The concave
grating is astigmatic, i.e. a point of light as the source is brought to
focus not in a point but in a line. By the astigmatism a small
spark of light at the slit is broadened out into a wide spectrum,
greater accuracy in comparing solar and metallic lines is afforded,
and a spectrum is obtained which is broad enough to stand
enlarging.

The spectrum is normal at C. Further, in this case n\=(a + b)
sin . But SC=psinie A, thus if an absolute wave length be
marked on SC and the instrument is in perfect adjustment, we can
mark on the arm SC a scale of wave lengths for each spectrum, and
the absolute wave length of any one line is known at once. It is
important to notice that this scale on the beam is identical with the
scale on the photographic plate, and that all the spectra are in focus
at C at the same time, and sfay in focus; however, C moves along
SC, it being rigidly attached to G. The concave grating besides
is the only spectroscope suitable for the ultra-violet and infra-red.
Much longer photographic plates ean be used than with any other
instrument, since they can be easily bent, so as to be throughout
in focns.

A 10,000 grating has on the whole better definitions than a
20,000 one, and is of course much cheaper. It is only for work with
the camera in the ultra-violet part of the spectrum that it becomes
necessary to use a 20,000 grating. This is due to the fact that for
the same dispersion there are fewer overlapping spectra with the
20,000 than with the 10,000 grating.

A spectroscope is used for two purposes—to measure the lines in
the solar or metallic spectra, or to establish coincidences simply.
For hoth these purposes the concave grating is far superior to any
other on account of the overlapping spectra.

Owing to the astigmatism of the grating it is not possible to adopt
the usual method of illuminating part of the slit with the solar image

! Professor H. A. Rowland, Fhil. Mag. p. 197, September 1883,
R
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and part with the spark or are, and so a different and far befter plan
is adopted. A compound photograph of the two spectra is taken.
The solar spectrum is photographed along the middle of the sensitive
plate ; the sunlight is then turned off and the metallic spectrum is
then allowed to fall upon the upper and lower part of the plate.
Then, finally, the sunlight is turned on again along the middle of the
plate. If there has been any gradual displacement of the camera
during the operation the error is eliminated by this process if the two
times of exposure o the solar spectrum are the same. A record of the
barometer and thermometer readings must be kept for corrections due
to variations of temperature and pressure may be considerable.

145. Difficulties of Construetion.—The difficulties attending the
construction of a grating are described by Mr. J. 8. Ames:! “It takes
months to make a perfect serew for the ruling engine, but a year may
easily be spent in search of a suitable diamond point. . . . Most points
make more than one ‘furrow’ at a time, thus giving a great deal of
diffused light. Moreover, few diamond points rule with equal ease
and accuracy up hill and down. This defect of unequal ruling is
especially noticeable in small gratings, which should not be used for
accurate work. Again, a grating never gives symmetrical spectra ;
and often one or two particular spectra take all the light. This is of
course desirable if these bright spectra are to be used. Generally it
is not so. . . . It is not easy to tell when a good ruling point is
found ; for a ‘scratchy’ grating is often a good one; and a bright
ruling point always gives a ‘seratchy ’ grating.  When all goes well it
takes five days and nights to rule a 6G-inch grating having 20,000
lines to the inch. Comparatively no diffienlty is found in ruling
14,000 lines to the inch. It is much harder to rule a glass grating
than a metallic one ; for to all of the above difficulties is added the
one that the diamond point is continually breaking down.”

146. Measurement of Wave Lengths.—By far the most aceurate
method of determining the absolute wave length corresponding to any
part of the spectrum is by means of a diffraction grating. This
method involves the accurate measurement of the angle of deviation
of the ray under consideration, and also the measurement of the
absolute length of the grating or grating space. The latter is difficult
to determine aceurately. Metallic gratings are much larger than glass
oratings, and consequently an error in measuring them is of less
importance in the result. However, it requires several days to rule a
large grating, and as the coefficient of expansion of speculum metal is
more than twice that of glass, changes of temperature give rise to

' J. 8. Ames, Phil. Mag. May 1889,
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greater irregularities in ruling, but this advantage of the glass grating
is more than counterbalanced by the great difficulty in ruling one
free from flaws occasioned by the breaking down of the diamond point
on the hard material.

The interference methods of determining A usually require the
exact determination of some very small length ; they are therefore
much inferior to the diffraction method, which lends itself more
readily to linear measurement besides affording very pure spectra.

Transmission gratings may be used in two ways: (1) with the
incident light perpendicular to the plane of the grating, in which case

h=(a+b)sin g,

and (2) in the position of minimum deviation, when the equation

which determines A is
i\ = 2(a 4+ &) sin 4 D,

The former method was used by Mr. Louis Bell! as offering fewer
experimental difficulties ; but with either method the accuracy with
which the angular deviation can be determined far surpasses that of
the measurement of the grating space (a + 0).

The spectrometer and grating being placed in exact adjustment,
readings may he taken on the D, line in the spectra on both sides of
the slit, and the angle measured five or six times in succession.

Mr. Bell worked with the third speetrum, as in it the definition
was particularly good, and being of the highest order that could be
conveniently observed, an error in the angle could produce little effect
in the result. No correction was considered necessary for the effect
of the velocity of the apparatus through space (see chap. xix.).

The accurate determination of wave lengths was first rendered
possible by Fraunhofer's researches in the solar spectrum. The dis-
covery of dark lines in the spectrum gave a definite standard of refer-
ence, and Fraunhofer * himself, with a wire grating, necessarily very
defective, obtained very fair determinations of the wave length of the
D line.

His mean result was "0005888 mm., which is remarkably accurate,
considering his gratings and the fact that most of his angles of devia-
tion were less than 1°.

These determinations were not improved on till the importance of

! Louis Bell, Phil. Mag. p. 265, March 1887.

¢ ““Nene Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung
der Strahlen, und Gesetze derselben,” presented to the Munich Academy in 1821,
See Bell, “On the Absolute Wave Length of Light,” Phil. Muag. p. 246, April
1888,
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spectroseopic work was established by the great researches of Bunsen
and Kirchhoff, and the art of ruling gratings was much improved by
Nobert. Maseart employed four or five of Nobert’s gratings, and
worked with them in the position of minimum deviation—that is, so
that the incident and diffiracted rays made equal angles with the plane
of the grating. This method avoids the necessity of placing the
erating perpendicular to the axis of either telescope, but it is rather
more difficult in the experimental work, and is perhaps of questionable
utility. However, it generally improves the definition, and is capable
of giving very accurate results,

In the same year (1868) Angstrém’s researches appeared, and for
long remained the standard of reference in all questions of wave
length. He used Nobert’s gratings, and in spite of the fact that these
were small and inaccurately ruled, giving imperfect definition and
showing numerous “ ghosts,” his results would have been very nearly
exact if his standards of length had been correct.

In all the earlier determinations of the wave length insufficient
attention was paid to the measurement of the grating spaces, and this
of course requires an accurate standard of length. Thalén,' who
assisted Angstrom in his work, corrected it afterwards for the error in
the assumed length of the Upsala metre.

Ten years after Angstrom’s research Mr, C. S. Peirce? again
attacked the problem with Rutherford gratings far superior to any
previously used.

The grating space (¢ +b) is never perfectly uniform throughout
the whole extent of the ruled surface. Regular or periodie variations
produce * ghosts ” and differences in focus of the spectra on opposite
sides of the centre. There are other varviations of an irregular
character, such as the displacement or omission of one or more lines,
or, what is far worse, the more or less sudden change in the grating
space, forming a part having a grating space peculiar to itself. This
latter is by far the most formidable type of error. The other irreg-
ularities are harmless, and occur in most gratings. If the abnormal
portion of the grating be confined to a few hundred lines, they will
merely diffuse a certain amount of light without producing false lines
or sensibly injuring the definition. They will, however, lead to an
incorrect result if we determine the grating space by measuring the
total length of the grating, and dividing by the total number of lines.

Mr. Bell ® describes an experiment illustrating the effect of these

! Thalén, Sur le Spectre die Fer, Upsala, 1885.
? American Jouwrnal of Science, third series, xviii. p. 51, 1879,
3 Bell, Phil, Mag. p. 362, May 1888.

R
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errors of ruling : * Place a rather bad grating—unfortunately only too
easily obtained—on the spectrometer, and, setting the cross-hairs care-
fully on a prominent line, gradually cover the grating with a bit of
paper, slowly moving it along from one end. In very few cases
will the line stay upon the cross-hairs. A typical suceession of
changes in the spectrum is as follows :—Perhaps no change is observed
until two-thirds of the grating has been covered. Then a faint
shading appears on one side of the line, grows stronger as more and
more of the grating is covered, and finally is terminated by a faint
line. Then this line grows stronger till the original line appears
double and finally disappears, leaving the displaced line due to the
abnormal grating space.”

The effect of an abnormal portion of the grating is, therefore, to
canse a displacement of the lines of the spectrum and lead to error in
the evaluation of the deviation, as well as in the caleulation of the
grating interval. The abnormal spacing generally occurs at the end of
the grating where the ruling was begun, for the engine after starting
requires some little time to settle down to a uniform state.

To detect and evaluate the errors of irregular spacing Mr. Bell !
proposes the calibiafion of the grating. In this process the grating is
examined under a microscope from end to end. This gives the varia-
tions in the lengths of the spaces in different parts of the grating.
Bell's mean result for D, with four corrected gratings, two on glass and
two on speculum metal, gave at 20° C. and 760 mm. pressure in air

Ap; =5896-18 tenth metres,
or in vacuo
Apy = 589790 tenth metres,

which, as far as errors of observation go, he considers should be cor-
rect to within one part in half a million. The wave lengths of the
other lines in the spectrum derived from this are in air at 20" and
T60 mm,

A (line between * head ™ and ** tail E,; (line between **head ™ and ** tail ™

of group) ; : . 162131 of group) . : ; . 5270752

B - e . 6884-11 lh, e o . 526984

C i o . BBB3OT | O i . Bigg-82

1og : L s mROGIE [ W - A
{Dg o5 4 . 589022

Mr. Bell has given with the above figures the chief results pre-
viously obtained for D, as follows :—

! Louis Bell, Phil. Mag. p. 363, May 1859,
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Mascart . ! : D . bH894-3 Angstrim corrected by Thalén 5895°89
Van der Willigen . ! . 58986 | Miiller and Kempft. i . 589625
Angstrim . . : . 589513 | Macé de Lépinay . d . 589604
Ditscheiner . : ; . 58974 Kurlbaum . ’ A . B895°90
Feirce . : : : . bB96-27 | Bell . . . : . 589%6°18

Every method of determining wave lengths must necessarily involve
the uncertainties of the standards of length used. The experimental
difficulties involve small but troublesome corrections, such as the effect
of moisture in the atmosphere, changes of pressure, uncertainty as to
the true temperature of the grating, and variations of the grating
space.

[Runge (Astronomy and Adstrophysics, vol. xii. p. 426) gives an
example on the necessity of allowing for the dispersion of air in deter-
mining wave lengths by the method of coincidences: “Suppose at a
temperature of 20° Celsius and a pressure of 760 mm. two rays have
the wave lengths 6000 and 2000. They would then exactly coincide
if one was observed in the first and the other in the third order.
Now reduce both rays to vacuo. They would no longer coincide, the
ray in the third order lying to the less refrangible side by
0635 x 3 - 1633 =0°272. Since the corrections are proportional to
the density of the air a barometric pressure of say 770 mm. and a
temperature of 12° Celsius would make the distance between the two
lines 0°011, an amount which is larger than the probable error that
may be reached with well-defined lines.”

He gives the following table for reducing to vacuo Rowland’s
standard wave lengths and all wave lengths that are determined from
them by interpolation :—

T R e IS

i - »

' 8000 2164 Angstron 4000 | 17109 Angstriom |
7000 | 1808 .. 5000 0857
6000 | 1-6338 .. 2500 0739
5000 | 1:869 . 2000 | 0635 ..

Compare the table on p. 137 containing Kayser and Runges
indices for dry air.] :

[1464. The Echelon Spectroscope.'—We have seen (Art. 138) that
the dispersion of a grating varies directly as the order (n) of the spec-
trum and inversely as the distance (a + b) between consecutive rulings.

! Tt is sad to recall that Prof. Preston had ordered an échelon spectrozcope for his
investigations on the Zeeman effect, and that he had died before the instrument was
completed.
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Consequently to increase the dispersion the rulings must be made finer
or else a spectrum of higher order must be observed. On account of
the extreme faintness of high order spectra the second alternative
afforded no promise of improvement in the construction of gratings
until Michelson ! investigated the subject. He pointed out the condi-
tions depending on the shape of the grooves made in ruling under
which a reflecting grating would concentrate most of the light into a
particular group of spectra, and he constructed a most ingenious and
valuable transmission grating by means of which the same effect is pro-
duced. Michelson took a number of plane-parallel plates of optical
glass of exactly the same thickness (¢), and built them up in the form
of a stair, each step being of the same depth (f).

Let PACQ and P,B,A,Q, represent rays of light normally incident
on the plates and passing through cor- PR
responding points A and A, on consecutive :
steps. Draw A ,C at right angles to CQ.
The retardation of the second ray on the
first is pB/A, - AC if p is the refractive ‘A ‘B
index of the glass. Now AC is equal to the

sum of the projections of AB,, B/A,, and § o
A,C on its direction, that is AC= - AB, S
sin @+ BjA cos = ~fsinf+ecos 6. The Fd'

]

retardation is therefore S
1Fig. 115e,

mA=pe+fsind-ccosd . : ; . S

and if m is a whole number the emergent light of wave length A from all

the steps making the angle # with the normal will form a bright image

of the slit when brought to a focus by a lens. As the retardation is

large, m will be large and the order of the spectrum will be very high.
Differentiating (1) for a given value of m we find

Mkl
“esin@4fcos 6

(2)

and also replacing m by m + 1 and @ by @ + A in (1) we have

X
A= e sin H_-_E-f{;_g_ﬂ 2 : . . : = I8
50 that on division
d8  andX — edp
LT T (4)

where df is the change of # due to change of wave length (4)), and
Af is its change on passing to the)spectrum of next highest order
(m+ 1),

' A. A, Michelson, The Astrophysical Journal, vol. viii. p. 37 (June 1898).
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Replacing m by its value from (1) we have

bl fsind—ecos @ d) i 0
i : ——I—Hl.i k- : : - (B)

For flint-glass d(p/A) is approximately equal to — 2dA/A% and the
formula becomes

df _rsinf+te(2Z-cosd) dx _ ?_s_i_u_{_u—ﬁ"} e (6)
Ad X Tk “( B 73 [ 3

sim a

where o = tan '¢/f) is the angle of slope of the échelon. If dA/A =
0-001 as in the case of the two sodium lines, if ¢ =5 mm. = 10000,
and if # is very small, 0 = 10A# approximately, or the sodium lines
would be separated by ten times the distance between the spectra. In
this case also mA = (p = 1)e =10000(p — 1)A, so m is about 5000.

Exactly as in Art. 157 when the échelon is composed of n plates
the separation of the spectra (A#) is increased n-fold. Indeed, Fig. 140
applies very well to an instrument composed of only seven elements
with which Michelson easily observed the Zeeman effect.

Also, as in Art. 156, the intensity due to a single step is propor-
tional to sinp/¢* where ¢ =mfA-1sin £. On account of the enormous
size of f compared with A the total intensity (compare again Art. 156)
is insignificant except where @ is very small, and all the light is prac-
tically included between the deviations = A(f. But the distance
between two successive spectra is A/f by (3), so there will in general
be two spectra visible. By slightly inclining the échelon one of these
may be rendered eentral and much more intense than the other.

“The overlapping of the spectra is overcome by a direct vision
prism of moderate dispersion, but the distance between the spectra is
so small in comparison with the dispersion of the échelon that the
spectra of the source under examination must consist of rather fine
lines if overlapping is to be avoided.”

Michelson gives the dimensions of a twenty plate échelon constructed
for him. Each plate was 18 mm. thick, and the successive elements
diminished in width from 22 mm. to 2 mm., so that the width of the
elementary pencils is 1 mm., and the retardations are of the order of
20,000 waves. The resolving power of this instrument is about three
times that of the best gratings, and more powerful instruments can be
constructed. The real difficulty is to obtain plates of exactly the same
thickness. Most valuable results may be anticipated in the analysis of
close groups of lines. |
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SECTION III.—INVESTIGATION OF THE INTENSITY IN
DIFFRACTION PATTERNS

147. Application of the Graphic Method.—In the foregoing
sections we have considered merely the general character of the effects
produced by diffraction when light, diverging from a luminous point,
falls upon a narrow aperture or passes by the edge of an opaque obstacle,
The actual caleulation of the intensity of the illumination at any point
of a diffraction pattern (that is, the fringe system produced by diffrac-
tion) is generally a problem of some difficulty when attacked directly
by the analytical method, but in many cases the solution may be
effected with great simplicity by means of the elegant graphic method
introduced in Art. 45. We shail therefore recapitulate briefly this
method of representing the resultant of a system of vibrations of the
same period, but of different amplitudes and phases.

Thus it has been shown that if a polygon be constructed so that
the lengths of its sides (Fig. 119) represent the amplitudes a, a,, . . . «
of a system of vibrations simultaneously superposed on a partiele, while
the angles which these sides make with
a given line OX represent the phases

L

of the corresponding vibrations at any
instant, then the closing side OP of
the polygon represents the amplitude,
and the angle XOP which it makes
with OX represents the phase of the
resultant vibration. In this figure the
phases of the successive vibrations are
taken in ascending order of magnitude,
and are such that there is an abrupt
change in passing from each to those adjacent to it. If, however, the
change of phase be not abrupt, but varies continuously in passing from
each to the next, and if the amplitudes be very small, then the sides
of the polygon will be very short, and the angles which they make
with each other will be very small, so that in the limit the figure
becomes a continuous curve, as shown in Fig. 120. This is what
happens when we attempt to represent the effect of a complete wave,
or of any part of it, at an external point.

The shape of such a curve depends on the m:nner in which the

Fig. 114,
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amplitudes and phases of the vibrations change in passing from each
Curvature. t0 the next of the system, the curvature at any point being measured
by the rate of variation of phase with ampli-
tude. Thus if the element of length of the
curve be denoted by ds, and if the angle
between two consecutive elements he dd,
then d¢ will be the difference of phase
between two consecutive vibrations, and the
radius of curvature at the corresponding
point of the wvibration curve will be

Fig. 120, ds/d¢.  The form of the eurve representing
the effect of any part of a wave will consequently depend on the
manner in which the wave is subdivided into elements of area.

[n the particular case in which the vibrations form a system of
equal amplitude and uniformly inereasing phase the curvature is the
same at all points, and the vibration curve (as already noticed in Art.
45) is a circle. This is the case discussed in Arts. 51 and 52, in which
the influence of obliquity is neglected, and where the wave front is

divided into ring elements corresponding to equal increments of phase,
The areas of these elements are not equal, but vary directly as their
distances from the point O, at which their joint effect is to be calculated,
and it follows therefore that when the influence of distance only is
considered, the amplitudes of the vibrations produced at O by the
The ving varions rings are the same. When the influence of obliquity is taken
method- nto account, on the other hand, the amplitudes form a diminishing
series, and therefore in the vibration curve ds continually diminishes

Fig. 121.—Vibration Spirai.

as ¢ uniformly increases, so that the curvature gradually increases as
we proceed along the curve, and consequently the effect of the wave,
instead of being represented by a circle, is represented by a spiral
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curve encircling a point J (Fig. 121) with convolutions of ever dimin-
1shing radius.

This method of dividing the wave front into elements of equally
increasing phase is undoubtedly the most desirable when it can be
applied, but there are many cases in which it ceases to be convenient,
and other methods of subdivision have to be adopted. For example,
the ring method applies at once if we wish to caleulate the intensity
at any point on the axis of a circular aperture, or the effect of any
eircular or annular portion of a wave at a point on its axis. When
the aperture is rectangular, or when the light is diffracted over a simple
stralght edge, it is best to divide the wave Into elementary strips
parallel to the edge of the obstacle. We shall consequently consider
this method of strip division in some detail before applying it to par- The strip
ticular problems. In the ring method the surface of the wave is ™ethed
divided into elements of area by means of a system of spheres having
a common centre, while in the strip method the surface is intersected
and divided into strip areas by means of a system of planes having a
common edge.

148. The Method of Strip Division.—Let two parallel right lines
AB and CD (Fig. 122) be drawn
in the front of a plane wave so as
to include a very narrow strip of
the wave, and let it be required
to determine the effect of this
strip at any external point O.
Taking the strip to be very
narrow we may represent it by
the right line AB (Fig 123),
and divide it into elements of
length, PM,, M, M,, etc., by points
taken on it at equally inereasing |
distances from O. These ele-
ments are such that

OM, - OP =0M, - OM, =ete. =0X’ - OX =4.

They are elements of uniformly inereasing phase, but are not of equal
length. To express the length of any one of them, XX’ for example,
we have by similar triangles

(OX’ - 0X) : XX':: FX': OX".

Denoting OX’ - OX by 8, and writing » and # for OX’ and PX'—that
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is, for the distances of the element from O and P respectively—we
have !
g0

H H

XX
Hence, if we neglect the influence of obliquity, the amplitude of the
vibration contributed by the element XX’ will be proportional to

X

!

-1

We conclude therefore that when the strip is divided into elements
corresponding to uniformly increasing
phases their effects diminish as they
recede {rom the pole P, the diminu-
tion of effect being inversely as the
distance of the element from the pole of
the strip. When the influence of obli-
quity is taken into account this rate of
decrease in the effects of the elements, as
they recede from the pole, is made still
more rapid. Hence when we compare
two consecutive half-period elements of
the strip, as in Art. 51, it follows that
Fig. 123. when they are near the pole they differ
considerably in effect, but when they are far away from the pole they
approximately neutralise each other.
Denoting the effects of the consecutive half-period elements by m,,
ity i, ete., and taking into account the two halves of the strip, viz.
AP and BP, the whole effect of the strip may be written in the form

.‘,\' '_:! [ ity — g - iita .i'.i'i'_: T et ].

In this series the terms diminish rapidly at first, so that they soon
become very small, and ultimately equal and opposite. We may
therefore conelude that when the wave length is small the whole
effective portion of the strip is confined to a small region in the
neighbourhood of the pole. In the same way every other strip may
be reduced to a small effective portion in the neighbourhood of its
pole with respect to O, and the whole wave may be replaced by a
narrow equatorial band QQ (Fig, 122) passing through P in a direction
at right angles to the strips.

The caleulation of the effect of the whole wave at O is conse-
quently reduced to that of the equatorial band, QQ. Now this band

! This merely expresses that rdr=xdr,
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is cut into elements by the strips ABCD, ete., which correspond to
equal inerements of phase, and as the effects of these at O vary
inversely as their distances from P (when the effect of obliquity is
neglected), it follows that the successive elements produce effects at O
which rapidly diminish as they recede from the pole. This diminution
is rendered still more rapid by the influence of obliquity, which also
causes a falling off in amplitude as we recede from the pole. The
result is that the effective portion of the equatorial band is confined
to a small area in the neighbourhood of P, and, as before, the effect of
the whole wave may be limited to a small area surrounding the pole.

Now if the effect of a single strip, such as AB (Fig. 123), be
represented graphically in the manner already explained, it is clear
that (since the amplitudes of the vibrations contributed by the succes-
sive elements of the strip rapidly diminish as they recede from the
pole) the curvature of the vibration eurve will increase rapidly at first,
and then more slowly, so that the curve will be a spiral similar to that
shown in Fig. 120, with convolutions of ever decreasing radius
encireling a point J. This spiral represents one half of the strip, and
the other half will be represented by the same spiral repeated. The
effect of the whole strip will consequently be represented in
amplitude by 20J, and in phase by the
angle XOJ. This angle measures the
difference in phase between the resultant
vibration contributed by the whole strip,
and that contributed by the central point
or pole of the strip.

Having determined the amplitude and
phase of the vibration contributed by each
strip — that is, by each element of the
equatorial band QQ—a spiral may be drawn
in the same way to represent the effect of
the complete wave. Now since the phase of the vibration contributed
by the whole wave differs from that arriving from the pole by 90°
(Art. 52), it follows that the spiral representing the equatorial hand
must encircle a point J on the axis OY (Fig. 124), and must start
from O, not as a tangent to OX, but, making an angle with it, deter-
mined by phase difference between the resultant vibration of a whole
strip and that contributed by its pole. This spiral represents one half
of the equatorial band, and the -other half is represented by the same
spiral repeated, so that the whole amplitude is measured by 20.J,

In the case of a spherical wave the surface may be divided into a
series of strips by a system of planes passing through a diameter of

Equatoria
band,

Single
strip.

Whale
wive,
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Spherical the sphere, Thus if APB (Fig. 125) represents the front of a spherical

WRVIE,

'ylindrical
fave.

wave diverging from C, and if it is required to caleulate the effect at
O of the whole, or some portion of it, the
surface of the wave may be divided into
a system of strip areas by a system of
planes passing through a diameter AB
of the wave drawn at right angles to OC.
These planes, which may be called mer-
idian planes, intersect the surface in great
circles, and divide it into elementary
strips, which are lunes of small area.
Each of these strips may be reduced in
effect to a small area in the neighbour-
hood of its pole, and may be represented
by a spiral curve after the manner of Fig. 120. It follows therefore
that, as in the case of a plane wave, the spherical wave may be
replaced in effect by an equatorial band lying along the great circle
PMN, which ents the meridian planes E‘.-rl,h{;rg{;timlhﬂ This band in
turn may be represented graphically by a spiral curve after the manner
of Fig, 124, and its effective l]m‘liull is restricted to a small area in
the neighbourhood of P.  When represented in this manner the ampli-
tude of the resultant vibration is 20J (Fig. 124),
and 1ts phase is 90" in advance of that of the
vibration arriving from the pole of the wave.
The only other form of wave which we
need consider is the cylindrical wave, such as
diverges from a long narrow slit. In this case
the surface of the wave may be divided into a
series of rectilinear strips parallel to the length
of the eylinder by a system of planes drawn
through its axis, as shown in Fig. 126. Each
of these strips may be reduced to a small effec- Fig. 126,
tive portion, and the whole wave as before may be replaced by an
equatorial band PMN., This in turn reduces to a small portion around
', and may be represented graphically, as in the case of a plane wave.
149. First Applications of the Spiral. — Before making any
calenlation of the actual intensity at the various points of a diffraction
pattern, we shall consider in a general manner the fluctuations of
intensity in some of the elementary cases already noticed ! (See. L)
L This application was published by M. Cornu as a ** Méthode nouvelle pour la

discussion des problémes de dilfraction dans le cas d"une onde eylindrique " { Journeal
de Physigue, tom. iii. 1874).

sty
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For this purpose, when the strip method of division is employed, each
half of the wave gives rise to a spiral curve, and these spirals are
identical in shape and position. Instead of superposing them, how-
ever, it will often be found convenient,
for the purposes of representation, to
draw one of them above the line OX,
and the other below it, as shown in
Fig. 127. The chord joining any two
points on the upper spiral will repre-
sent the resultant effect of a corre-
sponding portion of ome half of the
wave, and the chord joining two
points on the lower spiral will repre-
sent a portion of the other half of the
wave. Thus OJ represents the whole
effect of the upper half of the wave,
and OM represents the effect of a portion of the lower, whereas JM
is the resultant of these two (viz. OJ and OM) taken together. This
applies to the case of light diffracted over a straight edge.

Straight Edge.—It has been already indicated that when light
passes by the edge of an opaque screen a system of fringes exists just
outside the geometrical shadow, but that inside the shadow the light
fades away gradually without passing through any alternations of
brightness and darkness. The illumination at any point outside the
shadow is contributed by a complete half wave RS (Fig. 107) and by
fraction RA. The effect of the half wave will be represented by O.J
and the fraction by OM (Fig. 127), where M is some point on the
other half of the spiral. The resultant effect will therefore be repre-
sented hy JM. Hence as M moves along the spiral JM passes throngh
a series of maxima and minima. There is consequently a series of
alternations of brightness and darkness outside the geometrical shadow.
For as the point on the sereen moves outwards from the shadow, the
point M moves round on the spiral towards J°, and JM passes through
a maximum and a minimum every convolution. The least value is
JO, that due to half a wave. The intensity then rises and falls, the

Fig. 127.

values of the maxima being greater than J.J', that due to the complete
wave, and the values of the minima greater than JO, that due to half
a wave. At the edge of the geometrical -shadow the amplitude is OJ,
and the intensity is consequently one-fourth of that produced by the
whole wave.

For the illumination at any point within the geometrical shadow
we have only to deal with part of the spiral OJ (Fig. 128), as only
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a fraction of half a wave is now in action. As P recedes within the
shadow the tracing point M recedes from O along the spiral OJ,
moving round towards the point J. The line
JM, which represents the resultant vibration,
continually decreases towards zero, without pass-
ing through any maximum or minimum values.
The illumination therefore falls off gradunally to
zero within the shadow.

Let us now consider the
g illumination produced at any point by a

-

Narrow Aperinre.

very mnarrow rectangular slit. Since the element of are of the
spiral measures the amplitude of vibration of a corresponding
element of the wave, it follows that the length of the complete are
of the spiral which represents the wave from the slit is simply pro-
portional to the width of the slit ; consequently the amplitude of the
resultant vibration at any point on the sereen will be measured by the
right line joining the extremities of a constant length of the curve,
viz. an are proportional to the width of the slit.  Inside the geometrical
projection the are in question passes through O and belongs partly to
one half of the spiral and partly to the other. Outside the projection
the are is situated altogether in one half of the spiral. In all cases it
is clear that there will be generally fluctuations of intensity at different
points of the screen.

If the slit be very narrow, so that the corresponding are of the
spiral is small, then inside the projection the intensity will remain
constant over a considerable range, and be very nearly proportional to
the square of the width of the aperture,
since here the arc will nearly agree
with its chord.

Narrow Wire.—The case of a narrow
wire can be dednced from that of a
narrow rectangular aperture of the
same dimensions. Inside the shadow
of the wire the effect of that part of
the wave which passes one side of the
wire is represented by JM (Fig. 129)
where M is some point on the spiral
(O, and the effect of the part passing
the other side of the wire is represented
by J'M’ where M’ is some point in the spiral OJ°, and the are MM’
15 proportional to the width of the wire. If the wire subtends a

Fig. 120,

considerable number of half-period elements at the secreen, the arcs

.
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OM and OM" will contain several convolutions of the spirals and
the lines JM and J'M" will be nearly equal, so that there will
be destructive interference when JM and J'M" are in opposite
directions, and maximum illuminations when they are in the same
direction. In the interior of the shadow we have thus a system of
interference bands. As we approach the borders of the shadow, the
point M, suppose, moves towards O on the spiral and the point M’
moves towards J', since the are MM must be of constant length. The
lines JM and J'M" in this case differ considerably in magnitude, so
that when they are parallel and in opposite directions there will still
be some resultant illumination and the minima will not be places of
complete darkness. Outside the shadow we have a complete half wave
and a fraction from one side of the wire. These will be represented
by OJ and OM’ respectively, while from the other side we have a
portion represented by J'M", where M" is
some point on the spiral near J°. The arc
M'M" is absent and of a constant length
proportional to the width of the wire.
Thus if from J° we draw J'N (Fig. 130)
parallel and equal to the chord of the are
M'M", then since J.J" represents the effect
of the whole wave, and since J'N represents
the effect of the intercepted portion, it
follows that JN will represent the trans-
mitted portion. JN therefore represents Fig. 150,

the effect at a point outside the shadow, and as J'N revolves round .J’
—that is, as the point recedes from the edge of the shadow—the line
JN will pass through a series of maxima and minima, which represent
the external fringes.

In the case of the narrow aperture it is JN that is intercepted and
J'N transmitted.

Pwo Narvow Reclangulor Apertures.—In the case of two equal nar-
row apertures we have to consider the resultant of two ares of the
spiral of lengths proportional to the widths of the apertures. These
arcs are separated by an arc of constant length, proportional to the
distance between the apertures. The resultant is therefore the vector
sum of the chords of the two ares—that is, the diagonal of the
parallelogram having its adjacent sides parallel and equal to the chords,
This diagonal will pass through a maximum or minimum value accord-
ing as the chords of the arcs are parallel and in the same or opposite

directions.
Two narrow wires give a corresponding system of fringes, and the
5
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diffraction patterns afforded by other arrangements may be investigated
in a similar manner.

Coleulation of the Intensity in the Case of Parvailel Light

150. Narrow Rectangular Aperture.—It is very easy to examine
by the graphic method the case in which the incident light is a parallel
heam, or in other words, a plane wave. We shall first take the case
of a narrow rectangular aperture of width @, and at present we shall
omit all consideration of the length of the aperture and investigate only
those phenomena which arise from the narrowness of its width,

Let AB (Fig. 131) be a cross section of the aperture by a plane
drawn at right angles to its length, and let the
incident light make an angle 90° — ¢ with the width
AB; it is required to determine the intensity
of the illumination at any point on the other side
of the aperture.! For this purpose let us take the
beam of diffracted light which leaves the slit in
any given direction AX, making * an angle 90" — ¢
with AB. Then it follows, as in Art. 136, that
the relative path retardation of the extreme rays
Fig. 131, AX and BY is

8=t (sin i +sin @),

and their difference of phase is found by multiplying this by 2z/A.
Now let the aperture be divided into a very great number of exceed-
ingly narrow strips of equal width, the lengths of the strips being
parallel to the length of the aperture. This is equivalent to dividing
AB into a great number of small elements of equal length, and since
the light is parallel it is clear that each of these elements produces
vibrations of equal amplitude and corresponds to equal increments of
phase. The problem therefore reduces to the caleulation of the re-
sultant of a number of vibrations of equal amplitudes and uniformly
increasing phases, Such a system, we have already seen (Art. 45),
gives a vibration eurve of uniform eurvature—that is, a cirele—and
the resultant is consequently represented in amplitude and phase by
the length and direction of a chord OM (Fig. 132) of a circle. The

! For the sake of definiteness let us suppose that a lens is placed before the aper-
ture, as in Fig. 118, so that all the light which leaves the aperture parallel to a
given direction is focussed at a single point.

* The angles are taken this way in order to embrace the case in which the plane

of incidence is not the same as the plane of diffraction. Here ¢ and # are the
angles which the rays make with a plane perpendicular to AB.

R
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intensity of the diffracted light consequently depends on the final
position of the tracing point M—that is, upon the phase difference of
the extreme rays AX and BY. For
example, when this phase difference is
an even multiple of = the intensity is
zero, for then the tracing point coineides
with O, and OM is zero. Now if we
denote the phase difference! of the ex-
treme rays by 2¢» we have 24 = OCM =
273/, and therefore

¢=Tr_:|:sin i+ gin @).

But we also have
OM = 2R sin 0CM = 2R =in ¢,

where R is the radius of the circle. Further, if s be the length of the
arc OM, then by the manner in which the curve is plotted s must be
proportional to the width of the aperture.
So that if we take the constant of proportionality to be unity we
may write
¥ =1Ir,

But s = 2R¢, therefore 2R = a /¢, and the expression for OM becomes

oM :".'-iill i)
' ¢

and the resultant intensity is measured by

T
S SN~
£ .

I=¢ gy
q}'r

Cor. 1.—Since the line OA makes with OX an angle MOX = I MCO,
it follows that the phase of the resultant vibration is the same as that
of the vibration contributed by the middle strip of the aperture.
Hence if the vibration from B be represented by y = sin wf, that from
A will be ¥ = sin(wf + 2¢), and the equation of the resultant vibration
is

ging . :
i o {;_J'p,'ln (i + ).

L Tt iz to be remembered that the tracing point may have deseribed the eircle
several times, and finally settled in the position M. The angle 2¢ is the whole
angle throngh which the radins CM has revolved, and the are s referred to in the
text is the whole length of arc described by M.

It is also worthy of note that R varies from point to point of the screen. It is
s or the width of the aperture that remains constant, and it is for this reason that
the maxima are not determined by ¢ =an odd multiple of x/2, as shown in Art. 151,
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Cor, 2.—If the light be incident perpendicularly on the aperture,
the intensity at any point of the diffraction pattern is proportional to

; :-Cill"'t f,.:I:-.iill ﬂ‘;}
L=

W

[ :'rai & f

151. Determination of the Maxima and Minima.—The expression
for the intensity at any point, being a function of the angle 0 of dif-
fraction, will vary from point to point on the sereen, and pass through
a series of maximum and minimum values. This has already been indi-
cated by the elementary examination of Art. 129, but we are now in
a position to inquire into the phenomena more aceurately.

For brevity we have written {lef':'{:siu i +sin @), and we have
found the intensity measured by «® sin®¢:/¢? hence as the angle # varies,
the intensity passes through a series of maximum and minimum values
as follows.

Minima.—1 =0 when ¢ =nm, excluding the value # =0, which
corresponds to a maximum. Hence at points in the direction 8 de-
termined by the equation

sin £ --sin & .I.|:'|.|,'Ir.l'

there is complete darkness when »
15 any integer other than zero.

Mawima.—Equating to zero the
first derived of sin /¢y, we find
that the values of ¢ which make I
a maximum satisfy the equation

¢h = tan ¢,
To solve this equation graphically,
plot first the curves

(1)y=a, and(2)y=tanz.

The first represents a line bisecting
the angle between the axes of & and
y (Fig. 133). The second consists
of an infinite number of branches

of amplitude -. The first branch AA’ passes through the origin O
and touches at infinity the lines # = £ 1z, which are its asymptotes.
The gecond branch BB’ cuts the axis of # at the point = = and touches
at infinity the lines x=2r and 2= 1». The maximum values of I
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correspond to the values of y which satisfy both these equations, since
then we have # =tan . The maxima are therefore determined by the
intersection of the line OC with the eurves AA’, BB, CC, ete. The
corresponding values of ¢ are less than the odd multiples of L, but
as n increases the value of ¢ approaches more and more nearly to
(2n + 1)4=. The values of ¢ corresponding to the maxima values of
the illumination have bheen given by Schwerd as follows :—

¢y =0 . : : . . =1

¢, =1'4303x : : : ; I, =sing,/¢*
Py = 245907 . : ; : Iy = sin®gy/
P, =3'4709x : : ; I, =sin%p,/¢.*
oy =4-47Tdw : : I,=sing,/¢*
¢, =5"4818= : : : : 1. =sin?e /¢y’
By =6-1844 : : ; Ig=singq/ ¢y’
e = T 48657 . . : : [; = sing;/ 7"

Thus while ¢, becomes more nearly (2n + 1)l= as n increases the
corresponding values of 1 (the maxima illuminations) decrease rapidly,

f2%2 f2y8
being approximately in the ratios of the quantities I, [:ﬂ_) ; (5#}

4 )

ete.,, which correspond to ¢, equal to odd
multiples of . If the intensity of the first
maximum be taken as unity, the values of the
second, third, and fourth will be approxi-
mately 3%, 5 and g respectively. Fig.
134 represents the variations of intensity, its
absciss® being the angle ¢ and its ordinates
the corresponding intensities. The first maxi-
mum is very much greater than the others,
and these again diminish very rapidly. With
white light we have a series of rainbow-
coloured fringes, violet at their inner and red
at their outer edges. The spectra formed Fig. 134,
by a single narrow aperture Fraunhofer terms spectira of the first elass.
152, Circular Aperture.—The intensity at any point on the axis
of a circular aperture may be easily expressed in the same manner.
Thus we have already seen (Art. 53) that when the aperture is divided
into cireular annuli, corresponding to equal differences of phase, the
amplitudes of the.vibrations produced by these elements are equal, and
therefore (when the influence of obliquity is neglected) the vibration
curve is a circle. Henee, as in Art. 150, if s be the length of the arc
of the circle which represents the resultant vibration, we have

OM=2R sin ¢, and s=2R¢.
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Therefore the intensity may be expressed in the form

e :ailt:':f_;".r :
&
where 2¢ is the phase difference of the vibrations from the centre and
the cireumference of the aperture.
When the radius of the aperture is small compared with the other
distances involved we have approximately, as in Art 150,

0= 2rd  2xf - y= r s = ) (o + k)
Zeh— ="\ at —+5+
A A k ey A

.'”:.l

where # is the radius of the aperture, a its distance from the luminous
origin, and & its distance from the sereen. Now by Art. 53 the are
s is proportional to 2zad/(¢ + b), and this by the foregoing reduces to
=r*/h.  Hence the expression for I becomes
where

¢= i 4 b I-"'.frhis"n.
The maxima and minima in this case may be discussed as in the
preceding article.

