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PREFACE.

HIS book is designed primarily for the use of ophthalmic

students. There are many excellent manuals on the
diseases of the eye, but in them the subject of Optics is
relegated to a single chapter where it is necessarily dealt
with in only a cursory way.

The student who refers to the standard works on Optics
will probably not find them exactly adapted to meet his
requirements. With a great deal of information about
rainbows and halos they will not tell him what is the
actual size of a retinal image, or what is the effect of a
decentred lens on the incident light.

Feeling the importance of a more accurate knowledge
of Optical principles than is at present attainable by those
who cannot afford to devote much time to the subject,
I have endeavoured to place at the reader’s disposal within
reasonable compass such a knowledge of Optics as would be
of use to an ophthalmic surgeon in his daily practice.

I am not without hope that this book may also be of
use to mathematical students as an introduction to more
advanced works on Geometrical Optics such as that by
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Professor Heath. To this work and to Mr Preston’s excellent
Theory of Light I am under deep obligations, while my data
for the last chapter have been taken from Dr Landolt’s
article in the Traité Complet d’Ophtalmologie by De Wecker
and Landolt.

To illustrate all the points of fundamental importance
throughout the book a large number of examples have been
worked out. The student, to whom the subject is entirely
new, is advised to omit in the first reading the following
chapters, which require a slight acquaintance with the
Differential Calculus: Chaps. VI, IX, XIV, XV, XVI.

A. S. PERCIVAL.

16 ErvLisoN PLACE,
NEWCASTLE-UPON-TYNE.
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CHAPTER I

INTRODUCTION,

WHEN we say that we see the sun or a tree, we really
mean that we see the light that comes from them. The
sun of course sends out light of its own, whereas the tree
merely passes on or reflects the light which it receives from
something else.

It is obvious that in neither case do we see the thing
itself; we are only conscious of a certain sense-impression
derived from 1t. The nature of this sense-impression, the
way in which it is developed from a physical stimulation of
the retina, and the question as to which parts of the brain
are engaged in this development are problems that are still
engaging the attention of physiologists and anatomists.

The science of Optics however deals with none of these
questions; it 1s in fact confined to a study of the nature of
this physical stimulus called light, and the investigation of
its laws and properties. Now although 1t is the latter branch
of the subject that chiefly demands our attention at present,
a brief sketch of the nature of light will not be out of place,
as 1t may serve to render these laws and properties more
intelligible,

The phenomena of light can only be explained on the

P. O. 1
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hypothesis that they are due to some sort of wave motion,
though the actual kind of wave is not definitely established.

Let us consider first the kind of waves most familiar to
us, namely water-waves. If a stone be thrown into the
centre of a tranquil pool, the surface of the water becomes
mapped out into a series of concentric circles, which steadily
increase in size until finally they reach the margin of the
pool. The immediate disturbance produced by the falling
stone sets up a further disturbance of the water which takes
the form of surface waves. Two points are specially worthy
of notice :

(1) The circles always remain concentric, with their
circumferences separated from each other by the same
distance. This shews that the disturbance is propagated
in all directions along the surface of the water at the same
rate.

(2) It is the wave that moves forwards not the water.
If a cork be floating on its surface it will be noticed that
as each wave passes it, 1t merely bobs up and down, and
is not carried along with the wave. The particles of water
merely rise and fall in succession as the wave passes over
them®, the extent or amplitude of their movement de-
termining the height of the wave.

Waves of course may differ from each other in frequency
and wave-length, as well as in height. The wave-length or
distance from crest to crest of two successive waves depends
both on their frequency, and the velocity with which they
are moving. Let us suppose the particles of water occupy
one second in rising and one second in falling; after the

1 The statement in the text is not quite accurate. The motion of an
individual particle of water that is subject to waves depends on the depth of
the water and other factors. If the particle considered be far removed from
the bottom, its motion is cireular,
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lapse of two seconds any one particle is then in precisely
the same phase of its motion as that in which 1t was at
first. A wave crest will then be formed once in every two
seconds and if we further imagine these waves to be travel-
ling forwards with a velocity of 10 feet per second, the
length of the wave or distance from crest to crest must be
20 feet?,

But further, waves may differ from each other in a
still more essential way. We have been considering waves
that are due to the medium heaving up and down: a
periodic to and fro movement in a series of particles will
produce a wave of quite a different nature; in fact this
1s the kind of movement that gives rise to sound. There
may indeed be no motion at all, and yet, if it be periodic
in space and time, the disturbance in the medium is rightly
called a wave, for instance if the same conditions of tem-
perature or of electrical state recur regularly at equal
intervals of distance at the same time, and also present
themselves at equal intervals of time at the same place,
a wave of heat or a wave of electrical displacement may
be said to pass over the medium. A given medium then
may be quite competent to transmit some kinds of waves
though absolutely impenetrable to others. Sound-waves for
instance will travel readily through air, but not through
a vacuum, though this 1s quite transparent to light-waves.

I This relation is expressed by the simple formula
FT=A\,
where A denotes the wave-length, V" the rate at which the waves are moving,
and 7" the time it takes for one complete undulation to pass a given point.
This time T is sometimes called the undulation period, for it is the period
which a given particle occupies in going through the complete eycle of
changes that constitutes one undulation, from the crest of one wave to the
erest of the next. The period (T) is therefore the reciprocal of the wave

frequency, so the frequency may be denoted by }1 :

a9

=
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For our present purpose however it will be sufficient
to regard light as due to an up and down motion something
like that of the surface of the sea.

We have further to consider the nature of the medium
in which these light-waves are formed. It must obviously
exist in what is called a vacuum, as well as in all trans-
parent bodies. Indeed from several considerations we are
driven to regard it as a continuous substance permeating
all space and filling up the interstices of all matter. It
1s so subtle that 1t can flow freely through the pores of the
most solid objects without resistance, and yet it possesses
a certain rigidity, inasmuch as it can transmit transverse
vibrations. We may regard it as a kind of continuous jelly
or pitch, which, while 1t 1s so fluid that it offers no resistance
to bodies moving about in it, is yet capable of quivering
under the influence of a luminous object. Now this property
of quivering we ordinarily associate with rigid solids, for
it implies a resistance to change of shape. The two pro-
perties arc not however absolutely antagonistic. Pitch, for
instance, 1s a semi-fluid, and yet 1t can be made to vibrate
like a tuning-fork, provided that vibrations of sufficient
frequency are set up. The nature of the ether, as this
luminiferous medium is called, may appear a little more
intelligible when it is remembered that the wave frequency
of light-vibrations varies from 400 billions to 700 billions
a second according to the colour of the light. As far then
as the transmission of light i1s concerned, the ether may
be regarded as an extremely fluid kind of pitch capable
of being made to quiver billions of times in a second.

Let us now consider a luminous object, or rather, a
luminous point in free space. It is a source of energy and
may be regarded as a vibrating point causing the ether
which fills the space to quiver. When a disturbance is
caused in water, such as that due to a falling stone, a
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series of concentric circular waves appears to be formed on
the surface of the water. The light vibrations of ether
however are not limited to one plane, but are transmitted
equally in all directions throughout its substance, so that
a series of concentric spherical waves is formed which
spreads out and out through space. They always remain
concentric, and always preserve their spherical form as long
as the medium is homogeneous and isotropic?, for all the
waves will be moving on at exactly the same rate. The
laws of wave-propagation are well known ; the rate at which
waves travel through a perfectly homogeneous medium
depends solely on the nature of the medium and not at
all on the properties of the wave, provided of course that
the wave 1s of a kind which can be transmitted by the
medium considered ; sound waves for instance cannot be
transmitted by ether. The velocity of all the waves that
can be propagated through ether is equal to the square
root of the ratio of its elasticity to its density

my/E.

— —

The direction in which a wave travels is obviously at right
angles to the wave front, so that the light waves that we
are considering must travel in the direction of the radii of
their spheres, these radii being in fact called rays of light.
When we are merely considering the direction in which
light is travelling we may therefore confine our attention
to the direction of these rays, and it is chiefly to the con-
sideration of rays under varied conditions, or in other words,

! If a medium be not isotropie, i.e. if its elasticity in different directions
be unequal, waves due to vibrations in the direction in which the elasticity
is greater will travel quicker than those due to vibrations in the direction in
which it is less. Such conditions obtain in many erystals and produce the
phenomenon of double refraction.
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to the direction in which light travels when a change of
medium 1s encountered, that this book will be devoted.

Yet for the intelligent comprehension of even such laws
as will be here discussed, it 1s necessary to bear in mind
the nature of light, as being a rapid and regular succession
of waves of some kind in ether. Now a thorough conception
of all that 1s involved in the expression wave motion 1s
somewhat difficult to grasp, and it is convenient to regard it
now from one, now from another, point of view, according
to the problem before us. Let us take the case of water
waves agaln.

(1) We may confine our attention to the expanding
circle of disturbance, and consider the direction of its
movement.

(2) Or we may think of the actual particles of water
successively oscillating up and down, neglecting for the
moment the form of the wave so produced.

(3) Again since every particle exactly imitates the
movement of the particle first excited, 1t must exert on
those adjoining it precisely the same influence that the
first particle excited on its neighbours.

This leads us to the great principle of Huygens, which
may be briefly stated in the following way :—Every vibrating
particle sets up a new and independent wave system, so
| that 1nnumerable elementary wave systems are simulta-
| neously produced. These by their cooperation or inter-
. ference give rise to that resultant wave system by which
the medium appears at any moment to be moved.

Each elementary wave system acts independently, and
superimposes itself upon any others that may be simul-
taneously disturbing the medium. A familiar illustration
of this is afforded by the tiny ripples formed by falling
raindrops on the surface of the sea.
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The cooperation of two wave systems of equal ampli-
tude that meet each other can be easily observed in any
liquid. At all the points where two wave crests meet, the
surface of the fluid rises to twice the height of either:
where the troughs of the two waves meet, it sinks to double
the depth. At those points where the crests of one system
of waves coincide with the troughs of the other system, the
upheaving and depressing forces are in equilibrium, and
the surface of the fluid remains at its original level

The accompanying diagram (Fig. 1), which is a sectional
view of the spherical disturbances produced by light, may
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make this more clear. Let S represent the source of light
emitting light of a wave-length (A) S I. Then if T be the
undulation period, after the lapse of 7' the phase of S will
occur throughout the circle of particles denoted by I. For
instance, a crest will be formed at S at periodic intervals
of time T, Similarly crests will be formed at periodic in-
tervals of space A. The circles I, II, III will represent
crests.

Now, according to Huygens' principle, each particle in
these circles will set up a new and independent wave
system.

Let us consider circle II, which will have been formed
by S in the time 27" In the time 37" a crest due to S will
have been formed at III. Meanwhile each particle in IT
will have set up an independent disturbance which will
have extended i all directions a distance A. It will be
seen that the external envelope common to all these small
circles is continuous with ITI. The internal envelope is also
continuous with I. Therefore the crests due to these inde-
pendent wave systems originating from II correspond to
two wave-crests (I and III) originating from S.

In a similar way it can be shewn that all the crests
originally formed by S are reinforced by the new and inde-
pendent wave systems that are originated by each particle
on these crests.

F

Now in time 5 S will be in the trough of a wave,

therefore in time 27" this trough will have extended 11\
outwards. In time 37 all the particles in the circle 11
will have set up a trough-disturbance which will have
extended a distance A from the circle 11. It will be seen
that the external envelope of these elementary trough-dis-
turbances will be continuous with the circle 2, representing
the troughs formed by S in time 37. The internal envelope



INTRODUCTION. 9

will be continuous with the troughs formed by S in time 7,
t.e. the circle of radius %’

Mathematical investigation confirms Huygens' theory
completely : by taking into account the effect produced by
each elementary wave, the form of the principal wave
system can be exactly foretold. Finally the phenomena of
diffraction shew that this is undoubtedly the real mechanism
of the undulatory movement. The simple conception of
the direct propagation movement from a single centre out-
wards is then erroneous. It is the inmumerable elementary
wave systems which, here reinforcing, there interfering with
each other, produce those expanding concentric circles of
the resultant wave system that we see. When the propa-
gation of the wave movement i1s free, the individual ele-
mentary waves withdraw themselves from observation, the
result of their combination being the only evidence of their
existence. In such cases the simple view of wave move-
ment as an expanding sphere or circle of disturbance (1)
i1s allowable. When however the transmission of light is
interfered with, should an obstacle occur which suppresses
any of the elementary waves, the adjoining ones immediately
assert themselves and may give rise to phenomena that
were never understood before the appearance of Huygens’
famous tract.

From a consideration of Huygens’ principle it will be
seen that the idea of an 1solated ray of light in the sense
of a single line of light is inconceivable, and the only in-
telligible meaning that can be given to the term ray is
the direction in which light is travelling.