158. Two Equal Rectilinear Apertures.—The same graphic
method may be applied with facility to the case of two very narrow
apertures, each of width « separated by an opaque interval of width b.
Let the apertures be OA and BC (Fig. 135). Then, as in Art. 150,
the effect of each aperture may be repre-
sented by an arc of a cirele of magnitude 2aq,
where

W0 e :
= (5im % + 5in &)
.:.ﬁ L3 ¥

and these arcs (Fig. 135) will be separated
by an are AB of magnitude 23 given by the
equation

e
B= \J:am £+ st @),

The resultant amplitnde due to each will be measured by the chord
OA or BC—that is, by @ sin a/a, but as the resultant vibrations due
to OA and BC differ in phase by an amount 2(a + 8), namely, the
angular distance between their middle points, it follows by Art. 43
that the resultant intensity is measured by

5N~ e
I =(2a) a? {:ns.g-‘cl.-i-ﬂ}.

e e R e R
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The equation of the resultant vibration is therefore

y=2a 2 % oo (a4 B) sin (wi+2a -+ 8),
L1

and this corresponds in phase to the middle strip of the opaque interval.
For the resultant vibration transmitted by OA is

h=a M 2ein (wt+a)
a

and that transmitted hy BC is

Yo=ot S 2 cin (wt -+ 3a + 23).
[

But y =y, + u,, therefore, ete. i

The intensity depends on two variable factors, one sin a/a, which
gives the fringes of a single aperture, and the other cos (a + ), which
gives a system of fringes corresponding to the interference of the lights
from the two apertures. This factor vanishes when

(a+B)=(2n+1 };,
that is, when

(- b)(sin i+ sin #)=(2n -+ ”;:'

In this case the light from the second aperture is an odd number of
half-period elements behind that from the first, and the two destroy
each other by interference. But if

a4+ B=um,
"
(e + Fifsin € +sin &) =uh,

then the two are concordant, and the illumination 1s a maximum.
These are termed maxima and minima of the second order, or spectri of
the second eliss.

We may therefore consider the phenomena observed as the super-
position of these two systems of fringes ; that due to the first factor, a
diffraction system, and that due to the second factor, an interference
system. The intensity is zero when either factor vanishes.

The dispersion of the second system being inversely as o + b is less
than that of the first system, which is inversely as a, it follows that
when the apertures are not very close the second system is nearly all
contained within the first two bands of the first system.
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The points of maximum intensity consequently do not in general
coineide either with those of the first system or with those of the second.

154. Small Reetangular Aperture.—In the ecaleulation of Art.
150 the diffraction pattern is considered only in so far as it depends on
the width of the aperture. In the case of a long narrow slit the
pattern consists of a system of rectilinear bands parallel to the length
of the slit, and these bands arise from the narrowness of the aperture.
The length of the slit, in fact, is so great that all diffraction effects in
this dimension are lost, for the whole effective portion of a strip of the
wave taken parallel to the length of the slit is transmitted when the
aperture is long.

On the other hand, when the aperture is short as well as narrow,
s0 as to have the shape of a small rectangle of length @ and width &,
then the limited length comes into operation and produces diffraction
effects. The whole effective portion of a wave strip taken parallel
to the length is mnot transmitted, but partly obstructed, by the
aperture. The pattern consists in fact of a system of bands parallel
to the length of the aperture, and also a system of bands parallel to
the width. The former arise from the limited width of the aperture,
and the latter from its limited length. In order to determine the
intensity let the aperture be divided into a great number of very small
strips parallel to its length. Each of these strips will be of length o,
and will give rise to a vibration at any point under consideration of
amplitude (Art. 150)

WL oo
A=n ,  where a = = {sin i+ sin #),

and the incident light makes an angle 90° — i with the length of the
slit, while the diffracted light makes an angle 90° — 8. We have now
to find the result of a great number of vibrations of amplitudes
A =a sin a/a and varying in phase from wf to of + 28, where

B= ’: (sin i +sin 8),

90° =i and 90° - 6 being the angles which the incident and dif-
fracted light make’with the direction of the width of the slit. But
as before, the resultant amplitude of these will be Ab sin 8/B8. Hence
the intensity of illumination will be measured by

apa Si0%a 5i0°
= e A

af g

The illumination at any point therefore depends on two variable
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factors, one of which gives rise to a series of bands parallel to the side
a of the aperture, while the other gives a series of bands parallel to the
side & of the aperture. These lines
enclose a system of rectangles (Fig. 136)
similar to the aperture turned through
20°. The greater the length of a side
the narrower are the bands perpendicular
to that side. It is thus we have only
one system of parallel fringes with a long

narrow slit, for the width of the slit is
so small that the bands parallel to the
length are fairly broad, while those parallel to the width are invisible
on aceount of the length of the slit.

1565. Talbot's Bands.—The system of bands which are seen
erossing a tolerably pure spectrum, when it is viewed through a small
hole half covered with a thin transparent plate, has been mentioned
already in Art. 106. We are now in a position to easily deduce the

Fig. 13,

expression for the illnmination at any point, the aperture being sup-
posed rectangular.

Let AB (Fig. 137) represent the plate covering half the aperture
AC. The effect of the illumination from AB will be represented by
an arc OA = 2a (Fig. 138) of a circle, but as the plate produces a
retardation, it follows that the ray from B (Fig. 137) which does not

traverse the plate will be accelerated relatively to that which passes
through the plate by some amount 23. Hence the effect of the free
part BC of the aperture will be represented by the are BC = 2a (Fig.
138) of the circle, where AB = 23, the retardation in the plate. It
follows easily that the inclination of the chords OA and BC is 2(a - 3),
consequently if they are each equal to p, their resultant is

2p cos (a — 4).
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But by the preceding article p=absinasin 8/aff, where ub i1s the
area of the aperture, consequently the resultant illumination i1s pro-
portional to

sin“a sin®g3

cos?(a — &)
a? g

which 1s the formula deduced analytically by Airy.! A table of the
values of this expression for various values of a and 8 was con-
structed by Airy, and he also plotted curves showing the fluctuations
of intensity.

156, The Diffraction Grating—Any Number of Parallel, Equal,
and Equidistant Narrow Rectangular Apertures.—In the case of a
system of n very narrow equal apertures,
separated by equal opaque intervals of width
b, we have to find the resultant of a system
of amplitudes represented by the chords of
n ares of a cirele each of magnitude 2a, and
separated from each other by ares each equal
to 22 (Fig. 139).

If we take any axes of reference OX and
OY, and if any one of the chords makes an
angle » with OX, the consecutive chord will

Fiz. 180,

make an angle 7+ 2a + 28 =9 + y suppose,
and the other chords will make angles o + 2y, 5+ 3y, . . . y+ (n—=1)y
respectively with OX. Hence if X denotes the sum of the projections
of all the chords on the axis OX, and if p be the length of each chord,
we have

X=p[cos n+cos(n+v)+cos(n42y)+ . . . cos{n+(n- iyt ],
cos |n + 4{n — 1)y} sin bay
sin Ay

In the case of a long narrow aperture (Art. 150), such as we are now
considering, p is given by the equation ]
sin o

p=iE — !
@

Similarly if Y denotes the sum of the projections on OY, we have
Y =plsing+sin(g+y)+sin (g+2y)+ . . . sinfy+ (= 1)y}],
sin {n+ (e~ 1)y isin dny

sin Ly

1 Airy, Phil. Trans. p. 1, 1841,

o
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Henee !
sin® uy

e iy

But X?+ Y? is the square of the resultant amplitude. Consequently
the resultant intensity is measured by

_ psin*iifa+5)
= e erp)’

where p? is the intensity produced by a single aperture (Arts. 152-154).
C'or.—The phase ¢ of the resultant vibration is given by the
equation

tﬁ-l'll;l:‘|h

x=h‘1;ﬂ+ﬁf“—1h}:

=tan g+ (n-1)a+ 8);,

it is consequently the same as the phase of the vibration from the
middle point of the grating. Henee if the equation of the vibration
from the first aperture of the grating be y=p sin wf, the equation of
the resultant vibration will be

y=p 5;;::?:_;‘?}? sinfwt +(n-1)(a+38)}.

157. Determination of the Maxima and Minima Intensities.—
The expression for the intensity of the illumination produced at any
point by a grating is the product of two variable factors; one p?

! Otherwise thus denoting 4/ = 1 by 4, we have, since cos #+isin p=¢"""

o ey Y
XY =g SV Joke, g pe1-e )

1-¢"
Similarly
T oy =iy —iny
X—i¥=ge Pye 0D, P i 5
Qi=a"
Multiplying we find
X‘M—'&’“—‘:p‘lm_"’”!?'_“-mﬁ _all-cosny) ,sin®iny
(2 - S G—f-‘r} i 1-cosy gin® by

8o also by addition we find
cos {n.+ 3(n — 1)y} sin day
sin 4y :

X=p
and by subtraction

sin {5+ Mn — 1)v}sin dny

=it sindy
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corresponds to the diffraction produced by a single aperture, and has
heen already discussed. The other factor,

sin® a4+ B)

sin?(a+p3)

also produces a series of maxima and minima corresponding to the
interference of the light from the various apertures. For brevity let
us write @ = a + 3, then the bright and dark bands are determined by
equating to zero the first derived of sin® nx/sin® a—that is, by

2 sin na

it (1 sin 2 eos i ~ cos ¢ sin n) =0,

which is satisfied by

(1) sinnx =0, (2) »tanz=tanna.

Minima.—In the first case if sin nx =0, we have nz=mm, and
sin n(w + B)/sin (a + B) = 0, so that the amplitude vanishes and we have
a series of minima of zero value.

Principal Mazima.—If, however, # = m=, both the numerator and
denominator of the expression sin n#/sin 2 will vanish. Its true value,
however, will be n, so that the intensity will be a maximum and pro-
portional to #% This corresponds to

a-+B=mm, or(e+b)(sini+sinf)=mk.

These maxima are very intense and are termed principal maxima.
There are obviously # — 1 minima between two principal maxima.
Secondary Marima.—The roots of the equation

s tan . =tan uwe

other than @ =m= (which correspond to the principal maxima) give
rise to another set of maxima termed secondary maxima, much less
intense than the principal maxima. From the equation n tan ==
tan nx we find

=in® pe n?
— I pm— .-a\..‘i‘:..._,—..—.T..,
sinfa 1+ (wf-1)sin"x

which shows that the ratio of these secondary maxima to the principal
maxima (n?) is
1

1+ (ne—1)sin®z

and when » is large these secondary fringes are very weak and
entirely lost, but when # is small they may be observed. Fig. 140
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shows the principal maxima with four secondary maxima bhetween
rach pair. Sinee we have n — 1 minima between two principal maxima,
it follows that we have
n—2 secondary maxima
between each pair of prin-
cipal maxima. The figure
is constructed to represent
the case n = 6. The second-
ary maxima are unequal, Fig. 140.

not eguidistant, and small compared with the principal maxima,
especially if the number of apertures is large.

Hence if the illumination depended only on the factor sin® ua/sin®
we should be presented with a set of bright bands of equal intensity
proportional to »* where n is the number of lines in the grating.
These are the principal maxima. Between each pair of them we
have a set of narrow fringes which become more and more narrow and
indistinet as the number of apertures is inereased. Consequently with
a large number of apertures, as in the diffraction grating, they are not
discernible.

The secondary maxima may be determined by the intersections of
the ecurves

(1) y== tan =, and (2) y=tan n,
in a manner analogous to that employed in the case of a single
aperture (Art. 151).
The first equation represents a curve asymptotic to the line z=

i
while the second is a
similar curve, or a set of
similar curves asymptotic
to ne = "3':.- Fig. 141
represents the case of
n="6. The symmetry of
x shows that the effect of
this factor remains un-
altered if the opaque por-
tions be made transparent
and the transparent por-
tions opaque, as this
merely amounts to inter-
changing a and (3.

Fig. 141.

The resultant illumination at any point being determined by the
product of the two factors sin®a/o® and sin® az/sinz, to obtain it we
must multiply the ordinates of the curve (Fig. 140) by the corresponding



970 GRAPHIC METHOD OHAP. IX

ordinates of the curve relative to a single aperture (Fig. 134). The
variations of the latter are very feeble compared with the prineipal
maxima, so that they scarcely affect the appearance.

If it should happen, however, that a zero value of sin a/a should
correspond to a principal maximum of the other eurve, then this maxi-
mum will be absent. This will happen when

a=m\, and also (a+b)=m'},

or
[ T

b =

where m and m’ are whole numbers, and the corresponding principal
maxima, or spectra, are absent (see Art. 140).

158. Any Number of Narrow Reetangular Apertures, Parallel
and Equal, but not Equidistant.—The foregoing caleulation is based
on the supposition that the opaque intervals are of equal width, or, in
other words, that the grating has been ruled uniformly ; the investi-
gation may, however, be applied with the greatest facility to the case
in which the length b is variable, which is that of a system of equal
apertures placed at random distances apart.

Fach aperture will be represented by an are 2a of a circle, and these
arcs will be arranged at random round the circumference of the circle—
that is, separated by variable intervals. Let the chords of the ares 2a
make angles 5, 7, - .- . 7, With a fixed axis OX, and let each chord
be p as before, then the sum of the projections of the chords on OX is

X =plcos 0, -+ cos ny-+cos g+ . . . cos ),
and the sum of their projections on the perpendicular axis OY is
[ = p(sin 9, +sin gy +8in g+ . . . sinoy,).

Hence the square of the resultant amplitude is
X2+ Y2=pfn+ 22 cos (g — 7))

Now the sum X cos (3, - 7,) embraces all combinations of the angles
M oy -+ - - e and the values of its constituents vary irregularly,
taking random values between +1 and — 1. Admitting that their
sum is negligible or sensibly zero (see Example, p. 48), we have

X2+ Y2:=np?
or the intensity is » times that produced by a single aperture. Sub-

stituting for p from Art. 154, we have

= =&
gin“a sin® 3
I =na®b® —5- .

a® B




ART. 159 GENERAL INVESTIGATION 271

159. General Investigation.—The components of the resultant
vibration at any point and the intensity of the illumination may be
very easily expressed by means of the vibration spiral. Thus if  and
# be the co-ordinates of any point on the spiral, and ¢ the inclination
of the tangent at that point to the axis of x, then ¢ is the phase of
the vibration from the corresponding point of the wave.

Now in any curve we have, if ds be the element of are,

' do=cos ¢ds, and dy=sin gls.
Therefore
,z'-:f{r:m ez, and y -:fsil: pils,

and consequently the radius vector is given by the equation
ri=ptyi= [fms duls]? + [_'fﬁirl edsT".

But the resultant amplitude is given by the radius vector » of the
spiral, consequently the intensity of illumination is measured by

[=[/ cos gds] +[fsin BdsF.

The phase ¢, of the resultant vibration is given by the inclination
of © to the axis of , and we have consequently

tan %:F ;f,.fi.l.l-w{x_

# [ ecos gds

the integrals being taken between limits which are determined by the
problem under investigation.

Now the element of arc s of the spiral is taken proportional to
the amplitude of the vibration contributed by an element of area ds
of the wave front, and this amplitude is taken proportional to the area
and inversely as the distance (r) of the element from the point under
consideration. Further, the amplitude will depend on the inclination
of r to the wave normal—that is, on the obliguity, as well as on the
direction of the vibration in the wave front. The full expression for
ds is consequently of the form

3 _dS f
=
where f is some function of the co-ordinates, which diminishes as the
element recedes from the pole of the wave.

The general expressions for the resultant consequently take the
form

.H:_[_f{!ﬂﬂ{;l!g;! y:ffsin ¢d_f_
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The intensity of the illumination is consequently

1= [‘JWSI#{ESJ I: it rd'b:l

while the phase of the resultant is

,';sm-;-—

tan g‘:ﬂ—
J fe 'D'E¢

In the foregoing investigation the amplitude of the vibration con-
tributed by an element dS of the wave front, situated at a distance »
has been represented by the expression fdS/r, and it is consequently
desirable to investigate the constitution of the symbol f. Now if A
be taken to represent the amplitude of the vibration in the wave
front, then the amplitude produced by an element dS at a distance

» may be written in the form

where ¢ is some function of the angles which r makes with the wave
normal and the direction of vibration, and b is a quantity which has
yet to he determined. Now aand A are of the same dimensions,
being both amplitudes, whereas ¢ is a function of angles and is of zero
dimensions, consequently b must be the inverse of a length. But the
only other quantities that can have any reference to « are » and A, and
of these v is eliminated by the faet that it is a function of the time ;
hence the only length that can enter into the quantity b is the wave
length A, We conclude, therefore, that b is of the form k/A where &
is a constant of zero dimensions. Using this notation the complete
expression for the amplitude is of the form

kAdS,

=
A

Comparing this with the form fdS/r, we find that f is of the form

KA
f= ¥

where & may be taken as unity. We have thus reached the important
result that the factor f contains the reciprocal of the wave length as a
constituent as well as depending on the obliguity and the amplitude of
vibration in the original wave front.
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Lazamples

1. If the radius vector #, from an external point O, to any element of a plane

wave makes an angle & with the wave normal, the components of the vibration at O
are

= Jg‘.uus (Zmbuf/X) . f. du,

y=kf sin (2wduf\). 7. du,

where w=sec # = 1, and & is a constant.

[Divide the wave up into circular elements around the pole P as centre (Fig. 24).
Let p be the radius of one of these elements and » its distanee from O. Then if
OF =&, we have p=& tan @ and r=b sec 8 =1 + u),

_ox _2xb oy 2mbu
";"—T{r—‘b}—T{EEﬂa 1= Y i

dS=2wpdp=2wl® tan # sec® A0 =21 + w)du.

Therefore dS/r=2xhdu, ete.]

2. If f=constant, show that the vibration curve is a circle.
[Here we have

z=k J "ms (2arbae/N)elie = sin (2wbu/N),

y=k ,‘ sin (2rbufN)du =a il - cos (2xbu/\)}

where @ iz a constant.
Hence
2+ (y-af=d,

which shows that the amplitude curve is a cirele, of radius @, passing through the
origin and having its centre situated on the axis OY (ef. Art. 150).]

3. In the same case prove that the vibration excited at O by the complete wave
is in phase a quarter period behind that which reaches it from the pole P.

[For the complete wave we have, if we assume that cos e =sinw =0 (?)

Bl
:r:l*,‘ cos (2mwbu[N)diwe =0,
Lo

"am
U =-JE'J sin (2wbufNydwe=F.

Hence if ¢ hesthe phase of the resultant vibration, we have

tan gp=yfr=oo,

therelore
p=4m.|

4. If the effective portion of a wave be confined to a small portion around the
pole, which is sensibly plane, and for “which / is constant, the amplitude curve will
be a eircle.

[We have

S = 2wpedp = welp?,
T
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and
2 . P
d= . e, miDQE r=04 1T,
A2l 28
Henee
oS = b\eld,

and therefore, since 1 is supposed constant,

8
T=0 " cos Gdd=a sin §,

&
3_.-:.'!,‘ sin ddd=a(l - cos ),

and

a2 4 (- a)f=a, ete.]

3. Determine the radins of enrvature of the amplitude enrve, Ex. 1.
[The amplitude of the vibration excited by the element o8 is proportional to

L= = gxtr . dm.

Hence the element ds of the amplitude curve is proportional to fdu, and if ¢ be the
angle the tangent to it makes with OX, we have d¢=2xbdu/\. Hence the radius
of enrvature p is proportional to

s

;:-=ﬂ,¢—'h wfs

“Hence if = constant the amplitude curve is a circle, and if f diminishes gradually
from the pole of the wave, the curve is a spiral of ever decreasing radius of eurvature
as we move along it, setting out from O.]

6. If

24n
F=1-+cosb= »

Y4

we have for a plane wave (Ex. 1)

= I.,:fﬂc)s (2mluefN) ‘f : :r!-u,

240

e ilit,

y=k [ sin (2mbn/N)
160. Second Graphic Method.—A second method of representing
the resultant amplitude of a system of superposed vibratiens has been
given in Art. 45. This method is based on a second graphie representa-
tion of the resultant of a system of forces, and it follows that if a
system of lines OP,, OP,, ete. (Fig. 12), be drawn from any point O
such that the lengths OP,, OP,, ete., represent the amplitudes of the
vibrations, and the angles they make with a fixed line OX their phases,
the resultant will he represented by n times the line OG, joining O to
the centre of mean position () of the points P, P,, ete.
If in this manner we plot down the enrve for a complete wave,
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beginning at the pole of the wave, we see at once that we have a
spiral curve surronnding O with many convolutions of ever decreasing
radius (Fig. 142). With this spiral the resultant effect of any portion
of the wave is not represented by the chord
joining O to a point on the eurve, but hy
that joining it to the centre of gravity of
the corresponding arc of the curve. This
obviously passes through fluctuations as in
the case of the other spiral.

This method may be applied with the
greatest facility to the calculation of the
intensity of the illumination at any point Fig. L4z,
of a diffraction pattern when the incident light is parallel. In this
case the eurve becomes a cirele, and the problem is reduced at once to
the finding of the centre of gravity of an ave of a circle, leading to all
the results we have already arrived at. The deduction of these results
by this method will form a simple and useful exereise.

The equation of the second spiral and the integrals giving the
general expression for the intensity may be derived very simply. For
if @ and y be the co-ordinates of the centre of mean position of the
extremities of the radii vectores of the spiral, we have

we=2r and ny=Zy.
Henee

(. OG)E=(nx)* 4 (ny)*=(Zx)* + (Zy)°

Now any radius vector p of the spiral represents one of the
constituent vibrations in amplitude and phase. The length of p is conse-
quently (as in Art. 159) given by the equation

Jut if » and y be the co-ordinates of the extremity of p we have
F=pCos g, = pSin @,

where ¢ is the phase of the corresponding vibration. Hence the
expression for the intensity of the illumination

(. OGE=(Zr)2+(Zy)t =(Zpcos ¢)* + (Spsin ¢)?

gives as before

] d5 72 e i
1 :[ f_.f'u:m; i :":I +[ J_; sin qn'_r :
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161. Fresnel's Integrals.—In the foregoing articles it has been
proved that the intensity of the illumination at any point of a diffrac-
tion pattern may be expressed in general as the sum of the squares of
two integrals taken between limits defined by the nature of the problem.
By making certain assumptions and approximations Fresnel deduced
special forms of these integrals which we shall now consider. Let us
take the case of a eylindrical wave and let it be divided into a system
of narrow strips by lines drawn on the surface of the wave parallel to
the axis of the eylinder as indicated in Art. 148, p. 254. Further, let
each of these strips be replaced by its central effective portion, so that
the whole wave is reduced to its equatorial band. By this process
the calenlation of the effect of the wave 1s reduced to finding that of
a circular band, and we
know that of the whole
band it is only a small
portion in the neighbour-
hood of the pole that
is effective. The whole
eflect 1s therefore equiva-
lent to that of a small are
Fig. 143. of a circle Let & be

the radius of this circle—that is, the radius of the eylindrical wave—
and let b be the distance of the point O (Fig. 143) at which the effect
is songht, from the pole P of the wave. Then if OM =# and if PM =5
we have

= = 4 D)= 4 - = 2ale i) cos &,

consequently when s is small we have approximately

i =0 -

¥ 'J':ih &

That is, the relative path retardation of the vibration from M is
proportional to the square of the are PM. The phase difference is
consequently

2w - wlee b

iy J"-l;l —
P b

5

Hence if we assume that the amplitude of the vibration produced at
O by an element ds of the cirele is simply proportional to the length
of the element, the quantity fdSr in the preceding integrals must be
replaced by os, and the expression for the intensity becomes

o

s ﬂ;ﬂ“ s ]2 y [.Fin :pzf-‘l]-,
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proportional to dv, and therefore I may be expressed in the form

Iz[_{ms :Eredfftl:r-l [fsiu .ﬁﬂ't‘grfiﬁ:r.

This is the formula deduced by Fresnel, and the two integrals which
appear in it are known as Fresnel's integrals.

It should not he lost sight of that in expressing I in this form
certain assumptions and approximations have been made, and that it
is on account of these assumptions and approximations that integrals
of this form appear. Thus it is practically assumed that the effective
portion of the equatorial belt is so small that ¢ is sensibly propor-
tional to s°, and that r is approximately constant and equal to b
Further, the amplitude of the vibration contributed by any element of
area is taken proportional to the area, and this amounts to assuming
either that f/r is constant, or that the function f is constant as well as .

Now in examining the effect of a plane or a spherical wave
at any point we have seen (Arts. 52 and 53) that the only
factor left by which the approximate rectilinear propagation may
be explained is that the funection f is not constant, but is such
that it decreases as the obliquity increases—that is, as » increases,
Consequently it is not legitimate to assume either that f is constant
or that f/r is constant, for it is on the variations of f and r
(however small) that the whole outstanding effect depends in the case
of a complete wave.

The final result obtained by Fresnel amounts to saying at once
that the effective portion of the wave front is confined to a small arc
which is so short that thronghout it ¢ may be taken proportional to
s% and this is what stamps Fresnel’s integrals with their peculiar form.
This assumption confines the effective portion of the wave to a small
portion around the pole, and therefore virtually introduces a law of
diminution of effect with obliquity ; or, in other words, a form of the
function f.

To determine the law which Fresnel introduced inadvertently by
these assumptions let us suppose that the wave is divided into ring
elements, as in Art. 53, so that S is proportional to rd¢. Then
JdS[r = kfd where I is a constant, and f cos ¢dS/r = kf cos ¢lp. Now
in order that this may take the form cos 2*d it is only necessary to
suppose that
e ()

W afr-b

i

Thus the law inadvertently introduced is that / varies inversely as the

Fortuitons
law of ob-
liquity.
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square root of the phase retardation, and consequently its rate of decrease
as we recede from the pole is very rapid, and the effect of a small area
surrounding the pole must be approximately the same as that of the
whole wave. We should therefore expect that the value of either of
Fresnel’s integrals when taken between the limits 0 and v should be
sensibly the same whether we take » fairly large or infinitely great.
In fact, as v increases from zero the value of each integral fluctuates
and passes through,a series of maxima and minima, but these fluetua-
tions soon become less and less pronounced, the maxima decreasing
while the minima increase until they become sensibly equal, and the
value of the integral remains sensibly constant as v increases in-
definitely.
This may he seen geometrically by plotting the curve » = cos %, in
which the value of the ordinate varies periodically between the limits
1 as & increases (Fig. 144). 'The
area of this curve 18 /iyl = [ cos a=du,
and may therefore be taken to
represent the value of one of Fres-
nel’s integrals. Now while y varies
between constant limits 1, it
is to be remarked that the distance
Fig. 144. between two consecutive points of
intersection of the eurve with the axis of @ continually diminishes
a5 7 inereases.  In f:!.ut, if z and » + ki be the abscisse of two consecutive

points of intersection of the eurve with the axis of #, we have

1)

=20+ 1)x/2, and (z+h)*=(2n+3)7/2,
so that by subtraction we obtain
b+ 2rh=m,

and, therefore, as » increases & must diminish. The total area of the
curve is thus the sum of a system of loops which are alternately
positive and negative and which decrease indefinitely in absolute
value, Hence the integral, after passing through a series of maxima
and minima, rapidly attains a stationary value, as shown in the
following table after Gilbert :—

———

e

PR

FaLAT
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TaerLe oF FresxeL's IxTtrerans (Gilbert) !

|
{2 | J’r"":f.ﬁ =il Jf;rsiu o2y it J‘;Pi:us Srvldy /r:sin deiidu !
o it 4 i i g
|
00 (8000 0-0000 26 0-3389 05500 |
01 (-0999 0°0005 2:7 03926 0-4520 |
02 (+1999 00042 2-8 04675 0:3915 |
03 0-2994 0-0141 29 05624 0-4102 |
04 0-3975 0-0334 30 06057 04963 |
05 0°4923 0-0647 31 05616 056818 |
06 05811 | 041105 3-2 04663 05933 |
07 06597 0-1721 33 04057 05193 |
0-8 0-7230 0°2493 34 0-4385 04207 |
09 07648 03398 35 05326 04153 |
10 0-7799 04383 56 0°5880 04923 |
141 0°7638 05365 37 05419 05750 |
1-2 0-7154 06234 3-8 0-4481 05656 |
13 06386 06863 3-0 0+4223 04752 |
14 05431 07135 40 04984 0°4205
15 04453 06975 41 05757 04758 |
16 0°3655 06383 42 05417 05632 |
1 0-3238 05492 43 04494 05540 |
1'8 03363 0°4509 44 0°4383 046213
19 | 03945 0-3734 45 0°5258 0°4342
2+0 | 04883 03434 46 05672 056162
21 | 05814 0-3743 47 0°4914 05669
22 | 08362 0-4556 4°8 0-45358 04068 |
| 23 0°6268 0°5525 49 0-5002 0-4351 |
2-4 0-5550 06197 50 05636 0-4992 |
2:5 04574 0°6192 @® 05000 05000

When the values of the integrals expressing the intensity are known,
then if one of them be denoted by &, and the corresponding value of
the other by #, it is clear that when a curve is constructed with » and
¥ as co-ordinates, the radius veetor » drawn from the origin to any
point on the curve will represent the resultant vibration arising from
the corresponding portion of the wave. For we have »* =2 + 3% and
consequently > represents the intensity of the illumination, or r
represents the amplitude of the resultant vibration and the angle it
malkes with the axis of x represents its phase. The curve constructed
in this manner is, in fact, the vibration spiral. Using the values of
Fresnel's integrals given in the foregoing table, M. Cornu constructed
the spiral shown in Fig. 145. The branch OM,M,J refers to one
half of the wave, and the branch OJ" to the other. The part OM,
represents the first half-period element, M, M, the second, M,M, the
third, and so on, the successive convolutions winding with ever
increasing curvature round a central point .JJ. This point is situated

! Gilbert, Mém. couronnds de ' Acad. de Bruxelles, tom. xxxi. p. 1, 1863.
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on the line bisecting the angle between the axis, for its co-ordinates are
ra oD
T f cos dmitdv=4, and 3,«:’ sin dwefde =1,
S oo AL

consequently at J and J' we have # = y—that is, these points lie on the
line bisecting the angle XOY. The phase of the resultant would thus
appear to be only 45° in advance of that which arrives from the
central element. It must be remembered, however, that in evaluating
I by this method the wave surface has been reduced by the strip

Fig. 145, —Cornit's Spiml.

method to an equatorial band, so that each element of this band is
the resultant of a strip. The phase of each element of the band is
therehy advanced by 45° relatively to that of the vibration from the
pole of the strip. The whole phase of the resultant is consequently
90° in advance of that arriving from the pole of the wave surface
This rotates the spiral through 45° and throws the points .J and J’ on
the axis OY, as in Fig. 127,

Methods of evaluating Fresnel’s integrals have been given hy
Fresnel, Gilbert, Cauchy, and Knochenhauer. These methods are
noticed in the following examples and will be found at length in
Verdet’s (Euvres, tom, v. p. 328, ete.; Opfique Physigue, tom. 1.

Framples

1. At what distance from a slit of width 2¢ is it necessary to place a sereen so
that the central fringe may be of minimum intensity ? and determine this intensity
{Cornu).
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Here we must determine the points of the two branches of the spiral which are
nearest. Since in this case they are symmetrically situated, the line joining them
passes through 0, and with a compass the minimum distanee is found to correspond
to v=+1°8¥56. Since s=¢ we have

2 +!-'_i =

TE)E
“IN ¢ =(1'875)%

Again the intensity is measured by the square of the chord of the curve, and this
18 (1'08)2=1-17 where the intensity of the light due to the whole wave is JJ™ =2,
The relative intensity of the central band is therefore 0585,

2, Prove that

i+ =
f uﬂus dwetlo= %E[Hill dw (% + 2in) - sin %:ﬂ';‘].

i
I sin drifde = ][ - cos 3w (¥ + 2in) + cos ;im‘!]
. wi
(Fresnel, (Kuvres, tom. i. p. 318),
where « is a small quantity and ¢ given.
[Replacing @ by i+ wu we have

cos dri® = cos v (i + u)? =cos dw (i + 2in)

neglecting w®.  Hence

ot T =
'l cos dredv = ,‘ cos Am(® + 2iu)du
S L

=l e
=cos i f cos mindu — sin §xi® i sin wind,
s @ W

which is integrable at once.

By this method Fresnel calenlated the values of the integrals, taking #=0.1 and
i suceessively equal to 0, 0.1, 0.2, 0, 3, ete.]

3. Using the equations of Ex. 2, show that

=i i
[ " CO% ?sru-:i:r] [ ’ sin #ﬂ'{!ﬂ] = q,,,:un- miu.

4, Prove that

’ e i O e O
fﬂms%ruﬂv—mu{;rb(] ].3.5+1,IL='>.?.9 =
+sin dre® o al A o )
[ A T LTI Y 2

(Knochenhauer, Die Undulationstheorie des Licktes, p. 36).
[Integrating by parts, we have

cos drvide=veosime® + o | v%sin Imode,

f o sin Jriido = ?mu drp® - —’ vt cos kwitdu,

[ 1 cos %rt:%v:?cns ro® 4 %[ o* sin drvidy, ete.]
wf B At ]
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6. Writing the result of Ex. 4 in the form -

f cos §midv =M cos fwv?+ N'sin dre,
show that
{ sin dre®do= M sin imv* - N cos 3w,

Henee
ol ] & L 2
[I Cos {'n'*dﬂ:l +[f sin dmidv | =M%+ N?,
oo o

and
dM S [
[}F_l i | ﬂh, _titil --‘!III'M.

6. I'rove that
- Lo 1 108,06 1857 0%
,l‘,. cuaﬁrﬂh-—tmﬁrﬂt(riﬁ 7 e o o .)

: 1 s 13050 )
-mu&rﬁ'('p .,x;"" e T e

(Cauchy, Comples Rendus, tom. xv. pp. 534, 673).
[Integrating by parts, we have

(IS TR el
i cos !_.m#n!u=[ —sin dre= -+ I — sin iwitde,
fis L2 i

o =]

I . i ] A 1
I : i—_;;_..-;mém#da:: —L ;glguus&rt*-ﬂj. ;15‘!!135-&#113{&;, ete. ]

7. Writing the equation of Ex. 6 in the form

s
f cos dr’dov= P cos d=e® - Q) sin dme®,
.I

show that
- ]

sindxtde=P sin d=+* + Q cos i=17,
and also

dr ) =
;.'!.;-—‘H'LQ—L‘ ‘:ﬁ—-'ﬂ'l‘lq

8. Using the same notation, show that

"B
| cosdmidu=14~ Pcos bre? + Qsin m?,

]
' sin dri*dv=1} - P sin dmv* - Q) cos dme®.
-
[We have

L £ o
feoaén:‘-‘d@::,( cnsénﬁi‘u-[ cos dmi*dv =% — P cos Imi® + Q sin §m®

@
by Ex. 7.]
9. Prove that
[ cos YmiAdu=1 ~ G eos Yo+ Hsin s,

rsin Lwt®dv =14 — G sin dmv® — H cos 4mo?,
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where

H iy 1 "E i E_“rh!q!f' N c—= 1 ,'-'-9': Pl J\_Irl;ll;:,ri

x \f:E.;_ . 14

(Gilbert, Mém. couronands de I Acad, de Bruzelles, tom. xxxi. p. 1).
[If w=4re®, we have

! o
v= EE': anddv= ;-T..- :
r, w2t
therefore
. o 1 = ol
f cos drvilv= -_" COs MH——*
(] L% W= 7 L% (19
But
w0 f=
I e~z = ‘2 .
W+ @

Hence, by writing :*=wua, and regarding » as a constant, we find

" g=wxf T 1 - 1 "mJ'_"Il!J.'
Jc- L. T

and we obtain

Al lI W t s ._...q.d .
J s :!w-p'ﬁd'v:_ ,' L Ig.l' @ '

271 , .J'.r L

3 - ! g
=--l J nl:_f £=ME oo el

1"4\"2 o -J:-:. o

The integration with respect to w is easily effected by parts, thus

'IH - -
*  e="{xcos - sinu)
£~ ong iy = =
.,l o 1+ a° 142

and the required integral takes the form

L - - - N
] w Il‘n't-!: % r—ll'." IIHEH:E U o -.-Flll'“‘_:l_a
i cos drvido = - _[l' N 2 = COB H‘j . o +5in nf = :l
v w2l o 1+ o l#4a? J o Al +a7)

The value of the first integral in the bracket is easily found to be =/ /2, by sub-
stituting =* for @, and we have finally

[ i}
J cos dmr®der=4 - Geosu + Hsinw
"
as required. ]
Comparing these expressions with those of Cauchy (Ex. 8) we have

r=G, Q=H.
10. If

=

L
C= [ cos ritdr,

o

and s :fnsiu 1w,
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prove that
G=1{cos u+sinu) - Ccosu—5sinwy,
H=1,(cos - sinu) +Csinu - Scosn

where, as hefore, u=31we
[Solve from Ex. 9.]
11. Apply Ex. 5 to prove that

G = Lcos w4+ sinwu) = M,
H = Ycos i —sin ) + N.

12. If =0, prove that
d=H=1.

13. If axes of reference be taken in the wave front at I, or parallel to it through
0, we have
pPr=at s, and dS = dady.

Henee if f=constant and =58, that is, if the effective portion is limited o a small
area around the pole I, we have d=mp?/lA (Ex. 4, p. 274), and the intensity of the
illumination is proportional to

[ﬁ'{iﬂ Awe(a® 4 y°)dady T + [[sin we(a® + y)dady ],

where ¢ is a constant (2/8)) in the case of a plane wave, and it represents 2(e + b)fab)
for a spherical wave of radius «.
Denoting these integrals by M and N respectively, we have by expansion

M=/cos gwﬁdaf cos dweytdy — f sin gﬂmﬁd:a_e:f sin dweydy,

N = [ sin Yweatdrf cos Yoy + f oS 4rm§’daf sin Sy,

Replacing ex® or ey by %, the caleulation of these integrals is reduced to the caleula-
tion of the integrals (Fresnel's)

C =fﬂ0$ Ymotde, S:fsiu dmvdr,

Particular Cuses
() Complete Wave.—If the wave is unobstructed, we have

D= F-m cos drvdr=1, S= ".+m sin drvfdo=1.

Hence
2
M=0, and Nz;}'
Therefore
M2y =
and

tang¢g=N/M=w, .. ¢=1in,
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(&) Straight Edge.—If the wave passes over the edge of an opaque ohstacle, we
integrate with respect to i between the limits + 9 and — e, so that

M :frm; imvidy -f:sill Awidr,
N= f cos dmitde + [ sin dwe¥de,
M2+ N2=9[ fcos dmo?dvF + 2[ [sin freZdv].

Cutside the shadow the integration extends over one half of the wave and part
of the other half, thus

!11‘ cos drcidv + I.r

a i - B

I= I: § & 1"-}1}.‘; ﬁf#“d{-‘]g + [ 3+ .,':::":n ﬁ;#l‘grf'tfjﬂ.