We are now in a position to consider some of the laws
of light and from the conception we have gained of wave
movement, we shall find that they inevitably follow as a
necessary consequence of its nature. The radiation of light
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in a homogeneous medium may be considered from the first
point of view that we have discussed. '

Law 1. TIn a homogeneous medium light from a luminous
point is propagated in every direction in straight lines. As
has been shewn above, a luminous point in free space gives
rise to a series of concentric spherical waves which spread
out and out in the direction of the radii of the spheres.
In other words, light travels away from its source in every
direction in straight lines.

Law 2. The amount of illumination varies inversely
as the square of the distance from the source of light.

The luminous object is obviously to be regarded as a
source of energy, inasmuch as it creates a wave disturbance
m the swrrounding medium. These waves will travel on
and on through the medium, and so convey away the energy
that instigates them, until they meet with some absorbing
obstacle which quenches them, when the energy will re-
appear in some other form, such as heat.

Now, since the light waves in free space have a spherical
contour, the energy of the source of light must be distributed
over the surface of these spheres. As is well known the
surface of a sphere is proportional to the square of its radius
(A =47r®); and as the total energy of each sphere is the
same, 1t follows that the part which is distributed over a
given area must vary inversely as the square of the radius
of the sphere. For instance, if the radius of the sphere be
doubled, its surface will be quadrupled; the light then
which falls on a given area of the large sphere will be one-
fourth of that which falls on an equal area of the small
sphere. For example, we find experimentally that the
illumination produced by one candle at a given distance 1s
equal to that produced by four candles at twice the distance.

Up to this point we have been considering light travelling
in a homogeneous medium so that its wvelocity remains
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constant throughout its course. The problems that will
now occupy our attention demand some knowledge of the
velocity of light and the conditions which modify 1t
The velocity of light has been measured in several ways:
one of the most exact is that of Foucault. A narrow beam
of light is allowed to enter a dark room by a small hole and
is then received on a rotating plane mirror (R) that 1is
placed in its course (Fig. 2). In one part of the revolution

. Fig. 2.

the reflected beam is directed towards a concave mirror
(M), so placed at the other end of the room that 1t is
reflected back again to the rotating mirror, and thence back
to the hole at which it first entered. Now, were the trans-
mission of light absolutely instantaneous, however rapidly
the plane mirror rotated, the light would be reflected back
to the hole. When however the mirror is made to revolve
exceedingly quickly, it turns through a sensible angle during
the interval that the light is travelling from it to the fixed
mirror and back again. Consequently the reflected beam
does not return exactly along its original course to the
hole but 1t 1s deflected to one side. By noting the extent

1 Ordinary sunlight consists of waves of very various periods, those of
relatively long period giving to the observer the sensation of red light, while
those of shorter period excite the sensation of violet light.

In dense media it is found that light waves of short period (i.e. of great
frequency) travel at a slower rate than those of long period. Thus violet
light travels slower in glass than red light, and hence is refracted more. In
order to avoid unnecessary complications, this fact has been neglected—so

that the term light to the end of the chapter must be understood to refer to
monochromatie light, i.e. light of definite period.
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of this deflection and the number of revolutions of the
mirror per second, the time taken in travelling from the
rotating to the fixed mirror and back again can be cal-
culated.

The velocity of light in air is thus found to be about
186379 miles per second. If, however, a tube of water
be interposed between the two mirrors, the deflection of
the light is found to be greater. Light must therefore
travel more slowly through water than through air: indeed
1ts velocity in water 1s about three-fourths of that in air,

T

Ve A

Knowing that it is the ether in the water that transmits
the vibrations of light through it, we are naturally led to
enquire what is the matter with the ether in the water
that should make it vibrate less quickly. Is it less elastic,
or 18 1t more dense? It must be one or the other, for
= % (p. 5). Fresnel's view 1s that part of the ether
in such substances as glass or water 1s in some way bound
to the molecules of the matter, so that 1t moves about with
them and behaves as if it were more densel

Let us now consider what will happen if light travelling

1 In some substances however the elasticity of the ether appears to be
affected also. Thus the ether in doubly refracting crystals behaves as if it
were more elastic in some directions than others. Further, although we
cannot measure the velocity of light in metallic substances, there are certain
considerations, based on their electrical conductivity, which lead us to
believe that in metals the elasticity or rigidity of the ether is enormously
diminished (see p. 32). Consequently the value of u (see p. 18) for metals,
if it could be determined, would probably be found exceedingly high. This
indeed might almost have been anticipated from their characteristic lustre,
for it is found that the amount of light reflected from a surface increases
with its refractive index, as will be explained more fully in chapter rir,
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in one medium with a velocity V,, enters a different medium
in which its velocity 1s greater, V,.

Let us suppose that the source of light 1s at a very
great distance ; the contour surface of the light waves may
then be regarded as plane if a relatively small area be under
consideration. We may consequently say that all portions
of this area of the wave surface are travelling i the same
direction, in other words, the rays corresponding to this area
are all parallel.

On applying Huygens’' principle to this case we easily
find out what must occur. Let MN be the bounding surface

A ¥ 5 G
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: D
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Fig.3.

between the two media, the plane of the surface being at
right angles to the plane of the paper, and let C'D represent
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the portion of the wave front under consideration. The
direction in which it is moving is that of the lines AC, BD,
which are drawn at right angles to the wave front. We
may, if we prefer it, regard AC' and BD as representing
a beam of parallel rays of light, provided that we carefully
bear in mind the meaning that is to be assigned to the
term ray. In the figure, part of the wave front, that
indicated by the point C, has already reached the boundary
of the two media. The particle at ¢/ will then in accordance
with Huygens’ principle give rise to a disturbance or ele-
mentary wave, which will travel outwards in all directions,
but with different velocities in the two media. By the
time that the part of the wave front indicated by .D has
reached the point %, two hemispherical waves will have
been formed by €. That in the first medium will of eourse
have travelled outwards with the velocity of light in the
first medium V,, in other words the radius of this hemi-
sphere will be equal to DE. The disturbance in the second
medium will however travel at a greater pace, viz. V,, the
velocity of light in the second medium ; the hemispherical
disturbance in the same time will therefore have extended
further, and 1its radius will consequently be greater than
DE. In like manner all the particles between ' and #
will have produced elementary hemispherical waves the
radii of which are smaller in proportion as they are nearer
to the point & which is still at rest. Let us consider those
in the first medium. If from the point £ the tangent ZF
be drawn to the first elementary wave, it can be shewn
that 1t will also touch all the other intermediate elementary
waves. For let P represent any point in the wave front
CD intermediate between C' and D. Draw Pp parallel to
DE, and pK parallel to CD, and pP’ parallel to CF. Since
Pp= DK, the disturbance at P will have reached p when
that from D has reached K. During the time that the
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disturbance is passing from K to K, p is originating an
elementary hemispherical wave the radius of which is equal
to KK when the disturbance at A has arrived at &.

B e
g0~"P Ep
- pP" 1s the radius of the hemispherical disturbance when
the disturbance at K has reached F.

And since pP’ is parallel to CF,
L= CRE,
~. EF is also a tangent to the hemispherical disturbance
af P

Along this line or rather tangent plane ZEF, all the
elementary waves will be reinforcing each other since they
are 1n the same phase. In other words EF will represent
the resultant or principal wave due to the cooperation of
these elementary waves; KF must therefore represent the
wave front of the reflected light, and it is travelling in the
direction CFG, or EH at night angles to EF.

If through the point (' the line YCVY’ be drawn at right
angles to the surface M N it will be found that the angle
GCY 1s equal to the angle Y(UA. For in the two right-
angled triangles CF L, EDC, the hypothenuse C£ is common,
and the side CF 1s equal to the side ED. The triangles
are therefore equal to each other and the angle CEF is
equal to the angle KECD, ie. the angle, which the wave
front of the reflected light makes with the surface MN is
equal to that which the incident wave front makes with it.
Consequently the lines which are at right angles to these
wave fronts must make equal angles with the perpendicular
to the surface. In other words the ray GFC must make

with the normal C'Y an angle equal to that which the ray
AC makes with it,

Now e = =FER,

Z GCY = 2 ACY.
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Moreover 1t 1s found experimentally that both incident
and reflected rays lie in the same, plane, namely that at
right angles to the surface M N and in that of C'D, in fact in
the plane of the paper. We can state now the two laws of
the reflection of light which have been found by experiment
and we have shewn that they agree with our deductions
from the undulatory theory of light.

Laws of Reflection.

(1) The incident and reflected rays lie in one and the
same plane with the normal to the surface at the point
of incidence, and they are on opposite sides of this normal,

(2) The angles which the incident and reflected rays
make with the normal are equal to one another.

Let us now return to the consideration of the elementary
hemispherical waves in the second medium. If from the
point £ the tangent K1' be drawn to the first elementary
wave, viz. that produced by C, it can be shewn that it will
touch all the other intermediate elementary waves, that
have been formed in the second medium by the disturbance
of the series of particles between (' and K. The tangent
plane ET will therefore represent the resultant wave front
of the light that penetrates the second medium, and it is
travelling in the direction CTL or ER at right angles to
ET. We see then that incident light travelling in the
direction 4 C in the first medium is refracted on entering the
second medium in such a way that 1t travels in 1t in the
direction C'L. Itis also obvious that the only cause of this
change of direction or refraction of rays is the different rate
at which light travels in the second medium. Since the
disturbance arising from € or the phase of C reaches T
in the same time that the phase of D reaches %,

O I
DE % G
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Now the angle CET, which the wave front TE makes
with the surface MN of the medium, is equal to the angle
Y’CL which the line or ray C'L at right angles to the wave
front makes with C'Y’ the normal to the surface at C, and
for a similar reason the angle KCD is equal to the angle

ACY.
»osin Y'CL =sin CET, and sin ACY = sin ECD.

. DE : CcT
Now sin KCD = OE and sin CET = R
o

Vs 0T E’E'_ sin CET _ sin Y'CL
% DE DI =nE0D saA0Y
CE

But Y'CL and ACY are the angles of refraction and
incidence respectively, so that whatever the angle of inci-
dence its sine bears a constant and unalterable relation to
the sine of the angle of refraction. This relation is simply
the ratio of the velocity of light in the first medium to its
velocity in the second.

Now the velocity of light in most transparent substances
has been either directly or indirectly found by experiment,
so that a table can be formed expressing the relation that
the velocity in one medium bears to that in any other.
Any standard might of course be chosen, but since light
travels more quickly in vacuo, 7.e 1n free ether, than in
any other transparent medium, it 1s found convenient to
refer i1ts velocities in other media to its velocity in free
space. In water for instance the velocity of light is about
& of that in vacuo; in glass about 3. In vacuo, then,
the rate at which light travels is about 1} times that in
water and about 1] times its rate in glass,

or .Hﬂ—i’- H‘?—%
V=3 T oz

Then
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This ratio of the velocity in vacuo (V,) to that in the
substance under consideration is called the absolute index
of refraction and is usually denoted by the symbol p*.
Thus for water uw=133, for glass p=1'5. Light, then, in
passing from a vacuum into glass, as in a Swan lamp, will
be refracted in such a way that the ratio which the sine of
the angle of incidence bears to the sine of the angle of
refraction 1s 1°5.

smz IV, 3

Hox I )

This is true whatever the obliquity of the incident ray,
i.e. whatever value we choose to assign to .

When then light encounters a new medium, such as that
we have been considering, we are entitled to make the
following assertions about the way in which it behaves.
While part is reflected at the bounding surface back into
the old medium, part enters the new medium and travels
through 1t, but 1t undergoes a change of direction so that
its course in the second medium makes an angle with its
previous course. The property of the medium that de-
termines this change of direction and the nature of the
change, we have just been studying. It i1s found by ex-
periment that both the reflected and refracted ray as well
as the corresponding incident ray lie in the same plane
(in the figure that of the paper), and this is at right angles
to the plane of the surface of the second medium. It is
customary to call the plane, that contains the incident ray
and the normal at the point of incidence, the plane of
incidence. It may be as well to repeat that the terms
incident and refracted rays mean the lines drawn from the

* The veloeity of light in air is very nearly equal to its velocity in vaeno,
so that in most caleulations regarding the passage of light from air into

glass or any other substance, the absolute value of u for that substance may
be employed.
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point of incidence, which indicate the respective directions
of the incident and refracted light. We are now 1n a
position to state the fundamental laws of refraction in
1sotropic media.

Laws of Refraction, when light passes from one medium
to another.

(1) The refracted ray lies in the plane of incidence,

(2) The sines of the angles of incidence and refraction
are 1n a constant ratio for the same two media.

In anisotropic media, e.g. doubly refracting crystals,
this statement of the laws of refraction requires some modi-
fication, as when expressed in this simple form, these laws
do not hold good in such cases. Our attention however
throughout these pages will be confined to the consideration
of light in 1sotropic media and 1t will be sufficient therefore
to say that by applying Huygens’ principle to the intricate
conditions that arise when the medium is not isotropic,
we can predict all the various phenomena that have been
observed.

Now, although the truth of Huygens’ principle is thus
completely established, and although we have been by
1ts means able to discover the laws of reflection and of
refraction, 1t 1s sometimes inconvenient or troublesome
to apply it. We may indeed regard the reflection and
refraction of light from our first point of view (p. 6),
attending rather to the general form of the resultant wave
system than to the effect of its elementary components.

The phenomenon of the reflection of waves may be ob-
served in fluids. The accompanying diagram (Fig. 4) shews
sufficiently clearly what takes place. Let MN represent
an obstacle with a plane surface, e.g. a pane of glass if the
experiment is performed in a basin of water or mercury. If
a drop of the fluid be allowed to fall from a height on to

)

-
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1ts surface, say at S, a series of concentric ripples is seen.
These spread outwards until they meet the obstacle, when

Fig. 4.

they become reflected in such a way that they form a series of
concentric circular ares which travel back from the reflecting
surface crossing the ripples that are moving forwards. It
will be found that the centre of these concentric circular ares
is situated at a point S behind the obstacle exactly opposite
to the spot where the drop fell. Moreover the distance
of this point behind the obstacle is found by experiment
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to be exactly equal to the distance that the seat of original
disturbance was in front of it.
8’0 =80.

Precisely the same thing occurs in the case of light
waves, only their contour is spherical instead of being
circular. If the point S represent a candle, and MN a plane
mirror, the spherical light waves emitted by S will be
reflected by the mirror, just as if they were coming from
S’. They will appear therefore to come from 8, z.e. there
will appear to be a candle the same distance behind the
mirror that the real candle is in front of it. The formation
by reflection of virtual images, as such appearances are
called, becomes therefore intelligible from this point of
view. The laws of reflection also might be inferred from
an inspection of the diagram, provided that the equality
of 8’0 and SO be granted. For if we consider the incident
ray or radius SH for instance, which meets the reflecting
surface at the point H, we shall find that it is reflected
in the direction HG, which makes with the normal HY
an angle GHY equal to the angle SHY.

For in the two triangles SOH, S'OH,

SO =80 and OH is common to both,
and the right angle SOH = the right angle S'0H;
.. the triangles are equal to one another and
£HS0= 2 HSO.
But since YH is parallel to SS,
£GHY = £HS80 and £SHY = £ HSO,
LR Y =7 3HY

Figure 5 represents the phenomena of refraction from
this point of view. Let the point S represent a lumi-
nous object in a medium bounded by the surface MN of
a second medium. Further, let us suppose that the velocity
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of light in the second medium is twice its velocity in the
first medium. Spherical waves will be propagated from

Fig. 5.

the point S which will spread outwards until they meet the
surface MN of the new medium at O. They will now
however undergo a remarkable alteration in shape, for that
part of the wave which has entered the new medium will
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spread out in it with twice the velocity of that in the old.
The spheroidal surface that represents the wave will present a
bulging boss corresponding to the part in the second medium.

While the disturbance at F is travelling to F, that at
O will be travelling to ¢. When F is reached, the phase
of O will have reached C, the distance OC being twice
that between £ and F. In half the period the phase at
A will have reached a at the surface of the second medium ;
this disturbance will now travel with twice its previous
velocity, so that in the remaining half of the period it will
travel a distance aB equal to the distance EF, or twice
that of A«. Adopting Huygens' construction we might
represent the elementary wave formed by it by a semicircle
whose radius 1s «B. By taking different time intervals
we can then construct in this way a series of semicircles
on the line MN. The curved line which touches all of them
1s represented by the arc BCD. Along this curved line
or rather curved surface all the particles of the second
medium will be in one and the same phase as those of FG.
In other words the arc BCD represents the continuation in
the second medium of the wave FG.

Now the arc that represents the wave in the second
medium is not an arc of a circle. A small portion however
in the neighbourhood of € is approximately coincident with
a circular are described from a centre X, the distance of
K from O being half of that of S from O. That portion
then of the wave front that is in the neighbourhood of C
will travel forwards as if it came from the point K.

If the first medium were water, and the second air in
which light travels at 4 of its pace in water, the distance
OC" would be & of the distance EF, and the part of the
wave in the neighbourhood of C" would travel on just as
if 1t came from K, a point whose distance from O would
be  of that of S’ from O. If the eye of an observer be
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situated immediately above O so as to receive this portion
of the wave near (', an object at S would appear to be
situated at K’. Consequently the apparent depth of a clear
pool of water when viewed vertically is § of the real depth,
for the light, that comes from the bottom by which 1t 1s
seen, on emerging into the air behaves in all respects as
if 1t came from a plane at this distance below the surface
of the water,

It will be found that the lateral parts of the arc CD
are more convex than the central part. If we confine our
attention to any given portion of the wave front represented
by BCD, e.g. that part in the neighbourhood of D, we see
that 1t must be travelling in a direction at right angles to
the tangent plane at this point. Similarly, if a series of
normals be drawn through the are CD, they will represent
the different directions in which each portion of the wave
front represented by CD 1s moving respectively. In other
words they represent the refracted rays of the point S. If,
for example, from the point a a normal aB be drawn to the
curve, light travelling in the direction SAa, will, on en-
tering the second medium, travel in the direction aB; that
15, if SAa be the incident ray under consideration aB will
be the corresponding refracted ray. These refracted rays
intersect each other in the first medium at different points.
The line joining all these points will form a curve QRK
with a cusp at K. Such a curve is called a caustic, and
since the diagram represents only a sectional view of what
actually occurs, we must imagine it as representing the
caustic surface that would be generated by making the
curved line K R() revolve round the axis K. The rays
that pass through H and D for instance intersect at the
point . The small portion of the wave between H and
D may then, without introducing any serious error, be re-
garded as if it were moving away from the point @. In
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other words the wave front HD appears to be coming from
. An eye therefore which is so placed as to receive this
portion only of the wave front will see an image of the
point S at Q. If the eye receives a larger cone of rays, the
image will be blurred, for our assumption that they then
come from one and the same point ¢ will be incorrect.
Consideration will shew that the rays received by the eye
from S will appear to come from a small area R() on the
caustic surface KR(. The point S will appear therefore
as a small patch R(); in other words the image of S will
be distorted and blurred.

A glance at the diagram will shew that the refracted
rays are more oblique than the incident rays. Let us con-
sider the ray SP. On attempting to draw a normal from
the point P to the curve representing the wave surface in
the second medium, 1t will be found to coincide with the
plane MN. But MN is the surface of the first medium,
so it is impossible for light travelling in the direction SP
to get out of the first medium.

We must now refer to a point that we have hitherto
neglected. We know that when light encounters a fresh
medium, only part of it is refracted, for a part is reflected
at the bounding surface. The incident light SP must
therefore be all reflected, as no part of i1t can be refracted.
The angle of incidence SPY, at which this total reflection
occurs, 1s called the critical angle. In like manner all
rays from S that meet the surface MN beyond the point
P will undergo total internal reflection, provided that the
boundary between the media is a plane surface.

When however light is.passing the reverse way, from
a rare to a dense transparent medium, this phenomenon of
total reflection is not observed.

Fig. 6 represents the contour of the waves and the course
of the rays in such a medium. It will be seen that in this
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case the refracted rays are less oblique than the incident
rays. It is obvious also that a critical angle does not now

Fig.6

exist, for however oblique the incident ray, part of the hght
at any rate will get out. As in the previous case, the re-
fracted rays, on being produced backwards into the first
medium, will intersect each other at different points in it,
and the surface on which all these points occur forms a
caustic surface with its cusp upwards. It 1s in fact exactly
the reverse of what occurred in the previous case. Since we
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have rarely an opportunity of placing our eyes in a denser
medium than air and so viewing objects n air, 1t will be
unnecessary to investigate what occurs in this case more
minutely.

We shall now be able to trace the course of a beam
of light from a rare medium, such as air, into a dense

Fig. 7

medium, such as glass. Let BAC represent a glass prism
and let us suppose that the surrounding medium is air, and
that the velocity of light in the air is 1} times greater
than in the glass, 7.e. that the relative index of refraction
or the relative value of w is 1'5. Let S be a luminous
point sending out spherical waves in all directions: these
on encountering the face of the prism will divide themselves
into two sets: one set will be reflected at the surface, the
other set will enter the glass, and to this set we will
confine our attention. That part of the wave front which
enters the glass will become flattened or less convex, since
its rate of progression is less than the part which is still
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in the air. The curved lines E, E', K", represent the shape
of the wave front in the prism in three stages of its progress
through 1t. As soon as the wave front or any portion of
it passes the bounding surface of the prism as at @, it
immediately travels forward at its former speed and neces-
sarily becomes more convex as at F. Now the arc F is
approximately coincident with the arc of the circle drawn
from centre 8. If this portion, then, of the wave front
be considered, it will present a similar appearance to a part
of a spherical wave coming from S. In other words an
observer receiving this portion of the wave front will see
an image of S at &', and an object at S will appear to him
to be at 8. If more than a small portion of the wave
front be under consideration the image at 8" will appear
blurred and distorted, for the emergent wave is not accu-
rately spherical in shape. In other words the refracted rays
will not meet in a point : indeed, all that can be said about
them is, that they will all meet on a certain caustic surface,
and S’ happens to be one of the points on this surface,
and i1s the point of intersection of the rays RQ), LK, which
are being considered,

We see then, that after passing through such a prism,
waves which were originally spherical have acquired a new
shape. Now, all optical instruments may be regarded from
this point of view, and their degree of perfection depends
simply on the extent to which they succeed in impressing the
desired shape on a given form of light wave. One of the
forms which 1s most frequently required is that in which
the surface presented by the travelling wave is plane. Such
a wave 1s called a plane wave, and since the normals drawn
to any series of points on its surface are parallel to each
other, we may say that all its rays are parallel. It is usual
to speak of a portion of any such plane wave as a beam
or pencil of parallel rays. Let us now consider how such
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a pencil of parallel rays will

behave on meeting a prisn. e w
Should there be any difficulty
in conceiving how such a plane
wave 1s produced, we may
imagine the pomnt S to be
removed to an infinite distance
from the prism. The spheres
will then be so large that the
small portion of them that
meets the prism may without
introducing any appreciable
error be regarded as present-
ing a plane surface. Simpler
methods of obtaining plane
waves will be given in another
chapter.

Let BAC (Fig. 8) repre-
sent the prism as before and
HT a portion of the plane wave
front that meets the face AC.
Then by the time that the
phase of H has reached J,
the phase of I will only have
reached a point M such that
the distance M is two-thirds
of the distance HJ. The wave
front therefore will be deflected
so as to present the aspect
JM or KN in the glass. On
emerging from the prism it
will be again deflected, for the
upper part of the wave gets
out first and then gains on the

Fig 8.
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part still forcing its way through the glass. The effect
then of the prism will be to change the aspect of the wave
from that of HI to that of Q. The rays PJ, SI drawn
at right angles to the wave front 1, represent the direction
of the incident light ; JK, I() its direction while within the
prism; and KL, QR represent the final direction of the
emergent light.

Precisely the same thing would oceur if a column of soldiers
six or seven abreast were marching in the direction S7 or PH
in open country towards a wedge-shaped piece of rough
ground or jungle in which they had to take shorter steps.
Provided that the individual soldiers had to keep shoulder
to shoulder and to face the direction in which they were
marching, the column would wheel round just lhike the
beam of light which also can only travel in the direction
that 1t faces.

Let us now consider what will happen 1if a pencil of
parallel rays encounter two similar prisms set base to base.
In the diagram (Fig. 9) to avoid confusion only four such

S
5'

Fig.9. H\/Jf

rays have been drawn. The rays PJ and SI become the
refracted rays KL and QR. In like manner the rays P'J,
S'I’ become the refracted rays K'L, Q'R. It will be noticed
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that the rays from S and S’ cross each other at the point R,
and that those from P and P’ cross at L. Similarly the
intermediate rays will intersect at various points between L
and R. Now it is obvious that the prism might be so
bevelled at the points J and K as to present a more oblique
refracting surface so that its effect on the incident ray PJ
could be so increased as to direct 1t towards the point R. If
the lower prism were similarly bevelled the four rays from
P, S, 8, and P’ respectively would all intersect at the same
point F.