But inside the shadow the integration extends over part of half a wave, from » to
w, and

"
cos dxvidv=14 + ’ cos fwitdy,
dow

Henee outside

- s o
I cos drvtde = ’ cos drifole = "

P
cos Lwrfdv=4 - J cos Sty
. it ' » & U]

Hence inside the shadow

I= [é - ,‘ cos drede :l--.[& - ’ sin jrvide ]

The cases of a narrow wire and narrow slit are treated in the same manner,

162. On the Secattering Action of very Small Particles, and
the Colour of Skylight.—In applying the wave theory to deduce
the ordinary laws of reflection of light (chap. iv.) the linear dimensions
of the obstacle at which reflection occurs have been supposed enor-
mously great compared with the length of the reflected waves. For
this reason the ordinary laws of reflection involve no reference to the
wave length, and the screening action of the obstacle is perfect except
for a narrow band around the edge of the geometrical shadow. The
width of this band, however, and the intensity at any point of it,
depend on the wave length (being greater for the longer waves than
for the shorter), and consequently a small obstacle will not he so
effective as a screen to the longer waves as to the shorter.

Thus we have seen (chap. 1ii.) that an obstacle will screen a poing
from the influence of a wave when 1t is wide enough to cover a large
number of half-period elements of the wave front, but the width of
any half-period element increases with the wave length, and conse-
quently a given obstacle will act most effectively as a barrier to the
waves of shortest length. We are consequently prepared to admit
that when ordinary white light passes through a medium (such as
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the atmosphere) in which very small particles are suspended, the
waves of greater length will be more freely transmitted than those
of higher refrangibility. After passing through a certain thickness
of such a medium the light from a white source should consequently
appear yellowish (like the snow on a distant mountain), and as the
thickness inereases the tint should become reddish.

To say that the longer waves are most freely transmitted is
equivalent to saying that the shorter are most copiously reflected,
and we should therefore expect the light reflected (or scattered) in
any direction by such particles of matter to be rich in the rays of
higher refrangibility. Now the light which reaches us from the open
sky is that part of the licht of the sun that has been reflected, or
seattered, by the fine particles of matter suspended in the atmosphere,
and if these particles are small compared with the wave length of
light, the tint of sky should belong to the blue end of the spectrum
rather than to the red.

In estimating the quality of this light, however, it must be re-
membered that it has suffered from the modifying action of trans-
mission as well as scattering. For it is clear that the light which
reaches the eye after seattering in a certain locality is merely the
residunm of the solar light which has survived after transmission
through a certain thickness of the air, as well as the scattering
action of the particles. Thus the light first passes through a certain
thickness of air and is modified by transmission. This modified
licht is then reflected or scattered by certain particles, and the
scattered light is subsequently transmitted through some thickness
of air to the eye of the observer. Now we have seen that transmis-
sion is detrimental to the rays of higher refrangibility, while the
scattering cuts off those of lower refrangibility, and the light which
survives and reaches the eye will therefore be weak in both ends of
the spectrnm. In other words, it will be composed chiefly of the
waves of intermediate length from the region of the blue or green.
The exact colonr of course will depend on the size and plenitude of
the particles—for example, when the particles are relatively large
they will affect all wave lengths of light in practically the same
degree, and the scattered light will be white.

This explanation of the blue colour of the sky was proposed by
Lord Rayleigh! in 1871, and the law according to which the scatter-
ing takes place for waves of different lengths may be easily deduced
from elementary considerations. Thus we have seen (Art. 159) that if
the amplitnde of the vibration contributed by an element of a wave

' The Hon. J. W. Strutt, Phel. Mag.svol. x1i. pp. 107, 275.
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surface to any point he taken to vary direetly as the element of area,
and inversely as the distance, then the complete expression for the
amplitude must contain A~', so that the intensity must vary inversely
as the square of the wave length, In the same way if we consider
the light scattered in any portion of space laden with very small
particles, and if we assume that the amplitude of the vibration con-
tributed by any element of volume #V of this space is proportional
to that element of volume, and inversely as the distance, then in the
expression of Art. 159, 5 must be replaced by #V, and the complete
expression for the amplitude must contain A-2 so that the intensity of
the scattered light will vary inversely as the fourth power of A—that
is, when scattering alone is considered,

1

o .
L] J‘L‘l

Now the light which reaches the eye is scattered, and also transmitted
(both before and after seattering) through some thickness & of the
medium. Hence its composition will be determined by finding the
effect of transmission on the quantity I, This problem is equivalent
to that of finding the intensity of a penecil of light after transmission
through an absorbing medium when the absorption varies inversely as
the fourth power of the wave length. Hence, as in Art. 282, we

have
dl  hda
i e ¥ T

where & is a constant, and dI the change of intensity in passing through
a layer of thickness d». The intensity of the light reaching the eye
after suffering scattering as well as transmission through a total thick-
ness » of the medium is therefore

I ] '._—.L'J_ﬁ‘l'.

and substituting for I, we have finally

A s
I= :{_-iﬂ A i
This expression exhibits the joint effects of scattering and transmission,
and shows how I diminishes for the large values of A as well as for
the small. The maximum value of I corresponds to some intermediate
wave length A, given by the equation

e

]
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and the corresponding maximum value of I is
l:ﬂ - l‘l.}'t;-‘l:-] = J-'!.Jn"-!,‘f.'.r,

while the intensity I, corresponding to any wave length A, is related
to I,, by the equation

I At Awd
| P e

In ovder to test this theory Lord Rayleich compared the blue
light of the sky taken from the neighbourhood of the zenith with
sunlight diffused through white paper. The results of this comparison
are contained in the following table for the fixed lines C, D, b, I of
the spectrum, and, considering the difficulties and uncertainties of
the comparison, the observed and caleulated values appear to agree
tolerably well. It must of course be observed that the comparison is
based on the assumption that the light diffused through white paper is
similar to the scattered light which illuminates the sky.

C. D, frs. B
25 40 63 80 (caleulated)
25 11 70 90 {observed)

It appears therefore that the skylight, when compared with that
diffused through white paper, was bluer than that required by the
theory ; and this, Lord Rayleigh suggests, may arise from the possible
yellowness of the paper, or from the yellowness of the sunlight when
it reaches us compared with that in the upper regions of the atmo-
sphere where it is diffused.

- 168, Diffraetion in Optical Instruments—~Circular Aperture.—
In many optical instruments the aperture through which the light
enters is limited by a circular stop, and for this reason the study of
diffraction in the case of a cireular aperture has attracted special
attention.

For example—when a point source of light, such as a distant star,
is viewed through a telescope, the wave falling upon the object glass
is limited by a circular aperture, and instead of having a point image
of the source (as the geometrical theory would lead us to expect with
an aplanatic lens) in the focal plane of the telescope, there is a
difiraction pattern® which consists of a bright central spot surrounded
by a series of rings alternately bright and dark. With white light the
central spot is approximately white and the rings are coloured. The

1 Noticed by W. Herschel in 1782, Phil. Trans. Roy. Soc. p. 52, 1805.
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brilliancy of the rings diminishes rapidly from the centre outwards.
For the exhibition of several rings a strong source of light is required,
and with a faint source only the central spot can be observed. The
diameter of the central spot in all cases varies inversely as the diameter
of the aperture.

Let the incident light be parallel and fall normally on the aperture,
and let the diffracted penecil make an
angle # with the normal to its plane.
Let C be the central point of the
aperture, CN a normal to its plane,
and CO the direction of the diffracted
beam, then OCN =@, and the plane of
diffraction at C—that is, the plane of
CO and CN—meets the plane of the
aperture in a line AB. Let P be any
point of the aperture, and let the
radius vector CP(=p) make an angle ¢» with AC. Then the element
of area at P is

Fig. 146,

r-f}"- Jn.l!f{‘farfp_

and the phase retardation & of the vibration from this element, relative
to that from A, is the same as for that from I), where P is perpen-
dienlar to AB, and therefore

u

i ; = .
o= 1 .." 1.} 1 = \ s11 i@ . pens fj'a Kl FrCE g

2
where = S

vibration excited by the element 45 at P is proportional to

sin§, and r is the radius of the aperture. Hence the

sin{wl + hir — p cos @)} pdepdp,

and the resultant vibration for the complete aperture will he
2 r
f ‘l' g 8in (el 4 for — fip cos @ dgedp

=m [r fom o
=sin (wl + fir) ( f p cos (hpcos gldgdp — cos (wf + hr) ! ) psin (hp cos @)dgdp.

The final double integral in this expression is zero, for the elements of
it which arise from any two points sitnated at equal distances on
opposite sides of C are of opposite signs and destroy each other.
Hence the resultant vibration is

sin (wl + fir) i f peos (fpcos @ldgdp,

[T
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and the intensity in the direction CO is
iI= [ ]I G i pcos (fip cos gb}:hpdp]

The integration with respect to p is obtained at once by parts,
thus-—

!

’ peos (fipcos ¢ldp = {

i

HII] (ko cos t,:l}j i ¢J sin (fpcos g )dp

= (_;s &siu (i cos ) -+ ;;?-cmga-:{ma (fir cos @) — 1}

£ _i__r;in (hr cos )

Sin® (Yhr cos ¢)
(fiz cos ) 0 ;

A (Lhr cos @)
i Ewr .
Hence, writing 2m=lr= =\ sin 8, we have
»:r-'sm{.&‘m m:-.»qb}l Im sin®= (wt cos
U [ ’ -"m s gh ) gpAr r [are Co8 ¢Jf_ {b:l

The further integration, with respect to ¢, may be obtained in
series, for we have

sim 'L"" _ :.1:_" a !
5 !1 B i
sins_l-cos2n | 2 b gt
=T 6 |8
Therefore
- L (2 cos ) (2mcos g)?
\"'[zr"j {“" '-] +—|l;—'—"'" A }ﬂ[,p
2 o3 - A
2 _Zmcos @)  Z(mcos )
— &7 .f“ {l 11 i _-—lﬁ ol }.-g.;,_
But we have
1:3 .0 ol2n-—
’ cos™ = 2 -;;u"'F HTHE"

therefore finally _
T el 1_.1_(”“‘_‘)2 1/m2\E 1 mBN2 1 ot e
'\.-1—‘“‘[_ al 7 +3 lE i\3 T |4 .}
Or denoting the series within the bracket by S, we have
I = (arr®)"5%,

which is the result obtained by Airy.!
The series S is convergent for all values of m and passes alternately

1 G. B. Aivy, Camb. Phil. Trans, p. 283, 1834,
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through positive and negative values as s increases from zero. The
intensity consequently presents maximum and zero values, correspond-

. a3
lﬂg to i

values of m have been found, the deviation 8 is given by the equation

=0, and S=0, respectively ; and when the corresponding

@y sin @ : A
M= = U amﬂz-ﬂ:;;*

Hence the deviation corresponding to any bright or dark ring,
being small, is proportional to A and inversely as the radius of the
aperture.

The subjoined table taken from Verdet's Optigue Plysique contains
the values of m/= corresponding to the first few maxima and minima.
The table shows the rapidity with which the maxima decrease, and
also that the difference between two consecutive values of m tends to
become constant and equal to 1=

| m= Intensity 5= wm “H’:’J.j:'“t:" :
1st max. 0 1 1st min. | 0610 g |
2nd max. 0-819 001745 2o min. 1116 0 .

| 8rd max. 1333 0-00415 3rd min. 1-619 0

| 4th max. 1847 Q00165 4th min. 2-190 (1] |

| 6th max. | 2:361 000078 5th min. 2521 T

In the foregoing equation ¢ is obviously the angular width of a
ring as seen from the optical centre, and as this is very small we may
write @ for sin #. Hence the angular width of the first dark ring is
given by the equation

When two very close point-sources of light are viewed through a
telescope their diffraction patterns will overlap, and they cannot be
distinguished as distinct sources if the overlapping of the central spots
of their images exceeds a certain limit. Now the intensity falls from
unity at the centre of the spot to 0°37 at a distance from the centre
equal to half the radius of the first dark ring. Consequently if the
distance between the centres of the two central spots is equal to the
radius of the first dark ring the intensity should be 0°74 half-way
between the two centres and unity at each eentre. This variation of
intensity should be observable, and a double star should therefore
be resolved by a telescope when the angular separation of the com-
ponents is 0°61 Afr.

=
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Examples

1. Taking AB (Fig. 146) and a perpendicular to it as axes of @ and ¥ respectively,
show that with an aperture of any form, the intensity at O in the direction CO
making an angle # with the wave normal is

: ; . 2 i
I=[L!,ﬁrsiu (-J;msin ﬂ)sia:] + [j'{l*r:m(ﬂfﬂ: sin ﬂ')-ﬁfﬂﬂ] 2

[Divide the aperture into narrow strips perpendicular to the axis of @ The area
of one of these strips is g, the length of the strip being y and its width da.  Also
if the phase of the vibration from the origin of co-ordinates be wi, the phase retarda-

tion of the vibration from the element yda will be rﬁ;?.i.‘sil] #, and hence it will be
represented by

- P
i sm( wf L + Fsin H)d.u:,
The rvesultant of the whole aperture will be

. 2 ,
!rj_f sln(w-ﬂ + :-.’l.t 1l ﬂ)f-l‘-]:

= sin wl f ?Jtr{Iﬁ(l:H; sin ﬂ) dx 4+ cos wl Iy $in(2:;1: =in ﬂ)dm.

Therefore, ete.]

2. The sine of the deviation (sin #) corresponding to a maximum or minimum
intensity (Ex. 1) is proportional to the wave length \.  Hence the linear dimensions
af the patterns produced by differently coloured homogeneons lights ave proportional
to the wave lengths.

4. With similar apertures the sines of the deviations (sin #) corresponding to a
maximum or minimum intensity of a given order are inversely as the linear dimen-
sions of the apertures,

[For let e he the ratio of the corresponding lines of two apertures, then let
the expression for the intensity given by one aperture be that of Ex. 1, the expression
for the other will be derived by substituting wme, and my for = and y, viz.

’ § = p 3
[ " a..-.”;;siu( ;:' pix sin @ )nf.t] i [ f -mﬂyt-.ns(g: Wi sin 8 )rﬁ:l ;

Hence i @, makes the first a maximum or minimum, the second will be made a
maximum or minimum by 8, if @ sin f;=sin 6, that is, if

sinf | o
sinf, 1

4. The intensities transmitted to corresponding points by two similar and
similarly situated apertures are in a constant ratio.

[This follows from the expression of Ex. 3, the constant ratio being m?, |

3. If one aperture can be obtained from another by displacing parallel to them-
selves its ordinates () without altering their lengths, the intensities in the plane a:
are the same for the same directions.

6. The intensity at any point due to a system of equal, similar, and similarly
situated apertures is equal to the intensity produced by a single aperture multi-




ART. 163 EXAMPLES 203

plied by that produced by a system of points similarly situated on the apertures,
one on each.

[Consider a poiut situated on one of the apertures and take a point situated simi-
larly on each of the other apertures. The vibration produced by this system of
points will be of the férm A sin(wf+35). As the chosen point moves over the first
aperture, the corresponding points will move over the other apertures and obviously
A will remain constant.

Hence if the intensity produced by a single aperture, or by a system of similarly
situated points on the system of apertures, be zero, the intensity produced by the
whole system will be zero. In this case then there will be in general two series
of minima.]

7. Show that the pattern produced by diffraction through an elliptic aperture
may be determined by reduction to the case of a circular aperture,

8. Determine the character of the diffraction pattern produced by a square
aperture.

9. Determine the character of the pattern produced by diffraction through a
triangular aperture. :



CHAPTER X

ON THE POLARISATION OF LIGHT BY REFLECTION AND DOUBLE
REFRACTION

164. Transverse Vibration—Plane Polarisation.—In the study
of the phenomena with which we have been hitherto engaged, we have
deduced no evidence whatsoever as to the nature of the vibrations in
the luminous waves. Throughout our investigations of the phenomena
of interference we have only supposed the vibrations of the interfering
rays to be similar to each other, but as to how they are directed in
space, or as to the relation of this direction to the direction of propa-
gation of the ray, we have made no assumption, nor yet dealt with
any phenomena caleulated to attract our attention to it. From time
to time our knowledge of the theory of sound has proved of consider-
able assistance in the study of analogous phenomena in the theory of
light, but we now approach a class of optical phenomena which have
no analogue in the theory of sound. These have consequently been
supposed to arise from the difference in the nature of the vibrations of
the ether which constitute light and those of the atmosphere which
produce sound.

In the case of sound we know that the vibrations of the atmosphere
are longitudinal—that is, in the direction in which the sound is being
propagated ; the same is the case when rods and strings vibrate longi-
tudinally, or in the direction of their length. However, in the case of
a sounding fiddle-string (or the cord of Art. 34) the vibrations of the
string are perpendicular to its length, or transverse. A cord or rod
is thus capable of two distinct kinds of vibrations, longitndinal and
transverse, and these are propagated along the cord with different
velocities.  So, in general, if a disturbance is being propagated by the
vibration of an elastic medium in any direction, we may resolve the
vibration into two others, one longitudinal, and the other transverse to
that direction, and if this applies to the ether, we should have the two
species of waves in it.
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The question now at issue is whether the luminiferous vibrations
(supposing them to be periodic displacements) are longitudinal or
transverse, or if both species exist in the ether and affect our sense of
sight. This question can only be answered by experiment, but before
adducing any evidence on the point, it will be well to return to the
consideration of a vibrating cord (Art. 34).

Let AB (Fig. 6) represent a stretched cord, such as a fiddle-string.
If this cord be rubbed in the direction of its length, it will start to
vibrate in that direction, i.c. longitudinally, and emit a piercing note,
But if a bow be drawn across it at right angles to its length, it will
oscillate transversely and emit quite a different note. In the former
case the appearance of the string is the same on all sides, or in all
planes drawn through its length, but in the latter case the string
vibrates in a definite plane, and its appearance is not the same in all
planes drawn through its length. It has definite sides on it with
regard to the space around it. It looks flat, like a ribbon ; when
vibrating it has acquired sides and may be said to be polarised.

Now suppose the string AB to pass freely through a narrow rect-
angular slit a little wider than the diameter of the cord. It is clear
that the longitudinal vibrations will not be interfered with, but will
continue unmodified, no matter how the slit is turned round the
vibrating string. The case is quite different when AB is vibrating
transversely, for when the length of the slit is in the direction of the
vibration of the string—that is, parallel to the plane of vibration—the
string is free to oscillate, and its vibrations will not be disturbed.
However, as the slit is turned round the cord so as to be at right
angles to the plane of vibration, the cord is no longer free to oscillate,
and its motion is interrupted by the sides of the slit. Thus, by
turning the slit round the cord, we detect the transverse vibrations
which give a fwo-sideduess or polarity to the vibrating string, and even
though it were invisible we should learn that it does not present the
same aspect on all sides.?

It occurs to us now to endeavour to determine by some analogous
method the nature of the luminiferous vibrations, and for this purpose
we may, with profit, first operate with a plate of tourmaline cut
parallel to the axis of the crystal. When a beam of light is allowed
to fall perpendicularly upon such a plate part of it is transmitted, and
we shall see now that this transmitted portion has the peculiar two-
sided property of the transversely vibrating string. To the eye the
transmitted light appears to have suffered only a slight eolouring due

! This might also be detected by placing a smooth plane surface against the
string.
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to the natural tint of the erystal. But if we allow the light which
passes through the plate to fall upon another similar plate, we find
that the light from the first passes freely through the second when
the two are parallel—that is, similarly placed with respect to the ray
as A and B (Fig. 147). As the second plate is rotated (A'B’) round
the beam as axis, its plane being always perpendicular to the ray, the
light transmitted by it is
observed to fade gradually,
and when it has been turned
through a right angle (A"B")
the light is completely ex-
tinguished. It is immaterial
which plate is turned, but
the bodily turning of Dhoth at the same time is without effect. If the
rotation be continued bevond a right angle, the light reappears and

Fig. 147.

_increases in intensity till a second right angle has been completed,

when it is as bright as at the outset. When the plates are at right
angles to each other, i.e. crossed, the light from the first is refused
transmission through the second, just as the transverse vibrations of
the string were stopped by turning the slit.

Now the beam transmitted through a single plate of tourmaline
remains unaltered in intensity as the plate is rotated, we therefore
detect no fuws-sidedness in ordinary or natural light; but it is quite
otherwise with the transmitted beam, for we see that the amount of
it which the second plate allows to pass depends on the orientation of
that plate with respect to the first, and in one position it entirely
refuses a passage to the light. This beam, then, which has passed
through the plate of tourmaline has acquired a lwo-sidedness. 1t is for
this reason said to be plane-polarised, and for this reason it has been
supposed that its vibrations are transverse, and all in one plane, like
the vibrations of a string plucked aside.

It is very important to remark that there is one position of the
second plate which entirely euts off the beam transmitted through the
first, and this has been taken to show that the licht vibrations cannot
be longitudinal, for if they were, the orientation of the second plate
would not be expected to affect them, just as the turning round of the
slit did not affect the string vibrating longitudinally. The fact that
no light gets through the second plate in one position appears to
show that the longitudinal vibrations, if they exist in the ether, are
not propagated as light by themselves, but it does not prove that a
longitudinal component does not exist in the vibration as a necessary
part, for the extinction of the transverse constituent might entail
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that of the longitudinal as well. In faet, it is not easy to see how
waves of transverse vibration can be propagated in a medium such
as an elastic solid without being attended by more or less of the
longitndinal element. Further evidence on this poeint will appear in
what follows,

165. Polarisation by Reflection—Biot's Polariscope.—The polari-
sation of light was first noticed by Huygens when studying the refraction
of light through a erystal of Ieeland spar, but it remained an isolated
fact in seience for more than a century afterwards. About 1808 Malus
discovered, accidentally, that light when reflected from the surface of
glass acquires properties similar to those possessed by the light trans-
mitted through a plate of tourmaline—that, in fact, light may be
polarised by reflection,—and pursuing the inquiry further, he found
that the same oceurs when light is reflected from water and other
transparent substances. Hence the two-sidedness of the light which
has passed through a tourmaline plate may be detected by allowing it
to fall upon a plane glass plate. By turning the plate round the
heam the reflected light is seen to vary in intensity, and in one
position of the plate the reflected light vanishes altogether. By
keeping the glass plate stationary and rotating the tourmaline we
may obtain the same results.

Similarly the beam may fall first npon the glass and afterwards
be transmitted through the tourmaline with the same effect. In one

ase we polarise the light by transmission through the tourmaline and
analyse it (that is, detect its polarisation) by reflection from the mirror,
and in the other case it is polarised by reflection
from the mirror and analysed by transmission
throngh the tourmaline. It is clear, therefore,
that the tourmaline may be dispensed with
altogether and replaced by a plane glass mirror,
since the mirror can act the part either of a
polariser or an analyser. On this principle
instruments termed polariscopes have been con-
structed. One of the first of these was designed
by Biot,! but it has long since been superseded
by more commodious forms. It is represented
in Fig. 148. At each end of a tube T plane
mirrors of polished black glass arve placed. Each
mirror is capable of two motigns—one round a
diameter of the tube—that is, round an axis
perpendicular to the axis of the tube. The amount of this rotation is

Fig. 145,

' Biot, Traité de Physique, tom. iv. livre sixiéme, chap. i. p. 255.
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measured by the graduated circles M and N. The second motion is
round the axis of the tube. This is obtained by the mirrors being
attached to rings G, H, which are graduated and movable on the tube.

The mirrors can thus be inclined at any angle to the incident light
and to each other.

166. Angle of Polarisation.—When the planes of the two mirrors
are placed parallel, the light which is reflected from the first and falls
upon the second is, for a certain incidence, entirely reflected there. By
rotating either mirror round the axis of the tube, the amount of reflected
light will diminish and become a minimum when the mirror has been
rotated through 907, so that the mirrors are crossed. The amount of
light reflected in this position will depend upon the angle of incidence,
and for one particular value of this angle the reflected light will vanish
entirely.

We consequently infer that there is one particular angle of inecid-
ence at which light is completely polarised by reflection from glass, and
this is termed the angle of polarisalion, or the polarising angle.

When light is veflected from glass, the reflected beam in general is
only partially polarised. It cannot be completely extinguished by a
tourmaline plate or by reflection from another mirror at any incidence.
The amount of polarisation depends upon the angle of incidence, and
at one particular angle the polarisation becomes complete.

We must not hastily infer that for every substance there is an angle
of complete polarisation. In faet, it is proved by experiment that as
the angle of incidence increases, the polarisation in general also
increases to a maximum, and then decreases after passing through the
angle of maximum polarisation. For each substance there is an angle
of incidence which gives a maximum of polarisation, and this angle is
termed the polartsing angle of the substance.

M. Jamin, who investigated this subject, found that only a few
substances, of refractive index about 1-46, polarise light completely
by reflection. For all other substances the polarising angle is merely
the angle of maximum polarisation. For glass the polarising angle is
about 57°, and for pure water 53° 11",

167, Plane of Polarisation.—\When plane-polarised light falls at
the polarising angle npon a glass mirror, the intensity of the reflected
light depends upon the position of the plane of incidence with regard
to the ray. Thus as the mirror is rotated round the ray, keeping
the angle of incidence constant the intensity of the reflected pencil
varies, and that particular plane of incidence in which the light is
most copiously reflected is called the plans of polarisation. When the
polarised light has been obtained by refraction, it is obvious that the
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plane of polarisation, as defined above, is the plane of reflection of the
light, for this beam would be most copiously refiected by a second
surface when it is parallel to the polarising surface.

According to the theory of Fresnel, the vibrations of plane-
polarised light are perpendicular to the plane of polarisation. Thus
the direction of vibration in light, polarised by reflection, is perpen-
dicular to the plane of reflection—that is, parallel to the reflecting
surface. The relation of the direction of vibration to the plane of
polarisation has been a subject of much dispute, and we postpone its
consideration for the present. It will be well to bear in mind, how-
ever, that something may be going on both in and perpendicular to the
plane of polarisation, and that the vibration may not be a simple
displacement in the wave front (chap. xxi.).

168. Double Refraetion.—Hitherto we have assumed that when
light is ineident on the surface of a transparent medium, the refracted
portion pursues in all cases a single definite direction. That this is
not always the case was discovered by Erasmus Bartholinus, a Danish
philosopher, about the year 1669. Experimenting with a crystal of
Iceland spar (earbonate of caleium), he found that a beam of light on
refraction at its surface travels through the crystal in two determinate
pencils, one of which traverses it according to the known laws of
refraction, while the other is bent according to a new and extraordinary
law not hitherto noticed.}

A few years after the discovery of double refraction, Huygens *
gave a satisfactory explanation of it in uniaxal erystals on the principles
of the wave theory, and whilst repeating the observations of Bartho-

linus, he was led to the discovery of the “ wonderful phenomenon” of

the polarisation of light.

The property of producing two refracted beams is called double
vefraction, and is possessed by all crystallised minerals except those
whose fundamental form is the cube. It belongs also to animal and
vegetable substances possessing a regular arrangement of parts, and to
all bodies whose parts are in a state of unequal compression or dilata-
tiomn.

The angular separation of the two refracted pencils varies with the
direction of the incident ray with reference to the natural figcure of the
erystal.  In every doubly refracting crystal there is at least one direc-
tion, and in many two, in which no such separation occurs. These

Tvirection
of vibra-
tioi.

Ciptie axi

! An account of these experiments was published at Copenhagen in 1669 under -

the title Keperimenta Crystalli Islandici dis-diaclastici, quibus wniva ot insolite vefractio
detegitur. A full aceonnt of them is given in the Edinburgh Philosophical Jowrnal,
vol. i. p. 271.

* Huygens, Traité de la Lumiére, ** De l'estrange refraction du Cristal d'Islande.”
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directions are called optic awves of the erystal. The refracted rays
are most widely separated when the incident beam is perpendicular to
the optic axis.

In Iceland spar, the substance in which it was first observed, the
phenomenon of double refraction is very strikingly exhibited. This
mineral crystallises in many forms, all of which may be reduced by
cleavage to therhombohedron, which is accordingly thefundamental form.
[t is also found in considerable masses of great purity and transparency.
The rhombohedron is bounded by six parallelograms, the angles of
which are 101" 55" and 78" 5" respectively. Two of the solid angles, a
and b (Fig. 149), diametrically opposite, are
contained by three obtuse angles, while
each of the remaining four is bounded by
one obtuse and two acute angles. The
direction making equal angles with the
faces at the summits of the obtuse solid
angles is called the axis of the erystal. Thus
if the edges of the rhomb be equal to each
other, the line al adjoining the obtuse solid angles, or any parallel
line, is the erystallographic axis. The angles at which the faces them-
selves are inclined are 105° 5" and 74° 55"

When a transparent crystal of Iceland spar is placed over a small
black dot on a sheet of white paper, two images of the dot are seen on
looking through the crystal, and if the eye be held perpendicularly
over the face of the crystal while it is rotated over the dot, one of the
images remains stationary, while the other rotates round it. The
fixed image appears a little nearer than the movable one, and the line

Fig. 140,

Joining them is parallel to the shorter diagonal of the rhombic face

through which they are observed.

169. Polarisation by Double Refraction.—The properties of light,
which has suffered double refraction, may be best examined by allow-
ing a peneil from a small aperture to pass through a large erystal so
as to receive the two emerging heams on a screen,

Of the two portions into which the refracted light is divided by a
uniaxal crystal, that which obeys the ordinary laws of refraction is
called the ordinary ray, and this gives an image on the sereen called
the ordinary image. The other refracted ray does not obey the
ordinary laws of refraction. It is called the extraordinary vy and
gives an extraordinary image. These rays and images may be denoted
by the letters O and E. By placing a plate of tourmaline in the
path of either of the rays produced by double refraction, it is found

darised. on rotating the tourmaline that in one position it refuses to transmit
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the ray, while in other positions the ray is transmitted with more or
less freedom. Both the rays then are two-sided or plane-polarised.

This may also be shown by allowing the pencils to pass through a
second erystal of calespar.  When the second erystal is parallel to the
first, the two behave just like one of their joint thickness. In this
position the ordinary and extraordinary rays of the first erystal
traverse the second as ordinary and extraordinary rays, but when the
second is rotated through an angle, each of the rays O and E is
doubly refracted in it, so that four rays emerge from the second crystal
and four images are depicted on the sereen. The ordinary ray of the
first erystal gives rise to .an ordinary O, and an extraordinary O,,
while the extraordinary gives rise to an ordinary E, and an extra-
ordinary E,. As the rhomb is turned, the pair O, and E, which are
faint at first, gradually increase in brightness, while the other pair O,
and E, diminish in intensity and finally vanish when the crystal has
been rotated through 90°. We have now again only two images, viz.
0, and E, On rotating the rhomb farther, these images grow fainter,
while the other pair O, and E, reappear and increase in intensity till
the rhomb is rotated through 180" from its first position. Here we
have only two images O, and E, as at starting. Thus in one position
the second rhomb allows the pencils to pass freely through—the
ordinary as ordinary, and the extraordinary as extraordinary,—while
in a position at right angles to this it refracts the ordinary ray entirvely
as an extraordinary, and the extraordinary entirely as an ordinary
and in any intermediate position it refracts both dounbly.

By utilising the persistence of visual impressions, this form of the
experiment is susceptible of a very elegant modification. Let one of
the pencils emerging from the first crystal fall upon the second. This
beam will in general be divided into two others by the second, and the
refracted pencils will depict two spots on a sereen placed to receive them.
By placing the screen at a proper distance the spots may be made to
partly overlap. Now let the second crystal be rotated rapidly around
the direction of the incident pencil of light. The spots on the screen
will deseribe eirenlar lmninous bands on the sereen which partly over-
lap. Three concentric rings are consequently presented. The middle
ring is due to the overlapping of the two images, and is uniformly
bright all round, for the overlapping images are complementary in all
positions. This eentral ring is bordered on either side by other rings,
one due to the ordinary image and the other to the extraordinary.
These -do not appear uniformly bright. The former will be brightest
in the plang of polarisation, and darkest in the perpendicular plane.
The reverse is the case in the extraordinary ring.
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The ordinary and extraordinary rays emerging from a rhomb of
Iceland spar or any other doubly refracting erystal are consequently
in a condition singularly ditferent from that of common light, for while
a beam of natural light is always divided into two of equal intensity
on entering the erystal (except when it passes in one particular diree-
tion called the optie axis), the subdivision of the ordinary or extra-
ordinary ray by a seecond rhomb depends on the orientation of the
second crystal with respect to the first.

It was in this form that the polarisation of light was first noticed
by Huygens. On analysing his observations, he determined that a
beam of solar light is always divided into two (except when it traverses
the erystal in a direction called the optie axis), and that each of the
resulting beams will be singly or doubly refracted by a second erystal
of spar according to the relative position of the principal sections ; these
are planes drawn through the optic axes of the crystals and per-
pendicular to the refracting faces. If the principal planes of two
crystals be either parallel or at right angles to each other, then the
rays which emerge from the first are not doubly refracted by trans-
mission through the second. If the principal planes are parallel,
the ordinary ray from the first traverses the second as an ordinary
ray, and the extraordinary as extraordinary; but if these sections
are at right angles, the ordinary ray from the first is refracted as an
extraordinary ray in the second, and the extraordinary ray as an
ordinary.

The ordinary wave is found to be polarised in the prinecipal plane,
and the extraordinary wave is polarised perpendicularly to the prineipal
plane, the plane of polarisation being defined as in Art. 167,

A beam of plane-polarised light possesses the following character-
istics :—

I. It is not divided into two others by a doubly refracting crystal
in two positions of the prineipal section with respect to the ray, while
in other positions it is divided into two pencils which vary in intensity,
and are complementary as the crystal is rotated.

II. It is not reflected at the surface of a transparent substance
when the plane of incidence is perpendicular to the plane of polarisa-
tion, and when the angle of incidence has a certain value depending on
the nature of the substance.

170. Property of Tourmaline.—In our preliminary experiment we
obtained polarised light by transmitting a pencil of ordinary light
through a plate of tourmaline. Now tourmaline is really a doubly
refracting erystal and divides the intromitted beam into two parts, an
ordinary and an extraordinary, yet it is only the extraordinary beam
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that emerges from the plate, for the ordinary pencil is rapidly absorbed
by the erystal, so that a plate of small thickness (1 or 2 mm.)is almost
impervious to it. It is this property that renders tourmaline plates so
readily adapted to the operations of either producing polarised light or
of analysing it when already obtained.

The wave velocity is then not the only property affected by crystal-
line structure. In many crystals the two polarised rays suffer different
rates of ahsorption, and it is this property that qualifies a single plate
of tourmaline to act the part either of a polariser or an analyser. The
property of double absorption is without doubt intimately. related to
that of double refraction.

Tourmaline, however, is not a very transparent mineral, and strong
beams of polarised light cannot well be obtained with it. Hence it is
quite nnfitted for work when the illumination is faint, consequently
other forms of polarisers and analysers—that is, apparatus for pro-
ducing and studying polarised light-—have been invented. The
most important of these are Nicol's and Foucault's prisms (see Arts.
182, 183).

171. Brewster's Law.— About the year 1811 Sir David Brewster
commenced an extensive series of experiments with the ohject of deter-
mining the polarising angles of different media, and of connecting
them by a law. The outcome of his investigations was the simple and

remarkable law, * The index of refraction of the substance is the tangent of

the polarising angle.” This law, which is expressed by the formula

tan i=p,

informs us that the polarising angle ranges in different substances
from 45° upwards, and, when the refractive index is known, the angle
of polarisation is inferred.

Since the refractive index is different for differently coloured lights,
it follows that the angle of maximum polarisation is different for the
different rays of the spectrum, and consequently if a beam of solar
light be reflected successively from two glass plates whose planes of
reflection are at right angles, the reflected beam will never be wholly
extinguished, but will be reduced to a residuum coloured with a red
or blue tinge, according as the angle of incidence is the polarising
angle of the more or less refrangible rays. When the angle of incidence
is that of polarisation of the most luminous part of the spectrum, the
reflected light is of a purplish tint, formed by the mixture of the
remaining rays in different proportions. These effects are best marked
in highly dispersive substances.

The geometrical interpretation of Brewster’s law is that when a

Double
absorptio

Colour at
polarising
angle,
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pencil of light falls upon a transparent substance at the polarising
angle, fhe reflected and vefracted vays ave at vight angles.  For if
tan =g, {hen o {:5}“—;:
cos i sin
or

vos d=sin v and {4 r=00%,

therefore ¢ and » are complementary, or the reflected and refracted
rays are at right angles,

172. Pile of Plates.—The law of Brewster applies to light reflected
from the surface of the rarer as well as from the surface of the denser
medium, and since the refractive index in the former case is the
reciprocal of that in the latter, it follows that the angles of polarisation
in the two cases are complementary. From this it follows that when
a beam of ordinary light falls upon a parallel plate of any transparent
substance at the polarising angle, the refracted portion will meet the
second surface at the polarising angle, and if it still contains an un-
polarised part this will be wholly or partially polarised by reflection
there. Hence if several plates of glass be arranged parallel to one
another, a peneil of light incident on the first at the polarising angle
will, after refraction, meet all the suceeeding surfaces at their polarising
angles also.  So that all the light reflected from these surfaces will be
plane-polarised. Such an arrangement is termed a pile of plafes, and
is very useful as a polariser when the light is not incident in a
parallel beam as in the case of skylight, for the reflected heam is much
more intense than that obtained from a single plate.

173. Polarisation of the Refracted Light.—So far we have only
considered the modification which the reflected pencil has suffered.
However, when the refracted pencil is examined, it is found to contain
a quantity of polarised light. The relation between this polarised
light and that of the reflected heam is very intimate. It was discovered
by Arago and stated thus: “ When an wupolavised vay is partly veflected
al, and partly transmitted through, @ franspavent surface, the veflected and
tramsmitted portions confuin equal quantilies of polavised light, and their
planes of polavisation are af right angles to each ofher.”

The operation of the plate is purely selective, for the polarised
component, which is missing in the reflected light, is represented in
‘the transmitted light.

If the transmitted light be received upon a second parallel plate,
the portion of common light which it contains undergoes a further
subdivision, and so on for any number of plates. Hence, when the
number of plates is sufficiently great, the transmitted light will be com-
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pletely polarised, and consequently if a beam of light be incidert on a
pile of plates the transmitted light, after traversing a certain number
of the plates, will suffer no further diminution in intensity except
by actual absorption in the plates. For the refracted light will become
wholly polarised in a plane perpendicular to the plane of incidence,
and no portion of it will be reflected by the succeeding plates.

174. Law of Malus.—These results were established by Malus,
who also conjecturally assumed that when a pencil, polarised by reflec-
tion at one plane surface, is allowed to fall upon a second at the polar-
ising angle, fhe infensity of the twice-veflected beam varies as the square of
the cosine of the angle between the two planes of veflection. The truth of
this law was afterwards established by the experiments of Arago.

Thus if we assume with Fresnel that the direction of vibration is
perpendicular to the plane of polarisation, then if the incident light be
polarised in a plane making an angle @ with the plane of incidence,
the incident vibration, of amplitude «, may be resolved into two com-
ponents, one a cos ¢ perpendicular to the plane of incidence and the
other a sin @ parallel to it. The former is polarised in the plane of
incidence, and is reflected ; the latter is polarised at right angles to
the plane of incidence, and is transmitted. The reflected light is thus
in all cases polarised in the plane of reflection, and its intensity is
proportional to cos® . The law of Malus is thus simply accounted for
by the prineiple of resolution of vibrations.

Ordinary light, we know, is broken up by a crystal into two parts
polarised at right angles to each other, and conversely, the preceding
law of Malus enables us to regard ordinary light as consisting of two
equal plane-polarised rays polarised in planes at right angles. For
consider two such rays, and let a and 90° - a denote the angles which
their planes of polarisation make with the plane of reflection ; then if
I denotes the intensity of each of the rays, the intensities of the
reflected rays are I cos*a and I sin®a respectively, and the sum of these,

I cos*a + 1 sinfa=],

is the resultant intensity of the reflected. It is therefore constant and
independent of the position of the plane of reflection with respect to
the ray ; but this is the distinctive characteristic of ordinary unpolar-
ised light.