When the surface of a double prism of this kind is so
bevelled that all the parallel rays incident on one face of it
mtersect in the same point after refraction, it is called a lens.
Now it is found that if the double prism be given a spherical
surface, this condition 1s very nearly attained, and since it is
an easy matter to grind such a surface, lenses are almost
always made in this way. They are not however quite the
right shape, for the periphery of the lens refracts too much,
in fact the bevelling process has been carried too far, so that
there remains an over-correction. This defect gives rise to
what 1s called spherical aberration, by which is meant that
the peripheral rays do not intersect at the same point as the
more axial rays. The annexed diagram (Fig. 10) shews
clearly the nature of the defect and its consequences.

\\
\//

Fig. 10
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Nore. In the preceding pages we have adopted the simplest con-
ception of wave movement, as it is sufficient to explain the phenomena
of light with which we had to deal. There are however certain phe-
nomena which force us to a wider interpretation of the term wave
when applied to light. Indeed there will be few readers who will
not find a considerable difficulty in understanding how the ether can
be so perfectly fluid as to offer no resistance to the movement of bodies
in it, and yet be able to transmit transverse vibrations.

The most obvious property of ether is its extreme fuidity. In
what way can it so strenuously resist a change of state as to transmit
a periodic disturbance with such enormous speed? Let us consider
the most familiar fluid—water. Chemical analysis shews that it
consists of two constituents, hydrogen and oxygen, and further, that
an enormous expenditure of energy is required to decompose it into
these constituents. Water then which scarcely resists a change of
shape, strenuously opposes this change of state. If we imagine then
the ether to be similarly composed of two constituents we shall have
no difficulty in realizing that although perfectly fluid, it may yet
resist decomposition with the greatest vigour; in other words its
rigidity or elasticity with reference to its composition may be
enormous.

Now it has already been stated that any disturbance whether of
temperature, or indeed of any other state, is rightly called a wave,
if it be periodic in space and time.

Our conception then of a light wave will be that of a periodic
decomposition and combination of these two ether constituents. What
has been loosely called the guivering of ether under the influence of
light will now be regarded as a succession of waves of decomposition
that rush through the medium.

Now it is found that waves of electric displacement which can
be experimentally produced in air travel through it at just the same
rate as light waves. This is a most significant fact, for otherwise we

- should have to imagine two ethers, one to transmit light waves, and
another to transmit electric waves. As it is, we see that the same

- ether will do to carry both light and electric waves. Another phe-
nomenon that shews the intimate connection between electricity and

~ light may be mentioned. When a plane polarised beam of light is
made to traverse a magnetic field it is found that the plane of its
polarisation is altered. Clerk-Maxwell has shewn indeed that all the

| phenomena of light can be explained, if we regard them as due to
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waves of electric displacement of extreme frequency. Although electric
waves have lately been produced with a frequency of many millions
per second, attempts to produce them of the wave frequency of light
(400 billions per second) have hitherto proved unsuccessful,

Professor Lodee has done great service by still further simplifying
these conceptions. He regards positive and negative electricity, as
the names that are ordinarily applied to the two essential elements
that when combined form ether, so that electric energy is simply due
to their affinity for each other, or their eagerness, if such an expression
may be allowed, to combine when separated. It follows therefore
that all solids which are conductors of electricity, 7.e. bodies in which
the ether is readily decomposed, must be opaque to light, for in them
the ether has lost its rigidity. Similarly, all substances that are trans-
parent to light must be insulators. In the case of fluids however
this inference does not hold good, on account of the part played by
electrolysis in the conduction of fluids. I would refer the reader who
is anxious to pursue this subject further, to Professor Lodge’s Modern
Views of Electricity.

Mathematicians however object to such a view of the ether being
put forward as an erplanation of the phenomena of light. Since
accurate scientific measurements of only space and time can he made,
they naturally view with disfavour all but mechanical hypotheses
which deal with conditions that can be fully and adequately treated
by dynamical considerations. They would welcome any view of
electrical stress or chemical affinity which would admit of the mathe-
matical methods of dynamics being applied to it, while they regard
such a view as the above as involving the fallacy of explaining the
1ignotum per ignotius.

Several facts are in favour of such a conception of the ether, and
though it cannot be regarded as an explanation of the phenomena of
light, it may be very reasonably considered a plausible hypothesis,
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QUESTIONS.

(1) If in Fig. (2) the distance BM between the rotating and
the fixed mirror be 610 metres, and the distance &S be 10 metres,
and when the mirror £ is rotating 256 times a second, the image
of § is displaced to 5" so that S8 =130-85 mm., what is the
velocity of light?

(2) The veloecity of light in air is 186379 miles per second ;
in vacuo it is 186433'8 miles per second. From these data
calculate the value of u for air to six places of decimals.

(3) What will be the velocity of light in water (x=1-3), and
in crown glass (u=1d)1

(4) The wave-frequency of yellow light (2 line) is about
510 millions of millions per second, and its velocity in air is
about 186379 miles per second. Hence deduce the wave-length
of this yellow light in air.

(5) “We observe no change of tint when the yellow light
of sodium passes from air into water; as its wave-length how-
ever in water is # of what it was in air, we infer that it is
wave-frequency and not wave-length that determines colour.”
Criticize this statement.

(6) In Fig. (3) shew geometrically that the tangent £7" will
touch the intermediate hemispherical wave originating from p.

(7) 1In Fig. (5) if :i:’:; shew from the second law of

refraction that KO =1S0.



CHAPTER II

SHADOWS. ILLUMINATION. PINHOLES.

MATERIAL bodies may be classified with reference to their
behaviour to light in some such way as the following :—

Luminons Not Iaminous

|

L. o

()pzu:llue Not cn_i}aque

I

Translucent Tranafmre,ut-
(e.g. oiled paper or
ground glass)

Such a classification however may be somewhat mis-
leading, for we are as yet unacquainted with any body that
is absolutely opaque to light, as it is found that all bodies
whether inorganic or organic, if examined in sufficiently thin
slices, will transmit a certain amount of light. Our know-
ledge indeed of the intimate structure of rocks as well as of
tissues has been almost entirely acquired by examining with
the microscope the light that 1s transmitted by such thin
sections. No one however has any doubt as to the meaning
of the term opaque in the ordinary acceptation of the word,
so that for practical purposes the above classification 1s found

to be convenient.

L]

!
|
| B
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Shadows. As previously explained, we must regard
luminous bodies in space as sending out light in all direc-
tions in straight lines. If now an opaque body be placed
near the source of light, that side only will be illuminated
that is turned towards the light, whereas the opposite surface
as well as a space behind it remains in shadow. Let us take
first the simplest case, when the source of light is so small
or so distant that it may be regarded as a luminous point
in space. In the figure (Fig. 11) O represents the source of
light, and A B the opaque body which we may imagine to be
a disc viewed edgewise. The rays drawn from the luminous
point O to the margin of the dise indicate the cone of light
that illumines its proximal surface, and the prolongation of
this cone behind the disc indicates the shadow cast by it.

This may appear sufficiently simple, but the attentive
reader will probably encounter a difficulty, which may be
put in the following way. If light is due to some kind of
wave movement, why can it not like sound turn round a
corner ? This is the difficulty that occurred to Newton, and
led him to oppose the undulatory theory.

Now on carefully examining the shadow formed by a
body with a sharp knife-edge margin it is found that the
edge of the shadow is not quite sharp even when the source
of light is a luminous point; light in fact is able to some
extent to turn round a corner. In accordance with Huygens’
principle, on suppressing any of the elementary waves the
adjoining ones immediately assert themselves. This dif-
fraction of light, as it is called, may also be seen when light
is made to traverse a very narrow slit in an opaque body.
For a complete explanation however of diffraction and of the
interference phenomena due to it, the reader must refer to
more exhaustive works. It is only necessary here to point
out that for the occurrence of diffraction phenomena the slit
must be small compared with the wave-length of light. It is
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owing to the extreme shortness of light waves that under
ordinary circumstances light appears to travel in straight -

=]

lines, Similarly it is owing to the length of sound waves
that they can usually turn round a corner. When however
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sound passes through an aperture large compared with the
wave-length of sound, it also appears to travel in straight
lines, and sound-shadows are produced. The following
illustration of this point is given by Mr Glazebrook in his
Physical Optics. “Some few years since a powder hulk
exploded on the river Mersey. Just opposite the spot there
is an opening of some size in the high ground which forms
the watershed between the Mersey and the Dee. The noise
of the explosion was heard through this opening for many
miles, and great damage was done. Places quite close to
the hulk, but behind the low hills through which the
opening passes, were completely protected, the noise was
hardly heard, and no damage to glass and such-like happened.
The opening was large compared with the wave-length of
sound.”

Since however we shall always deal with apertures and
obstacles that are large relatively to the wave-length of
light, we may neglect diffraction, and regard light as always
travelling in straight lines.

We have seen that when the source of illumination i1s
a luminous point, a truncated cone of shadow 1s formed
by the opaque object. If however the source of light be a
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luminous body possessing innumerable points, the object
will be illuminated by innumerable cones of light, and we
must 1magine a shadow cone for each of them. The space
behind the object, which is common to all these shadow
cones, will represent the area of total shadow or umbra; but
there will be a space outside this, which is only in shadow
as regards a part of the luminous body, while it receives
light from part of it, and is consequently partially illu-
minated. This is the area of half-shadow or penumbra. In
the adjoining illustration (Fig. 12) two opaque bodies are
represented, one being smaller and the other larger than the
luminous body itself which is placed between them. In each
case for the sake of clearness the limits between umbra and
penumbra have been sharply defined. In reality there is
a gradual increase of illumination from the margin of the
umbra outwards. A good example of these shadows and
half-shadows is furnished by those that are sometimes cast
by the moon on the earth. When the moon is so situated
that the sun casts a shadow of it on the earth, the sun’s
light is intercepted by it, partially or wholly as the case may
be. Should the observer on the earth happen to be in the
umbra, the eclipse is said to be total; if he 1s only in the
penumbra, only part of the sun’s licht is intercepted and the
phenomenon is then termed a partial eclipse,

Size. A glance at the figure will shew that to an
observer, placed at the apex of the conical umbra formed by
the smaller body, both it and the luminous body will appear
of exactly the same size. The apparent size of a body is
determined by the angle which the lines, drawn from 1ts
outermost points to the eye, make with one another. This
is called the visual angle. The further a body is removed
from the eye the smaller is the visual angle under which it
is seen, and the smaller consequently is its apparent size.
The apparent linear dimensions of an object are determined
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by the tangent of the visual angle that the dimension
considered subtends at the (anterior) nodal point of the
eye. Thus the apparent height of an object is determined
e * : >
by the ratio (—:-, where h represents its real height, and d its
distance from the nodal point. The apparent area is simi-

l'?
— where s denotes the real area.

d*’

If we know the real size of an object we can determine
its distance from us by the visual angle under which it
appears to us; and vice versa, if we know 1its distance, its
real size may be determined by the visual angle or apparent
size. Such estimates of size or of distance we make un-
consciously every day of our lives; they often indeed turn
out to be grossly erroneous from our premises being false.
An illustration of this is afforded by the apparent variation
in size of the sun or moon when in different parts of the sky.
The vault of heaven has the appearance of being flattened,
so that the zenith seems to be nearer than any point on the
horizon. Consequently when the sun is setting, it appears
to be at a greater distance from us than when it is 1m-
mediately over our heads; and so, since the visual angle
that 1t subtends remains the same, it gives us the impression
of being bigger. Two other factors which contribute to this
delusion of inereased distance might be mentioned, viz. the
diminished brightness of the setting sun, and the facility
with which its size and distance can be compared with that
of known objects on the horizon.

The effect of diminished brightness in giving this delusive
appearance of distance has nothing to do with the law of
illumination discussed in the previous chapter; 1t i1s simply
due to the turbidity of the atmosphere near the earth’s
surface. The light from an object at a distance 1s in great
part lost from reflection or absorption by the smoke dust

larly given by the ratio
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and germs that float in 1t; and so we are inclined to associate
dimness with distance. In a fog, for instance, objects seem
to be larger, as, since we underestimate the opacity of the
medium, we imagine from their dimness that they are
further off than they really are. As soon as anything causes
us to correct this false impression of distance, the object at
once seems to become smaller.

Brightness. It can be easily shewn that if the medium
be homogeneous and isotropic, so that no light is lost in trans-
mission through it, the brightness of a luminous surface is the
same, whatever its distance from the eye, provided that the size
of the pupil remain constant. For the brightness of an object
is naturally measured by the amount of light it sends to the
eye per unit area of its apparent size; in other words, the
brightness (R) of an object is directly proportional to the
quantity (¢) that it sends to the pupil, and inversely pro-
portional to the apparent area (A) of the surface observed, or

= 9
B=-.

Since however both ¢ and A are each of them inversely
proportional to the square of the distance of the object, the
ratio which determines the brightness is independent of this
distance.

INlumination. It will however be well to examine in
- greater detail the distinction between the illumination of a
surface and its apparent brightness. In Fig. 11 O is the
source of light. AB 1s the opaque disc exposing, let us say,
a surface s to the light and at a distance d from 0. (D is
the base of the shadow cone formed by the disc on a screen
placed at a distance D from 0. Let the area of CD be
denoted by S. Then a glance at the diagram shews that

UK oR ' 'd
CH=0H " D’
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Now we know that the measure of the area of a cirele is
mr?; and A K, CH are obviously the radii of the circles whose
areas are s and S respectively,

_w(AK)

S m(CHE ~ D*'

Now if AB were taken away, the area S on the screen
would receive precisely that quantity of light which now
falls on 4B, Cc:-nsequentl}r an area s on the screen would

receive only the fraction -:}f this light ; so that if 4B were

S
moved up to the screen its illumination would only bel 3 of
what it was before. If now the light (L) which 4B receives
when at unit distance from O be taken as the standard for
comparison, the light (L) which it receives at distance D

from (O will be ﬁ
i n 8 d? L
Fo L' = HI JIE o r s when d = 1.

' The amount of illumination, then, received by a surface varies
inversely as the square of its distance from the source of
light. This is the law that we have already inferred from
theoretical considerations based on the nature of light.

If the rays of light falling on C'D are parallel to each
other this law of course no longer holds good, but 1t may be
applied whenever the free radiation of light is under con-
sideration. Under these circumstances we are able by its
means to determine the relative intensities of two sources
of illumination. Several methods are in vogue; one of the
simplest 1s that of Rumford.

A white screen 1s 1lluminated by the two sources of light
that are to be compared, eg. two lamps. A few inches in
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front of this is placed a vertical rod so that two shadows of
it are cast on the screen. The lights are placed symmetri-
cally with regard to the rod, and in such a way that the two
shadows are close to each other. Each shadow is then
illuminated by only one of the lights. One of the lights
i1s then moved about until that position (d,) is found, in
which both shadows appear equally dark. Each lamp is
then sending an equal amount of light to the screen, and
their relative illuminating power i1s given by the ratio of
the squares of their respective distances, for the light which

: : L L
the two shadows receive are respectively &—i and 7 Conse-
2 .

quently when these are equal L, = j—': L.

Light sense. The accuracy of the determination depends
on the capacity of the observer for estimating small differences
of illumination, 7.e. on his light sense. It is evident that,
if the illuminating powers of the two lamps be known, such
a photometer may be used to test this light sense. A simple
method of applying the test is the following. Two candles
(4 and B) of equal illuminating power are used which throw
two shadows (« and b) on the screen, all other light being
excluded. A is now removed to such a distance (d,) that the

shadow (a) that it casts is only just visible. The light (&Lj'l
which illumines @ is then almost indistinguishable from the

light (déz“"dég) which falls on the general surface of the

screen. The smallest appreciable difference is therefore ;

Schirmer has recently shewn that Weber’s law holds good
for the light sense between the illuminations of 1 and 1000
standard candles at unit distance, provided that the eye
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L

1s fully adapted’. The ratio L therefore will be constant

E

throughout this range of illumination. It should however
be remembered that the power of appreciating small differ-
ences of illumination increases with practice. Thus Schirmer
found that at first the smallest difference that he could
appreciate was ;i of the total illumination, but that after
eight days’ practice he could recognize a change of ;1. or
even less,

Below the illumination specified Weber's law ceases to
be true. Indeed we have been using as a determinant of the
light sense, the ratio of the smallest appreciable increment

of light to the original light (ﬂf) Now this expression

ceases to have a determinable meaning if the original illu-
mination becomes zero (L = 0). Hence it is customary,
when investigating the light sense, to determine (1) the
mimimum appreciable difference between two intensities of
illumination, and (2) the minimum stimulus capable of
exciting a sensation, v.e. the difference between no light
and the least amount of light that can be recognized.

It should be noticed that the sense for light, unlike
that for form and colour, is almost equally acute through-
out the whole retina with the exception of the extreme
periphery. The small zone that immediately surrounds

1 ¢ Adaptation is a process depending upon three factors. First, the
prineipal, is some as yet unknown occurrence in the bacillary layer, which
depends upon a normal relation between it and the pigmented epithelium ;
second, the optical effect of the latter, by which the bacillary layer is to a
certain extent shaded in bright illumination; third, the pupillary reaction,
which acts more rapidly than the other two.”

The quotation as well as the account of Schirmer’s work in the text has
been taken from the report in the Ophthalmic Review, Vol. x. p. 179.
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the fovea is moreover found to be more sensitive to
light than the fovea itself. Arago, the astronomer, was
the first to point this out; he noticed that he could
see very faint stars more easily, when he looked slightly
to one side of them, than when he looked directly at
them. Finally it must be remembered that the peripheral
parts of the retina tire far more readily and far sooner
than the more central parts, as is shewn by Purkinje’s
experiment. Hence moving objects in the peripheral part
of our field of view create a more vivid impression than
fixed objects.

Illumination of an inclined surface. We must return
from this digression to the consideration of the illumination
of a surface that is not in the plane perpendicular to the
incident rays. Referring again to Fig. 11 let us suppose
that the screen is inclined at an angle € to its previous
position, so that the light which previously fell on CD would
now fall on an area C"D or S". If the area S were mapped

out on the surface C"D it would be found to occupy only a

part of 1t, viz. i; and 1t would consequently only receive ;
of the light (L) that falls on C'D or ("D, Then if L’ denote
the illumination of the inclined surface S,

.
=
but S =8’ cos @ when the illumination of C’D is effected by
a beam of parallel rays normal to CD.

S S’ cos 0
=S—,L_ Q7 L or Lcosé.
And since the angle @ is evidently equal to the angle of
incidence of the light, the relation may be expressed as a law
in the following form.

If a beam of parallel rays be received obliquely by a

I

Then L
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surface, 1ts 1llumination will be proportional to the cosine of
the angle of incidence.

When the incident light forms, as in the diagram, a
divergent cone, the law 1s only approximately true, for
then S 1s not equal to S’ cos 6.

Brightness. Now let us consider how a luminous surface
will impress an observer at . Suppose the disc AB in the
figure to be self-luminous and denote by @ the constant quan-
tity of light radiated by 4 B every second. This will obviously
be proportional to the area s of its surface and to the intensity
¢ of its luminosity. U=

Now only a small part (¢) of this light will reach the eye
of the observer at (). And by our previous considerations it
is evident that ¢ must be directly proportional to the area
(e) of his pupil, as well as to @, and it must be inversely
proportional to the square of the distance (d,) between the

pupil £ and 4 B.
EQ . o8t
q d'] l.'-:: 2
But the brightness (E) must be measured by the ratio
4_’ where A represents the apparent size of AB. If d
denotes OK, the distance of AB from O, the nodal point

of the eye, 4 ==

Then if we neglect the small difference between d, and d

Rﬂrfi:% %g:fd—.m ét.

Hence the apparent brightness of a surface 1s independent
| both of its size and of its distance, and consequently of its
- inclination to the line of sight. TUnder ordinary circum-
| stances, if the size of the pupil be constant, it is simply
| proportional to the intrinsic brightness of the surface.
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When an object is observed through a microscope or a
telescope a certain amount (e.g. 15°,) of light is lost by
reflection and the imperfect transparency of the glasses; but
if allowance is made for this, the brightness of the image 1s
equal to the brightness of the object. An apparent exception
occurs if high powers are used, for then only part of the
pupil will be filled with light. This is equivalent of course
to reducing the size of the pupil. If then ¢’ be the size of
the area filled, the effective brightness will be equal to é%.
This explains the diminished brightness of the image when
the higher eyepieces of a microscope are used.

It is impossible therefore by any optical arrangement to
obtain an image whose brightest part shall exceed the
brightest part of the object.

There is one case in which this law does not hold good. |

If the object subtend an angle less than the minimum
visible, it may yet, if excessively bright, succeed in stimu-
lating a retinal element, and so cause a visual impression

of a very small bright body. If such an object be magnified

until 1t subtends this minimum angle, there will be no
increase of its apparent size, although an increased amount
of light from 1t will be entering the eye. When for instance
stars are observed through a telescope, their apparent size
1s not increased, for they still subtend an angle less than the
minimum visible ; but all the light that falls on the object
glass may by a suitable eyepiece be concentrated on the
pupil of the observer’s eye, provided that the light lost in
transmission through the instrument be neglected. Under
these conditions we may then regard the action of the
telescope as tantamount to increasing the area of the pupil
to that of the object glass. If then a denote the fraction of
incident light that is transmitted through the telescope
(usually about -85) and O represent the area of the object
glass, e being the size of the pupil as before, the increase of
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brightness will be « S. Or if o and p be the diameters of the

object glass and pupil respectively, the increase of brightness

i

will be « ;—J;, for the areas of circles are proportional to the

squares of their diameters. If the pupil be regarded as of
unit diameter, we get the expression ea¢®. This is what
astronomers call the space penetrating power of a telescope,
that is to say, its power of rendering very faint stars visible.

Pinholes. If a pinhole be made in a card, and this be
held between a candle and a sereen, 1t will be found that an
inverted image of the candle will be formed on the screen.
The nearer the screen is brought to the card, the smaller and
sharper will be the image of the candle. If the candle be
brought nearer the card, the image will be larger but less
sharp. Finally, if the hole in the card be made larger, the
image will appear brighter but its definition will be again
diminished.

The explanation is simple. Every point of the candle is
sending out light in all directions, and all that falls on the
card is intercepted by it, so that its shadow is thrown on the
screen. From each luminous point however of the candle
there will be one tiny cone of light that will make its way
through the aperture in the card. On the screen the section
of this cone will appear as a small bright patch. In this way
each point of the candle will be represented on the screen by
a corresponding bright patch, so that all these bright areas
taken together will represent the whole candle flame, in
other words they will form an image of it.

In the diagram (Fig. 13) AB represents a luminous
object, the small divergent cone from 4 forms a bright
patch at @ and similarly the light from B that traverses
the aperture in the card lights up a little area at b, and
the intermediate points between A and B light up inter-



PINHOLES. 49

mediate little areas between « and b, so that an inverted
mmage of 4B is formed at ab. It is easily seen that the size

of ab 1s proportional to the distance of the screen from the
card ; and that if the screen be brought nearer to the card,
the bright patches formed by the several cones of light will
become smaller, and the image will therefore become more
distinet. If the object be brought nearer, each of the conical
pencils of rays will include a wider angle, z.e. each pencil will
form a more divergent cone. The same result will be obtained
if the aperture in the card be enlarged. Hence in both these
cases the definition of the image will be impaired.

P. 0. 4
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The shape of the hole in the card has no influence on the
character of the image formed. If the hole be triangular
instead of circular, the only result will be that the small
divergent pencils, that come from each luminous point of
the object, will be triangular instead of circular in section.
The illuminated areas on the screen will then be triangular
and by their confluence will form a similar 1mage to that
formed by the circular hole. When the sun is shining and
its light falls directly on the foliage of a tree, round or oval
spots of light are seen on the ground beneath. These spots
are images of the sun formed by the small interstices between
the leaves of the tree, which though differing enormously in
shape all form similar images on the ground.

A fairly sharp image of any object may be obtained on a
sereen by means of a pinhole, provided that the object is
sufficiently well illuminated. In this way it is quite possible
to take excellent photographs; indeed a pinhole camera made
out of a preserved meat tin may form a better image and
prove a more satisfactory instrument than one provided with
a lens. The disadvantage attending the use of pinhole
cameras 1s the feeble illumination of the image, which
consequently makes a very long exposure necessary.
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QUESTIONS.

(1) What is the height of a tower that casts a shadow
52 ft. 6 ins, in length on the ground, the shadow of the observer
who is 6 feet high being at the same time 7 feet in length ?

(2) A pinhole camera, the length of which is 7 inches, forms
an inverted image 4 inches in height of a house that is in reality
40 feet high. What is the distance of the camera from the
house

(3) The intensity of the illumination of a surface is measured
by the amount of light received per unit area of surface. From
this datum and the principle of rectilinear propagation shew that
the law of inverse squares holds for the intensity of illumination.

(4) Two lights, a gas lamp distant 5 feet and an electric
light distant 150 feet, throw on an opposite wall two shadows of
a neighbouring post. If these two shadows are of equal intensity,
what is the relative illuminating power of the lights?