Hence in ordinary light the direction of vibration is supposed to
be quite irregular, but when it falls upon a doubly refracting medium
the vibrations seem to be resolved in two definite directions, constitut-
ing two equally intense rays polarised in perpendicular planes and

differently refracted by the medium.
X
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The foregoing law of Malus is equivalent to stating that if a plane-
polarised ray be reflected at a surface, it is only the component of the
vibration parallel to the surface that is reflected. The component
parallel to the plane of inecidence cuts down into the surface, as it
were, and 1s refracted.

If a pencil of light of intensity I falls upon a erystal of ecalespar,
it is divided into ordinary and extraordinary rays, each of intensity 41,
and if these fall upon a second erystal, they will be again subdivided
according to the law of Malus as indicated in the following table :—

——— = =

Incident light.  In first crystal. In second erystal. pﬂ%:?ﬂl;:t?fm Hum.
a ! 2
|
' . [O,=41cos*a 0
I {D_H LO.=%] sin*a 90 I i 1
' 5 [ E,=4lsin*a 0 :
B=31 |E.=4lcos*a 90 | 3l

175. Partially Polarised Light.—When light is incident on a
reflecting surface at an angle cither greater or less than the polarising
angle, it was observed by Malus that the reflected light possesses only
in part the properties of polarised light. Neither of the two pencils
into which it is divided by a rhomb of Iceland spar ever completely
vanishes, but each varies in intensity as the rhomb is rotated. He
consequently concluded that the reflected light consisted of two parts,
one perfectly polarised, while the residue remains in the state of
ordinary light. Partially polarised light is then, according to Malus,
a mixture of ordinary light with a part wholly polarised, and in this
hypothesis he has been followed by most subsequent philosophers,
for the light possesses all the properties of such a mixture.

If this partially polarised light be reflected from a second surface
at the same angle, the reflected pencil is found to contain an increased
quantity of polarised light, and by augmenting the number of reflec-
tions the light may be almost wholly polarised. This was first
noticed by Sir David Brewster, and he found that light may be
polarised at any incidence by a sufficient number of reflections, the
number of reflections required increasing as the angle of incidence is
more removed from the polarising angle. Hence the utility of a pile
of plates.

176. Interference of Polarised Light.—We have seen that light
suffers an important modification by transmission through doubly
refracting crystals and also by reflection, and it has also been found
that this modified or polarised light, as it has been called, obeys the
ordinary laws of reflection, refraction and dispersion. It is important
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therefore to determine if the phenomena of interference are produced
by 1t under the same cireumstances as by ordinary light. For this
purpose the refractometer of M. Billet, already deseribed (Art. 103),
will be found convenient. A beam of plane-polarised light produced
by a tourmaline T, or otherwise, falls upon a narrow slit 5 (Fig. 150).
The light diverging from the slit falls upon the segments L and L. of
a divided lens, which bring the rays to foeci A and B. At these
points thin plates of Iceland spar, or tourmaline, or other doubly
refracting erystals may be placed. If tourmalines be at A and B there
is a single polarised beam from each, and it is found that when their
prineipal planes are parallel we have interference fringes on the screen,
as in the case of ordinary light, but when one of them is rotated so
that they are crossed the fringes disappear entirely. This is what we
should have expected, for we have already learned (Art. 47) that two
rectangular vibrations differing in phase in general eompound into an
elliptic vibration.

Fig. 150,

If thin plates of Iceland spar be placed at A and B with their
principal sections parallel, and if the incident light be polarised in or
perpendicular to their principal sections, 1t will traverse the crystals
without double refraction, either as ordinary or as extraordinary rays.
The planes of polarisation of the emerging beams will be parallel and
interference fringes will be formed on the screen. If however the
incident light is polarised in any other plane, double refraction will
oceur in the plates at A and B, each giving rise to an ordinary and
to an extraordinary pencil. The two ordinary beams interfere and
produce a system of fringes. Superposed on these fringes we have
another system produced by the extraordinary beams, but no de-
structive interference occurs between the ordinary and extraordinary
parts.

If now one of the plates A and B be turned through 90° so that
they are crossed, the ordinary ray from A will be polarised parallel to
the extraordinary ray from B, and these will interfere and produce
a system of fringes, The centre of the system will however be dis-
placed towards A, for the ordinary ray travels more slowly in the
crystal than the extraordinary, as we shall see immediately. Similarly
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the extraordinary ray from A will interfere with the ordinary from B
and produce a system displaced towards B.

Fresnel and Arago, who investigated directly the interference of
polarised light, summarised their conclusions as follows.

(1) Two rays of light polarised at right angles do not interfere
destructively under the same circumstances as two rays of ordinary
light.

(2) Two rays of licht polarised in the same plane interfere like two
rays of ordinary light.

(3) Two rays polarised at right angles may be brought to the same
plane of polarisation without thereby acquiring the quality of being
able to interfere with each other.

(4) Two rays polarised at right angles, and afterwards brought to
the same plane of polarisation, interfere like ordinary light if they
originally belonged to the same beam of polarised light.

The fact that rays polarised in perpendicular planes cannot inter-
fere destruetively is in itself an indication that the direction of vibration
is transverse to the direction of propagation.

! Fresnel, (Euvres, tom. i. p. 521.




CHAPTER XI
DOUBLE REFRACTION IN UNIAXAL CRYSTALS

177. Wave Surface in Uniaxal Crystals.—Before proceeding to
the general theory of double refraction and the more complicated
phenomena arising from refraction in biaxal crystals, it will be well to
first give a general statement of the phenomena and laws of refraction
in uniaxal erystals, and it will be interesting afterwards to see how
these may be deduced as particular cases of the general theory when
we suppose the two optic axes of a biaxal erystal to coinecide.

It has been already stated that double refraction was discovered
in Iceland spar by Erasmus Bartholinus. Soon after its discovery
Huygens,! who had already unfolded the wave theory of light and
accounted for ordinary refraction and reflection, was naturally anxious
to reconcile the new properties of light discovered by Bartholinus with
the same theory, and in his desire to assimilate the two classes of
refraction he was happily led to assign the true law of celracrdinary
refraction in uniaxal crystals. He had already shown that the form of
the wave of light propagated in glass and isotropic substances was a
sphere, and as one of the rays in Iceland spar was found to obey the
ordinary laws of refraction he assumed that the corresponding wave
was also a sphere. The law which governed the other ray, though not
so simple, he imagined to be next in order of simplicity, and he
assumed the extraordinary wave to be a spheroid—that is, an ellipsoid
of revolution,

The velocity of the extraordinary ray in any direction is conse-
quently given by the following construetion :—*“ Let an ellipsoid of
revolution be deseribed round the optic axis having its centre at the
point of incidence ; and let the greater axis of the generating ellipse
be to the lesser in the ratio of the greatest to the least index of refrac-
tion : then the velocity of any ray will be represented by the radius
vector of the ellipsoid which coincides with it in direction.”

1 Huygens, Traité de la Lwimiére, chap. v.
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This law was found to apply to many erystals besides Iceland spar,
but in all of these there was only one optic axis, or one direction along
which a ray of light passed without division. The researches of
Brewster, however, made known a class of erystals having two optic
axes or two directions of no separation of the ray. Huygens's law was
then found not to be general, and in this state the problem was taken
up by Fresnel, who proposed a theory which- met not only all the
requirements of the ascertained facts of the refraction in biaxal
erystals but which even outran the existing knowledge and predicted
results of the highest consequence, afterwards verified by direct obser-
vation.

According to the construction of Huygens the wave surface or the
secondary wave in a uniaxal erystal consists of two portions or sheets,
one a sphere which gives rise to the ordinary ray, and the other a

Fiz. 151, —Negative Crystals,

Fig, 152, —Positive Crystals.

spheroid giving rise to the extraordinary ray. These two surfaces,
the sphere and spheroid, tonch at two points and the line joining
these points is the optic axis.

In the case of Iceland spar and all negafive crystals the sphere is
entirely within the spheroid, and in the case of quartz and positive
crystals the spheroid is within the sphere. Thus if the spheroid is
generated by the revolution of the ellipse

round its minor axis §, and the sphere by the revolution of the cirele
:r"_“_lr ."'_' = EII'."

round the same axis, any section of the wave surface through the

optic axis (b) is an ellipse (axes @ and ) and a concentric circle of

radins & touching it at the extremities of the axis minor (Fig. 151).
In positive crystals the wave surface is generated by the revolution
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of the ellipse round its axis major and a concentric circle of radius o
touching it at the extremities of that axis (Fig. 152).

A section of the complete wave surface by a plane perpendicular
to the optic axis consists of two circles, one of radius @ and the other
of radius b.

Huygens verified his theory by well-contrived experiments, but
much more accurate measurements were necessary to prove the extra-
ordinary wave to be truly an ellipsoid of revolution. These measure-
ments were made in 1802 by Wollaston, and afterwards by Stokes,
Mascart, and Glazebrook with the most perfeet optical instruments,
resulting in the complete verification of Huygens’s hypothesis,

178. Huygens’s Construetion.—Let us now seek the directions of
the two refracted rays in a crystal of
calespar when a plane wave falls
upon it from air. Let IA (Fig. 153)
be the direction of the light inei-
dent on the face of the crystal, and
let AB be the trace on the plane of
the paper of the incident wave front
and AA’ the trace of the face of the
crystal. The incident wave front is Fig. 15,

a plane through AB perpendicular to the paper, and the face of the
erystal a plane through AA’, also perpendicular to the plane of the
paper.

When the disturbance reaches A this point becomes the centre of
a spherical wave reflected back into the air, and also the centre of a
double wave propagated in the crystal. The plane of the paper will
cut this wave in two curves, the sphere in a cirele and the spheroid
generally in an ellipse. The diagram represents the particular case
in which the optic axis lies in the plane of the paper, and consequently
the circle and ellipse touch each other. If the disturbance from B
reaches A’ at the instant the wave in the crystal is just developed to
the extent represented in Fig. 153, then throngh a perpendicular
drawn at A’ to the plane of the paper—that is, through the line in
which the incident wave meets the surface—draw a tangent plane to
the sphere. This plane will be the ordinary wave front. It will
touch the sphere at C in the plane of the paper, and AC will be the
ordinary refracted ray. Through the same line draw a tangent plane
to the spheroid. This plane will be the front of the extraordinary
wave, for all the wave surfaces diverging from the various points of
AA’" at the same instant will touch it. If this plane touches the
spheroid at a point C’, then C” will not in general lie in the plane of
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the paper, unless the optic axis lies in (or is perpendicular to) that
plane ; AC’ will be the extraordinary ray, and in general it will not
be in the plane of incidence or obey the ordinary laws of refraction.
[f the optic axis lies in the plane of the paper—that is, the plane of
incidence, as in the diagram—the point C’ will also lie in that plane, so
that the extraordinary ray AC’ will lie in the plane of incidence and
will thus obey one of the laws of refraction.

There is one case, however, in which the extraordinary ray should
obey both laws of refraction, viz. when the optic axis is perpendicular
to the plane of incidence. In this case the section of the spheroid by
the plane of incidence is equatorial, and is therefore a circle, so that
the extraordinary ray AC’ is not only in the plane of the paper, but
the sine of the angle of incidence bears a constant ratio to the sine of
the angle of refraction. This ratio is called the extraordinary index
of refraction. If the velocity in air be denoted by unity, and the
velocities of the ordinary and extraordinary rays by b and @, the radii
of these eireles, then

#o=1fb=ordinary index,
pe=1fe=extraordinary index.

The extraordinary index of refraction is thus the least value of the
index of refraction of the extraordinary ray in negative crystals,

179. Verification of Huygens's Construetion.—The simplest and
most exact method of showing that one of the rays in Iceland spar
obeys the ordinary laws of refraction, no matter in what direction it
traverses the crystal, and consequently that its wave is spherical, is to
cut several slices in different directions from a rhomb of spar and to
cement them together and then to cut the whole into a prism, having
its edges perpendienlar to the planes of junction (Fig.
154). Examining through this prism the light from
the slit of a spectroscope, the extraordinary spectra
furnished by the different slices are observed to be
differently deviated, but there is only one ordinary
spectrum, or the ordinary spectra furnished by the
different slices all coincide—that 1is, the refractive
index of the ordinary ray is independent of the
direction in which it traverses the crystal. Its wave surface is there-
fore spherical ; and its refractive index p, is measured in the same
manner as that of any uncrystallised substance.

To verify the construction for the extraordinary wave, we examine
the following cases.

(1) Refracting face povallel to the oplic axis, and the plane of incidence
Let the face of the crystal be a plane

perpendicular to fhe awvis,
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through AA’ (Fig. 155) perpendicular to the plane of the paper (which
15 supposed to be the plane of incidence). Then in this case the optic
axis at A i1s a line through A perpendicular to the plane of the
diagram. The section of the sphere
is a circle of radius &, and the
section of the spheroid, being its
equatorial section, is a circle of
radins . The tangent planes from
a line throngh A’ perpendicular to
the plane of the paper, to the
sphere and spheroid, touch them at
C and € in the plane of incidence.
Taking the velocity of light in air
as unity, the velocity of the ordinary ray will be &, the velocity of the
extraordinary in this case will be a, and the refractive index for the
extraordinary ray is

Fig. 155.

sint 1

- Mg
2N r &

It therefore obeys both laws of refraction.

Cutting a prism of Iceland spar with its refracting edge parallel
to the optic axis, two speetra are obtained ; the light of one is
polarised in the principal plane and the other in the perpendicular
plane. By interposing a plate of tourmaline in the path of either
1t can be cut off and the other examined. The indices p, and p,
can thus be calculated for the several rays of the spectrum. The
results of experiment are in complete accordance with the foregoing
theory, and the section of the extraordinary wave perpendicular to the
optic axis is therefore a circle of radius a=1/p,.

This wave is then a surface of revolution round the optic axis.
To determine the form of the gener-
ating eurve, we shall study the refrae-
tion in a plane pas-ing through the
optic axis,

(2) OUpfee aris gi'rl'r‘.l'.r”;'-l" to the face of
the erystal and fo the plane of incidence.—
When the reiracting surface contains
the axis of the erystal and the plane of
incidence passes through that axis, the
section of the spheroid by the plane of
incidence will be an ellipse whose lesser axis (the optic axis) lies in
the surface (Fig. 156). The section of the sphere will he a cirele
touching the ellipse at the extremities of the minor axis. The

Fig. 156.
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tangent planes from A, as before, will touch the sphere and spheroid
in C and C respectively in the plane of incidence, and since A’
is on the axis minor it follows that the line CC’ will meet AA" at
right angles. For the polar of any point on the chord of contact of a
cirele and ellipse having double contact is the same with regard to
both curves. Hence CC’ must be the polar of A" with regard to both
the circle and ellipse, and is consequently perpendicular to AA". We
have therefore

tan# _DOC’_ &_ Ho

tany’ DC & g
This remarkable relation has been verified by Malus ! as follows :—Two
seales AC and BC (Fig. 157) engraved on a plate of polished steel
are inclined to each other at a small angle and divided into small

IPig, 157.—Yerification of Huygens's Wave Surfape,

equal parts. A thick plate of the erystal having its faces parallel to
the optic axis is laid on the scale and viewed through a telescope
LM mounted on a graduated vertical cirele. The scale and erystal
are supported on a horizontal eircle, and the horizontality of the
upper face of the crystal is ensured by turning the platform round and
observing that the image, by reflection from it, of a distant point is
not displaced.

Two images of each scale are seen, and if these be denoted by ac,
a’c’, be, I, there will in general be some point of be coinciding with
some point of a’c. Let this point be /. Then £ is the image of some
point 1) of the seale AC, and also of some point E of the scale BC. If
the axis of the telescope is directed to view this point, it will cut the
surface of the crystal at H and the position of H can be determined
with reference to the scales. The divisions at F and D which appear
to coincide can be read off and the distance ED determined by actual
measurement.

1 Théorie de la double réfraction” (Mémoires des Savants évangers, tom, ii. p. 303},
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If ¢ be the thickness of the crystal HP we have
ED=EP - DP=¢ (tan v’ - tan r).

But tan r is known, for the angle of incidence is equal to the inclina-
tion of HM to the vertical, and is consequently equal to the angle made
with the wvertical by the axis of the telescope, and sini=p,sinr,
therefore r is known and +* may be determined by the above formula.
If this value of +* agrees with its value as determined by the formula,

tan ' _ p,
tanr

the experiment will have proved that the section of the extraordinary
wave by a plane through the optic axis is an ellipse, and consequently,
since the wave front is a surface of revolution, it must be a spheroid
of axes @ and . The experimental results are here in exact accord-
ance with the theory.

(3) Optic axis perpendiculur lo the refracting swrface.—When the optic
axis is perpendicular to the face of the crystal it must be parallel to
the plane of incidence, and the
section of the wave surface should
be a circle of radius 4 and an ellipse
of axes ¢ and b, as in Fig. 158, If
a cirele of radins @ be described
with centre A it will touch the
ellipse at the extremities PQ) of its
axis. A tangent from A’ to this
cirele will touch it at C”, and if the tangent to the ellipse touch it at
C’ then C'C” will be perpendicular to the axis PQ of the ellipse. Con-
sequently if the angle OAC" (= AA'C") be denoted by p, we have

tanp DO _ b pu.

tany DC" a p,
But sin p=AC"/AA"=sin i/p,, hence

AT TS
@ a® sin i B, Sin
tan v'="tanp= = 2

IRk g,\-f‘l_,;ﬂ_.;iHE,' e o = = sin=

This relation, like the preceding, has been verified by Malus, and
it therefore affords additional evidence that the surface of the extra-
ordinary wave is an ellipsoid of revolution.

180. Negative and Positive Crystals.—All uniaxal crystals may
be divided into two classes. In the first class, to which Iceland spar
belongs, the wave surface consists of a spheroid with a sphere interior
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to it touching it at the extremities of the axis minor. The radius of
the sphere is consequently always less than the corresponding radius
of the spheroid, and the ordinary velocity is less than the extraon-
dinary. The ordinary index is consequently greater than the extra-
ordinary and the latter ray is less bent towards the normal than the
former. For this reason such crystals are called negative or repulsive
crystals.

In the second class, to which quartz belongs, the reverse is the
case, the spheroid is inside the sphere and the ordinary velocity is
therefore greater than the extraordinary. The index of refraction
of the extraordinary ray is consequently greater than that of the
ordinary ray. The former ray is more bent towards the normal
than the latter. These are therefore called positive or affractive
eriystals,

Since the sine of the angle of incidence at total reflection is the
reciprocal of the refractive index, it follows that the critical angle is
always less for the ordinary than for the extraordinary ray in negative
crystals, while the reverse is the case in positive crystals.

The following tables contain the values of the ordinary and
extraordinary indices for a few crystals :—

PosiTIVE CRYSTALS

By ,
| Quartz : : 1544 1°5453
| Sulphate of Potash 1-493 1°502
Dioptase 1667 1723 |
Tee 1-306 1-307
Zircon 192 to 196 107 to 241
NEGATIVE CRYRTALS
B ' s
| Ieeland Spar : . 5 ; 1°658 1°486
Tourmaline : b h 14337 to 1°644 1-619 to 1-622
Beryl . : : ; ; : 1:584 Lo 1°577 1578 to 1572
Apatite g : : - ; 1646 1°642
Nitrate of Soda . . ! £ 15854 1-3369

181. Wave Veloeity and Ray Velocity.—In the case of ordinary
refraction, such as oceurs in isotropic media, the wave diverging from
any point is a sphere, and, as shown in Art. 65, the refracted ray is
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perpendicular to the front of the refracted wave. For this reason the
direction of the ray is the same as the direction of propagation of the
wave, and the ray velocity is the same as the wave velocity.

The direction of the ray in all cases is found by joining the centre
of disturbance A (Fig. 46) to the point C, in which the secondary
wave diverging from A touches the wave envelope A'C. When the
secondary wave is spherical the ray is perpendicular to the wave
envelope, but when the secondary wave has any other shape the ray
in general will not be normal to the wave envelope, and the direction
of the ray will not be the same as the direction of propagation of the
wave. Thus in Fig. 153 A'C is the front of the ordinary wave, and
AC is the ordinary ray emanating from A. So also A'(CY is the front
of the extraordinary wave—that is, the extraordinary wave envelope,
and AC’ is the extraordinary ray from A. The extraordinary ray is
therefore in general not at right angles to the front of the extraordinary
wave.

Now as the secondary wave (that is, the sphere and spheroid)
diverges from A the point C and (" move along the lines AC and
AC" with certain definite velocities, termed the ray wvelocities ; and it
is clear that the ray velocities are proportivnal to the radii AC and
AC' respectively. At the same time the planes A'C and A'C’ (that
is, the wave fronts) move forward with certain definite velocities,
termed the wave velocities. The direction of wave propagation is normal
to the wave front, thus the ordinary wave front moves in the direction
of the normal to A'C, while the extraordinary wave moves in a direction
perpendicular to A'C’. It is clear, therefore, that the direction of
propagation and velocity of the extraordinary wave are in general not
the same as that of the extraordinary ray, for while the ray velocity is
proportional to the radius veetor AC" the wave velocity is proportional
to the perpendicular from A on A'C. The relations connecting the
wave velocities and the ray velocities may be very easily found as
follows :—

Lielation between the ovdinavy ond extroovdinary wove velocilies.—Since
the wave is propagated in the direction of the normal, it is clear
that the ordinary wave velocity is measured by AC, the perpendicular
from A on A'C, while the velocity of the extraordinary wave is
measured by the perpendicular p from A on A'C". Now since A'C’ is
" a tangent to the ellipse 22/a” + 4®l*=1, it follows that the perpen-
dicular p from A on A'C’ is given by the equation

pr=osin’ a4 Feosta,

where a is the angle which p makes with the axis minor of the ellipse

The ray.
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—that is, the angle between the wave normal and the optic axis.
From this equation we obtain at once the relation

P* - P =(0® = 1*) sin® a.

Now b 1s the velocity of the ordinary wave, and this eguation proves
that the difference of the squares of the two wave veloeities is propor-
tional to the square of the sine of the angle between the optic axis
and the direction of wave propagation, or normal to the front of the
extraordinary wave.

Relation between the ordinary and extroordinary ray velocilies.—Since
the ray velocities are measured by the radii AC and AC then if we
denote AC’ by v and the angle which it makes with the optic axis
by 6, we have at once from the equation of the ellipse

1 sin=f  cos24d
-— - ¥

42 P i

which gives at once the relation

1 s EX ki
J::_q‘#"!'_ (ﬂ?:—ﬁ._,)blll a,

Hence the difference between the squares of the reciprocals of the
ordinary and extraordinary ray velocities bears a constant ratio to the
square of the sine of the angle between the extraordinary ray and the
optic axis.

This proposition is due to Biot, and similar relations of a more
general nature will be found to hold for biaxal crystals (see Arts. 205,
206).

182, Nieol’'s Prism.—The most effective and convenient method
of procuring a strong beam of plane-polarised light is by double
vefraction. When ordinary light is transmitted through a crystal of
Ieeland spar two refracted beams arise, and these we have seen are
both plane-polarised and their planes of polarisation are at right angles.
Henee if one of the beams is intercepted by any means the other will
furnish a pencil of plane-polarised light. An attempt might be
made to stop one of the two refracted beams by placing an opaque
diaphragm on the second face of the crystal, but it may be easily
seen that this method would present difficulties, for unless the source
of light is very small or the rhomb very long the refracted beams
will overlap. _

The former condition entails a great reduction of the illumination,
and the latter requires large specimens of Iceland spar of sufficient
purity, which are costly. The difficulty might, however, be evaded
by receiving the light on a lens placed in contact with the first face of
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the crystal. After transmission through the lens and crystal the light
will- c::mvcrge to two foci—the ordinary rays to one and the extra-
ordinary to the other. One of these foci may now be covered by an
opaque diaphragm, and the rays diverging from the other received by
a second lens and reduced to parallelism if necessary. The first lens
may be plano-convex and may be cemented to the face of the ecrystal
with Canada balsam.

The most convenient method, however, is to stop one of the pencils
by total reflection inside the crystal. This is the method adopted in
Nicol's prism. A long lozenge-shaped rhomb of calespar is formed by
cleavage from a crystal, so that its length AC’ (Fig. 159) is about
three times its width AD. This rhomb is cut in two' by a plane
passing through the obtuse angles A and A’ and parallel to the longer

Fig. 15, Nieol's Prisimn. Fig. 160,

diagonal BD of the end—that is, perpendicular to the principal plane,
The cut faces are then polished and cemented together in their original
position by a thin film of Canada balsam. The refractive index of the
balsam is greater than that of the extraordinary ray in the spar and
less than that of the ordinary. Now total reflection occurs only in
passing from a more to a less refracting medinm. It follows, therefore,
that the extraordinary ray falling on the balsam will be always trans-
mitted, but if the incidence be sufficiently oblique the ordinary ray will
be totally reflected at the surface of the balsam and refused transmission
through the erystal (Fig. 160). The extraordinary ray alone is there-
fore transmitted, and the light emerging from the prism is plane-
polarised at right angles to the principal plane.

The plane of division of the erystal must be drawn so that the

! Teeland spar is rather friable, and in practice it is found easier to grind away

half of the rhomb instead of cutting it as generally deseribed. The remaining halves
of two rhombs thus ground are then cemented together.
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light ineident nearly normally on the end of the rhomb may fall upen
the Canada balsam at an angle not less than the critical angle for the
ordinary ray. This angle is easily caleulated, for the ordinary index
of the spar is about 1:65, while the index of the balsam is nearly
1'55. Hence the index of refraction of the ordinary ray from the
erystal to the balsam is 1°55/1'65 = 939, and the sine of the angle of
incidence for total reflection must have this number for its minor limit.
Hence if the angle of incidence of the ordinary ray on the balsam is
equal to or greater than 69° 30/, total reflection will oceur.

183. Foueault’s Prism.—The Canada balsam in Nicol's prism
might be replaced by any substance of less refractive index than
calespar for either ray, or both. It is clear that the less the index of
the substance between the two segments of the prism the less the
critical angle, and the less the critical angle the shorter the rhomb
required to construct a prism of given width.

For this reason Foucault dispensed with the balsam, or cement,
altogether, and in the prism which bears his name there is a film of
air between the two segments. The critical angles for the ordinary
and extraordinary rays are about 37" 14" and 42° 23". Hence if the
angle of incidence on the film of air is intermediate between the
critical angles of the ordinary and extraordinary rays, the former will
be totally reflected and the latter transmitted. Although the use of
the air film permits of a considerable shortening and consequent reduc-
tion in price of the rhomb, yet there is more loss of illumination by
reflection from the film. With Nicol's prism the index of the balsam
is 8o near that of the extraordinary ray that the last-named is trans-
mitted almost in its entirety.

184. Rochon’s Prism.—If a small pencil of light be transmitted
throngh a parallel plate of a doubly refracting substance both the
emergent pencils will be parallel to the incident beam and therefore
parallel to each other, while their interval of separation will be pro-
portional to the thickness of the plate for a given angle of incidence.
But if the faces of the plate be inclined at an angle, so as to form
a prism, the emergent beams will be inclined to each other and their
separation will increase as they recede from the prism.

Such a separation of the rays is useful i1t many investigations, and
in order to render the divergence as wide as possible the prism should
be ent with its refracting edge parallel to the optic axis, so that the
incident light may be perpendicular to that axis, for in this case the
difference of the ordinary and extraordinary indices is greatest. Such
a doubly refracting prism may be achromatised by means of a prism of
glass with its refracting edge turned in the opposite direction.
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A better arrangement however is that employed by Rochon. Two
prisms of calcspar, or quartz, of the same angle are cut so that the
refracting edge in one is parallel to
the optic axis and in the other per-
pendicular to it (Fig. 161). They are
then cemented together with their edges in
opposite directions so as to form a parallelo-
piped. Thus in a normal cross section of
the united prisms the section ABD of one Fig. 161.—Rochon's Prism,
containg the axis, its direction being perpendicular to the face AD,
while the section BCD of the other is perpendicular to the axis.

A ray incident normally on the face AD of the first prism travels
through it without division, as its direction is parallel to the optic
axis; on arriving at the interface double refraction oceurs, but the
ordinary ray proceeds undeviated. The extraordinary, however, is
deviated towards the edge or towards the base of the prism ADB
according as the erystal is positive or negative. In the first prism the
two rays travel with a common velocity, namely, that of the ordinary
ray, and in negative crystals the ordinary velocity is least, while
In positive crystals it is the greatest. If A denotes the angle of the
prism and & the deviation, then since the angle of incidence on the
interface is A, the angle of refraction is A + 8, and

sin(A+8) » «
sin A My b

or, as 4 is small, we have approximately

1+8cot A=all,
from which we find

i —

5 tan A,

8=

Again, if r be the angle of emergence from the other face of the
prism, then, since the angle of incidence there is §, we have

sin 4

- g, =g
gy T o

if we take the velocity in air as unity. Consequently d = ¢ sin 7, and
we have, by the previous equation,

sin r= (1 l)t.ru] A=(p, -p)tan A,
b«

W

which gives the angular separation () of the ordinary and extraordinary
rays, since the ordinary ray traverses the system normally without
deviation.

=
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Rochon’s prism is ordinarily construeted of quartz, so that the
deviation is in the opposite direction—that is, towards the base of the
second prism, since in quartz p, is less than p,.

185. Rochon's Double Image Mierometer.—If a Rochon's prism
be placed in an ordinary telescope (Fig. 162) between the object glass
and its prinecipal focus, two images, an ordinary and an extraordinary,
will be formed there. The distance between the images will depend
on the distance of the prism from the foecus ; accordingly, hy moving
the prism suitably, the images may be brought into contact. For this
purpose the prism is movable within the telescope, and when the
images appear in contact the distance of the prism from the focus can
be read off on a gradnated seale. By this means Arago determined
the apparent diameters of the planets with great accuracy.

Let f be the focal length OF of the object glass and & the distance

I"i;. 162 —Danble I'magze Micrometer.

between the prism and the foeus F. Then, if « be the apparent
angular diameter of the planet,

]"l:l'l':_.l" tan a=x tan &,

in which, if we know f, x, and § the deviation, we can determine a.
For a given instrument the quantities f and & will be constant, and
could be determined by direet observation on an ohject of known
diameter placed at a known distance. The quantity tan §/f being
determined may be regarded as the constant of the instrument.

Again, if an object of height /& be at a distance o, we have

= tan a,

from which we find either & or o if the other be known,

186. Wollaston's Prism.—This prism differs from that of Rochon
only in that the optic axis of the first prism ABD (Fig. 163) is parallel
to the face AB, so that it is merely Rochon’s prism turned through a
right angle. A ray inecident normally on the face AB travels along
the normal in the erystal as an ordinary ray with velocity #, and also
as an extraordinary ray with veloeity #. On reaching the interface
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the ordinary ray is refracted extraordinarily, for the principal planes of
the two prisms are at right angles, hence the angle of emergence of
the ordinary ray is, as in Rochon’s prism, given by the equation,

sinr=(p, — p) tan A.

The extraordinary ray in the first prism ABD traverses it with a
velocity v, but it traverses the second prism
as an ordinary ray with a velocity u,.
Hence, exactly as before, the angle of
emergence from the second face CD is also
given by the above equation. The two

emerging rays are therefore equally deviated
on opposite sides of the normal and their Fie 163.—Wollaston's Prisim,
angular separation is doubled. By this duplication the feeble double
refraction of quartz is rendered very sensible.

It should be remarked, however, that the deviation is different for
the different colours, and the images are coloured. In Rochon's
prism the ordinary image has suffered no deviation and is there-
fore uncoloured.



CHAPTER XII
DOUBLE REFRACTION (FRESNEL'S THEORY)

187. The Wave Surface in Crystalline Media. — In homo-
geneons isotropic substances, such as glass, the physical qualities are
the same in all directions around any point, and if any element be
displaced the forces of restitution called into play will be opposite and
parallel to the displacement. The disturbance will travel with the
same velocity in all directions, and the wave surface will be spherical.
The optical properties of such substances are also alike in all directions,
and the elementary ether waves are spherical.

It is otherwise in the case of erystalline substances. Here the
physical properties, such as hardness, elasticity, compressibility, and
conductivity for heat and electricity are different in different directions
around any point. If any element of such a medium be displaced the
forces of restitution will not in general be parallel to the displacement,
but may be inclined to it, and will not in general tend to pull the
element directly back into its original position. A disturbance will
not travel with the same velocity in all directions, and the wave sur-
face will not be spherical.

It is consequently to be expected that the optical chavacter of a
crystalline substance will also depend upon its structure, and that the
velocity of propagation of the ether waves will be different in different
directions, so that the wave diverging from any point will not be a
sphere, but a surface of some shape determined by the state of the
ether within the erystal and its relation to the molecules of the crystal.
In the ecase of a uniaxal erystal we have already seen that the wave
surface consists of two sheets, one a sphere and the other a spheroid.

Thus if we assume that the ether within a erystal possesses the
properties of a homogeneous elastic solid, the solution of the problem
of double refraction is afforded by the theory of elasticity, and as such
it has been developed by Green, MacCullagh, Neumann, and Cauchy.
This is known as the elastic solid theory, and is based on the supposi-
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tion that the ether consists of distinct particles, regarded as material
points (at least as far as Fresnel is concerned), which exert forces on
each other in the directions of the lines joining them and varying as
some function of the distance. In crystalline media the arrangement
of the ether particles is supposed to be different in different directions,
but symmetrical with respect to three rectangular planes. The ether
is thus modified in its arrangement or properties by the presence of
the ecrystalline matter. According to Fresnel the density is modified,
while aceording to Neumann and MacCullagh it is the elasticity which
undergoes modification. In all eases the ether is supposed homo-
geneous, and its axes of symmetry are parallel to those of the
crystal.

We might, however (very reasonably), assume the ether to be
isotropic everywhere, and the same in all bodies as in free space,
and then proeceed to explain reflection, refraction, dispersion, etc., as
the effects of the momentum communicated to the matter particles by
the motion of the ether. When light traverses a transparent substance
the matter particles may be set in vibration, thus absorbing some of
the energy of ether waves and impeding their progress; and further,
the amount of this may depend upon the direction of propagation in
erystalline media, but it will be the same in all directions in isotropic
" substances. Within a crystal the velocity of propagation and the
absorption of energy in any direction may also depend upon the relation
of that direction to the direction of vibration. It is on this basis of
the interaction of the ether and the matter particles that Boussinesq,
Voigt, Sellmeyer, Helmholtz, Lommel, and Thomson have built their
theories.!

188. The Wave Surface as an Envelope.— Whatever be the nature
of the assumed dynamical conditions, everything is finally reduced to
the determination of the velocity of propagation of a plane wave, and
the mode of vibration which must exist in such a wave in order that
it may be propagated with a determinate velocity. The problem
before us is therefore to determine the law according to which a plane
wave travels in any assigned direction through a crystal.  When this
is known the deduction of the form and properties of the wave surface
becomes merely a matter of geometry.

Fresnel arrived at the form of the wave surface by considering it as
the envelope of a system of plane waves. Thus if a system of plane
waves starts from any point in various directions at the same instant,
each wave travelling in the direction of its normal with a veloeity
depending on its direction of propagation, then after any given interval

1 See Glazebrook's ** Report on Optical Theories,” Brit. Assoc. Report, 1885.

[=otropic
ether.
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all these plane waves will touch the wave surface, for the surface
tonching all these planes will be the limit to which a disturbance
travelling out in all directions from this centre will have reached in
the given time. The construction for the wave surface considered as
an envelope is therefore as follows:—On the radii drawn out from a
point measure lengths proportional to the velocities of normal propaga-
tion in their divections, and at each point thus determinéd draw a
plane perpendicular to the corresponding radins. The envelope of
these planes will be the wave surface.

The principle involved in the preceding, viz. that the plane wave
moves parallel to itself, is very fundamental. For this wave preserves
not only its direction of motion but also the identity of its vibration,
and, for these to be preserved, if i3 necessary that the elostic forces called into
play by the displacement showld be parallel to the divection of the displacement.

189. Fresnel's Hypotheses.—The hypotheses on which Fresnel
founded his theory may be summarised as follows :—

(1) The vibrations of polarised light are at right angles to the
plane of polarisation. !

(2) Inall cases the elastic forces ealled into play by the propagation
of a train of plane waves (the vibrations being rectilinear and trans-
verse) bear a constant ratio to the elastie forces developed by the dis-
placement of a single molecule, the others remaining at rest.

(3) When a plane wave is propagated in any homogeneous medium,
it is only the component of the elastic force parallel to the wave front
which is effective in the propagation of the wave.

(4) The velocity of propagation of a plane wave, of permanent type,
in any homogeneous medium, is proportional to the square root of the
effective component of the elastic force developed by the vibrations.

Little can be said in support of the second hypothesis, and Fresnel
himself was conscions of its weakness. Nevertheless the close agree-
ment of experiment with the results of Fresnel’s theory must always
entitle it to favourable consideration. The fourth hypothesis is intro-
duced on account of a vague analogy between the transverse vibrations
of the ether and those of a stretched string, while the diffieulty of the
third is removed by the supposition that the ether is incompressible,
so that the velocity of propagation of the longitudinal vibrations is
infinite.  Although dynamically unsound Fresnel’s theory of double
refraction will ever possess a high historic interest, and we shall accord-
ingly detail its leading features and discuss the geometry of the wave
surface deduced from it.

190. The Ellipsoid of Elastieity.—Fresnel assumed the ether to
consist of particles mutnally attracting each other, and which, when
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disturbed from their positions of rest, vibrate under the influence of
their mutunal attraction.

Assuming the ether to be molecular, and that each molecule is in
stable equilibrium under the influence of the others, we can show that
the potential energy of displacement of a single molecule 1s a quadratic
function of the three components of the displacement parallel to any
set of mutnally rectangular axes.

Let V be the potential of the molecule at any point a, %, 2, due to
the whole system of particles. The components parallel to the axes
of reference, of the foree on the particle at this point, will be each zero,
sinee it is in equilibrium initially, and therefore we have

ﬁ:ﬂ, '-f;!;:u, "%:n (1),
Now let the particle at #, » = be displaced to a near point » + £ ¥ + 7,
# + ¢, while the others remain at rest. The potential at this point will

be V + dV, or, since & 3, { are supposed very small,

o3 S d¥ . dV | g G AR
i EE = dy " Ydz T i(E”e.*,r:"’ ek day® +§ d== " zﬂrclf-;,rr-f:

-+ r-l::c..) [2).

The components of the force on the molecule are found by differentiating
(2) with respect to &, #, ¢ respectively. Hence, remembering the
equations (1), we have

A=E da " n;.hwi-y 8 o
P ik R i (SR

N L ]
= ‘-l"rl'-y-!fil.' o ;.r"u"-’ % r.ﬂ’_urf:J- r-.'lj}l

v
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ES dede T ﬂd:dfr TiuE
or, writing

@V _,

=B,

rF\.’._C BN = BV AN
dat ! ﬂ'ﬂr:_

dz = r-n'i'fe-!'.: =Y demdm " drdy S

we have, for the forces parallel to the axes of reference,

X=Af+4 Hﬂ-':-”f‘l
Y =Hi+By+ F¢ (4)
Z=0%+Fn+Ct)

Hence if we construct the quadric
A2+ B4+ CE 4+ 2Fni + 2G{E + 2Hip =1 (5],
we have, denoting the left-hand member of this equation by 28,

o3 v ] x:n‘-‘:: (6).