(5) In the preceding example suppose the electric light
raised vertically to such a height that its distance from the wall
is increased to 300 feet. What will be the relative intensities of
the shadows approximately ?

If the shadows are equal calculate approximately the relative
intensities of the lights.

(6) The moon is observed to subtend a visual angle of 31"
Assuming that the diameter of the moon is 2160 miles, what is
its distance from the observer? Given tan 31" = 0090178,



CHAPTER III.

DIFFUSED LIGHT. COLOUR. QUANTITY AND QUALITY
OF LIGHT REFLECTED. MECHANICAL MODEL.

EVERY part of an object that is seen must send light to
the eye that sees it. If the body is not self-luminous, the
light that 1t sends must have been received from something
else; and since its exposed surface can be seen whatever
the position of the observer, it follows that every visible
point of it must scatter this light in all directions. This
scattering of the light that falls upon a surface 1s due to
1ts minute irregularities, and so 1s often somewhat loosely
called irregular reflection.

Colour. The light that is reflected from the surface of
a body 1s always less in amount than that which falls upon
it, for a certain quantity of light enters the substance, to
be transmitted or absorbed in proportions that depend on
its transparency or opacity. As has been already pointed
out, the term opacity is merely relative. A heap of fresh
cut leaves may be called opaque, but any one of them if
held up against the bright sky allows green light to traverse
it. In the same way the most opaque substance will allow
some light to penetrate a thin layer of 1t, and 1if this
penetrating light be chiefly of one particular colour, the
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object 1tself will in most cases appear tinged with that
colour. '

The colour of most substances is the same as that of the
light which they most readily transmit. A leaf for instance
appears green whether on the ground or held up against a
light. The leaf may indeed be regarded as consisting of
innumerable thin layers, which all reflect the light that
reaches them, and, in proportion to the depth of the layer,
the light so reflected is tinged green owing to the fact that
the chlorophyll in the leaf absorbs red light. Similarly a
crystal of copper sulphate appears blue because it absorbs
red and yellow light. The light which is reflected by its
first surface is white or almost white, but that which comes
from its deeper layers appears blue, as the red and yellow
constituents of the white light have been absorbed by
transmission through these layers.

There are however some substances, metals for example,
which reflect light of one colour more readily than that
of another. The light which they transmit is then quite
different from that which they reflect. The surface of a
crystal of copper sulphate reflects light waves of every
period indiscriminately, so that the light reflected from its
surface is white. The light however that is reflected from
the surface of gold is yellow, whereas that which is trans-
mitted by a thin layer of gold leaf is blue. Many of the
aniline dyes present a similar difference between what may
be called their surface colour and their body colour; these
are usually indeed complementary to each other. Rose
aniline for instance transmits rose-coloured light, but the
light that 1t reflects 1s green.

There are a few bodies whose colour is produced in a
different way ; but, speaking generally, it may be said that
the coloration of a body is due to the absorption or
transmission of the constituents of white light in unequal
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proportions, so that what we see is the remainder left of
the white light that it received.

Ordinary diffused daylight consists of light-waves of
every period in what may be called normal proportions. If
a pilece of blue glass be taken which absorbs red light
completely, it will be found that any red object viewed
through it will appear black. If a red glass be placed
behind this blue glass the combination will be opaque to
light, for whatever light can be transmitted through the
one will be quenched by the other. If however a yellow
glass be substituted for the red, green light will be trans-
mitted through the combination, for both glasses transmit
green, and this colour which 1s common to each is con-
sequently seen.

The colours of pigments are similarly impure. Gamboge
behaves like powdered yellow glass, 1t transmits green hight
as well as yellow light, and hence when mixed with indigo,
which transmits both blue and green, the resulting colour
is that which is common to each, namely green. If these
pigments contained no admixture of green the resulting
combination would be grey, for the specific colour of each
would be quenched by transmission through the other. If
metallic substances formed the basis of pigments the colour
of a mixture would be more nearly the sum of the tints of
its constituents, instead of being merely the part that is
transmitted in common by the constituents.

The result of mixing two coloured lights, i.e. the investi-
gation of the colour sensation produced, when they both fall
on the same part of the retina, belongs rather to the domain
of physiology than to that of optics. It will be sufficient
in this place to give one or two examples to indicate the
difference between mixing lights and mixing pigments. The
addition of red light to blue causes a colour sensation of
purple, although the mixture of vermilion with ultra-marine
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is of a blackish-grey colour. Yellow and violet-blue are
complementary colours, .e. the effect of superimposing them
on the retina is to cause a sensation of white, though the
mixture of pigments of these colours 1s greyish-green.
Similarly red and bluish-green are complementary colours.

Diffused Light. In the previous chapter it was shewn
how an opaque body placed in the course of light produces a
shadow. The question naturally arises—how is it that, when
the sun’s light is cut off in this way by an intervening
obstacle, a house for example, we are not immersed in total
darkness? Evidently the light that reaches our eyes under
these circumstances must have come indirectly from the sun,
as all the direct light has been intercepted. In fact, what
1s called diffused daylight must be the light from the sun
that has been scattered or irregularly reflected by impinging
on something. The observation of a sunbeam in a room
suggests what 1t 1s that diffuses light in this way. The track
of the light 1s mapped out by the brilliant illumination of
the dust or motes that are always present in a room. If a
spirit lamp (or even a red-hot poker) be placed in the sun-
beam, dark spaces will be seen above the flame. If all the
dust were burnt up, the sunbeam would be quite invisible,
for there would be no particles to scatter the light, and
hence 1t would all reach its destination on the opposite wall,
and the illumination of this would be all that would be
apparent to the observer.

Blue Sky. It is impossible to lay too great stress on
the fact that we cannot see light uuless it reaches our eyes.
How is it then that the sky is blue, ¢.e. that the light that
comes from the sky to our eyes is blue, although the sun’s
light is nearly white ? The air is not blue, for if it were the
sun when low down on the horizon should acquire a bluish
tinge, from the transmission of its light through a thicker
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layer of the medium. The blue light of the sky moreover
comes across or even against the direction of the sun’s rays.
It must therefore be light reflected from small particles sus-
pended in the air. Numerous experiments have been made
shewing that if particles suspended in a medium be sufficiently
small they will reflect the shorter light-waves more com-
pletely than the longer ones. “ A small pebble,” as Professor
Tyndall aptly says, “placed in the way of the ring-ripples
produced by heavy rain-drops on a tranquil pond, will throw
back a large fraction of each ripple incident upon it, while
the fractional part of a larger wave thrown back by the same
pebble might be infinitesimal.” If the particles are large as
compared with the longest waves of light, as the rain-drops
m a cloud for instance, all the waves of every length will be
reflected 1 equal proportions, and the light coming from
them will be white. The meteoric dust in the air is however
so fine that it reflects the shorter blue waves while it offers
very little opposition to the transmission of the longer waves.
The white light of the sun 1s consequently in transmission
through the air gradually robbed of its shorter waves by
these successive reflections and hence appears yellowish.
When low down on the horizon the sun appears red, for then
its light has to travel through a thicker layer of air, and so
through a greater number of scattering particles; this sifting
process is then more complete. A difficulty may arise in
understanding how this meteoric dust remains suspended in
the air. Why should it not fall and settle on the earth?
A little consideration will clear up the matter. Let us take
the most disadvantageous case for our argument, and 1magine
the shape of each particle to be spherical. The mass of each
particle and consequently the weight, varies as the cube of
its radius ; but the surface, that it exposes to the resistance
of the air when falling, varies only as the square of its radius.
It 1s evident then that, if the particle be only small enough,
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the resistance of the air may very materially counteract the
effect of gravitation upon it. In this connection it is in-
teresting to note that it has been shewn, both by experiment
and by mathematical investigations, that the viscosity of a
gas 1s Independent of its density’. There is then little
difficulty in understanding how this meteoric dust remains
suspended 1n the air, even at a height of forty miles or more
from the earth, for in spite of its rarity the air even at this
height offers nearly the same resistance to a falling body as
at the earth’s surface.

Quantity of Reflected Light. It is as we have seen
the scattered light that comes from a body that renders it
visible ; hence if this scattered light be diminished by polish-
ing 1its surface, the body itself may become almost invisible.
A mirror for instance may scatter so little light that under
certain circumstances it cannot be seen; although the light,
that 1t reflects from illuminated objects near it, i1s seen with
the utmost distinctness. It is however impossible to make a
perfect mirror, that is, one that shall reflect all the incident
light; a part i1s always scattered; consequently, if the conditions
be favourable the reflecting surface itself can be always seen.

It must not however be inferred that smoothness of
surface 1s the only requisite for a satisfactory mirror. A
fluid at rest presents a smoother surface than any that can
be obtained by a mechanical process of polishing, yet it
usually reflects only a small fraction of the light that falls
upon it. Water for example reflects but 1'8 per cent. of
the light that falls perpendicularly upon its surface, whereas
polished metals reflect a much higher percentage. The best

1 Graham-Otto’s Lehrbuch der Chemie, Bd. 1. p. 157. The explanation
given in the text is somewhat loose. Advanced mathematics are required
for the exact investigation of the problem. In reality it is found that a

particle in the air eventually falls with a uniform velocity v, where v o ?-—f;{ :

v being the kinematic viscosity which diminishes with the temperature.
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silvered mirrors reflect nearly 90 per cent. of the incident
light, while mercury itself reflects more than 66 per cent.

There is further this striking difference between metallic
and non-metallic surfaces. In the case of metals the ratio
| of the reflected to the incident light is constant, whatever
the angle of incidence may be ; whereas with non-metals this
ratio increases with the obliquity of the incident light. The
following table indicates the amount of light reflected from
the surfaces of water and from that of the metallic flmd
mercury at various angles of incidence.

Angle of
incidence 0° 40° 60° 80° 894°
Water 18 22 65 a3 72’1 per cent,.

Mercury 666 666 666 666 666 ,,

It will be seen that as the angle of incidence approaches
1ts limiting value of 907, the amount of light reflected by the
water rapidly increases, so that when the incident light just
grazes its surface, it is almost wholly reflected. Similarly if
a piece of note-paper be so placed that the light from a
candle just grazes its surface, a considerable amount of this
light will undergo regular reflection; indeed a reflected
image of the candle may sometimes be distinctly seen under
these eircumstances from a suitable position.

Lastly, the refractive index of the substance, or rather
the difference between its index and that of the surrounding
medium, exerts a most important influence on the quantity
of light reflected. The diamond owes its brilliancy to its
high refractive index (wx=2'5), and most probably the
characteristic lustre of metals is largely due to a similar
cause. It has already been shewn that there is some ground
for believing that the refractive index of metallic substances
is exceedingly high; in other words, the velocity of light
through the thin layer that 1t can penetrate must be
relatively very slow,
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Mechanical Model. A simple mechanical illustration
will explain the relation between the reflecting properties of
a medium and the speed with which light is transmitted
through it. Let us imagine a row of perfectly elastic balls
of equal mass suspended by threads from a horizontal beam.
If now the end ball be raised and allowed to fall against its
neighbour, it will give up the whole of its motion to it, so
that the first ball will come to rest, whereas the second ball
will begin to move forwards with the original velocity of the
first, but on hitting the third ball, it will in its turn give up
its motion to it. In this way the motion of the first ball will
be passed on through the entire series of balls. Such a
model, when the balls are all precisely similar, may be taken
to represent the propagation of light in a homogeneous
medium ; each particle of ether after giving up its motion
remains at rest until it again receives a new impulse from
behind from the source of light. It is however the trans-
ference of the impulse, not the movement of the balls, that
represents the propagation of light. If the balls are in
contact, the impulse will still travel along the series although
the individual members composing 1t shew no movement.
Further, the velocity with which this compression impulse
travels will diminish as the density or mass of the balls is
increased, just as the velocity of light diminishes when the
refractive index or density of the medium is increased.
Provided then that the balls are all of equal mass and of
equal elasticity, no matter how great their differences in
other respects, the transference of the motion will be simple
and complete, and, should they be in contact, the speed
of the compression impulse will be uniform.

If then a transparent substance be immersed in a medium
of the same refractive index as itself, light will be transmitted
through it without undergoing any loss by reflection at its
surface; for, the velocity of light being the same in the
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immersed body as in the medium, they will behave as two
different systems of equally massive balls. When the differ-
ence of velocity or of refractive index is very slight, a very
small proportion of the light is reflected, and this may easily
escape notice. Thus 1t requires careful scrutiny even with
favourable illumination to detect the presence of the lens in
the eye, or of a piece of glass in a solution of Canada balsam,
or indeed of ice in water.

A substance of higher refractive index may be represented
by a system of more massive balls. If now this set be placed
close to the first series so that a continuous row of balls is
formed, we have a rough representation of two contiguous
media of different density. As before, when the terminal
ball of the first series i1s made to strike its neighbour it will
give up its motion entirely to it and come to rest. In this
way the motion will be passed on from ball to ball until the
second series is reached. Let us suppose each ball in this
to be of twice the mass of the constituents of the previous
set. The end ball of the first set will, on striking its more
massive neighbour, give up 1ts motion and rebound from 1t
with one-third of its previous velocity. A wave of movement
in the reverse direction will therefore travel along the first
series of balls. If they are very close together, we may
regard it as a wave of compression that travels backwards
along the system, and the previous phenomenon as a wave
of compression that travelled forwards. This reflected com-
pression-wave will however travel back at precisely the same
rate that the original impulse travelled forwards, but 1t will
be less intense, for the momentum of each ball 1s now but
one-third of what it was before. Meanwhile the impulse
which the first massive ball had received has been traversing
the second system, so that an onward-moving compression-
wave has resulted in this also. We have then a repre-
sentation of the partial reflection of the light that falls on
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a denser medium, and of its partial transmission through it.
The reflection will be more complete if the difference of
density (z.e. of refractive index) of the two media is increased,
just as the intensity of the reflected compression-wave in the
model is increased by augmenting the difference between the
masses of the balls 1n the two systems.

An impulse given to the second system of balls will
produce a wave-movement analogous to the passage of
light from a dense to a rare medium, There is however
a peculiarity in this case that demands careful attention.
Let us imagine that the balls are attached to each other
by elastic threads. As before the impulse travelling along
the massive system, which we will now call the first system,
may be regarded as a forward-moving compression-wave.
The end ball however will, after striking the first ball of
the second lighter series, still continue 1ts onward motion
(though at one-third its previous rate). It will in fact
only give up a part of its momentum to its less massive
neighbour. This onward movement of the end ball will
pull forwards each member of the first series in turn by
means of the connecting threads. In fact a wave of ex-
tension will travel backwards throughout the system. If
the threads do not stretch, this pulling or extension-wave
will travel backwards at the same rate that the original
compression-wave travelled forwards. Meanwhile a pushing
impulse or compression-wave has been travelling onwards
along the lighter series of balls.

How are all these facts to be interpreted? We have
already regarded the compression of the balls as analogous
to some phase of a light wave that travels through the
medium. But extension is evidently opposite in phase to
compression : 1f the latter represent the crest of a wave,
the former must be analogous to the trough of a wave.

When then light passes from a denser medium to a rarer,
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we are prepared to find one portion transmitted, and another
portion reflected with its phase reversed. This is precisely
what 1s actually observed, the incident wave-crest 1s reflected
as a trough and vice versa. No such reversal however
occurs when the reflection takes place at the surface of a
dense medium. This peculiarity of the reflection at the
surface of a rare medium is of fundamental importance in
the comprehension of certain interference phenomena of
light, eg. the central dark spot in Newton’s rings, ete.
We have seen then that the amount of light reflected

- from a surface depends to a large extent on the difference

between its refractive index and that of the surrounding

medium. It is not unusual, for example, to see a well-

marked reflex from the surface of the lens in the eyes of
old people. This 1s best seen when the illumination is

' oblique, for, as we have said, the amount of light reflected

from a non-metallic surface increases with the obliquity of
its incidence. The appearance indicates that the refraction
of the lenticular cortex has increased ; the reflection is not a
sign of opacity or cataract, but merely of the difference
between the refractive index of the aqueous humour and
of the surface of the lens. Similarly particles or striae of
higher index in the lens may be suggestive of dots of opacity.
The diagnosis is made by seeing if they will transmit light
by using the ophthalmoscope.

One word more about the opacity of substances. As we
have seen, even a perfectly transparent substance will not
transmit all the incident light, unless it be in a medium of
the same refractive index as its own. Further a thin layer
of material may not transmit light, either because 1t absorbs
it, like black velvet, or because it scatters it like white lead.
A mass of snow is opaque although each of its component
crystals 1s transparent, for, such is the difference between
the refractive index of these ice crystals and the air which
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separates them, that a considerable fraction of the incident
light 1s reflected and scattered at each of the innumerable
surfaces that 1t meets.

The translucency of oiled paper or of a moistened towel
is due to a similar cause. The refractive index of the
constituent fibres is considerably higher than that of air.
Hence when this is replaced by a medium whose refractive
index more nearly resembles their own, less light 1s reflected
—the object appears darker—and more light 1s trans-
mitted.



CHAPTER 1IV.

REFLECTION AT PLANE SURFACES. PRINCIFLE
OF LEAST TIME.

WE must now consider the manner in which light is
reflected by polished surfaces. In the introductory chapter
we deduced from the undulatory theory the two laws of
reflection. But 1t must be remembered that these laws
have been primarily deduced from direct observation; they
are In no way dependent upon the theory of light, though
the theory that has been adopted explains them.

The plane of incidence is that plane which contains both
the incident ray and the normal to the surface drawn from
the point of incidence.

I. The reflected ray lies in the plane of incidence and
on the side of the normal opposite to the incident ray.

IT. The angles which the incident and reflected rays
make with the normal are equal to one another.

These laws hold good whether the reflecting surface be
plane or curved. In the latter case we have only to draw
a tangent plane at the point of incidence, and consider the
ray to be reflected at this plane.
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Reflection at Plane Surfaces. Let 4B represent a
plane reflecting surface, and let S (Fig. 14) represent a

Q

Fig. /4. ¥

luminous point which is sending out light in all directions.
Now if SN represent one of these directions, we may call
the line SN a ray of light. Further from the laws of reflection
we see that, if the normal NV be drawn from the point of
incidence, the line N@ which makes an equal angle with the
normal will represent the direction of the reflected light, in
other words N() is the reflected ray: for it lies in the plane
of incidence, 1.e. the plane of the paper, and the angles which
SN and N@ make with the normal are equal to one another.

It 1s easy to see that the incident and reflected rays also
make equal angles with the surface of the mirror.

If then there be an eye in the neighbourhood of
which can receive this reflected ray, it will perceive light
coming towards it in the direction N ; but we have not yet
found from which point in this line it will appear to have
come. To do this we shall have to take another incident
ray from S, and discover where the corresponding reflected
ray intersects the previous one. Let SM be a contiguous

| Lo ]
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incident ray in the same plane, and let the angle SMA be
less than the angle SNA. Then the corresponding reflected
ray MR makes the angle RMB equal to the angle SMA,
and £LSNA or 2QNM>28MA or « RMB;
SLBMN+2QNM>2 RMN + 2 RMB or two right angles.

If then QN and RM be produced, they will meet in a
point S behind the mirror. Join S to the point of inter-
section S'. Now the angle MNS’ is equal to the alternate
angle QVA which is obviously equal to the angle MNS.

Also £LNMS =2 RMB=/ NMS.

Then in the two triangles SNM, S'NM we have the side
NM common to each, and the adjacent angles are also equal,
therefore the remaining sides are respectively equal each to
each.

Now in the triangles SM A4, S’ MA the two sides SM, MA
are equal to the sides S'M, MA; and the included angle
SMA is equal to the included angle S’MA, so that the base
SA is equal to the base 8’4, and the angle SA M is equal to
the angle S’A M.

The line SS’ is consequently perpendicular to the surface
of the mirror, and 1t is bisected by the plane of the mirror.

Similarly i1t may be shewn that any other ray in the
same plane will be reflected in such a direction that when
produced backwards it will meet SS’ in the same point 5",

We see then that every ray in the plane of the paper,
that falls upon the surface of the mirror, will be reflected in
such a direction that i1t will appear to come from S

Now if we suppose the paper to be revolved about an
axis SS, the figure will represent the course of incident and
reflected rays in every plane.

Hence it follows that all the rays that fall upon the
mirror from S, whatever the plane of their incidence may be,
will be so reflected that the prolongations of these reflected
rays will intersect at the point 5.
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Consequently the light, that is reflected from the mirror,
will appear to the eye that receives it, to be coming from S’.
In other words, the mirror will form an image of S at S".

Since all the reflected rays if produced intersect each other
at the same point, it is obvious that for the determination of
this point, it 1s sufficient to take only two of the reflected
rays and produce them until they meet. This meeting point
will then be the common point of intersection of all the
reflected rays.

As however we have seen that this common point of
intersection lies at the same distance behind the mirror that
the source of illumination 1s 1n front of 1t, and that it 1s
also on the line which 1s drawn from the source through the
plane of the mirror perpendicular to its surface, we may still
further simplify the geometrical construction. Thus if P be
a point in front of a plane mirror (Fig. 15) we can find the
position of its image @) by drawing PL(Q) perpendicular to the

i..-........;..a.; ™

Fig. I5.
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plane of the mirror and cutting it at L, and then making L@
equal to PL. The course of any of the rays from P that
undergo reflection at the points M, N,... on the mirror is
indicated by joining QM, QN,... and producing them to
BB

If the positions of the object the image and the observer’s
eye be given, it is an easy matter to indicate the course of
the light that by reflection reaches the observer’s eye. Thus
if P represent the position of the object, and @ that of the
image, while R represents the position of the eye, join QR,
cutting the mirror in M. Join PM. Then PMR represents
the course of the light that, originating from P to an eye at
R, gives rise to a virtual image at Q.

If an object Pp be placed in front of the mirror 4B we
can find the position of its image in a similar way. For we
may consider the object to be composed of innumerable
points, each of which is scattering light in all directions.
The images of all these points can be found by the geo-
metrical construction just given. Thus @ and g are found
to be the images of the points P and p respectively, and it
is easy to see that the images of the points intermediate
between P and p will ocecupy corresponding intermediate
positions between @ and q.

If then an eye be so situated as to receive the conical
pencil of rays bounded by MR, NR’, it will see an image of
the point P at ), for the light that 1t receives will reach it,
just as if it were diverging from a point @. Similarly of the
conical pencils, diverging from all the other points of the
object, the reflected portions will appear to the eye that
receives them to be coming from the corresponding points of
the image. It may then be said that an image of Pp is
formed at @Qq.

It is however obvious that strictly speaking the image Qg is
not formed at all, for it is not the reflected rays themselves,
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but only their prolongations backwards that intersect. Such
~ an image is called a virtual image: indeed it has no real
existence, inasmuch as the reflected rays do not actually pass
through (¢. It has however a virtual existence with respect
to an observer who is suitably placed.

It will be noted that the image Qg is similar and equal
to the object Pp in every respect; for the corresponding
points of the object and image are similarly situated with
respect to the mirror. Thus the image 1s erect, and the
point of the object nearest to the mirror (p) is represented
by the point of the image nearest to the mirror (¢); and the
right and left sides of the image correspond to the right and
left sides of the object. Since however the object and image
face each other, the observer obtains a view of the opposite
aspect of the object, 7.e. a view of that side of the object
which in his position he could not see without turning the
object round. Hence he thinks he sees an object that he
has turned round, and, to account for the appearance that it
presents, he regards it as an object similar to the real object
whose right and left sides have interchanged. The image of
the right hand for instance suggests the left hand, for the
left hand when turned round presents a precisely similar
aspect. In the same way the image of a printed letter
resembles the type from which it was printed.

Deviation produced by Rotation of Mirror. If now
the mirror be slowly rotated about its vertical axis, the
1mage also will appear to rotate in the same direction about
the same axis. Similarly if the mirror be rotated about its
horizontal axis, the image will appear to undergo a rotation
about this axis. Hence the image of a vertical tube may
under these circumstances become displaced to such an
extent as to present the appearance of a horizontal tube,
whose axis 1s at right angles to the axis of rotation.
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The laryngoscope well exemplifies this displacement of
the image. The mirror, which is inclined at an angle of 45°
to the vertical, when properly placed at the back of the
pharynx, forms an image of the larynx with its axis horizontal
and 1ts lumen facing the observer. Since the symmetry of
the correspondence between the different parts of the object
and 1mage relates to their distances from the mirror, and not
to their distances from the observer, we find the anterior
parts of the larynx (epiglottis, etc.) represented in the upper
part of the image, while the posterior structures (arytenoids,
ete.) occupy the lower portion of the image.

It appears then that the rotation of a mirror through an
angle of 45° causes the image to move through an angle of
90°. The alteration then of the direction of the reflected
rays 1s measured by twice the angle through which the
mirror 1s turned. |

Let AB be a mirror (Fig. 16) and S a luminous point.
All the incident rays that fall on AB will be reflected in

Fig. 6.

such a way that they will appear to be proceeding from a
point S’, which is at the same distance behind the mirror
that S is in front of it. The incident ray SI which i1s
normal to AB will then be reflected back upon its course
as IS. If now the mirror be rotated through an angle @ so
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as to occupy a position ab, the normal at the point I will
now occupy a position /Y, making an angle 6 with 7.S. The
incident ray SI therefore will be reflected as 7R, making an
angle 8 with IY or 20 with IS.