I = — o o
dg " iy i
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Now £, 4, ¢ are proportional to the direction cosines a, 3, 3, of the
displacement, and if the displacement be taken as unity, & +, ¢ will he
numerically equal to o, B, ¥ respectively ; but the resultant force on
the molecule will not be in general in the same direction as the dis-
placement, for the direction cosines of the resultant force are propor-
tional to X, Y, Z, and these by (6) are proportional to the direction
cosines of the normal to the quadric (5) at the point £ #, { The
resultant force on the molecule is consequently not parallel to the
direction of displacement, viz. along the radins vector to £ y, ¢ but is
along the normal to the quadric.

There are, however, three directions at any point along which if a
molecule be displaced the resultant force will be parallel to the dis-
placement, and tend to restore the particle to its original position,
These directions are the axes of the quadrie (5), and if we take them
for axes of co-ordinates the equation of the quadrie may be written in

the form
A= 4 ﬁzﬂg +- =1 (7).

In this case the expression (4) for the components of the force on a
molecule displaced through a distance p= 4/ i will become

or Aomy S in el (8)
X=pata, Y=pi8, Z=piy J -

while the restoring force along the line «, 3, v of the displacement will be

F=Xa+ Y8+ Zy=plata® + P8 +c*v°),
or
F=" (9),
'

where » is the radins vector of the quadric (7) drawn in the diree-
tion a, f3, -

Hence if we consider only the component F as effective, the
egquation of motion of the particle will be

gip P (10},
di= =

and the time of vibration will consequently be given by the equation
T=2nr ). -

But the velocity of propagation is connected with the wave length, and
periodic time, by the equation A =T, therefore

A
o 12),
V= (12)
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or the velocity of propagation of a plane wave, in which the displacement
of the molecules is parallel to a given direction, is inversely propor-
tional to the radius vector r of the ellipsoid of elasticity drawn in that
direction.

In arriving at this result it will be seen that the assumptions used
are, that the force on any particle depends on the absolufe displacement
from the original position, and is the same as if the other particles
remained at rest, whereas in any kind of wave motion the true force
on a particle should depend on its displacement relafively to the others,
So also it is only the component force along the line of displacement
that has heen considered effective in the equation of motion (10) of the
particle, X

Cor.—1If v be the velocity of propagation of a plane wave whose
vibrations are in the direction «, 8, y, then by (12), since v o 1/r, we
may write equation (7) in the form,

v =1%a® + v.209* + vy* (13),
or
(0% = v2)a? + (2 — )+ (12 - v2)E=0 (14),
where v, v, v, are now the velocities of propagation of waves vibrating
parallel to the axes of elasticity. If p,, p,, p, be the principal refractive
indices we may write, if we take the velocity outside the crystal to be
unity,

'“l = :11 .l"‘_'- = :.1. F;-: - ;]:-; {15]1
and (13) takes the form
B (16).
(TR T T

191. Singular Directions.—The essential condition, for the pro-
pagation of a plane wave without alteration, is that the effective
component of the elastic force developed by the displacement should be
parallel to the displacement. This condition is only satisfied for two
directions in any plane, viz. the axes of the conic in which that plane
euts the preceding quadrie. |

When the elements in the front of a plane wave are displaced
parallel to a given direction in the wave front, we have seen that the
force of restitution on each element will not in general be in the
direction of the displacement, nor even in the plane, but will be normal
to the ellipsoid of elasticity—that is, perpendicular to the central
section of the ellipsoid which is conjugate to the direction of displace-
ment. Thus if AB (Fig. 164) be the section of the ellipsoid of
elasticity by the plane of the wave front, and OA the direction of
displacement of the elements in the front of the wave, OB the radius

Assump-
fioms.
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of the section conjugate to OA, and OC the radius of the ellipsoid
conjugate to the section AB, then the force of restitution will be
parallel to ON the normal to the plane BOC. Now if the projection
of ON on the plane AOB coincides
with OA, the plane of ON and OA
must be perpendicular to the plane
AOB. But ON is perpendicular to
OB, therefore OB will be perpendicular
to OA—that is, OA and OB are the
axes of the section AOB. Thus the
resultant force on any particle may
be resolved into two components, one
in the wave front and the other per-
pendicular to it. If the displacement is along either of the axes of
the elliptic section AOB, the force component in the wave front will
also be along that axis, and these axes are the only directions in the
wave front possessing this property. These two directions are termed
the singular directions in the plane of the wave.

[f the plane be parallel to either of the circular sections of the
quadrie, every direction is a singular direction, and a vibration in any

Figr. 164,

direction in this plane will be propagated without alteration and there
will consequently he no double refraction. _

Thus when a displacement occurs in any direction in the front of a
wave it is only its components parallel to the singular directions that
are propagated as permanent waves, and these are propagated with
different veloeities (except when the plane is parallel to a cireular
seetion).  Consequently the bifurcation of the ray on entering a
erystal is accounted for, as is also the polarisation of the two rays, and
the fact that their planes of polarisation are at right angles.

We have now arrived at the fundamental law of double refraction—

I one and the some direction two systems of plane waves are prapagated
norimally, having their vibrations pr;i'uffr! fo the axes rf,l'!' the section fﬂf the
ellipsoid of elasticity by a diamefral plane perpendicular o the direction, and
the velocities of normal propagations of the two systems ave inversely propor-
tional to the lengths of these azes.

We see also that there are in general two directions of propagation
along which there will be no double refraction, and these directions
are perpendicular to the cireular sections of the ellipsoid of elasticity.
They are termed the axes of single wave velocity or the opfic axes of
the erystal.  For waves propagated in these directions the velocity 1s
the same whatever be the direction of vibration. The wave fronts
will coincide, but there may be a separation of the rays (Art. 202).

. i il SR
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192. Problem.—To a variable plane drawn through the centre of
the ellipsoid

a perpendicular is drawn at the centre of the section, and portions
ON, and ON, (Fig. 164) are taken on it which, measured from the
centre, are equal to the axes of the section, to find the locus of their
extremities.

If # be the length of either axis, and /, m, n the direction cosines
of the normal to the plane, we have!

a*f*  FwE en

rPoa® rP-P -

0.

(See Salmon's Geometry of Three Dimensions, Art. 101.)

In this equation = is the length of the radius vector of the
required locus, and [, m, » are its direction cosines; the equation of
the surface is therefore

ad B LA
= —= = _,_.r#:_!_ r;“- = 0.

193. The Normal Veloeity Surface.—Around any point O con-
struct the ellipsoid of elasticity, and consider a system of plane waves
~ passing through O in all directions at the same instant. Let any one
of the planes cut the ellipsoid in the section AOB (Fig. 164) of which
the axes are OA and OB. Draw a normal at O to the plane of the
section and measure off ON, and ON, on it inversely proportional to
the axes OA and OB, then if planes be drawn through N, and N,
parallel to the plane of the section, they will represent simultaneous

VIf e/, I be the axes of any central section, I, m, n the direction cosines of the
normal to its plane, and R the intercept made on it by the surface, we have

therefore

But

Whenee the quadratic for r, either semi-axis, is

0,

G

L I e L e o YO S L R

; i i Z TE sqre sjr = ol 5T
TR T E )T eet e

which may be written in the form above, by remembering that 1=+ m?*+ n”,
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positions of the waves which will be propagated with their fronts
normal to ON,N,, the one having its vibrations parallel to OA and
the other parallel to OB, for we have already seen that the velocities
of propagation of these waves are inversely proportional to OA and
OB respectively. These planes therefore envelop the wave surface.

If the plane AOB be supposed to turn round 0O, the points N, and
N, determined as above will each trace out a sheet of a surface, and
the locus of both will therefore be a surface of two sheets, termed the
surface of wormal relacities, since any radius vector of it determines the
two normal velocities of the plane waves propagated in that direction.

The equation of this surface is easily found, for it is described as
the locus of points on the normal (at the centre) to a variable central
section of the quadric

st 4 WP 402t =1,

the distances from the centre to the points being inversely propor-
tional to the axes of the section. The locus is therefore found from
the equation of the preceding article, by changing «, b, ¢,  into
their reciprocals, and we thus obtain

a2 22 22
a5 F ==, 1 =1,
2 —-a? -

= =
===

('or. 1.—If v be the velocity of propagation in the direction /, m, n,
we have » proportional to ¢ and », y, z, proportional to I, i, n, therefore

A g Sl
C=t - =% V=G
('or. 2.—The direction cosines of the vibration being «, 8, v, we
have (Art. 190, Cor.)

(0? — v e + (° — )8 + (7 — v}y =10,

and, since the vibration is perpendicular to the wave normal, we have

also
fa + g+ ny=0.

(‘ombining these equations with that of Cor. 1 we find

194, Equation of the Wave Surface.—If v be the velocity of
wave propagation in the dirvection [/, i, n, the wave surface is the
envelope of the plane

IX4mY +nd=v (1),
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where v is related to /, m, n by the equation

F_ +.ﬂm- i 1= = 2),

L o e

and in addition we have always

Prwttnt=1 (3).
Differentiating (1), (2), (3), regarding /, w, n as variables, we obtain !

Xdi + Ydu + Zeln - dv=10,

e TR G T

T R e e (=P (- ue)p (F =77
Tl 4- anefin + nedn =0,

} il =1},

From which, by the use of indeterminate multipliers A and B, we have

X=Al! +Bif(e* -v?) (4),

Y = Am 4 Burf(e® - ,5) (5),

L=An + Baj(v* -3 16),

’j __.f'-' W= i ; ; = =
B | (‘..-a = i,..lz}'.!J'" (v* - 'I'L_.."t}":-i‘ (v= = ";;":l.‘. \ ! ks

Multiplying (4), (3), (6) by I, m, n vespectively and adding we find
v=A (8),
while the same equations, squared and added, give, with the aid of (7).
X2+ Y2+ =A%+ By,
or, writing R* = X%+ Y= + Z2 and using (8) we obtain
B=u(R?- %) (9).
Substituting these values of A and B in (4) we have

iy Ll Ay e o

I = r]- o —f 1
Therefore
Bk " X
F= RéE-v- »
Similarly
- 0
L= R."! w rg: - = ]
and
- 2t — t'i &
: _‘ 1{-= ::-.F ]

e —_— —_

1 Archibald Smith, Phil. Mag. 1838, p. 335.
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Hence by substituting these values of /, w, » in (1), we have finally

\‘-.n
&
4

+X* &5 K" RE"'R'E

- 5,2 a—nd L Rt F /X? Y2 72
RE-w2" " R2-nf = RP-vf ( :

or
‘,.I!:\:'.'i = t-._:.'il"-..-’ ; t-_'JE'.'
Pov® R-wnt R :
which is the equation of the wave surface.

195. Direetion of Vibration at any Point of the Wave Front.
—%We have seen that in each direction in the erystal two waves can in
general be propagated with different velocities, and these are plane-
1-}01;111:-:.011 in planes at right angles. The directions of the vibrations
in these waves are parallel to the axes of the elliptic section of the
elasticity ellipsoid. We shall now show that this direction is parallel
to the projection of the radius veector of the wave surface on the
tangent plane at the corresponding point. For by Cor. 2, Art. 193,
we have [, m, » related to a, B, ¥ by equations of the form

i i '

Therefore the equations (4), (5), (6) of the preceding Article become
X=Al+Bra, Y=Am-+Bgd, =~ ZL=An+Buay,

which show that the direction of vibration a, 8, ¥ lies in the plane
containing the radins vector to z, y, z, and the perpendicular I, m, n on
the corresponding tangent plane to the wave surface. But the vibra-
tion takes place in the wave front, and is therefore parallel to the line
joining w, #, # to the foot of the perpendicular on the tangent plane,
or the direction of vibration in any ray is parallel to the projection of
the ray on the corresponding tangent plane.

196. Relation of the Planes of Polarisation to the Optie Axes.
—The planes of polarisation of the two
rays which correspond to any given plane
wave front are very simply related to
the optic axes. Let ON (Fig. 165) be
the normal to the plane of the wave,
OM and OM’ the optic axes. Then
the planes of polarisation of the two
rays are the planes which pass throungh
ON, and the axes (OA and OB) of the

Fig. 165. section in which the ellipsoid of elasticity
15 cut by the plane through O to which ON 1s normal. Now the
cireular sections of the ellipsoid are perpendicular to OM and OM,
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_they will therefore meet the elliptic section ARB in radii which are
equal to each other and perpendicular to the planes MON and M'ON
respectively. That is, the radii of the section which are perpendicular
to the radii OR and OR’ are equal, OR and OR’ are therefore also
equal, and they are consequently equally inclined to the axes OA and
OB of the section, and hence the planes containing ON and these axes
will bisect the angles between the planes MON and M'ON. That is,
the planes of polarisation of the two rays bisect the angles between the
planes containing the wave normal and the optic axes.

197. Equation of the Wave Surface by Means of the Recip-
rocal Ellipsoid.— We have already deduced the wave surface as the
envelope of a variable plane. It oceurred to MacCullagh?! that the
wave surface might also be described as the locus of a point by using
the reciprocal quadric

i ar “

.ET"" =Y & 1
T T T Bl T I

as B¢

If any plane be drawn through the centre of this quadrie eutting it in
a section of axes a” and I, and if along the normal at its centre por-
tions be measured off equal to the axes «” and I respectively, the locus
of the extremities of these portions will be the wave surface. Its
equation is thus found at once to be

at Wy e

o = - ﬂ.

. | £l
el i o

Developed in terms of the co-ordinates, «, ¥, ¢, the equation becomes
The surface is consequently of the fourth degree, and consists of two
sheets. We shall suppose a= b= ¢

198. Uniaxal Crystal.—If two of the principal velocities are equal,
b = ¢ suppose, the above equation may be written in this form

(22 + 92 + 2% — D)[e®® + B3/ + 22) — &?B%] = 0.

The surface consequently breaks up into the sphere

and the spheroid

@’z + Fif 4 22 =a*lR

In this case the sphere and ellipsoid of revolution touch each other
where the axis b meets them, and this is the optic axis of the erystal.

1 MacCullagh, ““On the double refraction of light in a erystallised medinm
according to the principles of Fresunel " ( Prans. Royal Irish Academy, June 1830).
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The sphere lies entirely within the spheroid, so that the ordinary index
of refraction is greater than the extraordinary, and the crystal is
negative like leeland spar when / is less than a.

If, on the other hand, & 1s equal to «, then the radius of the
sphere is equal to @, and the spheroid lies entirely within the sphere,
the two touching where a meets them ; « is the optic axis and the
crystal is positive or attractive, the ordinary index being less than the
extraordinary:.

Finally if a = b = ¢ the wave surface reduces to the sphere

(22432 422 — a2 =0,
which represents the case of isotropic media, or erystals belonging to
the cubic system.

199. Prineipal Sections of the Wave Surface.—If in the
equation of the wave surface we make successively x=0, y=0,

i, 166G, g, 1.

z=0 we obtain the equations of the curves of section of the wave
surface by the planes of #z zx, and ay respectively. FEach of these
sections consists of two curves, namely, a circle and an ellipse having
the same centre.

(1) Thus making » =0, we find

L] i o L ] 0] AR L I
N+ =" =] -!l.l'.l'l" - R f.l‘i,"' | U,
L / .

therefore the section of the surface by the plane 3z consists of the

circle of radius «,

and the ellipse

o

s g2t — 2t

of axes b and ¢, which consequently lies entirely within the ecircle, as
shown in Fig. 166.
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(2) Now suppose #=0, and we find the section by the plane =x
to consist of the circle

and the ellipse

atp? ) oie2 — g2t

the radius of the circle being b and the axes of the ellipse being
a and ¢ it follows that the circle meets the ellipse in four points, as
represented n Fig. 167.

(3) Again making :=0, we find the circle

and the ellipse

Pt bl f-"_n'i"‘: =l

Fig. 168

Fig. 162,

The circle therefore lies entirely within the ellipse, as shown in
Fig. 168,

Fig. 169 represents a segment of the surface of the wave by the
principal planes. It intercepts segments » and ¢ on the axis of
¢ and @ on the axis of », and « and b on the axis of 2. It presents four
conical points in the plane :zx, where the cirele of radius b meets the
ellipse of axes @ and ¢. The lines OP, OP' to these points are such
that only one ray will be propagated in their direction, and they are
consequently called the axes of single ray velocity.

Models of the wave surface may be procured, and an examination
of one of them will assist the ideas of the student with reference to
the nature of the surface.

200. Construetion of Huygens.—The form of the wave surface
being known, the directions of the refracted rays are determined by
tangent planes drawn to the two sheets of the surface according to the

i
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construction of Huygens. Thus when a plane wave is incident on the
face of a biaxal erystal each point of the surface is a centre from which
elementary wave surfaces diverge ; each wavelet consists of two sheets,
and the envelope consists of two planes, one touching all the interior
sheets, the other all the exterior. To determine the directions of these
planes it is only necessary to construct one wave surface, and draw
tangent planes to both its sheets through the trace of the incident wave
on the face of the crystal, as has been already indicated in Arts. 66 and
178.  The line joining the centre of any wavelet to its point of contact
with the tangent plane gives the direction of the refracted ray.

It may happen that no real tangent plane can be drawn to one or
both of the sheets of the wave surface under the prescribed conditions,
and total reflection will then occur as in the case of isotropic media.

201, The Optic Axes or Axes of Single Wave Velocity-—Axes
of Internal Conical Refraetion.—The form of the section of the
wave surface by each of the
principal planes has been arrived
at in Art. 199. Each prinecipal
plane cuts the surface in a circle
and an ellipse having the same
centre, but in only one case, that
of the II]E'I,IIE: zx, do the cirele and
ellipse intersect. Here the radins
of the cirele is & and the axes of
the ellipse are @ and ¢. The curves
consequently intersect in four points
P, P, P, P,, and have fonr
common tangents MN, M, N, M'N',
M N (Fig. 170).

Now the planes passing through these common tangents and per-

g, 1500

pendicular to the plane of the section are tangent planes to the wave
surface. Moreover they do not, like ordinary tangent planes to a
surface, merely touch it at one point, or even at two points, M and N,
etc. The points P, P, etc., are what are termed conical points on the
surface ; they are little pits or dimples, and the tangent planes MN,
etc., cover them over and touch the surface, as Sir William Hamilton
proved, all round the perimeter of a cirele of contact.

! The points on the surface S at which the tangent plane is parallel to the axis of
y satisfy the condition :ﬁ; 0. Applying this to the wave surface we find

A 4y +2%) — B (e? + o) + ot + By £ ) =0,

The factor y =0 corresponds to points situated in the plane @z, which obviously
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The lines OM, OM’ are perpendicular to these planes, and they are
therefore such directions of the wave normal that only one wave front
exists, for the plane MN touches both sheets of the wave surface.

The directions OM and OM’ are for this reason termed the axes
of single wave velocity. For these directions there is only one wave
envelope, for other directions there are two; they are therefore the
opfie ares of the crystal.

The angle between the optic axes may be easily expressed in terms
of the principal velocities, for since OM (=1) is a perpendicular to the
tangent MN to the ellipse #2/¢* + 22/a® =1 (Art. 199), its length is
given by the equation

B = ¢® cos® o 4 a® sin® i,
where ¢ is the angle OM makes with the axis of »—that ix, half the
angle MOM’,.

Consequently

 ppr

T I hE -
sin ¢h= .\/b-—'_u COs Q= \f:,':_,:':’ tam g = '\/r-:"' i

6= =

or, in terms of the principal indices of refraction,
il e — g’ i /ﬁl. - I /.u'- oy
BN g = # / > H", COs @ = i e , tangh= .l-l_ -

Sinece tan 4::3,.-“;:.* it follows that the equations of the ﬂ]ltiﬂ axes OM
and OM’ are

f}" [~

i s A g and =0,

which shows that they are normal to the circular sections of the quadric
ae® + Py +ett = 1.

satisfy the conditions of the problem. The second factor represents an ellipsoid
which clearly possesses the same planes of cireular section as the ellipsoid of
elasticity ac* + I*y* + ¢**=1. Hence a plane wave parallel to a cireular section of
the ellipsoid of elasticity—that is, perpendicular to either optic axis—will meet the
above quadric in a circle, at every point of which it touches the wave surface. For
on eliminating »* between this quadric equation and that of the wave surface, the
result breaks up into factors

Y = SN e 2
RIE= S = GV = S0 =

which are the four tangent planes at the conical points.
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In general m, b, ¢ are functions of the wave length, and consequently
the angle between the optic axes varies with the colour of the light.

202. Internal Conical Refraction—Lloyd's Experiment.—The
direction of a refracted ray is given by the line joining the centre of
disturbance to the point of contact of the wave surface with the wave
envelope, as determined by Huygens’s construction.

Hence if O (Fig. 170) be the centre of disturbance (say a point on
the face of a erystal on which a plane wave is incident), and if MN be
the direction of the front of the refracted plane wave, it follows that
any line from O to any point of the cirele of contact of MN with the
wave surface is a possible direction for the ray in the crystal. We
should expeet then that a ray incident on the face of the erystal in
such a direction that the refracted wave in the crystal is parallel to
MN (that is, the plane wave in the crystal travels in the direction of
the optie axis) should on entering the crystal be divided not into two
rays but into a cone of rays, viz. the cone joining O to the circle of
contact. of MN with the wave surface.

This result was predicted by Sir William Hamilton, and at his
request the experiment was undertaken by Dr. Lloyd,' who found the
anticipations of the theory verified in a most remarkable manner.

A plate of aragonite was used, having its faces perpendicular to
the bisectors of the angle between the optic axes, which, in the erystal
submitted to experiment, was about 20°. One of these lines is parallel
to OM (Fig. 171), and its direction was determined beforehand by
means of the phenomena of the colours of erystalline plates. A slender
pencil of light, SO, limited by
two screens, one of which, C1),
was at some distance from the
plate, and the other, which
was a thin leaf of metal, was
pierced by a small hole and
placed on the face of the plate.
The emergent rays were re-
ceived on a screen of silver
paper, EF. The minuteness of this phenomenon and the perfect
aceuracy required in the incidence rendered it very difficult to ohserve.
The crystal was moved with extreme slowness so as to vary the direc-
tion of incidence very gradually, and when the required position was
obtained the two images on the screen EF suddenly spread out into a
continuous ring of light. No sensible enlargement of this ring could be
abserved as the distance of the screen EF from the plate was altered,

! Lloyd, Trans. Roy. Irish dead. vol. xvil. p. 145, 1833,

Wi
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showing that the emergent beam was eylindrical, and that consequently
the path of the light in the erystal was the cone OMN. The angle of
this cone was found to be 1° 50, and its magnitude as indicated by
the theory was 1° 55, so that the observed and theoretical wvalues
agreed very closely.

To measure the angle of incidence Lloyd received the pencil
reflected at O on a sereen, and marked the point K where it fell.
He then removed the plate and arranged a theodolite so that its axis
of rotation passed through O. He was then able to measure the angle
SOK, which is double the angle of incidence. The observed angle
of incidence was 15" 40', and its value as indieated by theory 157 19",
The agreement of the theory and experiment is thus exceedingly com-
plete. The diameter of the ring on the screen EF determines the
angle of the refracted cone.

The existence of conical refraction has been regarded as one of the
most striking proofs of the general correctness of Fresnel's theory of
double refraction, but Stokes® has pointed out that it is not competent
to decide between the several theories which lead to Fresnel's wave
surface as a near approximation. Internal conical refraction depends
upon the existence of a tangent plane to the wave surface which touches
it along a plane curve, and this property would be possessed by the
wave surface arising from any reasonable hypothesis. Other forms of
the wave theory, based on very different assmnptions, lead to Fresnel's
wave surface exactly. The existence of conical refraction cannot
therefore be regarded as deciding in favour of Fresnel's particular
docetrine.

Divection of Vibrafion.—It is easy to determine the direction of the
vibrations in each of the rays which constitute the cone OMN, for the
direction of vibration of any refracted ray is found by projecting the
ray on the corresponding tangent plane to the wave surface (Art. 195).
Now M is a point on the ecirele in which the
tangent plane touches the wave, and OM is
perpendicular to this plane, therefore if ON (Fig.
172) is any ray of the cone its projection on the
plane of the cirele will pass through M and con-
sequently be the chord MN of the circle. Hence
the directions of the vibrations of the different
rays of the cone are parallel to the chords of the
circle of contact drawn from M to the points

Fig. 172.
where the rays meet this circle. It follows therefore that two rays
meeting this circle at diametrically opposite points are such that their

1 Stokes, Brit. Assoc. Report, 1862,
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vibrations are at right angles : they are therefore polarised at right
angles. To verify this it is only necessary to receive the emergent
cylinder of light on a tourmaline plate or a Nicol's prism, and of the
two extremities of the same diameter of the ring one will be completely
dark and the other brightest, the illumination gradually fading round
the ring from the latter point to the former.

203. Axes of Single Ray Veloecity.—We have seen that the wave
surface presents four singular points in the plane zz.  These points P,
F, P,, P}, are common to hoth sheets of the surface, and are such that
at any one of them P an infinite number of tangent planes can be
drawn to the surface, and not merely two, as Fresnel appears to have
imagined, viz—one to the circle and one to the ellipse (Fig. 170).
This system of tangent planes forms a tangent cone to the surface at
the conical point P. Now if a ray travels in any direction in the
erystal, the velocity of the ray is measured by the radius vector of the
wave surface drawn in its direction. Consequently in any direction
we have in general two ray veloeities, since the radins veector has in
ceneral two values, one given by each sheet of the wave. But if a
ray travels in the direction OP there is only one value of the radius
vector, and consequently only one veloeity of the ray. Consequently
both rays travel in the direction OP (or OF’) with the same velocity,
and these directions are called the awes of single vay velocity. They are
generally very close to the optic axes, or axes of single wave veloeity,
but they are not on that account to be eonfounded with them.

The angle between the axes of single ray velocity may be easily
expressed in terms of a, §, e. For the co-ordinates # and = of P are
common to the cirele

24202
and to the ellipse
i et = a?e,
therefore
"'r"_ ~0"  andz=a il

..1!

= =
TR s =

Henee if the angle POz (Fig. 170) be denoted by i, we have tan ¢ =2/,
and therefore

{:U..‘-'ulr'-"—g *\./ '5_', f;mﬂr—-\fl'{'__ﬂ;, tan o =§ B =i

The right lines joining O to P and P, are consequently given by
the equations

_ge [P 4
__:I:c N and y=
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they are therefore perpendicular to the circular sections of the
reciprocal ellipsoid

] =F L

oy ) e !
....+I.'|:_ |l-_']"
a= b

Clor.—The above values of the co-ordinates of P show that it is a
singular point on the surface, for they satisfy the equations
ds_, dS S

: =0, =],

da dy dz

where 8 denotes the equation of the wave surface. There is con-
sequently at P a tangent cone to the surface.

The axes of single ray velocity are called the awes of external conical
refraction.

204. External Conical Refraetion.—The direction pursued by a
refracted ray, after emerging from the erystal, is determined by the
position of the tangent plane to the wave surface at the point where
the ray meets it. But at any one of the conical points P there is
an infinite number of tangent planes enveloping a cone, consequently
the ray which traverses the crystal in the direction OP (or OP’) may
on emergence pursue the direction determined by any one of these
tangent planes. The emergent beam should therefore be of a conical
form.

Dr. Lloyd found that this was fully verified by experiment.
Taking the plate of aragonite already mentioned, he placed on each face
of it a thin plate of metal, perforated by a very minute aperture, as
shown in Fig. 173. These plates were so adjusted that the line
connecting the two apertures coincided with the direction of the axis
of single ray velocity. A flame of a lamp was then brought near the
aperture O in such a manner that the central part of the convergent
beam should have an incidence
of 15% or 16°. When the adjust-
ment was completed a brilliant
annulus of light was seen on
looking through the aperture P’
in the second plate. Whenever
the second plate was ever so
slichtly moved, so that the line

OP connecting the apertures no
longer coinecided with the axis of Fig. 173.
single ray velocity, the phenomenon rapidly changed and the annulus
resolved itself into two separate images.

The incident light was also brought to a focus on the surface of
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the plate by means of a lens of short focal length. In this ecase the
upper plate was dispensed with and the lamp removed to a distance.
The rays of the sun were also used and the emergent light received
on a screen.  Bach ray of the incident cone of light is doubly refracted
at O, but of all the rays on a certain conical shell of the incident
cone of light one of the refracted rays will travel along OP, and
emerge as a ray of the external cone. If the aperture in the second
plate is not very small, some of the rays which do not travel exactly
along OP will be allowed through, and considerable discrepancy will
occur bhetween the results of observation and theory. However,
when the necessary correction is applied, the agreement between the
theoretical and observed magnitude of the angle of the cone was
found to be nearly complete, the observed angle being 2° 59" and the
caleulated angle 3° 0° 58"

Dr. Lloyd also determined that when external conical refraction is
exhibited the ray OP is parallel to the axis of single ray velocity.
In order to do this he observed the angle of incidence of the axis of
the convergent beam on the first face, and he found it 15° 58" when
the conical refraction occurred. He also calculated by theory the
angle at which the axis of the incident cone should meet the first
face in order that the refracted ray should be parallel to the axis of
single ray veloeity, and he found it to be! 15° 25" 8"

It was also found by experiment that “ihe angle between the planes
of polarisation of any two vays of the cone is half the angle befween the pianes
confaining the vays themselves and the azis.” This remarkable law is also
in complete accordance with the theory as in the case of internal
conical refraction (Art. 202).

205. Relation between the Veloeities of Propagation of a Plane
Wave and the Position of the Wave Normal with respeet to the
Optic Axes.—The velocities of the two waves travelling in any direc-
tion are given by the radii in that direction of the surface

I A remarkable vaviation of the phenomena took place on substituting a narrow
linewr aperture for the small cirenlar one in the plate next the lamp, the line being
so adjusted that the plane passing through it and the aperture on the second face
shonld coineide with the plane of the optic axes. In this case, according to the
hitherto received views, all the rays transmitted through the second aperture should
be refracted doubly in the plane of the optic axes so that no part of the line should
appear enlarged in breadth in looking through this aperture ; while according to
Sir Willinm Hamilton the ray which proceeds in the direction OM should be
refracted in every plane. The latter was found to be the case ; in the neighbour-
hood of each of the optic axes the luminous line was bent, on either side of the
plane of the axes, into an oval enrve. This eurve, it is easy to show, is the conchoid
of Nicomedes, whose asymptote is the line on the first surface (Lloyd, Wave Theory
af Lrght, p. 212),
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of normal velocities ; they are consequently determined by the
equation

where [, m, n are the direction cosines of . Hence

oA (124 )P+ (¢ + @) + (a® + Bl ] + ZHEP = 0,

or, denoting the roots of this equation by 2 and ™%, we have
P2 = B0 ),
and

i = TR,

Now if » makes angles ¢ and 6" with the optic axes, and, using the
notation of Art. 201, if the direction angles of the optic axes be ¢,
iz, Im — ¢, and = — ¢, 1=, 1= — ¢ respectively, we have

eos @' =1cos ¢+ nsin @,
cos " = — Joos ¢+ nsin .

Therefore
_cosf' —cosd” . : P 2013
et i (cos @ —cos@”) "\/ﬁf-'_—:'}” : {Art. 201),
_ _msﬂ'-!-m_sﬂ"'_ i ; s — 3
= T =4 (cos @' +cos 0") '\/b'-’—-s”’ i
and
m=1-F-n
Henece
M+ =a4¢" - § (cos @' — cos @"V{a® - ¢*) + 3 (cos &' + cos &) (a® - *),
="+ ¢ + (a* - ¢*) cos #' cos 8",
and

42 =a?c® + }{a® - &) (cos® & + cos® 0”) + Ma - ¢¥) cos &' cos 6",
From which we have

(r2 - rP = (" + v - 5 = (0 - 2P sin® ¢ sin 8,

or finally, since +" and +" measure the velocities, we have
' — =" = "= (a® - ) gin & sin 67,
and

e 2P =02+ &+ (6 - ) cos # cos §,

which establishes a relation between the velocities of the two plane

waves which are propagated in any direction and the angles which.
this direction makes with the optic axes.
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("or.—The normal ve.lu:}mtms of the two waves propagated in the
same direction are

o= §a® + ¢2) + Ma? - ) cos (@' - 87)
2=+ )+ Ma® - 2) cos (& + &7).

206. Relation conneeting the Ray Veloeities in a given Direction,
and the Angles made with the Axes of Single Ray Veloeity.— Writing
the equation of the wave surface in the form

HEE2E - 2SR 4 B + b =0,

and denoting its roots by ' and "% we have

=t @)=t 2 B )t (- a)
and
=2

Now if the radius vector » makes angles #" and §” with the axes of
single ray velocity, nnd if the direction angles of these lines be ¢, ix,
Yr =, and = - ¢, =, I= — ¢, respectively, then

cos @' =1 cos ¢ - sin o,

cos "= = lcos ¥+ nsin .
Therefore

cnr,ﬂ' —eos i *F —
hw.sﬁb—-——i[mau t:uﬁﬂ'*} o

and

_cos '+ cos §” - b o ﬂ.
i ishl#, _!;{ﬂ-ﬂﬁﬂ Tﬂﬂﬂm} \/

while m* is determined by the equation

mE=1-F-n"

Henee
T+}%=%¢+:ﬁ+ (r%z__) cos @' cos &7,
and
T'Er‘i 4( {Lms“ @ + cos® 6") +A( 1* ,[,4) cos ' cos 8",
Whence
-L- & rl-.&= ;3_513) sin @' sin 8",

The difference of the squares of the reciprocals of the ray velocities is
consequently proportional to the product of the sines of the angles
which the common direction of the rays makes with the axes of single
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ray velocity. Denoting the veloecities of the rays by " and +" we may
write this relation in the form
v =" 2= (e = ¢ %) 5in 8" 5in 8",
Cor. 1.—Since the velocities are inversely proportional to the
refractive indices, we have
w2 = =, ? - ) sin 8’ sin 87,
or approximately
p' = i =, — pq) sin 8" sin 8",
Cor. 2.—Since the relative retardation introduced by a plate of
thickness ¢ is e(p’ — 11”) for normal incidence, we have
6 =c(p = p')=elp; = psg) sin @ sin &,
Cor. 3.—The ray velocities are given by the equations

]

V2= ra ) e -am) cos (0 +87),
V=R ta )+ e - a ) cos (07 - 0).

BIAXAL CRYSTALS

PRINCIPAL INDICES FOR SODIUM LIGHT

! Lanst, (: } Mean (;:] Groatest (:’] Temp. | Observer,

. Aragonite ; 1°55013 168157 1°68589 .. | Rudberg.

| Borax . ; 1-4463 14682 14712 23" | Kohlrausch.
Mica : : 15609 15941 1:5997 23 < .
Nitre : : 13346 15056 15064 16" | Schrauf. |
Selenite . . 152082 152287 153048 17° | V. Lang. ;
Sulphur (prism) | 1:9505 2-0383 22405 16° | Schranf. f

| Topaz ; : 161161 181375 162109 Rudberg, |

|



CHAPTER XIII
REFLECTION AND REFRACTION OF POLARISED LIGHT

207. Fundamental Principles and Hypotheses.— The first
attempt to determine the relation between the intensities of the
incident, reflected, and refracted pencils when light falls upon the
surface of separation of transparent media was made by Young,' but
he confined his investigations to the particular case of perpendicular
incidence. The amplitude, form, and phase of the ineident vibra-
tion being given, the problem before us is to determine the
amplitudes, forms, and phases of the reflected and refracted vibrations.
Thus if the simple vibration

o =a sin (wf & a)
gives birth to the simple reflected and refracted vibrations
=bsinf{wt+p), and y.=csin(wl+7),

which differ from the incident in phase and amplitude, we require to
determine & and ¢, 8 and y in terms of the known quantities.

The simplest case will be that in which there is no change of
phase introduced by the reflection and refraction. The vibrations
may then be written in the form

y=asinwl, y=bsinwl, y.=csinwl,

and the problem is reduced to the determination of b and ¢. This
case has been treated by Fresnel, but it is of very limited application,
for in general the reflected and refracted vibrations differ in phase
from the incident and from each other.

In approaching this subject hypotheses must be made in two
departments, one with respect to the nature of the vibration, and the
other with respeet to the nature of the difference in the properties

b Art. “Chromatics,” Eacy. Brit. Supplement.
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of the ether in different media, and as to whether the change of con-
dition 1s sudden or gradual at their surface of separation.

The hypotheses adopted by Fresnel lead to formule which are in
very close agreement with the results of experiment. He founded his
theory (in 1821-23) on the following prineiples.’

(1) The Principle of the Conservation of Energy, from which it follows
that the energy of the incident wave is equal to the sum of the
energies of the reflected and refracted waves which arise from it.
Denoting the amplitudes of the corresponding vibrations by a, b, ¢
respectively, we have the energy equation (Art. 68)

pla® = B?) sin 2é = p'c® sin 2r {energy equation),

connecting the amplitudes of the incident, reflected, and refracted
vibrations.

This equation of course is deduced on the supposition that the
second medium absorbs no part of the refracted pencil. In general,
however, the second medium absorbs a portion of the refracted light,
and the corresponding energy appears as heat in the elevation of
temperature of the substance. The caleulations and formule founded
on this equation are consequently limited by this supposition, and they
therefore apply only to the case of waves which are transmitted without
absorption. It is further assumed that the transverse vibrations of
the incident light excite only transverse (or light) vibrations in the
second medium, or that the entire energy of the incident light appears
again as light in the reflected and refracted pencils. In the case of
elastic solids, however, both longitudinal and transverse vibrations are
produced by reflection and refraction, so that we have in general two
reflected and two refracted waves, one transverse and the other
longitudinal, and these are propagated with different velocities.

(2) Hypothesis of Uniform Elasticity of the Ether.—Some hypothesis
must now be made concerning the symbols p and p’ which are called
the densities of the ether in the two media. Fresnel assumes that
the velocity of propagation in any medium varies inversely as the
square root of the ether density in that medium, so that

] - .
W B sl i

Np o sinr

Now the velocity of propagation of waves in elastic matter is
measured by the square root of the elasticity divided by the density ;
this assumption is econsequently analogous to saying that the elasticity

I Fresnel, (Fuvres, tom, i. Pp- 441-799.
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of the ether, or that property of it which corresponds to the elasticity
of ordinary matter, is the same in all media. Introducing this assump-
tion into the energy equation we have Fresnel’s modified form

a*~1#  tam i

e (Fresnel's energy equation).

(3) Continuity of the Displacement.—To determine the ratios of b
and ¢ to @ we require another equation. This is obtained by suppos-
ing that the displacement remains the same in crossing the surface
of separation. Thus if planes be drawn parallel to the interface and
very near it, one in each medium, the velocities and displacements of
the elements in these planes can only differ by an infinitely small
fraction of their own value. If the ethers in the two media be treated
as two portions of different elastic substances (like jellies for example)
in contact, then at the interface they must always remain in contact—
that is, during the motion there is no slipping of one on the other
parallel to the surface, and also there should be no separation or
relative motion perpendicular to the surface. The displacement at
the common surface must be the same in the two media, and this
must inelude the longitudinal displacement, or pressural wave, as
well as the transverse vibrations which are supposed to constitute
light.

According to the elastic-solid theory the ether belonging to any
medinm always remains in that medium, never erossing the interface
or changing its density. If, however, we look upon the ether in the
two media as being continuous but differing in density, a portion of
the ether in either may eross the interface into the other, and a thin
layer of the ether at the surface might suffer rapid periodie changes of
density. However, if we admit Fresnel's assumption that there is no
change of phase in crossing the surface, this layer of variable density
must be infinitely thin compared with the length of a wave, so thin,
in fact, that the phases of the vibrations on each side of it may be
considered the same.!

Fresnel did not consider the component of the displacement per-
pendicular to the surface, he merely seeures continuity parallel to the
interface, so that there is no tangential slipping of the ether in one
medium on that in the other.

Mae¢Cullagh, on the other hand, worked on the supposition that
the vibrations in the two contiguous media are eguivalenf—that is, the
resultant of the incident and reflected vibrations is the same, both in

! SBee further (Glazehrook's “* Report on Optical Theories,” Brit. dssoe. Report,
1885, p. 186,
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magnitude and direction, as the resultant refracted vibration. This
hypothesis he termed the principle of equivalent vibrations.!

208. Light Polarised in the Plane of Incidence.—According to
the theory of Fresnel the direction of the vibration is perpendicular to
the plane of polarisation, so that for light polarised in the plane of
incidence the vibration is parallel to the surface of separation. Again,
since no change of phase is supposed to accompany the reflection and
refraction, the extreme displacements a, b, ¢, will be attained at the
same instant. Henece the complete displacement in the first medium
is their algebraic sum @ + b (where / may be inherently positive or
negative with respect to @), and by the third principle at the interface
this must be equal to ¢, the displacement in the second. Hence to
determine & and ¢ we have the equation of continuity

it = (1},
together with Fresnel's energy equation,
a*=lF=c*tanicotr (2).
Dividing (2) by (1) we obtain
aw—b=ctanicotr (3).

Combining (1) and (3) we find at once

sin (i =)
fi=—a— {, ! (reflected),
B TR S

and
e =X COSBEIIY “"ﬁ_;'ﬁ'i“ L5 (refracted).
s (e
Thus the sign of b is opposite to or the same as that of « according as
i is greater or less than r—that is, according as the second medium is
more or less refracting than the first.

It should be remarked that the relative intensities of the incident
reflected and refracted rays are not measured merely by o7, 87 ¢% hut
by the rates at which energy is propagated by the corresponding
waves (Art. 68)—that is, according to Fresnel’s theory, by

af: b P tandcotr,
or by
[N, g . al W
sin= (i —r sin 24 sin 2
ﬂ,giE_{_} -{ﬁfm L

A=t - S -
sin” (£ sI0° (1 +7)

—_— - _— —— S

! MacCullagh, ** On the Laws of Crystalline Reflection and Refraction,” T'rans.
Foy. frish Acad. vol. xviii. January 1837.
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Cor. 1.—The expression for b may be written in the form

— _GBn@E-) _ _ peosr—ocosd __ﬂp—mijuma- :
gin(i+r) LCOS T £ COsE o +eosifeos

Hence if i=r=10" we have cosi=cosr =1, and therefore at perpen-
dicular incidence
b= =g ,u_—_l'
g1
which is the expression arrived at by Young.
As i increases from 07 to 90° the value of b increases numerieally
from Young’s value to — a, for

L E e ) }*
Cos ¥ 1 - (sin®d)ju)] °
which diminishes continuously from unity to zero as i increases from
0" to 90°.
Similarly
_2acosising _ 2acosi
sin(i4r)  peosr+eosi

Therefore at perpendicular incidence

Dir

¢=#-i- 1’

consequently ¢ decreases from this value to zero as i increases from
zero to Jw. The iutensities at perpendieular incidence are propor-
tional to

e
i, “’E(#. 1) . e =
R (e +1)°

These formule have been verified photometrically by Aragoe, while
Provestaye and Desains, by means of the thermopile, have econfirmed
their accuracy for heat radiations.

209. Light Polarised Perpendicularly to the Plane of Inecidence.
—In the case of light polarised perpendicularly to the plane of ineid-
ence the vibration, according to Fresnel's theory, is in the plane of
incidence ; but the vibration must be in the wave front, it is therefore
along the direction AB (Fig. 46) and makes an angle ¢ with the sur-
face of separation. In the reflected and refracted waves it is along
A'B" and A'CY, making angles i and » respectively with the surface.
Hence the algebraic sum of the displacements in the upper medinm is
(@ + by cos i parallel to the surface, and in the lower medium ¢ cos 7,
consequently for no slipping at the surface of separation we have

(e B)eogi=ceosr.
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Combining this with the energy equation
a? —b=¢tanicotr
we have, by division,
a—b=csini/sinr.
Therefore
= _gan l:* =) (reflected),
tam (i 4 7)

and
20081 sINT

= F' : 1 X

& sin (¢ 4+ r)cos(i-7) {Blmaet)
Henece we see that if i be greater than » then ¢ and b will have oppo-
site signs; but, on the other hand, when the first medium is more
refracting than the second, « and b have the same sign. The relative
intensities are in the ratios «®:6* : ¢® tan i cot r—that is,
. ”....mn‘l-'_[qf—r}. a? ."i.iil 2 “it'.zj". :

tan® (i +r) sin® (i +r)eos? (i —1)

Cor. 1.——Writing the expression for 4 in the form

i cost  cos(i4r)
peosr+eosi cos(i-r)

obtained from the above value by merely dividing the numerator and
denominator by sin r, we see that when i =r =0 we have

b= —af= l,
g+l
the square of which measures the intensity of the light reflected
normally. This expression is the same as that which determined the
normally reflected beam when the incident light is polarised in the
plane of incidence, as it obviously should be, for in both cases when
the light is incident normally, the vibration is parallel to the surface,
and the two should be reflected according to the same law.

Similarly when i=r=0 the expression for ¢ becomes the same
in both cases, and the reflected and refracted intensities are com-
plementary.

Cor. 2.—If i + r=90", which is the general condition at the angle

of maximum polarisation, we have
=0, ande=afp.

The light is therefore all refracted, and its intensity, measured by
¢” tan i cot r, becomes at once ¢*p® (since i +r = 90°), or 4% which is the
measure of the intensity of the incident light.

Henece the amplitude of the reflected pencil decreases from Young's
2 A
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value to zero, as the angle of incidence increases from zero to the
polarising angle (tani = p). It then changes sign (or the phase changes
by =) as ¢ increases, and attains the value a at grazing ineidence.

210. Light Polarised in any Plane—Rotation of the Plane of
Polarisation by Reflection.—Let us now suppose the incident light
to be plane-polarised in a plane inclined at any angle « to the plane
of incidence. The direction of the vibration now makes an angle
90° — @ with the plane of incidence (following Fresnel), and we can
therefore resolve it into two components

acosa, and @sina,

perpendicular to, and in, the plane of incidence respectively. The
former component may be regarded as a beam of light polarised in
the plane of incidence, and it will give rise to reflected and refracted
rays determined by Art. 208, in which a is to be replaced by a cos a.
The latter component is a pencil polarised perpendicularly to the plane
of incidence, and also gives rise to reflected and refracted rays deter-
mined by Art. 209.

Hence the reflected light is the resultant of two portions, one
polarised in the plane of incidence and the other polarised perpendicu-
larly to it, the amplitudes of these portions are

— weoga oD :-f:--1 "':l, and - a sina*®® ':1 =1) {reflected)
sin (s +7) tan (1 +r)

respectively, while the refracted light consists of

C08 £ 8in : cos € sin gy
2% 008 R — and Zasina .

i refrac
sin (i +r) sin (i + 1) cos (i — 1) (refracted)

polarised in and perpendicular to the plane of incidence respectively.
If then the reflected light be plane-polarised in a plane making an
angle B with the plane of reflection, its components perpendicular to
and in this plane are bcos 8 and bsin 8 respectively, where b is the
amplitude of the reflected vibration. So also if ¢ be the amplitude of
the refracted vibration, and y the angle its plane of polarisation makes
with the plane of refraction, its components perpendicular to and in
that plane are ¢ cosy and ¢sin y respectively, consequently we have

beos 8= —acos usfn.('f ?_?'}
: :::, :E: i :::t (reflected),
bsinf= —asina :
tanii +7)
ccosy =2acosa’ : “Il f‘; }
LTI o
Frh (refracted).
¢siny=2xsing  COSESIMV J‘
sin (i +r)cos (i — )
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From these equations we can determine the positions of the planes
of polarisation of the reflected and refracted pencils, for we have at once

cos (2 +7)
tan ﬁ— tan “UE{? ”I;
and
tan = tan a sec (£ = 7).
Hence?

tan §=tan vy cos (i-+7).
So also for the amplitudes of the vibrations, we have

tan 4 - Y sin? (i - )

Jl=gnt {5in'-'a e rvonta
tan®(t+17r) sin® (¢ +)J

and
. dafcosfisin‘rf sin‘a Huﬁ"n}
e e T e ) T 7 e L L

sin®(i+») \lecos®(i-r) ;
_da*cos®isin®r

= —-ﬂrﬁ—g{f‘ = {1 +sina tan® (i - .i':l},

while the intensities of the incident, reflected, and refracted beams are
respectively proportional to

a*, B, Stanicotr

Cor. 1.—If i 4+ r=90°, we have 8 = 0—that is, if the light is incident
at the angle of maximum polarisation, the reflected light is polarised
in the plane of reflection.

Cor. 2.—From the expression for tan (3, it is clear that while ¢ +  is
less than 90°, we have cos (i + r)=cos (i - r), and therefore tan g= tan a,
while as ¢ increases (a remaining constant) B passes through zero as
i +r passes through 90°, and becomes negative when i+ increases
beyond 90°. The numerical value of tan 3 is therefore always less
than that of tan «, or the effect of the reflection is to bring the plane
of polarisation nearer to the plane of incidence, and at the angle of
maximum polarisation the two coincide.

Cor, 3.—If the first medium is more refracting than the second,
total reflection will occur when »=90°, and in this case tan 8 will be
equal to — tan a, so that « and £ are supplementary.

Cor. 4.—If the same penecil of plane-polarised light be reflected »

1 The relation connecting a, 8, and - may be stated in the form— * The vibrations
in the incident and reflected waves coincide with the projections of the refracted
vibration on those waves, or, the planes of vibration of the three waves intersect in
a line which is the direction of the refracted vibration™ (MacCullagh, Trans. Roy.
Irish Academy, vol. xviil. 1837}
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times at the same ineidence %, and in the same plane we have for the
azimuth of the peneil after the n reflections

eos" (14 )
cos™ (i —r)’

tan 8, =tana

while if the refracted beam suffers n refractions by passing through
parallel plates of the two media, we have

tan sy, =tan a see” (i —r).

For by refraction into a plate we have tan y, = tan « see (i — r), and by
the refraction out at the second surface we have tan y, = tan y, sec (i — 1),

o
tan g, = tan a sec= (i — r).

In passing through » parallel plates the ray suffers 2a refractions, and
tan y=tana sec® (i - r).

The general effect of reflection or refraction is therefore a rotation of
the plane of polarisation.

211. Elliptieally and Circularly Polarised Light.—We have seen
already (Art. 47) that two rectangular vibrations differing in amplitude
and phase compound into an elliptic vibration, and conversely we may
decompose an elliptic vibration into two rectangular vibrations of the

form
=g sinwl, aud y=>5sin(wi+a).

Consequently, if the incident light be elliptically polarised, we may
resolve it into two components, one polarised in the plane of incidence
and the other polarised perpendicularly to it, and apply the foregoing
formule to determine the nature and intensity of the reflected and
refracted rays. The general expressions for these elliptie vibrations can
be formed without difficulty, but as their discussion presents no particu-
lar interest, we shall only consider the case of cireularly polarised light.

If the incident light be cirenlarly polarised, its component vibrations
may be represented by

r=wcoswl, and y=asinef.

The components of the reflected and refracted vibrations may be
written down from the formula of Arts. 208, 209 ; thuns for the
reflected vibration we have

sin (=7
=-a. {. . :'r.us:u.t: - A cos wl,
sin (é47)
tan(z — ), . .
y=-a ( Liil]'l wi= - B sin wl,

tan (i -+ r)




T, 212 COMMON LIGHT 357

s0 that
i

B*l

or the reflected light is elliptically polarised, the axes of the ellipse
being respectively in, and perpendicular to, the plane of reflection.
If the light is incident perpendicularly, we have i=+=0 and

A=B=—afg-1)/{n+1),

so that the reflected light is circularly polarised and its intensity is

a* et ?
e |

It is to be remarked, however, that the sense of the circular vibration in
the reflected light is opposite to that in the incident light, for the » com-
ponent of the vibration is affected with the negative sign. This theoret-
ical deduction of Earnshaw has been verified experimentally by Powell.!

The character of the refracted light may be investigated in a
similar manner. It is to be observed in all cases that the y component
of the reflected vibration vanishes when i + +=290° or the reflected
light is always plane-polarised in the plane of reflection at the angle of
maximum polarisation.

212. Reflection and Refraction of Common Light.—The charac-
teristic of ordinary light is that on transmission through a doubly
refracting crystal, such as Iceland spar, it is divided into two pencils
of equal intensity. If the crystal be also doubly absorbing, the
ordinary and extraordinary rays will be of unequal intensity, and (as
in the case of tourmaline) only one of them may be transmitted. On
entering the crystal, however, the light is divided into two equal beams
vibrating in two rectangular planes, and this whatever be the orienta-
tion of the erystal. Hence if ordinary light be resolved into any two
rectangular components they will be equal, and therefore the com-
ponents of the incident beam in and at right angles to the plane of
incidence will be equal in intensity, and each half that of the
incident light. Consequently the intensity of the reflected light will
be (Arts. 208, 209)

=% I:l-nl- -:—u ran-(;— r;]

sin? (i + 1) lan*{avrj

and the intensity of the refracted light will be

=1 2[3[]] 2§ =in ..!r gin 2§ sin 2r
Sin®(i+r) ﬁm-fe.-.-a]lmh*{t

' Powell, Phil. Mag. (3), vol. xxii. pp. 92, 262.
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In the case of the reflected light the second term within the bracket
represents the light polarised perpendicularly to the plane of incidence.
If the two terms were equal, then the reflected light would be like the
common light of the incident beam. The second term, however, is
always less than the first, except under nearly grazing incidence, con-
sequently there will in general be an exeess of light polarised in the
plane of incidence—that is, the reflected light will be partially
polarised.

At the particular incidence i+ r=1s the second term vanishes
entirely, and .the reflected light is wholly polarised in the plane of
incidence.

Again the first term in the expression for the intensity of the
refracted light is less than the second, and this indicates that there is
an excess of the refracted light polarised perpendicularly to the plane
of incidence, but the whole refracted light is not completely polarised
in this plane at the polarising angle. At this incidence the reflected
light alone is completely plane-polarised, and the two beams contain
equal quantities of polarised light.

213. Total Reflection.—When the first medium is more highly re-
fracting than the second, total reflection oceurs when the angle of ineid-
ence reaches a certain ‘critical value determined by psini=1. The
corresponding value of » is 907, and if ¢ be increased beyond its critical
value a value of sin s greater than unity is required, so that the angle
r becomes imaginary, and the formule which determine the amplitudes
and intensities of the reflected and rvefracted pencils are no longer
applicable.

Experiment proves that when i exceeds its eritical value the
refracted ray ceases to exist, and the reflected ray is equal in intensity
to the incident. Theory confirms this result, for the construction of
Huygens shows that in the second medium no real wave envelope can
be drawn, and the conservation of energy then requires that the
intensity of the reflected ray should be equal to that of the incident.

Taking the case of light polarised in the plane of incidence, we
have for the amplitude of the reflected ray

sin(i=r) usinicosi—singa/1 —pisin®i
sin(i+r)  psiniecosi+sinin] — uFsin?’

by writing sin 7= psini, u being the index of refraction from the less
to the more refracting medium. Hence when ¢ increases beyond the
critical value we have p sini=1, and the expression for b becomes
imaginary. This imaginary form has been interpreted by Fresnel in
the following manner, which is undoubtedly ingenious, but which
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must be regarded rather as an interesting curiosity than as a rigorous
demonstration.

Multiplying the numerator and denominator of the expression for
b by the conjugate form of the denominator, it becomes

,u. =in? 7 cos? {4 sin® (1 —u"l-.m":}--dp:ﬂln Fcosi -\'fl p? sin? i
pEsint i cos? i — sin®i(1 — p¥sin®i)

The denominator of this expression is simply (p® — 1) sin® 4, so that on
dividing above and below by sin® i it reduces to

[ - 2ufsin®d Zucosi -7k
(ule1-gulsintd_weosi po 5\ _op_q -1
ﬁ'r-l- P —7 Nk sin®i— 14/ ] (P-Qu-1)
where
241 _9.8aini
I’=F'—4—1;t,_.zpl ST and Q:—"‘{-fu—:— »pfsin®i =1,
- [

and therefore
P2+Q2=1.

Hence if we take P=cos é we will have Q=sin §, and the expression
for b becomes
bh=eafcos § =~ -1 sind).

Hence if the equation of the incident vibration be y=a sin of, the
equation of the refected vibration will be :

y=afcosd -~ — 1 sin 3) sin wi.

Fresnel suspected that since the ocemrence of ~ — 1 in geometry indi-
cates a rotation of 90° in the position of the line whose length is
multiplied by it, so it is probable that here the imaginary quantity
+/ =1 denotes a change of 1= in the phase of the vibration to which
it is attached. Proceeding on this assumption the equation of. the
reflected vibration hecomes

¥ =ajcos dsin wl - sin dsin (wf + 907},
=a(cos dsin wf - sin d cos wl),
=a sin (wf - 8).

The interpretation, therefore, according to Fresnel is that the phase
of the reflected vibration has been altered at reflection by an amount
& given by the equation

2p cos i psini-- 1

Q
tand=- =—— T
P» 21 = 2= 5int 4

while the amplitude of the reflected vibration is equal to that of the
incident.
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In the same manner we may treat the case of light polarised at
right angles to the plane of incidence, and the corresponding quantities
P, Q, & will be found to be as follows :

P — (et + 1) sin?d.
{ (p* -+ 1) sin®{ - l'
Q' = 2 cos i 4 ul sin®i — 1
(1) (¥ 1)sinZi -1}
fin = Zpcosiau 2sin?i — 1

(2 41) = (b + 1) sin® i’

When the light is polarised in any azimuth, we may resolve it into
two components, one polarised in the plane of incidence and the other
polarised perpendicularly to it, and when total reflection oceurs the
former will suffer a change of phase é and the latter a change &, deter-
mined as above. The difference 8 - &' is all that concerns us experi-
mentally, and we have

Lﬂ-'-'-.]]lhlll'i - ‘},u sint{
(2= 'ln:nn-: = |

cos (d-4")= 3
the reflected beam should therefore be elliptically polarised, the phase
difference of the two components being & — &',

Cor. 1.—If & — & = 0—that is, if the change of phase produced by
the reflection is the same for the component in the plane of ineidence as
for that perpendicular to it, the reflected ray will be plane-polarised.
In this case cos (6 - &’)=1, and we have, therefore,

1 - (g4 1) sin® i+ 2u® sind § = (W + 1) sin?i - 1,

or
pErsindd - (P4 1) sin®f +1=0.
Henece
sini— PN ERE-1)
9
=1 or 1/p®

The first value of sin ¢ corresponds to grazing incidence, and the second
to the limiting incidence for total reflection. At the two limits of total
reflection, therefore, the reflected light is totally plane-polarised.

Cor. 2.—The difference of phase 4 — & passes through a maximum
value at an angle of incidence determined by the equation

(3% 1) sins =10
and the corresponding maximum is given by

] 3'-{' T]E":I-—'—].E
ong [E_“__FEE%}"’ ) __.u{ {:‘-”2 8
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Cor. 3.—If cos (8 — 8') =0, the axes of the reflected elliptic vibration
are in, and perpendicular to, the plane of incidence, and the correspond-
ing incidence is given by

Zufsintd - (u 4 1)sin?i41=0.

If at this incidence the plane of polarisation of the incident light
makes an angle of 45" with the plane of incidence, the reflected light
should be cireularly polarised. This affords an experimental means of
verifying the foregoing theoretical results, but in order that the values
of i, determined by the foregoing quadratie, should be real, it is neces-
sary to have

consequently, a substance of refractive index nearly equal to 3 would
he required.

The required difference of phase may however be produced by two
or more total reflections from a substance such as glass with a smaller
index of refraction. Thus it the azimuth of the plane of polarisation
of the incident light be 457, and if a diference of phase of 45 be intro-
duced at each reflection, the light twice reflected will be cirenlarly
polarised, or if a difference of phase of = '2r be produced at each reflec-
tion, the light n times totally reflected will be civeularly polarised. In
the first case the angle of incidence is determined by the equation

cos (6 =46 /5 2,
01

dpmsin e = (24 J2) (=4 1) sin"i+ 24+ 2=0.

This gives real values of i for glass and media whose index of refraction
lies between 1-4 and 1-6.

We may at once write down the correspond-
ing formule for three, or four, total reflections
—that is, for 8 - &' ==#/6, =/8, ete.

214. Fresnel's Rhomb.—In verification of
the foregoing conclusions Fresnel constructed a
parallelopiped of glass such that a ray of light
AB (Fig. 174) falling normally on the end suffers
total reflection internally at B, where it falls
upon the face at an incidence of 557, and again
at C, and then emerges normally at the other
end of the rhomb. At B a difference of phase Fig. 174.
of 45° is introduced—that is, 1A retardation—and the same difference
is again produced at C, so that in all 90° difference of phase is intro-
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duced, or a retardation of JA, and thus if the incident light be
polarised at an angle of 45° to the plane of incidence ABC, its
components in and perpendicular to the plane of incidence will be
equal, and the emergent light is found to be eirenlarly polarised.

Conversely, if the incident light be circularly polarised, the rhomb
introduces a further difference of phase of 90°, so that the emergent
light is plane-polarised. Hence, generally, if a ray of light originally
plane-polarised in an azimuth of 45° to the plane of incidence be passed
through any number (#) of Fresnel’s rhombs, the emergent light will
be cireularly or plane-polarised according as » is odd or even. With
such rhombs we may therefore test between ordinary light and ecir-
cularly polarised light. _

iy means of this rhomb we may also convert elliptically polarised
light into plane-polarised light. For if the axes of the elliptic vibra-
tion be in and perpendicular to the plane of incidence ABC, the two
internal reflections will introduce a further difference of phase of 90°
between its components, and the emergent light should be plane-
polarised. This light will then be extinguished by a Nicol’s prism, and
we can therefore test between elliptically polarised light and partially
polarised light.

Fresnel's rhomb consequently possesses all the properties of a
quarter-wave plate (Art. 227), and is preferable to it in working with
white light, since the difference of the velocities of the different colours
in glass is inconsiderable. However, the emergent beam of light
changes its direction when the rhomb is rotated, so that there is trouble
in following it with the other parts of the apparatus. It is best there-
fore to nse a quarter-wave plate in working with monochromatic light.

215. Newton's Rings—Polarisation of the Light.—In calcu-
lating the effects produced by the reflection of light from very thin
plates of transparent material (Art. 113) we supposed the amplitudes
of the incident, reflected, and refracted vibrations to be @, ab, we
respectively.  We now know what the quantities b and ¢ are in the
case of polarised light. Thus for light polarised in the plane of
incidence, taking ¢« =1, we have

a _*;_|_n{'.= ~7) c_‘.-':nusi:-:in r
sin (i +7) gin (i+7v)
and for light polarised in the perpendicular plane

tan(éi—#) , Q2eosisiny

A ) =t R RAILE Sl
: tan (i + 1)’ “ “sin {(i+r)cos(i—7)

Substituting this value of b (or ¥) in the expression of Art. 113, we
obtain the intensity of the reflected light.
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It iz remarkable that when i +7=90", we have ' =0, and con-
sequently the reflected rings should disappear completely, and the
transmitted light should be equal to the incident, when the light is
polarised perpendicularly to the plane of incidence and incident at the
polarising angle. _

Again ¥, after vanishing at the polarising angle, changes sign as
the inecidence increases beyond that angle. Consequently if the rings
begin from a dark centre with i+ =907, they should begin from a
white centre with ¢ + v=90°. These results are verified by experiment.
The rings produeced by polarised light beginning from a dark centre
vanish when the angle of incidence reaches the polarising angle, and
reappear again encircling a white centre when the angle of incidence.
exceeds the polarising angle, if the incident light be polarised perpen-
dicularly to the plane of incidence.

If the incident light is polarised in any azimuth o, we may, as
before, resolve it into two components, one polarised in the plane of
incidence and the other perpendicular to it. As these components on
reflection are at right angles and do not differ in phase, the intensity
of the reflected light is merely the sum of their intensities, or (Art. 113)

- 4a=l* sin® %E

LAY A2 ® sin® L
I=cos*a - 45N @ =

(1 - B*F + 4% sin®}a (1 -0+ 4b™ sin" 45’

with a similar expression for the transmitted rings, where & and " are
to be replaced by their values given above. Maxima and minima
oceur therefore+in the case of light polarised in any plane, as in the
case of light polarised in or perpendicular to the plane of incidence.
The minima of the reflected rings ave still zero, and the maxima equal to

4 costa  dasina
(A+8E 7 (1+0°F °

For the transmitted rings the maxima are equal to o% that is the same
as the incident light, and the minima are equal to

L1 -BRcosta | 1 -B2Psinta

&+ . aEimy !

while there is no incidence for which the rings are black.

In Art. 113 the reflected vibration has been written in the form
X sin wf + Y cos of, and its phase retardation iz therefore determined
by the ratio of the coefficients of coswf and sinel. Denoting this
phase retardation by & we have in the case of light polarised in the

plane of incidence

X £ L
tﬂ.-“ 3; '::l,'___ l b_,f:l.‘-t kﬂ: = & oot éﬁ -
= b i COST | COS%

X~ T+ g
COSE  peDs T
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and for light polarised at right angles to the plane of incidence

1

1t

;"2 .
b2 o yse . Zeotds
"= cosi  cosw
et

COST | meEost

tan &' = —

If the incident light be polarised in any azimuth «, the difference
of phase of the components reflected in, and perpendicular to, the plane
of incidence respectively will be given by

Fina(ﬂ_l_)(nnm_-_ms_a)
L L s 3
el =g e e L

4 cos® L4 + I:(FJ!-:-“)I-E- (::jz— :h:;isj)j sin® 44
The reflected light will therefore in general be elliptically polarised.
The difference of phase will be zero when 8 = ax, where n is any whole
number, even or odd, that is, for the central lines of the dark rings and
the bright rings respectively. At these parts of the rings the light
will consequently be plane-polarised.

In the interval between two dark rings therefore the difference of
phase rises from zero to a maximum and then falls again to zero at the
middle of the interval. It then changes sign and passes through
similar variations in the second half of the interval. Thus in the first
quarter it rises from zero to a maximum, and in the second it falls
again to zero, In the third quarter it changes from zero to a negative
maximum, and in the remaining quarter it falls again to zero.

The maximum value of &' — 48, is less than 90° and hence the
reflected light cannot ever be cireularly polarised, for the denominator
of tan (&, — 8,) can never be zero.

Denoting as before the amplitudes of the reflected components,
polarised in and perpendicular to the plane of incidence, by & and ¥,
we have for the ratio of the intensities of the reflected components !

U ootea i 0 )+ 4% sin® 15
I (T PP+ e st 40

For sin 1d=0 we have dark rings under all incidences, and for
sin 1d=1 we have bright rings polarised in an azimuth «,, where

b(1+2)
b1+ 62

Tan iy = Tana

and if the principal section of the analyser be placed in this direction
they disappear in the extraordinary image, and occupy the place of
the dark transmitted rings.

! These formule and those for the transmitted system are deduced from the
formule of Arte, 113 and 114,
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The transmitted rings are complementary. The azimuth of the
transmitted light is given by
B2 p (1 = 82+ 4% sin® §d

5 (1 —
'l'.--ﬂ.]H = m“.ﬂ {. : =k b ol A 1
L ﬁ{]— B2 (1 = B72) -+ 4D sin® 44 |

For the dark transmitted rings sin Jé=1, and

peosT  cosi
(1 —§2)(1420°) COST M COS T
5 = ane———: . ;
(1-0)(1+7) " “meosi | cosr
COS8#  ui0si

tan e, =tana

while for the bright transmitted rings sin 16 =10, and

(1-35(1-¥F)

tan m_:;tq"l'll-b'.“ 1= tan e,

or the plane of polarisation is not changed. In observing the rings
through an analyser successively placed in the azimuths « and a,, two
systems of rings are seen which correspond to those ordinarily seen
by reflection and transmission.

216. Theory of Neumann and MacCullagh.—The principle of
the continuity of the ether adopted by Fresnel demands that the dis-
placements parallel to the surface of separation should be the same in
both media. But it also requires the displacements perpendicular to
the surface to be the same, consequently if we have the equation

(@ +b)cosi=ccosr (no slipping),
we should also have
(e —b)sini=esinr (no separation),
Hence by multiplication we obtain
(a® - %) sinicos i =c*sin rcos r (1).
But by the conservation of energy we have
pla® = b*) sin £ cos £ = p'c* sin r cos & (2),

and therefore the equation derived from the principle of continuity
will be in accordance with that derived from the conservation of
energy if

p=p.
Hence Fresnel's assumption that the density of the ether is different

in different media is inconsistent with the continuity of the ether
at right angles to the surface.
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Adopting the above equations, Nenmann and MacCullagh postulate
that the density of the ether is the same in all media, but that its
elasticity is different. On solution they find expressions for the
amplitude of the reflected rays which differ from those arrived at by
Fresnel only in that the expression for light vibrating in the plane of
incidence is that which Fresnel arrived at for light vibrating perpen-
dicularly to the plane of incidence, so that according to their theory
the direction of the vibration lies in the plane of polarisation and not
perpendicular to it as in the theory of Fresnel.

Thus for light vibrating in the plane of incidence, we have

(o 4-D)cosi=ccosr,
g (@ —b)sini=¢sinr.
Therefore
sin (i —-7)

B eflects
* ﬂ.ﬁi:“ {‘i.'i'i"':l |:]l Hl[.tl d}j
and
o sin 2§ .
o Sii'l {{' f- ;-J {i’elrdbt-ibd:l.

While for light vibrating at right angles to the plane of incidence we
have
a+b=g¢,
and
(a® = b®) sin 2i=c"sin 2r.
Therefore
tan (i — =)
eflected
tan (i+7) {EAenteE,
s 24 :
= e — refracted).
sin (2 ryeos (£ —r) {r : i
The expressions for the refracted rays have been interchanged like
those for the reflected, but they have also been altered in the ratio
sin r : sin 4.
As in Fresnel’s theory, we have for the azimuths of the planes of
polarisation of the reflected and refracted rays (Art. 210)

: s (E+ 1
Lan = — AT e et ],

cos (£ — 1)
and

tan y=tana sec (i —r).

Similarly both theories give the same expression for the amplitude of
a ray refracted through a parallel plate, so that experiments on the
intensity of the light reflected from, or refracted through, a plate will
not decide between them.
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217. Minimum Reflecting Power of Transparent Bodies.— Mac-
Cullagh!® noticed an analogy between the results obtained for metallic
reflectors and those of highly refracting transparent bodies. If we
take the intensity of the incident natural light to be unity, that of
the reflected, according to either theory, will be proportional to

sin®(i-r) tan®(i-r)
sin®(i-+7) tan®(i+r)
Equating the first derived of this expression to zero, and remembering
that sin i=psinr, and therefore
dr  cosi
di  peost’
we obtain finally
emerlar A P Sl cm{i:l_-'r]l}
8in £ (810° ¢ — sin r:lll =) =0.
The first and second factors vanish for i=0, and consequently the
normal incidence corresponds to either a maximum or a minimum.
The third factor vanishes if

cos® (i - r)=cos (i + 1),

and this will give a value of i corresponding to a minimum if the
third factor is negative for very small values of ¢ for then the first
derived will be negative, and the intensity of the reflected light will
diminish as the incidence increases from zero to some value i In
order that the third factor should be negative for small values of i we
must have
cos® (i = r)=cos (i +7),

or

1-3(i-rP<1-3(i+r)
if ¢ and r are supposed very small. Hence

(i+rP<3(i-r)
or
(417 <3(n-1),
since i=pr. Therefore
W —dp+1=0.

The roots of the equation p? - 4p+ 1=0are 2 + /3 and 2 — +/3, of
which the latter may be discarded (being less than unity). Hence
any value of u greater than 2 + +/3 will satisfy the above conditions,
and the inecidence corresponding to the minimum will he given by

cos® (i — v) =cos (i+r).

1 Prans. Royal Irish Academy, vol, xxviil. pt. i



CHAPTER XIV
METALLIC REFLECTION OF POLARISED LIGHT

218. Partial Polarisation by Refleetion in General.—Malus, who
discovered the polarisation of light by reflection from glass, observed
that natural light is never completely polarised by reflection from
a metallic surface. The laws deduced from the theory of Fresnel
are therefore not applicable to metals or highly refracting substances.
M. Jamin, who investigated the question, found that only a few sub-
stances completely polarised light by reflection, that the angle of
incidence at which this oceurred was tan !(g), and for these sub-
stances p=1'46. For all other substances there is an angle of
st niin polarisation determined by the equation

tan i =u,

instead of an angle of fofal polarisation, and this angle is termed the
?r-r.l.l'-r.r.;'r'.-ci':nlrf ::.-a.gf.r.

Malus was of opinion that common light is never polarised by
reflection from metals, but in 1813 Brewster corrected this error, and
showed that the reflected light was partially polarised, the amount of
polarisation depending on the incidence and passing through a maxi-
mum at a certain angle. 3

Biot verified the observations of Brewster, and remarked that if
light is partially polarised by one reflection at a metallic surface, it
onght to be completely polarised by a sufficient number of reflections
taking place at the same angle of incidence. In 1830 Brewster®
found that when plane-polarised light is reflected from a metallic
surface it remains plane-polarised if the inecident ray is polarised in or
perpendicular to the plane of incidence, but in any other case the
light is partially *depolarised ” by the reflection.

219, Change of Phase and Elliptic Polarisation by Metallic
Reflection,—When the incident light is polarised in any azimuth a, it

! Brewster, Phil. Trans, 1830, p. 287.
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may be replaced by two components, one parallel to and the other at
richt angles to the plane of incidence. Now these components may
become altered in two respects by reflection. In the first place, their
amplitudes may be changed, and secondly, their phases may be altered.
The change of amplitude alone merely alters the plane of polarisation
or rotates it through a certain angle, the reflected light remaining
plane-polarised ; hence if the reflected light is not plane-polarised,
the phases of the component vibrations must have been changed by
the reflection, and changed by different amounts. If this view be
correct the depolarisation observed by Brewster is none other than
elliptic polarisation arising from the change of phase introduced by
reflection between the components parallel and perpendicular to
the plane of incidence, and that this is so 1s supported by many
experiments,

Thus when plane-polarised light suffers reflection at a metallie
surface it experiences in general a change of phase by the reflection,
but the change is less for light polarised at right angles to, than
for light polarised in, the plane of incidence. Consequently if the
incident light be polarised in or at right angles to the plane of
incidence, the reflected light will remain plane-polarised in the same
plane ; but if it be polarised in any other plane the reflected com-
ponents in and perpendicular to the plane of reflection will differ in
phase, and the reflected light will in general be elliptically polarised.
This difference of phase increases from zero at normal to = at grazing
incidence.

In the case of light polarised in the plane of incidence the reflected
light increases in intensity from normal to grazing incidence when it
is all reflected ; but when the incident light is polarised at right
angles to the plane of incidence the reflected ray diminishes in
intensity from normal incidence to a certain angle at which it becomes
a minimum, it then increases again to grazing incidence. This mini-
mum is little marked for silver, but is very decided in the case of steel
and certain metallic oxides.

Thus when natural light is reflected from a metallic surface, we
may suppose it replaced by two equal components, one in and the
other perpendicular to the plane of incidence. These components
will be reflected in different amounts, and the reflected beam will be
partially polarised. The excess of one of these components over the
other is greatest at the polarising angle.

220. M. Jamin’s Experiments.—A method of observation, sus-
ceptible of great accuracy, bas been employed by M. Jamin! to
v Annales de Chimie ef de Physigue, third series, tom. xix, p. 296,

- 2B
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measure the intensity of the light rveflected from metals. The
principle of his method is the comparison of the light reflected from
the metal with that reflected from glass. He employed a plane
mirror, one half of which was metal and the other half glass. Light
polarised by a Nicol’s prisin fell npon this mirror, and the reflected
light was examined by a doubly refracting analyser. Two images are
formed by the analyser, each of which consists of two parts, one
formed by reflection from the glass, the other from the metal. The
latter half is generally coloured, so that it is easily distinguished.

If the ineident light be polarised in the plane of incidence, and
if the principal plane of the analyser make an angle « with the
plane of incidence, the intensities of the ordinary and extraordinary
images will be measured by

Oirdinary. Extraordinary.
Glass : : E i cos®a, B sin® a,
Metal ; : ; Wit cost a, i 5in® g,
accordi Fresnel's formule, is equal S =1) snd
where b, according to Fresnel's formulee, is equal to - G and
b =7

is a coefficient for the metal.
To determine m we might seek the case when the two halves of

the images are of equal intensity, and we would then have
mE=h= a'-'i:-!'-".:-l-:*. - r}

gin= £+ r)

But as this incidence does not exist, and since the ordinary image of

one part of the mirror and the extraordinary of the other vary from

zero to a maximum in inverse senses, there will always be two values

of a, which make the ordinary image of one half equal to the extra-

ordinary of the other, and we will have

m® eos® e, = sina,, or m®sin®a,= 0 cos® a,,

from which we obtain

m® = b* tan® a, = b* cot® a,,

the angles o, and a, are therefore complementary. In practice both
a, and a, are determined, and one observation corrects the other.
The colouring in the image of the metal renders it difficult to say
when the intensities of two images compared are equal, and besides
this the images are not very close to each other.

For light polarised at right angles to the plane of incidence we

have similarly
m'* =52 tan%a’, = b= cot®a’;,
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where
_ atan(i-7)
T tan®(i+ )"

b2

To caleulate m it is necessary to know the index of refraction of the
glass. This M. Jamin determined by the rotation of the plane of
polarisation caused by reflection. If the azimuth of the incident
light be a, and that of the reflected S, we have

eos (L4 7r)

I.-ﬂ.-l'l ﬁ = til.]l Em o

Consequently if « = 45° we have

_cos(i+sr) 1-tanztanr

o ﬁ_ﬁﬁ_:; (i-7v) 1+ tani tanr’
or
tanitan» :} ;::::'gztml (45° - 8),
or

tan r=tan (45° - 8) cot i.

This equation determines the angle », and the refractive index is
found from the equation sin i = p sin r.

According to Jamin's experiments the difference of phase is small
from normal incidence to an angle a little less than the polarising
angle ; it then inereases rapidly, reaches 90° at the polarising angle,
and becomes very nearly equal to = at an angle a little greater than
the polarising angle. The change of phase therefore does not occur
suddenly at the polarising angle, but takes place continuously and
rapidly in the neighbourhood of this angle. According to Fresnel’s
theory we should say that the difference of phase between the two
reflected components is zero up to the angle of maximum polarisation,
that there it suddenly changes to =, and remains so up to grazing
incidence.

A verification of the elliptic polarisation of light by metallic
reflection was observed by Brewster. He found that if a ray of
plane-polarised ligcht be reflected twice at the same angle, but in
perpendicular planes, from two similar metallic surfaces, the ray will
be again plane-polarised after the two reflections. De Sénarmont
interpreted this experiment mathematically as follows . —

Let the reflection change the component parallel to the plane of
incidence by altering its amplitude in the ratio m: 1 and its phase
by & and let the corresponding quantities for the other component
be m’ and 8. Then the incident and reflected vibrations in Brewster’s
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experiment, in and perpendicular to the plane of incidence respectively,
are

Incident. Onee reflected. Twice reflectad.
ex 51w, it sin (ool - &), it sin (wt + 8 + 6'),
o’ sl el =in (ol = 87), o man’ sin (wf -+ &+ §').

Henee the phases of the twice reflected components are the same, and
the ratio of their amplitudes is the same as originally. The reflected
beam is therefore plane-polarised in the primitive plane.

221. Multiple Refleetions.—In the case of light reflected many
times in the same plane at the same incidence, if the reflected light is
plane-polarised the relative difference of phase introduced by reflection
may be made some multiple of =. If the incident light be polarised
in azimuth «, its components parallel and perpendicular to the plane
of incidence are acosa and @sina, consequently if each refleetion
changes the amplitude of one vibration in the ratio m:1 and the
other in the ratio m’ : 1, we have

Ineident Tight. Reflected w Lines.
@ Cos @ sin wl, {1z cos a) " sin (wf + nd),
i Sl i wl, {esina)m™ sin (wl + nd").

But if the light after  reflections be plane-polarised in azimuth 8, we
have nd = nd + xm, where « is a whole number, and

f b % 11
tan ﬁ—f; = (::) tana.

e % (t.-l.n,&) L,

e tana

Therefore

also if R denote the reflecting power of the surface, which may be
measured photometrically for the angle of incidence used above, we
have !

R*= k(m=+ "),
and we have thus two equations to determine m and ',

M. Jamin employed the method of multiple reflection to determine
the change of phase produced by a single reflection at a metallic
surface for any angle of incidence. Two parallel plates of metal were
placed at the centre of a eirvele (Fig. 175), one of them fixed and the
other movable by a micrometer screw so that the distance between
the plates could be altered at pleasure.

The reflecting plates were initially placed at such a distance apart
that the light suffered only two reflections, and the incidence was then
arranged, by so turning the support on which they were placed, that

[' The square of the reilecting power for plane-polarised light is m®cos®a +

m' sin a + 2’ sinacose cos (§ - &),  For ordinary light we may neglect the last
term and take the mean values of cos®*a and sin®a.  Thus RE=3{m®+m'2). ]
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the reflected light was plane-polarised. At this incidence a difference
of phase of 90° is produced at each reflection. The plates were then
brought nearer (Fig. 176) so that the light was reflected 4, 6, 8
times, and by turning the support gradually incidences were found for
which the reflected light was plane-polarised.

The phase difference introduced at any incidence is easily caleulated,
for if the light suffers » reflections and if & be the change of phase at
each reflection, then #d i1s equal to some multiple of = when the
emergent beam is plane-polarised. Thus if with # reflections the light
is plane-polarised at angles of incidence i), i, i, ete., successively

increasing from the normal, the change of phase for ¢, is 8,=", for i,

iy

9 o
we have 8,==", while 3,="", ete.

The equation tani= pu, which determines, according to the law of
Brewster, the angle of maximum polarisation, indicates that this angle
is different for the different colours, inereasing with p—that is, from

Fig. 17H. Fig. 176,

the red to the violet. M. Jamin has found, however, that the reverse
is the case in metallic reflection, the angles of maximum polarisation
decreasing from the red to the violet. If therefore the above equation
applies to metals, we must admit that for these substances the index
of refraction diminishes from the red to the violet—that is, they exhibit
anomalous dispersion.

222. MacCullagh’s Theory.—The following investigation of the
intensity, and change of phase, of the light reflected from metallic
surfaces may be regarded as an exercise on the formule derived by
Fresnel for the reflection and refraction of polarised light. Depending,
like Fresnel's doctrine of total reflection, on a hypothetical interpreta-
tion of an imaginary formula, it has no pretension to any physical
basis, but may be interesting to any one who is curious to pursue the
subject further.

In the case of metallic reflection, like that of total reflection at the
surface of a transparent substance, there is no refracted wave, or at least
the effect of the refracted wave is zero at a very small distance from
the surface.! 3

According to Fresnel in the case of total reflection a vibratory motion exists
in the second medinm very near the surface { (Euvres -!'_:",-m.i}}.?{;fn'_:t, 1. Prp- 447, TET).

Metallic
index,
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In the case of total reflection we have seen that the amplitude of
the reflected wave assumes the form

P+Qn=1,

and Fresnel’s interpretation of this is that a change of phase ocecurs,
measured by tan é=Q/P.

MacCullagh,! pursuing the same track, assumes that the sine
of the angle of refraction in the case of metallic reflection is of the
imaginary form

. sing — .
LN (cosy+ & =1 s1in y),

the quantities m and y being indeterminate. For transparent media
i=pand x =0,

Since sin®r + cos®r=1 it follows that cos+ is also imaginary, and
of the form

o0E T e 1 CEg)
cost=—r(cos x + & —1lsiny).

Now for light polarised in the plane of incidence the theory of Fresnel
gives
sinr cosr
sin i =) =in{ cosi
q’J——ﬂ._ - =i o
gin (g4 7) siny  €osv
sid  COs

substituting for sin i/sin i and cos r/cos ¢ from the foregoing expressions
the formula for & becomes

b ”{ ' cos x — meeos x') + (' sin y —m 3i11__)¢'_}_\_.f -1
(a0 cos x -+ eos x’) 4 (w0 sinx +msiny)n =1

or multiplying by the conjugate form of the denominator we find

s mm'ﬂ — mZ+ 2o’ sin (x = x )N = 1
T e omc 4 2 cos (x - x)

This expression is of the form P+ Q &/ = 1, and interpreting it as in
the case of total reflection, we find for the intensity of the reflected
light P2 + Q3, or

i o™ — m?)P + A2 sin® (x - x)

e [m® 4 m™ 4 2mm’ cos (x — %) F °

i 2w’ oos (x = X)

a4 2aman’ cos (x - x7)’

= —— — " = = = T

! MacCullagh, Proe. Row. Irish Acad. vol. i, p. 2, 1836.




ART, 222 MACCULLAGH'S THEORY

and for the change of phase

tand= Eﬂu—%ﬂg x].
WL T =

To determine m’ and y” in terms of m and x, we have

sin®r4cos*r=1,

or
ins cos?i jea o : !
e e wsz + --u:vaﬂ +( n s Y -{Efsmﬂx)w'r--l_—-l.
m* n
Therefore
sin®# coss i i
e iRy =1,
P cos 2x + e cos 2y
and
sin®s 5 o
a8 sin 2x+  sin 2% =0.
Hence
: : T e
sin2x = - e tan® 4 sin 2y
and

ok A ¥ m® = gin?1 cos 2x)
' Ht® cos® { d

or squaring and adding the expressions for sin 2y’ and cos 2y, we

have
L - (i + sint i — 2m? sin® i cos 2x)
S micos i ’ TR St
or
- m® cos® { _w* eost i
i — 5 — )
Nt 4 sind £ — 2im sin®{ cos ‘?x D
where
D2 = Nt + sint i - 2® sin® 4 cos 2y.
Again
SR
sin® ¢ sin 2
5 ' tan By + —=———= =
tan 2 (x - x') = tan 2y - tan 2y i #t® — sin* i cos 2y
1 + tan 2y tan 2y’ sm"i- sim 2y
- tan ‘}x
— sin® 4 eos 2y
_ ansin2y
~ m?cos 2x - sin®i’
and
(= wi® sin 2 m?sit: 2y
N+ sint i — 2 sint i cos 2x D*
Hence
N=a o D+ cos?i - 2D cosicos(y —x')
h D'-'-:-nuq‘-":.-.—EDcusmus{x -x')’
and

2D cos isin(x - x')

KaIvE cos®i — D?
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In the case of light polarised at right angles to the plane of ineid-
ence we have

S1ILF COS

tan (i -7} _  sinicosi

3 tan (i4+7) ] i sin 7 cos r
sini cos i

x it — cos (x -j—x'} — A~ Usin(x+ x)
sium’ -+ cos (x4 x)+ » — 1sin [x +x')
w2 — 1 = Zman’ sin (x +x JW = 1
w22 4 1+ 2man” cos (x + x°)

—'3

which is of the form P+ Q~/ - 1. Hence - |

I' = m'.'ii 241 - Zmoan’ cos(x +x') |
T a4 1 4 2w eos (x +x)

and for the change of phase

Qi sin (x + x°)

tané' = - —
s~ 1

Or substituting for w/, we finally obtain

I'= g it eos? i -4 D = 2Dan® cos i cos (x + x)
o eos? i+ DP+ 2D cos i cos (x = x)’
and

2D cos i sin (x + X }

tané' = —
wdcos=i - D

228. Simplification in the ease of Metals.—Since at normal incid-
ence the light reflected from a polished metallic surface is very nearly
equal to the incident light, it follows that the quantity

e+ 1 - Zimeosy
=+ 1+ 2m eos x
should be very nearly cqua,l to unity. For when i=0, D*=m? and

sin 2(x — x')=sin 2y or x'=0.
Hence m must be very great, and if we neglect x', we have

—

m' =cosifcosr. )

Substituting this value of @ in the expressions for I and 3, we |
have |
s, COST 3 cos ¢ 08 4 )
PP = - COS X i X 3
sty COS T 005 7 -
I= s T, GARE= 5 —3 i
y o COST T 05 o™ i
W4 - +3m—— cosx e T
E COs T cos® ¥
and
s 3 cos
1+ f_0m P05t e x 2 —— SNy
f cus'*-r CORT : COs T
I =— = e fand = —

5% 4 cos i coss §
1+ e T 4 P : m?
Cos=r cosr




CHAPTER XV

INTERFERENCE OF POLARISED LIGHT—COLOURS OF THIN
CRYSTALLINE PLATES

1. Parallel Plane-Polarised Light

224. Introductory Statement.—We now proceed to the study of
the phenomena which oceur when polarised light is transmitted through
thin plates of doubly refracting substances. The first discoveries in
this region were made by Arago! in 1811. Placing by chance a thin
plate of mica in the path of a pencil of plane-polarised light (the blue
light of the sky) and examining it through a doubly refracting prism
(Iceland spar), he observed that both the ordinary and the extraordinary
images were richly coloured. In general, when plane-polarised light is
transmitted through a thin plate of any doubly refracting substance and
then examined by means of a doubly refracting analyser, both images
are richly coloured, and if they overlap their common portion appears
white, which shows that the colours of the images are complementary.

If plane-polarised light be received by a Nicol's prism, or other
analyser, we know that in one position of the Nicol the light is refused
transmission. The Nicol being set in this position, if a thin plate of a
erystal be introduced across the path of the light, the capability of
transmission through the Nicol is suddenly restored, and a portion of
the light is transmitted which depends on the position of the interposed
erystal.  For this reason the light was said to be “depolarised ” by the
erystal, and by means of this property the doubly refracting structure
of many substances was detected by Malus, where the separation of
the ray was too small to be observed directly.

A medium originally isotropic may acquire the power of double
refraction when subjected to strain, and if the strain be homogeneous
the optical properties of the substance are similar to those of a natural
crystal, the prineipal axes of the wave surface coinciding with those of

! Avago, (Euvres Compléfes, tom. x. p. 36.
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the strain. A feeble doubly refracting power is conferred on glass by
bending or straining it. Unequal heating produces the same effect, as
it is accompanied by expansion, which gives rise to internal strain.
This double refraction may be detected by examining the glass between
crossed Nicols, and so delicate 1s this test that it is difficult to find
large pieces of glass so free from internal strain as to show no revival
of light when so examined.

225. Intensity of Illumination at any Point. — Let us now
see how far the physical theory accounts for these appearances.
In the first place, there are three essential conditions for their
production.

(1) The polarisation of the incident light.

(2) The interposition of a thin crystalline plate.

(3) The action of an analyser on the light after passing through
the plate.

Let the principal plane of the polarising Nieol be parallel to OP
(Fig. 177) and let the prinecipal plane of the analysing Nicol be parallel
to OA. Then since it is the extraordinary ray that is transmitted
through the Nicol, and since by Fresnel's
hypothesis the vibrations of this ray are in the
principal plane, it follows that the incident
vibration at O will be parallel to OP. On
entering the plate it becomes broken up into
two others, polarised at right angles to each
other, one parallel to OX and the other parallel
to OY, where OX and OY are two determinate
rectangular directions in the erystal.  Hence if the ineident vibration

be y=n sin of it gives rise to
aeosasine!, anl @sin o sin e

along OX and OY where POX =a.

As these waves travel through the plate with different velocities
they will be unequally retarded, and consequently on emergence they
will differ in phase by an amount &  The transmitted vibrations
therefore take the form

dcosasinal, and osinasin{ef -+ §).

On reaching the analyser these vibrations become resolved parallel to
its principal plane OA. If therefore AOX =g we have two vibra-
tions parallel to the principal plane of the anmalyser: the component
@ cos o sin wf along OX gives @ cos a cos B sin wf along OA, and the

p—
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component « sin asin (uf +8) gives asin « sin Bsin (of + 8) along OA,
and these compound into a resultant vibration

y=a cosacos @ sin wl + « sina sin gsin (wf + 4),

parallel to OA. The intensity of the resultant vibration is therefore
given by (Art. 43, chap. ii.) the equation
I=«*{cos® @ cos® B+ sin®a sin® 3 + 2 sin a vos a sin 3 cos 8 cos &},
=a*{cos®zcos® B +sin‘asin?B+2sinacosasingeos 3(1 - 2sin® L4)},
=a?{(cosa cos F +sinasinB)® - 4 sina cos asin 8 cos B sin® 16},

Hence finally

I =a?{cos?(a — B) — sin 2a sin 28 sin® 45},

where a — 3 is the angle between the principal planes of the polariser
and analyser. ]

If the analyser be merely a doubly refracting rhomb two images
will be presented. The above expression refers to the extraordinary
image, and it is seen in the same manner that the intensity of the
ordinary image is

Iy =a?{sin® (@ - §) + sin 2a sin 28 sin® 16},

which shows that it is complementary to the extraordinary. We shall
confine our attention to the extraordinary, as it is that furnished by a
single image analyser such as Nicol's prism.

In the case of white light & will be different for the various wave
lengths,' and if @ also varies with the wave length, the general expres-
sion for the intensity will be

I=cos® (a - B) Za® - sin 2a 5in 23 Za? sin® 145,

, The first term being independent of § will have no effect in producing
colour in the image, but in the second term & will depend on the wave
length, and consequently the different colours will enter it in different The colc
amounts. If the incident light be white the transmitted light will in "™
general consist of two parts, one of which is white, depending on the
first term, and the other more or less coloured, arising from the second.
With a given plate the combined rotation of the Nicols, or the rotation
of the plate round its normal, will affect all the colours in the same
proportion, and consequently the tint of the second term will remain
the same, but its intensity will vary as sin 2asin 23 varies. Now

! In some crystals the dispersion sensibly modifies the relative retardation as
dependent on the wave length. Herschel (Art, ** Light,” Ency. Metropolitana, § 915)
observed that the rings exhibited by a commmon variety of uniaxal apophyllite were
approximately achromatie, indicating that 3 was almost independent of A, and under
these circumstances a very great number of rings may become visible.
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sin 2a sin 2 may be either positive or negative, and for this reason the
resultant colour of the plate may be either of two different tints. TFor
example, when sin 2asin 26 is positive (which will hold as the plate
is rotated from a=0" to $=907), the resultant light will consist of a
certain quantity of white light, from which a varying amount of light
of a given colour is subfracted, and when sin 2asin 28 is negative
(which will hold from 8=90" to a=907), the resultant will consist of
a given quantity of white light, to which a varying quantity of light of
a given colour is added. In each case the resultant tint remains
unaltered as the plate is rotated (until sin 2asin 28 changes sign),
except in so far as it becomes more or less diluted by the greater or
less admixture of white light arising from the first term of L

The colouring, depending on the second term, will be most marked
when o — 8=90°, and least marked when « — 8=0, the mrrcspﬁnding
values of I being

I=Za"sin® 2a sin® 46 (colour most marked),
I=2Za*(1 - sin*2a sin* 18) (colour least markerd).

In the former case the field of the analyser would be dark if the plate
were removed. In both cases the appearances are most marked when
sin 2a=1, or a=45"—that is, when the principal planes of the polariser
and analyser bisect the angles between the principal planes of the
plate.

When the light falling on the thin plate is not polarised there is
no exhibition of colour in the field of the analyser, and the images are
white if the ineident light be ordinary white light. The light suffers
double refraction in the crystalline plate, but on account of its small
thickness there is no visible separation of the rays, they consequently
combine and still preserve the property of giving two images of equal
intensity in a doubly refracting analyser, the intensity of each image
being half that of the incident light.

Cor. 1.—The intensity in any position 8 of the analyser is comple-
mentary to that in the perpendicular position 8 + 90°.  For if I, and I,
denote these two intensities, we have

I,=a*{cos? (e — B) — sin 2a sin 283 sin® 14},
and changing £ into 90° + 3, we have

I,=a*{sin®(a - B) + sin 2a sin 28 sin® 18},
therefore
]I -+ Iﬂ.: ﬂg.'

or the sum of the two intensities iz equal to that of the incident light.
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The effect of rotating the analyser through 90° is therefore to
change the intensity, and also the tint, into its complementary. If
the analyser be merely a doubly refracting rhomb, the two images
will exhibit these complementary tints, and if the analysing rhomb be
removed altogether these complementary images will become super-
posed, and we have a single image without colour.

Cor. 2.—For a given relative position of the Nicols—that is, for
a — (3= constant = y—the intensity of the coloured component will vary
as the plate is rotated round the normal to its plane, and the image
will be uncoloured when

sin2asin23=0,

that is, when a=0" or 90°, and when £=0° or 90°. There are con-
sequently four positions in which the image is achromatic, viz. when
the principal section of the plate is parallel or perpendicular to the
principal plane of the polariser or analyser, and the intensity of the
achromatic image is

I =a?cos®+.

This will be a maximum when y = 0°—that is, when « =g, or when the
polariser and analyser are parallel, and zero when y = 90°,—that is, when
the Nicols are crossed. In both these cases the four positions giving
an achromatic image obviously reduce to two.

Cor. 3.—If a=f3, or the principal planes of the Nicols are parallel,
we have for the intensity of the transmitted light

[=ea*(1 - sin® 2a sin® 15).
Cor. 4.—If in addition a=0" or 90°, we have
I=a*

or the transmitted light is equal to the incident. The plate has here
no effect, as is easily understood, for if a« is equal to 0° or 90°, the
direction of vibration of the incident light is parallel to one of the
possible directions in the crystal. It therefore passes through unaltered
to the analyser.

If a=F=45° I=a"cos’ 15. Hence if 6= (2r + 1)rand e = 8= 45°,
the transmitted light is zero.

Cor. 5.—For any given positions of the Nicols and plate the intensity
is a maximum when sin 16=0 and a minimum when sin 8= =£1
if sin 2a sin 23 is positive, or

I=acos*(a-8), d=2uw {max.),
I=a?{cos®(a—3)—sin2asin 28}, d=(2n+1)r (min. ).

Achro-
matic
concitio
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But if sin 2a sin 23 is negative, the case is reversed. The difference
of phase & is determined by the thickness of the plate traversed and by
the wave length of the light under investigation.
Cor, 6.—If a — B=90" so that the Nicols are crossed, we have
sin 23 = — sin 2a, and
I =a®sin® 2a sin® 134.

So that for a given value of a the intensity I will be a maximum when
8=(2n + 1)r and zero when § = 2umx. In the former case the intensity
will be the greatest possible when a =45° for then I=¢? and the
intensity will be zero if « = 0 or 90,

Cor. 7.—To determine the phase of the resultant vibration

y=waicos acos Bsinwt 4 gina sin 8 sin (w4 8)},
= A sin (wl 4 p),
we have
A sinp=asina sin g sin 8,
A cos p=a{cos a cos 4 sina sin g cos §},
sinasin 8sin d

e e ————©
F cosa cos B+ sin a sin g cos §

Hence if « and B are the semi-sides, and & the included angle, of a

spherical triangle, p is half the spherical excess (Spher. Trig. Art. 105).
Cor. 8.—The light emerging from the thin plate is in general

elliptically polarised, the equation of the vibration being (Art. 47)

@ ¥  2mycosd

o e - =a*sin® 8.
cOs @ s5in-a sSinacisa

226. Conditions for Interference — Transverse Vibrations.—
The phenomenon of double refraction shows that in the crystal the
light is divided into two waves travelling with different welocities.
On emerging therefore from a thin plate one will be retarded on the
other, and in general a difference of phase will exist. Hence if light
undulations were purely longitudinal, like those of sound, the emerging
waves should interfere, and the thin plate alone should be sufficient to
produce all the phenomena of interference and colour without either
polariser or analyser. Such, however, is not the case, and it was
found by Fresnel and Arago, who investigated the subject of the
interference of polarised light experimentally, that two plane-polarised
rays interfere and produce fringes as ordinary light only when they are
polarised in the same plane and originally belonged to the same plane-
polarised pencil (Art. 176).

Two rays polarised in different planes in general combine into
a resultant elliptie vibration, and this is an immediate consequence of
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the theory of transverse vibrations. The office of the analyser in these
experiments is to reduce the two waves from the crystal to the same
plane of polarisation. They can then interfere with the production
of colours. All the phenomena are therefore in confirmation of the
theory which supposes that the vibrations of the ether which constitute
light involve a component which is transverse to the direction of
propagation.

227. Caleulation of the Difference of Phase —Quarter-wave
Plate.—So far we have only considered the nature of the vibration
which reaches the eye from a single point O of the thin plate, or from
a uniform plate transmitting parallel light. If the incident light be
not parallel, and if the thickness of the plate varies from point to point,
the retardation & of one component on the other will also vary from
point to point of the plate, so that the calculation of the appearance of
the plate requires the determination of & at each point.

A ray incident at an angle ¢ gives rise to two refracted rays, and
the relative retardation introduced by a plate of thickness ¢ we have
already found (Ex., p. 99) to be

d=esini (cot r, — cot r|) =e(py co8 1, — py cO8 1y,

and on the caleulation of the quantity & the determination of the
character of the pattern presented in the field will depend.

For normal incidence the retardation becomes e(p, — p,), and if the
thickness of the plate is so adjusted that

ﬂf.“-,- = ;“-1] =1h,

the plate will be a quarfer-wave plafe for the wave length A. Such
plates are of importance in the study of cirenlarly polarised light.

228. Thiek Plates—Colours produced by Superposition.—The
phenomenon of colour we have seen to be due to the difference of
phase introduced by the thin erystalline plate, and if the plate be not
thin this difference may be a great number of wave lengths, so that,
as in the case of Newton’s rings, the colours of different orders may
come to be superposed, and the resultant light will be white.

Thus for a given position of the Nicols and plate (« and S given)
the intensity will be a maximum or a minimum according as sin® }d=0
or 1, assuming sin 2a sin 28 positive. The maximum or minimum
intensity for any colour will consequently correspond to retardations
nA and (2n+ 1)1A respectively. But if the plate is thick n will be
very great, so that if A and A" are two near wave lengths, we may have

2n . IA=(2n+ 13N,

Over-
lapping.
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and thus if the plate is dark for A" it will be bright for an adjacent wave
length A. It will therefore be bright for many wave lengths along
the whole range of the spectrum, and will consequently appear white.
When examined under a spectroscope it should, nevertheless, exhibit a
spectrum erossed by many dark bands.

The tints may, however, be produced in thick plates by superposing
two of them in such a manner that the ray which has the greater
velocity in the first shall have the lesser velocity in the second. Thus
if the erystals be uniaxal and both positive (or both negative) their prin-
cipal sections should be placed at right angles, whereas these sections
should be placed parallel if the crystals are of opposite denominations.

229. Superposition of two Crystalline Plates,—Let us now examine
the appearances presented when plane-polarised light passes successively
through two superposed thin crystalline plates, before being received
by the analyser.

Using the notation of Art. 225, we shall take the direction of the
vibration incident on the first plate to be parallel to OP, and this
according to Fresnel's theory is parallel to the principal plane of the
polariser when the light is polarised by transmission through a Nicol's
prism. Then if OX and OY be the two directions of vibration in the
first plate, the components of the light emerging from it may be
written in the form

acosasin (wl +4,), and @zinasin (w+86',),

where 8, and &, are the phase retardations introduced by the first plate.
When these vibrations reach the second plate they are each split up
into two components, except in the particular cases in which the
principal planes of the plates are parallel to each other or erossed.

For the sake of simplicity we shall first consider the case in which
the principal planes of the plates are parallel to each other. In this
case the foregoing vibrations traverse the second plate without sub-
division, and on emerging from it they may be written in the form

g eosasin(of +8,+08.), and «sinasin (wf+35§" + 8,

where &, and &, are the phase retardations introduced by the second
plate and correspond to 8, and &', respectively in the first. The whole
retardation of one ray is é, + 4,, while that of the other is & . F & »; hence
falling upon the analyser we have two rectangular vibrations differing
in phase by an amount (8, + 8,) — (&, + 8,), and the intensity of the light
vibrating in the direction of the principal plane of the analyser is
consequently found from the expression of Art. 225 by merely
replacing the quantity & by the quantity (8, +8,) — (8", +8,,). This is

e @ o il i i Pt e e
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the extraordinary image, and therefore its intensity is given by the
expression

I.=a?{cos® (a — B) — sin 2a sin 28 sin® §(6, + 8, - &, - 6'5)}.

Similarly the intensity of the ordinary image, if transmitted by the
analyser, will be

I,=a?}sin? (@ — B) + sin 2a sin 28 sin® }(, + 8, &', - &',)}.

Thus when the principal planes of the plates are parallel, the combina-

tion acts as a single plate of thickness equivalent to the joint thicknesses

of the two. When the plates are crossed the phase retardation of one plates
ray is obviously 8, + &, while that of the other is &', + 8,; consequently °Tosed.
“the difference of phase on reaching the analyser is (8, + &,) — (&', + §,),

and the intensity of the extraordinary image is

I, =c?{cos® (a ~ 8) - sin 2a sin 23 sin® §(§, + &', - &', - &,)},

while the intensity of the ordinary image is given by the complementary
exXpression
I,=a*{sin? (a - B) + sin 2a sin 278 sin* §{§, + &, - &, - &,)}.

In the same way the expression for the intensity may be written down
at once when any number of plates are superposed with their principal
planes either parallel or crossed, or when some of them are parallel
while others are crossed, for we have merely to replace the quantity &
in the formule of Art. 225 by a corresponding quantity =8 — =8, where
¥3 is the whole phase retardation of one of the rays emerging from
the system of plates, and 3¢ the whole phase retardation of the
other.

In the more general case in which the principal planes of the plates Principal
are inclined to each other at an angle, the ealenlation is more tedious ﬂ]!:::llf o
but presents no serious difficulty. Thus, using the same notation, if the
vibrations emerging from the first plate parallel to OX and OY are

@ cos a, sin (wf +8;), and « sin a; sin (ef +35") ;

then if the directions of vibration OX" and OY’ in the second erystal
be inclined at an angle a, to those in the first, viz. OX and OY, the
foregoing vibrations give for the vibration parallel to OX”

X =g cos a, cos a, sin (wf 4 §; d,) 4+ @ sin @, sin a, sin (ol + 8" + 8,),
while parallel to OY" we have

Y =u sin a, cos oy, sin (wf -+ 8 +8,) - @ cos a; sin a, sin (w! + &, + §%).
¥ g
= G
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Hence if the prineipal plane OF of the analyser makes an angle a,
with OX, the component vibration parallel to OP is

=X cos az+ Y sin a,,

substituting for X and Y and collecting the coeflicients of cos wf and
sin wf we find
y=D cos wl + () sin o,
where
Pla=cos a; tos a, vos ay sin (8, + 8,) + sin a; sin a, cos a, sin (8'; + 8,)
+ &in @, cos @y sin @y sin (8, +8') — cos a; sin ag 8in ag 2in (5, + 8'5),
and
Qe =eos a; €08 a, cOs a; cos (8, + ;) -+ 5in a; 5in &, €08 a; cos (67 +8,)
+ 5in @, o8 a, sin a, cos (6 + &) - cos &, sin a, sin e, sin (8, + &)

Consequently for the intensity of the light vibrating parallel to the
principal plane of the analyser—that is, for the extraordinary image—
we have

=P+ Q.

Hence by taking the sum of the squares P and (), and noticing that
the coefficients of the quantities sin (8, + &,), ete,, in the expressions
for P and Q are exactly the terms which cceur in the expansion of
cos (a, — a, — a,), we obtain

I, = a*{eos® (a, — 0, — a3} — sin 2a; sin 2a, cos 2a, sin® §(§, - &',)
= gin 20, cos® a, sin 2a, sin® 48, -5, - &', - §',)
+eos 2a, sin 2a, sin 2a, sin® 15, - 0',)
+-sin 2a, sin® a, sin 2a, sin® (8, 4+ 8", - &', - 8,)}.

In the same way for the intensity of the ordinary image

I, = a*{sin® (a; - as — a3) + sin 2a; sin 2a, cos 2a, sin® }(6, - &)
-+ 8in 2a, cos" e, sin 2a; sin® 1(4, 4 6, - &, - &)

— ¢08 2a, sin 2a, sin 2a, sin® 3(8, - 6"23

- sin 2a, sin° a, sin 2, sin® 45, + 6’5 - &', - &)}
By adding these expressions together we find that the two images are
complementary, for we have

I.41.=x"

The tint of the image in either case will vary with «,, a,, and «,—that
is, when the analyser or either of the plates is rotated.

C'or.—Making «, = 0, we obtain the expression for two plates with
their principal sections parallel, and making «, = 90° we obtain the
formula for two plates erossed.

The foregoing enables us, in a simple manner, to determine

.
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whether a erystal is positive or negative. For this purpose take a
thin plate of the erystal and ohserve the tints it produces in polarised

light. Now superpose on it a plate of quartz or some other crystal of

known sign so that the principal sections of the two plates may be
parallel. The two crystals will be of the same or contrary signs
according as the new tints presented in the analyser are higher or
lower in Newton’s scale of colours than those afforded before the inter-

. position of the quartz plate.

If the principal sections of the two superposed plates are parallel
or perpendicular the images presented by the analyser are not altered
by interchanging the positions of the plates, but this is not generally
the case when the principal sections make any other angle with each
other, for the above formule show that if «, and «, be interchanged
the values of I, and I, also change except when a, = 0° or 90°.

230. Projection on a Sereen. —The phenomena indicated by our
theory may be observed by simply looking at the sky through two

Nieol's prisms separated by a thin erystalline plate. DBut by pro
jecting the images on a screen as follows, they may be observed on a
larger scale and exhibited to an andience.

Let the light of the sun, reflected from a heliostat if necessary, be
transmitted through a polarising Nicol or Foucault prism P (Fig. 178).

The polarised light from P falls upon a system of two highly con-
verging lenses L and L', having a common focus at S. It is clear that
L produces an image of the sun at S and the light leaves L’ in the
same condition as it enters L. If another converging lens L be placed
in the path of the light, it will again be brought to a focus at S', where
we shall have a second image of the sun from which the light will
diverge. Itisat &', where the pencil is very narrow, that the analysing
prism is placed. .

Now if a diaphragm be placed at FF we may regard each point of
it as the origin of the small conical pencil of 16" aperture which it
receives from the sun. Any one of these pencils diverging from F
will be refracted at I. and travel along LS in a parallel beam and then

Hign test,
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come to a real foeus F' from which it diverges, and falling upon L" i3
brought to a focus F” upon a sereen F'F".

If we wish to observe the tints produced by a erystalline plate
when the incident light is parallel, it is placed at FF or at F'F, the
pair of lenses L and L in this case having obviously no effect. The
incident light being polarised in an azimuth « to the principal section
of the plate will be divided by it into two parts polarised at right

angles and differing in phase. Both these parts are concentrated by .

L” at 8, where the analyser is placed, and are again reduced by it to
a definite polarised pencil, which paints an image on the screen F'F".
If the analyser is merely a doubly refracting prism we shall have two
images on the screen which are complementary in colour, as is verified
by the fact that if they are partially superposed the overlapping por-
tion is always white, no matter how the plate is changed. By inclining
the erystalline plate to the direction of the light, by turning it round
a line in its plane, we alter the thickness of the plate traversed and
change the difference of phase, and therefore vary the tints of the
images.

The object of the lenses L and 1" is to study the phenomena pro-
duced in convergent light. For this purpose the thin erystalline plate
is placed at 8. In this case a cone of light is incident on the plate,
and the various rays of this cone are variously inclined to it, so that
their components suffer different alterations of phase in traversing it,
and therefore depict various colours on the screen F'F*. Conse-
quently curved fringes will be seen on the screen, the form of which
will depend on the position of the axes of the erystalline plate with
respect to its faces.

For the success of these experiments it is necessary to work with
strong light, on account of the magnitude of the image on the screen.
The solar light may be replaced by electric light, cast by a lens on the
polarising Nicol in a parallel beam.

2. Convergent or Divergent Plane-Polavised Light

231. By placing the crystalline plate between the lenses L and L
(Fig. 178) the phenomena produced by converging or diverging light
may be studied. It is elear that in this case, if with the point O (Fig. 179)
(where the axis of the incident cone of light meets the crystal) as centre,
we describe any eircle on the face of the plate, all the rays of the
conical shell which fall upon this cirele will meet the plate at the same
angle of incidence. At each point of the plate the intensity will have
a definite value depending on the value of the retardation 8, which in

= e W
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turn depends on the angles of incidence and refraction, as shown in the
example of p. 99.

We shall now consider the important and striking phenomena
which are presented when a converging or diverging pencil of plane-
polarised light is transmitted through a thin plate of a uniaxal erystal,
the faces of the plate being perpendicular to the optic axis.

232. Uniaxal Crystal—Plate eut at Right Angles to Axis.—Let a
plate of a uniaxal erystal, eut perpendicularly to the axis, be placed in a
conical pencil of light so that the axis of the cone is perpendicular to
the face of the plate, and consequentiy passes through it in the direc-
tion of the optic axis.

Let the axis of the conical pencil meet the plate at O (Fig. 179),
and let X (Fig. 180) be any point on the face of the erystal supposed
parallel to the plane of the paper. Let OF and OA be drawn parallel

Mg 179, Fig. 150,

to the principal planes of the polariser and analyser. Then the plane of
incidence of the ray at the point X isa plane through OX perpendicular
to the face of the crystal, and this is the prineipal plane of the ecrystal
at X since the optic axis is a normal to the face, for the principal plane
by definition is the plane containing the ray and the optic axis. Hence
a vibration incident at X, or at any point along the line 0OX, is split up
into two components, one vibrating parallel to OX—that is, in the
and the other perpendicular to it. Consequently, if

principal plane
OX makes an angle « with OP and an angle 8 with OA, the intensity
of the illumination emerging from the plate at X is, after analysation
(Art. 225),
I =a*{cos® (a — 8) - sin 2a sin 28 sin® 18},

for homogeneous light.

If we denote the variable angle XOP by 6, and the angle AOP by
v—that is, if we write ¢ for a and 5 for « — 8 the expression for the
intensity becomes

I =a®{cos® y— sin 20 sin 2(0 - ) sin® 45} .
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Now if the point X be anywhere on the line OP or on its perpen-
dicular OF”, the incident vibration, being parallel to OP, will be in the
prineipal plane in the former case and perpendicular to it in the latter,
s0 that it will pass through the plate without decomposition until it is
finally resolved in the analyser. The lines OP and OP’ should there-
fore be each of uniform illumination, and should exhibit no eolour. Our
formula points to the same conclusion, forif X is on OP or OP’ we have
a =0° or 90°, the term on which the colour depends vanishes, and in

both cases
I=a?cos® (a - ) =a®cos®y,

where y is the angle between the principal planes of the polariser and
analyser. We have therefore a rectangular eross of uniform illumina-
tion a* cos® y, having one arm parallel to and the other perpendicular
to the principal plane of the polariser.

7\

Fig. 182.—(a -

Fig. 151, —(a - B=0").

=00°),

Similarly, if 8=0" or 90°, we have the same value of I, viz
I = a” cos® v, and hence another uniform cross exists in the field having
its arms respectively parallel and perpendicular to the principal plane
of the analyser.

In general, then, two rectangular crosses are seen in the field, and
these are of the same uniform illumination, «* cos®y, and uncoloured.

If y=0"—that is, if the principal planes of the polariser and
analyser are parallel—the two crosses coincide, and we have one white
cross of uniform illumination ¢ wviz that of the incident light
(Fig. 181).

If v = 90°—that is, if the Nicols are crossed—the two crosses again
coincide. But in this case the single cross is black, for cosy =0 and
the intensity is zero (Fig. 182).

Again, 1f with O as centre, we describe any circle, it is clear that
the rays incident at the various points of this cirele make the same
angle with the normal to the plate—that is, with the optic axis. It is
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obvious, therefore, that the difference of phase & introduced by the
plate is the same at all points of this circle, and hence with white
light there will be a series of coloured circles in the field concentric
with O, and on these circles the crosses or brushes already mentioned
will be superposed.

If sin 2asin 203 is positive, the points of maximum intensity along
a given radins between the brushes are determined by

sin*46=0, or §d=2an.
and the minima by
sin®3d=1, ord=(2n+1)r.

But if sin 2a sin 23 be negative the intensity will be least when & = Zur,
and greatest when é=(2n + 1)

The curves of equal intensity for a given position of the Nicols are
determined by the equation

cos® y = sin 26 sin 2(@ - ) sin® 46 = constant.

The effect of superposing on a uniaxal plate, cut perpendicularly to
the axis, another plate cut in a similar manner is the same as an
increase or a decrease in the thickness of the first plate according as
they are of the same or of opposite signs. If they are of the same
sign the rings contract, and if they are opposite signs the rings
dilate. We are thus afforded with a ready and simple means of
determining the sign of a erystal, by comparison with another erystal
of known sign.

233. Isochromatic Lines and Achromatie Lines,—When a beam
of divergent or convergent polarised light is transmitted through a
thin erystalline plate and examined by means of an analyser, the field
is in general traversed by two systems of lines. If white light is used
one of the systems of lines is brilliantly coloured, and these are termed
the disochromatic lines ov simply the fiinges.  Their form depends on the
nature of the section of the crystal—that is, on the direction in which
it has been eut with reference to the optic axis—and their brightness
depends on the position of the analyser, the colour being most dis-
tinctly marked when the polariser and analyser are crossed (a — 8 = 907),
as indicated by the equation

Al
I =a®*{cos® (& — 3) - sin 2a sin 23 sin® 18} .

The lines of the second system are not coloured. They intersect the
fringes and are termed the achromafic or nentral lines, and, as the above
equation shows, they are determined by the equation

sin 2a sin 28 = 0,

Bign test.
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that is, « = 0 or 907, and £ =0" or 90", while the points of maximum
intensity are determined by

sin*16=0, or d=2nw,
and the minimum points by

sin*18=1, ord=(2n+1)r,

if the product sin 2« sin 23 be positive ; but if this produce be negative
the maximum points will be determined by

sin®1d=1, ord=(2n+1)w,
and the minimum points by
sin®3d=0, or é=2umr.

The maximum lines in one case, therefore, correspond to the minimum
lines in the other.

-Now it is easily seen that sin 2Zasin 23 generally changes sign in
passing across a neutral line.  For such a line arises from sin 2a = 0,
or sin 23 =0, or both; but when any function passes through a zero
value its sign in general changes. Thus sin 2a passes through zero
and changes sign as « passes through the value }=. Henece in crossing
a neutral line corresponding to sin 2« =0 the quantity sin 2asin 23
will change from a positive to a negative value or wice versd, and
consequently the bright fringes at one side of the neutral line will
correspond to the dark bands at the other. If, however, sin 2« = 0 and
sin 23 = 0 simultaneously, the quantity sin 2asin 28 will not change
sign, and the fringes will preserve the same tint in crossing the
line.

Hence in crossing a neutral line the isochromatic fringes in general
change to the complementary tint, except when sin 2a and sin 23
vanish simultaneously ; an example of this latter case ocenrs when
we have a uniaxal plate eut perpendicularly to the axis and « - 8=0"
or 90°. Here the neutral line is a rectangular cross ; sin 2a and sin 23
vanish simultaneously, and the rings in each quadrant are the same as
those in the adjacent quadrants.

We shall now consider the isochromatie lineg, or fringes, which are
found to be as follows—

(1) In uniaxal erystals the fringes are—

Circles for a section perpendicular to the axis.
Hyperbolas for a section parallel to the axis.
Elliptic or hyperbolic ares for an oblique section.

il .=
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(2) In biaxal crystals they are—

Closed rings for a section perpendicular to an axis.

Hyperbolas for a section parallel to the plane of the axes.

Lemniscates for a section perpendicular to the bisector of
the angle between the axes.

234. Isochromatie Surface in Uniaxal Crystals.—The fringes
presented in the case of a uniaxal ecrystal eut perpendicularly to the
optic axis have been already discussed (Art. 232, 233). We shall
now investigate the general case, in which the thin plate may be eut
from the erystal in any direction, following M. Bertin.!

The characteristic of a fringe is that the retardation 8 is the same
at every point of it, and the locus of points in space for which & has
a given constant value will be an isochromatic suifuce. To every value
of & there will be a corresponding surface, and if with the radiant
point as origin a system of these surfaces be described corresponding
to retardations of 1, 2, 3, 4, ete., half-wave lengths, their intersections
with the face of the erystal will determine the corresponding isochro-
matic curves or fringes exhibited in the field of view.

Let 5 (Fig. 183) be the radiant point, and SL any ray falling upon
the face of the crystal.
In general SL will be
divided into two rays
within the erystal, travel-
ling with different velo-
cities, but as the erystal
is thin we may, in the
approximate caleulation,
suppose both rays to
travel along the same
line LM, one with the
ordinary velocity #, and
the other with a velocity ». The times occupied in traversing the
distance LM will be f, = LM/r, and = LM/r respectively, so that
the time retardation is

Fig 184,

=DM =Y.

and the path retardation is
8=, — p)LAL

For the caleulation of the isochromatic surfaces we may take the

! M. Bertin, ©* Mémoire sur la Surface Isochromatique,” Anneales de Chimie ef de
Pliysigue, third series, tom. Ixiii. p. 57, 1861.
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origin at O, the point where the axis of the conical pencil meets the
plate, and if we draw OP parallel to LM the retardation along OF will
be the same as that along LM.

Now the wavesurface in a uniaxal erystal consists of a sphere of
radins b or 1 /g, (in a negative erystal like Iceland spar), and a spheroid
of which the generating curve is

Boat - plyt =1 (1).

If » denotes any radius vector of this ellipse we have p inversely pro-
portional to », and hence for the retardation in traversing a thickness
p we have

o= plp, = u) (2).
But by (1)
pe= = cos® 0+ ptsin %0 (),
and hy (2)
s 2
ol 1
g (p ”) e

Therefore, by combining (3) and (4) we find

3 = Y L)
(':" Hu) = F,,?mm'ﬂ-:-- j.t..gbil.'ll' f.
2

Hence
(8 = pota) = pa™a® + pe1f?,

which, since p* = * + %, gives
1 — )t - 5% 2 = 4 25%a" + o),

the generating curve of the isochromatic surface.

The isochromatic surface is formed by the revolution of this enrve
round the axis of the crystal. Its general form is represented in Fig.
184,  In the neighbourhood of the axis of
# the curve resembles an hyperbola, and
the surface an hyperboloid of revolution.
By assigning various values to é we deter-
mine corresponding surfaces, and the inter-
sections of these with the face of the
crystal give the isochromatic curves or
fringes. Thus if 8=, which corresponds
to a retardation }A, the corresponding surface intersects the face of
the erystal in the first dark fringe, ete.

(1} Section Perpendicular fo the Optic Awxis.—If the thickness of the
plate be ¢ the section of the isochromatic surface by the face of the
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plate eut perpendicular to the axis is found by putting +=+  The
curve is obviously a cirele of which the radius is » =y determined by
the equation
fﬂ-‘g" ,t.tf;l:r' i Qﬁ'.!{m:' 4 #02},2 = -l,ufrﬁ?rii o= ﬂ:
or
81 + 1,2 209 N prto® + (e — i, 7e?
(2 - 2R

Since & is small compared with ¢, the expression for # reduces to the

approximate form

2

i

s _:-'.',_,:._:,,E-r_.
e — =

or since p, + p, = 2p, nearly, we have the approximate expression
e - ;
He = g
The consecutive rings are determined by making # equal to the con-
secutive whole numbers in the equation é=nlA, the dark rings corre-
sponding to the odd values of # and the bright rings to the even values.
The above expression for the radii of the rings has been obtained
on the supposition that the radiant point is at O on the surface of the
crystal. If the luminous origin be at S the radins of the ring on the face
of the plate is R=AM, but in the above calculation r= AP, therefore

R AM Dtané u,D

r AP ctanr ¢
if ¢ and r be small and D denotes the distance of S from the plate.
Hence the radii of the rings on the plate are given by the equation
. WID uD%
% Tl -pd) eluo-p) TP
where for the bright rings = 2n A and for the dark rings d = (2 + 1)} A,
If the rings be received on a screen at a distance D’ from the
plate, the radii R will be found from the equation

R_ER_D+IY
RTAM ™. D

If we regard p, and p, as approximate constants we see that the radii
of the rings are directly proportional to the square root of the wave
length (§=nlA) and inversely as the square root of the thickness of
the plate. The diameters of the consecutive rings are also proportional
to the square roots of the numbers 1, 2, 3, 4, ete.

(2) Section Parallel to the 4ris.—[As the equation of the surface is

{0m® — 22N (1% + 22) - 3 = dp 002 4 7 4 27),
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we obtain the equation of a section parallel to the plane of = and y by
putting z=¢. Close to the axis of z this eurve approximates to the
hyperbola

2021~ %) {1 — e2)e? - 8 — AP + )26+ (o = pi2)e? — B2 — 4 6% =0,

[ts equation is found by neglecting the fourth power of y after re-
placing z by e. Corresponding to various values of 8 we have a system
of hyperbole, and the figure
represents the curves corre-
sponding to 8= inA, n being
any whole number. If the
absolute term vanishes the
corresponding hyperbole re-
duce to a pair of lines, and
the appropriate value of & is
easily seen to be d=(p, — p)e,
for & must be small in com-
parison with ¢, and the solution
8=, + po)e must consequently
be rejected.  On substitution for é we find the equation of the lines

to he
Ml = gt =0,

and as p, 1s nearly equal to p, the lines are very close to the bisectors
of the angles between the axis of & and %, and are therefore nearly at
right angles. If (p, — p,)¢ is equal to a whole number of half-wave
lengths, these lines are comprised in the system of fringes.

In order to obtain a clearer idea of the arrangement of the hyper-
bole we replace & by f(p. - py)e in the equation, and after dividing
across by (p, — p,)* we put p,=p,, and so obtain for the equation of
the system

(2 -/ - a3 +eX(1 - %) =0.

If fis less than unity—that is, if the retardation is less than (p, — p,)e—
the hyperbola cuts the axis of #. If f=1, it cuts the axis of y, and the
lines corresponding to f=1 separate the two sets of curves.] The
fringes are most brilliant when the polariser and analyser are parallel,
or crossed, and make an angle of 45” with the principal plane of the
plate, but when the principal plane is parallel or perpendicular to the
principal section of the analyser the fringes disappear entirely.

(3) Oblique Section.—The section of an isochromatic surtace by a
plane inclined to the axis is a eurve of the fourth degree which approxi-
mates to a cirele when the plane is nearly perpendicular to the axis
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and to an hyperbola when the plane is nearly parallel to the axis.
For an obliquity of 45° it is only the portions of the fringes near their
vertices that are seen, and these are right lines perpendienlar to the
principal section of the plate.

235. Isochromatie Surface in Biaxal Crystals.—In the case of
biaxal crystals the relative retardation of the rays in traversing a dis-
tance p may, as before, be written in the form :

E=P[Iui LL* ,.l”}
where ' and p” are the roots of the equation

2 FrE a2
gt

L Lt uF ¥ L']
P TR T TP e T P

in which I, m, n are the direction cosines of p, and p is a radius vector
of the isochromatic surface when & is constant (see Art. 205).
Now from this equation we have

L

W = S(? 5 p ),

and
EMICESS S )

But since

ﬁ #l' r

=p - R

p

we have
(“‘2 R"E - :)-= I & P-#F."!

Hence

; u i ay ol T % B F R
| Z(po+ FT:'JF = P"'} = 4 2ttt

or in Cartesian co-ordinates, the equation of the isochromatic surface is

{2+ gD 4 (p? + g2+ (g + aa)e = 32

All the surfaces are obtained by giving various values to 8. They are
similarly situated, and their intersections with the face of the erystal
oive the isochromatic eurves, each corresponding to a certain constant
difference of phase.

The form of these surfaces is represented! in Fig. 186. The
section by the plane x: which contains the optic axes 1s found by

1 M. Bertin remarks that **la surface isochromatique des eristaux 4 deux axes
ressemble 4 une croix de Saint-André dont les bras seraient cylindriques et dirigés
suivant les axes optiques du cristal.™
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making » zero in the above equation. It consists of two branches, one
having asymptotes parallel to the optic axes, the other interior to it is
closed and parasitic, not being related to the
gquestion in hand. It is obvious that in the
directions of the optic axes the values of p
should be infinite, for since these are the optic
axes v =+ or p =pu", and therefore p is infinite
for a given retardation.

The sections made by the other co-ordi-
nate planes are closed curves of the fourth
degree.

(1) Section Parallel to the Plane of the Awes.—The sections of the
isochromatic surface by a plane parallel to that containing the optie
axes differ little near the centre from hyperbolas. [The equation of
these hyperbolas is found by replacing y by ¢ and neglecting powers
and products of the fourth order in » and z. By a process similar to
that employed in section (2) of the last article we find

Flz. 15465,

{E: i i { - ;: +e3(1 =13 =0,
where the retardation is given by d=¢f(py — p,). 1f f=1, the hyper-
bola nearly coineides with the lines #* — =0, or more exactly with
the optic axes pz® — p,*:*=0.] These fringes are like those of a
nniaxal erystal cut parallel to its axis (Fig. 185),

(2) Section Perpendiculor fo a Bisector of the Angle between the Uptie
Awes.—The sections of the isochromatic surfaces by a plane perpen-
dicular to the internal or external bisector of the angle between the

== L{F

= 60F

Fig. 157.

optic axes—that is, parallel to zy—resemble the several forms of
lemniscates.

The sections of the surface corresponding to a given value of & by
planes drawn at right angles to the plane of the optic axes, and at
distances =208, »=508, =603 respectively from the centre, are
represented in Fig. 187.
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In this case we can determine the approximate form of the fringes
directly. For if OM and OM’ (Fig. 188) be the optic axes, p’ and p”
the indices for the rays travelling in any direction OFP which makes
angles # and ¢ with the axes, then

8 =0P(p" - ).
But by Art. 206, Cor. 1, we have the ap-
proximate formula

o= =y = pa) sin@sin @',

and approximately
M o BN

:«:{JI{?:D:“ , sing@ oM’ or
Therefore
2 (' = p") = (1 —#:;]Ir}';-' -I-‘iﬂl.
i (ON)*
that is,

PM . PM" =constant,

which is the polar equation of a lemniscate having M and M’ for foci.
(3) Section Perpendicular to an Oplic Awxis.—In this case the isochro-
matic lines will be a system of closed curves resembling deformed
lemniscates encireling the axis to which the section is perpendicular.
236. Achromatic or Neutral Lines.—The uncoloured lines are
determined by the equation

sin 2a sin 28 = 0.

They are consequently the locus of a point on the face of the crystal
such that the planes of polarisation of the rays in the crystal are
at that point either parallel or perpendicular to the principal plane of
the polariser or analyser.

(1) Section Perpendiculay to the Bisector of the Angle bitween the Olpize
Awes,—The planes of polarisation of the rays travelling in any direc-
tion OP (Fig. 188) are the bisectors of the angles between the
planes OPM and OPM’, which contain the ray OF and the optic axes
OM and OM’ respectively. The traces of these planes on the face of
the crystal will, for a small angle of incidence, approximately coinecide
with the bisectors of the angle MPM'. Hence if the plane of the
paper be taken parallel to the face of the erystal, and if the optic axes
meet 1t at M and M’ (Fig. 189), the point P will deseribe a mneutral
line if the bisector of the angle MPM' is parallel or perpendicular to
the prineipal plane of the polariser or analyser. Let OX be parallel
to the prineipal plane of the polariser, and take OX and the perpen-
dicular line OY as axes of reference, O being the middle point of MM,
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The bisector of the angle MPM" must be perpendicular to OX, there-
fore the triangle APB is isosceles. Hence if the co-ordinates of P be
#, 7, and those of M be &, ¥/, we have

cot PBO —%  and cot PAO=272%

Y=y y+y’
equating these expressions we find at once
ay=x"y'.

The locus of I’ is consequently a rect-
angular hyperbola, passing through M
and M, of which the asymptotes are OX
and OY, lines parallel and perpendicular
to the trace of the principal plane of the

Fig. 180, :
i polariser.

In the same manner we find a second rectangular hyperbola cor-
responding to B=0" or 907, also passing through M and M, and
having for asymptotes lines parallel and perpendicular to the trace of
the principal plane of the analyser.

The uncoloured lines therefore consist of four hyperbolic branches
passing two and two through M and M, the apparent extremities of
the optic axes, the asymptotes of one curve being a parallel and a per-
pendicular to the trace of the principal plane of the polariser, while
those of the other bear a corresponding relation to the prineipal plane
of the analyser.

If the principal plane of the polariser is parallel to MM —that is,
if MM’ coincides with OX, we have =07, the hyperbola reduces
to its asymptotes xy=0, and becomes a rectangular cross. If in
addition the optic axes coineide, the other hyperbola will also become

Fie. 1900 Fig. 191.

a rectangular cross, as we have already seen to be the case for a

uniaxal erystal.
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If the polariser and analyser are either parallel or crossed, the two
hyperbolas coincide, and we have a single rectangular hyperbola of
which one branch passes through M and the other through M’ as
shown in Fig. 190, while if in addition the plane of polarisation be
parallel or perpendicular to MM’ the curve reduces to a rectangular
eross as shown in Fig. 191. When the polariser and analyser are
parallel we have o — =0, I=¢? and the brush is bright, but if the
Nicols be crossed a — 8=90° and the brush is dark.

The neutral hyperbolic bands are made to pass through all possible
forms by rotating the plate between the Nicols, and, as in the case of
uniaxal erystals, the coloured fringes change to the complementary tint
in crossing the neutral lines (Art. 233).

(2) Section Parallel to the Plane of the Axes.—In this case the optic
axes OM and OM" (Fig. 192) at any point O in the face of the crystal
lie in the plane of the face, and for a ray incident nearly normally at
O, the planes of polarisation of the two refracted
rays will bisect the angle MOM’ internally and
externally. Hence if the angle of incidence be
small the bisectors OX and OY will have the same
direction at every point, and therefore if they are
parallel or perpendicular to the principal plane of
the polariser or analyser at one point they will be
so at all, and the whole field will be uncoloured.
There are consequently no neutral lines, but in four positions the
whole field is uncoloured.

(3) Section Perpendicular fo an Axis.—When the plate i1s cut at
right angles to one of the optic axes the fringes form a system of con-
centric rings, and these are crossed by two neutral bars which in
general are not rectangular. When the Nicols are parallel or crossed
the two bars coincide and the neutral line is sensibly straight, and
either white or black.

Fig. 192,

3. Circularly and Elliptically Polavised Light

237. Parallel Circularly Polarised Light. — The phenomena
which are presented when circularly or elliptically polarised light is
transmitted through a thin erystalline plate were investigated by Airy.!
The characteristic of circularly polarised light is that it results from
two equal plane-polarised parts, polarised at right angles and differ-
ing in, phase by a quarter of a period. Its components in any

Y Airy, Camb, Trans. vol. iv.
2D
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two rectangular directions may therefore be represented by the
equations,
r=acoswl, and y=asinw!,

the intensity of the original beam being 2a° It may be obtained by
transmitting plane-polarised light through a quarter-wave plate (or
a Fresnel’s rhomb suitably placed), the action of these instruments
being to divide the incident plane ray into two others vibrating in
perpendicular directions, and differing in phase by a quarter period.
The determination of the phenomena which arise when cireularly
polarised light is transmitted through a erystalline plate may there-
fore be obtained from Art. 229 by introducing the condition that
the first plate introduces a phase difference of a quarter period.
The direct investigation of the intensity in the field of the analyser
is, however, very simple. Let the components of the cireular vibra-
tion falling on the plate he

r=acoswl, and y=asinwl,

parallel to the two directions of vibration in the plate as in Art. 211.
The passage through the plate introduces a relative difference of phase
4, 50 that the emerging vibrations may be written in the form

r=acoswl, and y=asin(w+5).

These, resolved parallel to the principal plane of the analyser, give
the vibration

e o cos ol e sina sin (el 4+ 8) = (cosa +sinasin ) cos wf e sina (0% 8 811 w!.
The intensity is therefore

[ =a?{icosa-+sinesind)*+ (sin acos 8)*},
=¢*( 1 4 sin 2a sin &),

which is independent of the position of the polariser.
If the analyser be merely a doubly refracting rhomb we shall have
in the same manner for the ordinary image

I :.-:r.E[ll — sin 2a zin ﬁ],
and therefore
[4+1 =245,

so that the images are complementary.

Had we started on the supposition that the a-component of the
vibration is retarded relatively to the y-component, we would have
had

e=gcos(wl+8), andy=asined,

il

el T, il oo
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and for the intensity in the field of the analyser we would have the
complementary expressions

I =a?*1 - sin 2a sin d),
I’ =a*(1 + sin 2a sin 8).

Hence if the sense of the circular polarisation be reversed the two
images in the field of a doubly refracting analyser will interchange
tints. The formula for I shows that the image possesses a certain
colour depending on the term sin 2« sin 8, and that there are two posi-
tions in which the image is achromatic, given by the equation

sin 2a =0,

that is, when the analyser is parallel or perpendicular to the prineipal
section of the thin plate, and in both these positions the intensity is
the same and equal to half that of the incident light, for we have

I=1"'=a"

The tint, depending on &, will vary with the thickness of the plate,
but here it will not follow the law of colour in Newton’s rings which
holds in the case of plane-polarised light, for the term on which the
colour depends is here proportional to sin & and not to sin® }4.

If a quarter-wave plate or a Fresnel’s rhomb be introduced between
the erystal and the analysing Nicol in such a manner that light passing
through the Nieol would be circularly polarised by the plate (that is,
50 that the principal plane of the Nicol makes an angle of 45° with
the principal plane of the plate), then the light falling on the ecrystal
will be circularly polarised and the light emerging from it will be
circularly analysed. In this case the vibrations emerging from the
erystal are, as before, of the form

acoswl, and «sin (w+ 8.

Hence if the prineipal plane of the quarter-wave plate be inclined at
an angle a to that of the erystal the two components emerging from
the plate are

e cos acos wl + ¢ sine sin (wf + §8),
and
@ sin e sin wf + @ cosacos (wf + 8).

These resolved parallel to the principal plane of the analysing Nicol,
which is at 45°, give an expression which is simply their sum multiplied
by 1/ «/3—that is,

—H:'J{u-n:". (wf —a)+cos (wf 46 —a) | :

Ay J

Colour
term.

[.-i;.;]lt
circularly
analysed.
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Hence
I = 2a* cos® 44.

There are consequently no neutral lines, and the isochromatic lines are
the same as when the light is plane-polarised and analysed.

238. Convergent Circularly Polarised Light.—If the incident
light be convergent, achromatic lines and coloured fringes are presented
as in the case of plane-polarised light, but here they are of a simpler
character. The uncoloured lines are determined by the equation

sin 2a=0,

therefore they are only half as numerous as in the case of plane-
polarised light, for in the latter case the neutral lines are determined
by the equation sin 2a sin 23=0.

Thus with a uniaxal plate eut perpendicularly to the optic axis
we have with plane-polarised light in general two rectangular crosses
of uniform intensity and neutral tint, but with circularly polarised
light we have a single cross, the arms of which are respectively parallel
and perpendicular to the trace of the principal section of the analyser.
The intensity of the neutral lines is uniform and equal to %, being
independent of the angle between the prineipal planes of the polariser
and analyser.

For a given position of the Nicols, if sin 2« is positive, the points
of maximum intensity correspond to

sind=1, ord=(dn+1l)im,
that is,

-
T Hhmrw 9w o, (max.),

2'!' .2! 2]

and the points of minimum intensity to

gsind= -1, ordé=(4n-1)m,
that is,

5= 3;} ?;, %r, ete. {min. ).
In the case of plane-polarised light we have seen that the bright
and dark fringes are determined respectively by

d=2nwr=0, 2w, 4w, elc.,

and
oa=(2n+1w=w, 3w, Om, eic.

Henee the bands correspond to the even multiples of I+ in the latter
case and to the odd multiples in the former.
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The effect of the circular polarisation has been to displace the
fringes through a quarter of an order. In one pair of opposite quad-
rants they are pulled in towards the centre by this amount, and in the
other pair they are pushed out by the same amount, for the bright
rings in any quadrant correspond to the dark rings in the adjacent
quadrants, each fringe changing to its complementary in crossing the
neutral lines (Figs. 193, 194). f

This result affords a convenient method of determining the sign of
a crystal, for if two crystals have opposite signs then sin & will be posi-
tive for one and negative for the other, consequently the bright rings
afforded by one will correspond to the dark rings of the other. Dut
we have seen that the bright rings in any quadrant correspond to the
dark rings in the adjacent quadrant, therefore for a given position of

Fig. 1.

the Nicols the rings afforded by one crystal will be similar to those of
the other turned through a right angle.

If the thin plate be eut from a biaxal erystal perpendicular to the
mean line, the isochromatic curves are lemniscates, and crossing these
we have the two branches of a rectangular hyperbola passing through
the apparent extremities of the optic axes, and having for asymptotes
a parallel and a perpendicular to the trace of the principal plane of
the analyser. The fringes change to the complementary tint where they
cross the neuntral lines—that is, the bright bands in any quadrant
correspond to the dark bands in the neighbouring gquadrants.

239. Elliptically Polarised Light.—If the light incident on the
plate be elliptically polarised, its components parallel to the principal
directions in the plate will differ in amplitude and phase. The effect
of the plate is to alter this difference of phase, so that emerging from
the plate the vibrations may be written in the form

r=acoswf, and y=>bcos(wl+4§).

Bign test.
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Resolving these parallel to the prinecipal plane of the analyser we have
in it the vibration

gdeosaeosel L hsinecos(wf L8 =(zcosatbsinacosd) cosw! —hsinasindsin w
The intensity is consequently given by

I=(mcosa+bsinacos d)®+ § sin® a sin® 4.
= cos®a + P sin® a4+ alisin 2a cos 6,

The uncoloured lines are therefore again given by the equation
gin 2a =10,

The forms of the fringes have been investigated by Airy in some of
the simpler cases, particularly that of a uniaxal erystal cut perpendicu-
larly to the optie axis.

4. Dispersion of the Optic Awves

240. Dispersion of the Axes.—The optic axis of a uniaxal erystal
is the same for light of all colours, but in the case of biaxal erystals
the angle between the optic axes depends on the principal indices
1y Jiay iy and as these quantities are functions of the wave length, it
follows that in general the angle between the optic axes will be
different for differently coloured lights. Thus if 26, and 26, denote the
angle between the optie axes for the violet and the red rays respectively,
we have to determine them in terms of the corresponding principal
velocities (Art. 201)

tan 8, = \f‘;::f:g tan #, = \/'L:;_f'r;:,
and as a, b, ¢ do not, in general, vary proportionally in passing from
one colour to another, it follows that ¢ will vary with the wave length.
This dispersion of the optic axes, as it is termed, depends on the
character of the crystal, presenting different peculiarities according as
the erystalline axes are rectangular or oblique.

(1) Orthorhombic System.—Crystals of the orthorhombic (or trimetric)
gystem possess three rectangular planes of symmetry. The crystallo-
graphic axes are unequal but mutually rectangular.

Now the optic axes are situated in the plane (22) of the greatest
and least axes of elasticity. Consequently if we have a=l=¢ for all
wave lengths the optic axes for all colours will be sitnated in the same
plane (ac), but if it should happen that for some colours we have
a=l=c and for others b=a=r¢, the optic axes of the former will lie in the
plane (ac), and those of the latter in the perpendicular plane (be). So
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again if for any colour we have a=c=10, the corresponding optic axes
will be situated in the plane (ah). The pairs of optic axes sitnated in
any plane have, however, a common bisector of the angle between them,
viz. the axis of elasticity which lies in that plane ; they are therefore
symmetrically situated with respect to this line.  When the variations
of a, b, ¢ from eolour to eolour are small, compared with the differences
of the quantities themselves, then the optic axes of the varions colours
(as in the case of aragonite) will all lie in the same plane, and he
symmetrically situated with respect to the same line.

Thus the lemniscate fringes presented by a plate eut perpendicu-
larly to the greatest or least axes of elasticity—that is, perpendicularly
to either bisector of the angle between the optic axes—will possess the
same centre but will have different foci for the different colours, the
distance between them inereasing or decreasing from the red to the
violet, according to the nature of the crystal ; but in some cases the
~angle between the axes attains a maximum value for some colours
between the red and violet, and then deereases from this towards both
ends of the spectrum.

(2) Monoclinic Systen.—In the monoclinic system of crystals two
of the crystallographic axes are inclined at an obligue angle, while the
third is perpendieular to their plane. Thus of the angles between the
axes two are right and one oblique. There is consequently only a
single plane of symmetry, viz. that containing the oblique axes. The
third axis, which is perpendicular to this plane, preserves the same
direction for all colours, but the directions of the other two axes may
vary in the plane of symmetry, so that great complication may oceur
in the fringes. Two distinct cases arise :—

(a) If for any colour the bisector of the angle between the optic
axes coincides with that erystallographic axis which is perpendicular
to the plane of the other two, this line will bisect the angle between
the optic axes for all the other colours, but since the oblique axes in
the plane of symmetry vary with the wave length, it follows that the
plane containing the optic axes may be situated in any azimuth.
Borax presents this mode of dispersion, the optic axes for the various
colours being sitnated in different planes but possessing a common
bisector. Thus the isochromatic fringes afforded by a plate cut per-
pendicularly to the bisector of the acute angle between the optic axes
(the greatest axis of elasticity in negative, and the least in positive
crystals) possess the same centre, but their axes may be in any
direction.

() If the optic axes for any colour are in the plane of symmetry—
that is, the plane containing the oblique axes of the crystal—then the
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optic axes for all colours will be situated in the same plane, but as their
directions may vary in any manner, the angles between them will not
have a common bisector and the isochromatic curves will not have a
common centre, but their centres will be situated on a right line with
respect to which the curves are symmetrical. This species of dispersion
is exhibited in gypsum.

(3) Triclinic Syslem.—In the triclinic system of erystals the three
crystallographic axes are inclined at oblique angles, and the position of
the axes of optical elasticity may vary in any manner from colour to
colour.  We may consequently be presented simultaneously with the
modes (a).and (8)—that is, the optie axes for the different colours may
he situated in different planes and at the same time they may not have
a common bisector.

Effect of a Change of Temperature.—An elevation of temperature
generally diminishes the refractive index of a transparent substance.
Henee in general a variation in the temperature of a crystal causes a
corresponding variation in the quantities «, b, ¢, so that the angle
between the optic axes for any given colour will in general change
with the temperature of the erystal. And further, if at one tempera-
ture the optic axes for all colours lie in the same plane, then at
another temperature some may remain in that plane while others are
displaced to the perpendicular plane. This was observed by Brewster !
in sulphate of sodium. In this substance the optic axes at ordinary
temperatures are all situated in the same plane, but they exhibit great
dispersion and the fringes are greatly confused. Operating with mono-
chromatic light of various colowrs, the angle between the optic axes
was found to inerease from the violet to the red, being small for the
former and considerable for the latter. On gradually raising the
temperature the angle was seen to diminish for all the colours, the
violet axes shrinking closer and closer till they finally coalesced, and
the crystal for these rays then behaved as if uniaxal. On continuing
the elevation of temperature the violet axes separated again, but now
in the perpendicular plane, and at 60° the angle between them attained
a considerable magnitnde. In operating with white light the pheno-
mena become extremely confused and indistinct.

In the case of the oblique systems of crystals an elevation of
temperature may displace one axis notably more than the other, so
that the mean line corresponding to this colour becomes displaced in

direction.
I Brewster, Phil. Mag. (3), vol. i. p. 417.



CHAPTER XVI
ON THE STUDY OF POLARISED LIGHT

241. Detection of Polarised Light.— The fringes and colours
exhibited when polarised light is transmitted through a thin erystal-
line plate placed before an analyser afford a most delicate test of the
presence of polarisation in a beam of light, or of doubly refracting
structure in a transparent substance. It is to be expected, therefore,
that instruments depending in principle upon the exhibition of these
fringes should have been early invented and applied to the study of
polarised light. In general any instrument which acts as a polariser
may also be used as an analyser. Thus a Nicol's prism may be used
either to produce a pencil of plane-polarised light or to detect polarisa-
tion in any other pencil. If light be transmitted through a Nicol
the intensity of the transmitted beam will vary as the Nicol is rotated
if the incident beam is polarised or partially polarised. But this
method of detecting the presence of polarisation depends on the
variation of the intensity of an image, which will be very minute, and
consequently escape ohservation if the quantity of polarised light in
the incident beam is small.

Instruments depending on the production of colours or fringes are
much more delicate, and detect the presence of small traces of polar-
isation. We shall describe those of Savart and Babinet.

242. Savart's Polariseope.—Savart’s polariscope is a simple and
delicate contrivanee for the detection of plane-polarised light.

A thin plate of a uniaxal crystal is divided into two halves in
order to secure two similar thin plates of equal thickness. The two
portions are now superposed so as to form a plate of double the thick-
ness, and one of them is rotated through 90°, so that their principal
sections are at right angles. The plates, so placed, are mounted in a
small tube before a Nicol's prism, or any other analyser, of which the
principal section is turned parallel to the bisector of the angle between
the principal sections of the plates.
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When a beam of convergent or divergent plane-polarised light is
allowed to fall upon the plates the ficld of the analyser is crossed by
a system of colonred rectilinear fringes parallel to the bisector of the
angle between the principal planes of the plates. The sensibility of
the instrument increases as the plane of polarisation of the incident
light approaches the direction of the fringes—that is, the bisector of the
angle between the principal sections—and it is sufficiently delicate to
easily detect the polarisation of the light of the sky.

The quartz plates are cut at an angle of about 45 to the axis in
order to avoid the effects of the rotatory power which the crystal
possesses in the direction of its axis (chap. xvii.).

243. Babinet's Compensator.—The compensator devised by M.
Babinet admits of the study of polarised light by means of coloured
fringes, even though the incident light be parallel. It is an exceed-
ingly sensitive polariscope, and has been successfully adapted, in a
modified form, by M. Jamin to the study of elliptically polarised
light.

It consists of two slender right-angled prisms or wedges of quartz
ABD and BCD (Fig. 195), placed together with their hypothenuses
in contact so as to form a thin plate of
rectangular cross section ABCD. In the
prism ABD the optic axis is parallel to
the face through ADB, and to the plane of
the section ABCD, while in the IJI'iS'ﬂl
BCD the axis is parallel to the face
through CD, but perpendicular to the
plane of the section. Thus in both
prisms the axes are parallel to the faces
of the plate, but perpendicular to each other, as in Wollaston’s prism
(Art. 186), but on account of the extreme smallness of the angles of
the wedges in this apparatus the separation of the rays during trans-
mission is negligible. ' -

Hence if plane-polarised light falls normally on the face AB it will
he broken up into two parts, one vibrating parallel to AB, and the
other perpendienlar to it, and these vibrations on entering the second
prism will retain their directions of vibration but interchange their
velocities of propagation, for the vibration parallel to AB is parallel to
the optic axis in the first prism but perpendicular to it in the second.
It consequently follows that the ordinary ray in the first prism
becomes an extraordinary ray in the second, and wvice versi. Thus if
any ray P(Q traverses a thickness ¢ in the first prism, the relative
retardation of the two vibrations will be e(p, — ), and for a thickness

Fiz. 105,
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¢ in the second prism will be — (. — p,), since the ray which travels
fastest in the first travels slowest in the second, and wvice versid. Hence
the whole relative path retardation of the vibrations produced by
transmission through the plate 1s

6= (e —e)(me— ps)-

The ray MN which passes through the centre of the plate (e=¢")
suffers no relative retardation in its component vibrations, and remains
polarised in the same plane as at incidence. As we move from N
towards D the component vibrations at emergence will differ in phase,
but at a certain distance a from N the phase difference will be equal to
m, and the retardation will be J1A. At a distance 2« it will be A, and
so on. Consequently on the line CD we will have a system of equally
spaced points at which the phase difference will be a multiple of =, and
the emergent light will be plane-polarised, and on the face of the
crystal there will be a corresponding system of right lines, at a com-
mon distance @ from each other. At the centre N, and at points on
CD, distant any multiple of 2¢ from it, the phase difference will be a
multiple of 2, and the transmitted light will be polarised in the same
plane as the incident, but at the intermediate points, viz. those distant
from N by an odd multiple of a, the phase difference will be an odd
multiple of , and the transmitted light will be plane-polarised also,
but in this case the plane of polarisation will be inclined at an angle
2a to the plane of polarisation of the incident light, where « is the
angle between the primitive plane of polarisation and the principal
plane of the face AB (see Art. 47, Cor. 1). The points at which
the plane polarisation exists are determined by the equation

(- -I‘:J][-;i.c - =u. ._%_?L
At a point any distance = from N the path retardation is & where

d. .z - &
= A=A
A a S

and we have the relation

(e =)o~ 1) =2 . .
£ =
At points where z/z is not a whole number, the phase difference will
be other than a multiple of 7, and the transmitted light will in general
be elliptically ! polarised.

! At points half-way between those where the plane polarisation oceurs, the phase
difference will be 90° or an odd multiple of 90°, hence if the incident light be
polarised at an angle of 45° to the axis of the quartz, the component vibrations will
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Hence if the compensator be viewed through a Nicol's prism, turned
s0 as to extinguish the plane-polarised light of the central line N, it
will also extinguish the light from a system of parallel lines on either
side of N, at a distance 2a from each other. Between these dark lines
there will be a certain amount of illumination. At points half-way
between them—that is, on a system of lines distant from N by odd
multiples of a—the light is also plane-polarised, but at an angle 2a
to that at the central line. The Nicol will not extinguish this plane-
polarised light but will transmit more or less of it according to the
value of «, and (if « = 457) the light from these lines will be completely
transmitted by the Nicol, so that they will be very bright and the
fringes will then be best marked, for between the dark lines corre-
sponding to the z = 2ne we shall have the spaces the brightest possible.
Hence if « = 45°—that is, if the incident light is polarised at an angle
of 45° to the principal plane of the face—the fringes will be most
distinet ; the dark bands being given by

ar= i,
and the brightest lines by
= (2n+1).

Thus in general we have two systems of lines along which the light
is plane-polarised, one corresponding to retardations equal to even
multiples of A and the other to odd multiples, and the planes of
polarisation of the two systems are inclined at an angle 2a. If the
principal plane of the analyser be perpendicular to the primitive plane
of polarisation—that is, if the Nicols be crossed—a system of dark lines
corresponding to the former will appear in the field, and if the analyser
be rotated through an angle 2a a system of dark lines corresponding
to the latter will be presented, while for intermediate positions of the
analyser there will be no perfectly black bands, but merely lines of
maximum and minimum intensity.

The distance ¢ may be measured by fixing a very fine cross wire,
furnished with a micrometer screw, so as to coincide with the central
dark band. By turning the screw the wire is displaced to the next
dark line, and the distance 2« through which it has been displaced
may be found; or the wire may be displaced to the ath dark line
from the centre, the distance 2na read off, and @ calenlated. The retard-
be of equal amplitude, and when they differ in phase by 90° the light will be cireu-
larly polarised. There will therefore in this case be a system of lines along the face
of the plate at which the transmitted light is circularly polarised, and these lie half-
way between the lines of plane polarisation. They may be detected by introducing
a quarter-wave plate or Fresnel's rhomb, which will reduce the circularly polarised

light to plane-polarised light ; this may be quenched by a Nicol's prism, and a
corresponding system of dark lines will be presented in the field,
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ation at any point depends on the wave length, and consequently if
white light be used the bands will be rainbow-coloured and the central
line alone will be quite black.

(or.—If the angle ABD of one of the prisms be i we have

(Me = 1) tan i=Afde,
for

tan s__:c;z:: and (f‘!"](ﬂr—ﬁa}=?i ;

which by multiplication give the above result. Knowing a and 4, this
gives a method of determining either A or p, — p,, when one of them is
known otherwise.

244. Elliptically Polarised Light.—M. Jamin applied Babinet's
compensator, in a modified form, to the determination of the constants
which characterise an elliptically polarised ray. In the foregoing we
have supposed the cross wire movable while the compensator remains
fixed, but in M. Jamin’s apparatus the cross wire remains fixed and
one of the wedges forming the compensator is moved parallel to itself
by means of a micrometer screw, the other wedge remaining fixed.
The effect of this is to diminish or increase the difference of thickness
¢ —¢ under the wire according to the direction of motion. The
motion of the wedge consequently displaces the whole system of fringes
across the field, and any particular band may be brought under the
cross wire. It is elear that the distance through which the wedge
must be displaced in order to displace the system through the width
of a band is twice as great as the corresponding displacement 2a of
the fibre in the first form of the apparatus. For here the thickness of
one wedge under the wire remains constant while the other varies, but
in the case of a movable cross wire the thickness of one increases and
that of the other simultaneously diminishes by the same amount, so
that to produce the same difference of thickness under the fibre it is
~only necessary to move it through half the amount. Hence if 2/ be
the distance through which it is necessary to displace the wedge in
order to displace the fringes under the cross wire by the width of a

band, we have for the retardation at a distance » from the central
band

and therefore

The instrument may now be applied to the determination of the
characteristics of elliptically polarised light.
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Determination of the Phase Difference.—If the incident light be ellip-
tically polarised we may resolve the vibration at each point into two
components parallel to the axes of the quartz wedges. These com-
ponents will differ in phase and amplitude, and are of the general form

¥=A cos (ef +a), y=D cos (w-+8).

The effect of transmission through the plate is to change the phase
difference « — 3 by an amount

B

2r s
= = (0= ){ate — o),

which will vary from point to point. It is clear then that we will
have a system of parallel lines for which the whole phase difference
a—f3+38 will be equal to multiples of =, and the transmitted light
along these lines will be plane-polarised, consequently when the com-
pensator is viewed through a Nicol, properly placed, a system of bright
and dark bands will be exhibited in the field, and under the central
band the total phase difference will be zero.

Now let us suppose that the apparatus is so adjusted that with
plane-polarised light the central band is under the fibre. Then, when
the incident light is elliptically polarised, the central band will not be
under the fibre but will be displaced aeross the field. At this band
the original phase difference existing between the component vibrations
has been neutralised by that introduced by the plate. This phase
difference is consequently determined by turning the micrometer serew
till the central dark band is brought under the wire. If the displace-
ment be  we have therefore

a.-ﬁ s @x
= re—-p=w—.
r b ] b

Position of the Aves—The direction of the axes of the elliptic
vibration may also be determined by means of the compensator. We
know that the phase difference of the component vibrations taken
along the axes is 90" (see Art. 47). Hence set the compensator so
that the eross wire is over the central line N—that is, over the central
dark band when the ineident light is plane-polarised—and turn the
serew by an amount 15, so that the line under the fibre will correspond
to a retardation of JA or a phase difference of 90°. Now allow the
elliptically polarised light to fall on the compensator, and if the central
black band be not under the fibre turn the compensator round the
direction of the incident light, and so cause the fringes to move across
the field, till the central ba