Further the image of the point S will now be at a point
S”, that may be found by the method given on p. 67, and
all the rays incident on ab will appear after reflection to be
coming from S”. It is obvious that S’ has undergone an
angular displacement equal to S/R; we may therefore con-
clude that on rotating the mirror through an angle 8 all the
reflected rays undergo a deviation of 26.

There are several important applications of this principle
mn daily use. It will be sufficient to specify two as illustrative
examples.

The Galvanometer is used to detect the presence of
an electric current and to measure its magnitude. There
are many forms of the instrument, but they all essentially
consist of a coil of insulated wire and a magnet so suspended
as to be easily deflected when the current is led through the
coil. In the mirror galvanometer the deflection of the mag-
netic needle is measured by the alteration in the direction of
the light reflected from a small mirror attached to the centre
of the needle. But as we have seen the deflection of the
reflected light is twice that of the mirror; it is only
necessary then to receive the reflected light on a graduated
scale, to measure the angle of its deflection, and then to
halve the angle obtained. This number will give the
angle through which the magnet has been deflected by
the current.

The Sextant 1s an instrument employed by navigators
to measure the angle between any two distant objects as
seen from the position of the observer. 4 is a small mirror
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fixed to the limb B of the sextant, in such a position that
any light incident in the direction B4 will be reflected in

Fig. I7.

the direction AT. B is another mirror fixed to the moveable
arm BZ. This mirror can be rotated about its centre by
means of the arm, and the amount of rotation can be read
off on the scale P(). When [ is at the zero division of the
scale (F), the mirror B is parallel to the mirror 4. Con-
sequently the light which reaches 4 from B must have been
travelling in a direction H'B parallel to AT. If then H and
S be the objects to be observed, the telescope 1" is first
directed towards H, and the instrument is maintained in
such a position that the object H is kept in view just above
the upper edge of the mirror 4. If the arm B7 i1s now
slowly moved forwards from P, the objects between H and S
will in succession appear reflected in the mirror 4. Lebt us
suppose that after the mirror B has been rotated through an
angle €, an image of S is formed by the mirror 4 below H.
In this case the light from S must, after reflection at B,
have travelled along BA, as it eventually has obtained the
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direction A7. But when zero on the scale was indicated,
the incident ray on B, that corresponded to BA, was H'B.
So the angle SBH’ must be double of the angle € through
which the mirror was turned, and since H'B i1s parallel to
HA, the angle sought between S and H must also be 26.

Repeated Reflection at Inclined Mirrors. When
an object is placed between two plane mirrors inclined to one
another at an angle, a limited number of virtual images is
formed which may be seen by an observer in a suitable
position. It will be found that if the angle between the
mirrors 18 an integral divisor of 180°, the object together
with its images forms a perfectly symmetrical figure with
respect to the reflecting surfaces.

The kaleidoscope invented by Sir David Brewster consists
essentially of two plane mirrors AC' and BC inclined to one
another at an angle of 60° (Fig. 18). If an object such as

B
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PQ be placed between the mirrors, an observer, if in a
suitable position, will see 5 virtual images symmetrically
arranged about the point of intersection (' of the planes of
the mirrors.

In order to determine how many images are seen, we first
have to discover how many reflections can occur from each
mirror, and finally how many of these will reach the eye of
the observer. This is not a difficult calculation but it is
rather long and laborious, and as 1t has no direet bearing on
the subject of this book it will be sufficient to give the
general result.

If @ be the angle between the mirrors, and E:m, the

number of 1mages seen by an eye that is between the planes
of the mirrors is 2m —1, if m is an integer. So if a=60°,
180°
60°
7 virtual images are seen. If m 1s not an integer, the
number of images seen will depend on the position of the
observer’s eye.

, 180°

If a = 39°, 39°

Then with the most favourable position of the observer
and object 9 virtual images may be seen. If this favourable
disposition of the object and the eye do not occur, only 8
mmages will be seen.

The position of the images is easily found by the con-
struction now familiar to the reader. Let AC, BC (Fig. 19)
be two plane mirrors inclined to each other at an angle of 90°,
and let P denote the position of the object between them.
From P draw the normal Pp* to the plane of the mirror AC,
and produce it to p,“ so that Pp,” is bisected by the plane of
the mirror. Then p“ is the position of the 1mage formed by
one reflection at AC. Similarly p? is the position of the

m= =3, .~ 2m —1 or 5 virtual images are seen ; if a=45",

= 48 =m, then 2m —1 = 83,
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image formed by one reflection at BC. Now part of this
light which is reflected from BC, and appears to come from

E

o 'F?

Fig. /9.

p,, will be again reflected from A('; and the observer, if in a
suitable position to receive it, will see the image p,, due to if.
The position of p,, is at a perpendicular distance behind the
plane of AC' equal to that which p is in front of it. The
eye that receives this image must be situated between P
and A. An eye at & between P and B will also see an
1mage at p,; but this will be formed by reflection at the
surface BC, since p,, is the same perpendicular distance below
the plane of BC that p* is above it. The course of the
light from this image p,, to an eye at £ is easily found.
Join p, K. Since this line cuts the mirror BC, p, must be
the image of p“ Let @ be the point of intersection of p, /&
and BC. Join p*Q cutting AC in E. Join PR. Then
PRQE is the path pursued by the light that gives to an eye
at & the image p,.
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It will be noticed that the image p, may be formed
either by the reflection of the image p” in the mirror AC,
or by the reflection of the image p“ in the mirror BC.
It is generally stated that these images coincide; but the
expression is misleading, as it might suggest that the image
p,, would be especially bright from receiving light from two
sources. It 1s clear however that the line p, £ between the
image and the observer cannot cut both the mirrors 4AC and
BCU, and so whatever his position he can only see p, in one
of the mirrors.

If two mirrors are parallel to each other, the angle
between them has zero value, so m:% =o0. An infinite
number of reflections may occur between two parallel mirrors,
and 1f certain physical conditions did not prevent their
observation, one might say the number of virtual images
formed of an object placed between them 1s also infinite.

If the image formed by an ordinary looking-glass be
carefully observed it will be found to be double. There are
in fact two reflecting surfaces, each of which forms an
independent mirror. The upper surface of the glass gives
rise to a very faint though distinct image, and the lower
surface of the glass which is silvered forms the bright image.
If the frame in which the looking-glass is mounted be
removed so that one can look edgewise through the glass,
a considerable number of images of the upper and lower
surfaces of the glass can be seen. A knowledge of refraction
however is required for the exact determination of the
position of the 1mages.

Principle of Least Time. The fact that light radiat-
ing in space travels in straight lines might be expressed, if
there were any advantage to be gained by it, by saying that
it travels to its destination by the shortest possible path.
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Before adopting such an expression 1t is necessary to shew
that it is an adequate description of the course of light
under different conditions, and further that it is useful.
The principle is more frequently and more generally stated
in a slightly different form, z.e. light travels to its destination
by that course that occupies the least time. It will be found
that when expressed in this form the principle is generally
applicable to the path of light in media of different or
varying density, and has hence been applied to the solution
of many problems respecting the course of light under
different conditions. That the principle of “least time” 1is
not universally true will be shewn in the next chapter, and
a correct and an adequate description of the course of light
will be given.

It will be sufficient here to shew that the principle applies
to the behaviour of light which is subject to reflection at a
plane surface.

Fig 20 S\

If S be a luminous point, and 1f we consider the light
that reaches @) from S after reflection at the surface of the
mirror, it will be shewn that the course SN, N@ that the



78 PRINCIPLE OF LEAST TIME.

light actually takes is also the course that occupies the
least time. For if not, let SM, M@ in the plane of the paper
be a shorter path.

Then SM, MQ < SN, NQ.
Now SM=8M and SN=_8"N.
S'M, MQ < S’N, NQ,

which is absurd, for S'N, N() is a straight line.

A precisely similar proof could be applied if the point M
were not in the plane of the paper; indeed one has only to
imagine the point M to revolve round XN in the plane of the
reflecting surface to see that the proposition is universally
true for plane surfaces. It follows then that the principle of
least time embodies both the laws of reflection at plane
surfaces, for 1t does not admit of the shghtest difference
between the angles of incidence and reflection, or the
slightest difference between their planes.
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QUESTIONS,

(1) Two parallel plane mirrors face each other at a distance
of 3 ft., and a small object is placed between them at a distance
of 1 ft. from one of them, Calculate the distances from this
mirror of the three nearest images that are seen in it.

(2) Two plane mirrors are placed at right angles to each
other, and a small object is placed between the mirrors at an
angular distance of 15° from one of them and the line of
intersection between them (C'). The observer’s eye is placed half
way between the mirrors.

What is the number of images seen? Say in which mirror
the image is seen that corresponds to the greatest number of
reflections.

(3) The mirror remote from the object in the above example
is turned about €' through an angle of 45°. The observer’s eye is
placed half way between the mirrors.

Calculate the number of images seen when the angle between
the mirrors is 45° and when it is 135°. In the latter case is
there any position of the observer in which more images would
be seen?

(4) When the angle between the mirrors is 45° in the above
example, say in which mirror the image is seen, that corresponds
to the greatest number of reflections, and trace the course of the
light from the object to the eye in this case.



CHAPTER V.

REFLECTION AT CURVED SURFACES. CONJUGATE
FOCAL DISTANCES. BIZE OF IMAGE. PRINCIPLE
OF SAME PHASE NOT LEAST TIME.

Concave Spherical Mirrors. We have now to consider
the manner in which light is reflected by a curved surface.
At the point of incidence a tangent plane may be drawn,
and the reflection may be considered as taking place at this
tangent plane in the way we have already explained.

There are however less tedious methods of dealing with
reflection at spherical surfaces, with which we are chiefly
concerned, and these we proceed to describe in their simplest
form.

Fig. 21,
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Let OK represent a concave spherical reflecting surface,
the centre of the sphere of which it is a part being at C.

Any line drawn through C to the mirror is called an axis
of the mirror. If the parts of the mirror on either side of
the axis are symmetrical, the axis 1s called the principal axis.
Thus in the figure CO 1s the principal axis and O is the
vertex of the mirror.

If any point P be taken on the principal axis and if it
be supposed to become self-luminous, it will radiate light in
all directions.

Let PK be one of these directions; join CK. Then CK
being a radius is the normal to the spherical surface at the
point K.

The incident ray PK will therefore be reflected at K in
a direction K@), such that the angle of incidence PK(' is
equal to the angle of reflection CKQ, and K@ will be in the
same plane as PK and KC, 7.e. K@ will be in the plane of
the paper.

Then since in the triangle PK Q) the vertical angle PKQ
is bisected by the line KC that cuts the base at C,

Po EK
Q™ QK

Now if K, the point of incidence considered, be very near
to O, the line PK will be very nearly equal to the line PO,
and at the same time QK will be very nearly equal to the
line QO.

Under these conditions then we may substitute PO and
QO for PK and QK, and by this means we shall obtain a
much more manageable formula which is approximately
correct.

For convenience we shall always consider lines drawn in
the direction of the incident light as positive, lines drawn in
the reverse direction as negative.

(Eue. v1. 3.)

P. O. 6
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Let the distance of P from O be denoted by p, and the
distance of @ from O be denoted by ¢, and let » be the length
of the radius of the sphere (CK or CO).

Then PC=p—r, CQ=r—gq,
PK = p, QK = ff :
: MRS g T 2 P p
and the relation -UQ 0K becomes . _{I 5

C.gp —gqr=pr—mpg, or gr+ pr= 2pq.
On dividing by pgr we obtain the formula
1 ¥ 132

Now since the surface i1s of uniform curvature 1t follows that
the nearer K is to O, the closer do the values of PK and QK
approach those of PO and QO.

Hence 1if for the purposes of a given calculation it 1s
allowable to regard the distances from K, namely PK and
QK, as equal to PO and QO, we may with still greater justice
substitute these values of PO and QO for the corresponding
distances PK', QK' from any point K’ intermediate between
K and 0.

It follows then that all the rays from P incident on the
arc KO will be reflected in such a way that the formula (1)
will apply to each of them;

1

o
—

7
As the right-hand side of this equation is constant under the

~ | b2
RS-

e itions ontidered St follow et ; e
other words all rays falling on the arc KO will on reflection

cut the axis in the same point Q.

If now the figure be rotated about the axis CO, the arc
KO will trace out the corresponding segment of the re-
flecting spherical surface, and it is clear that all rays from
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P incident on this small segment, whatever their plane of
incidence, will intersect at the same point  to the assigned
degree of approximation.

The point @ is called the conjugate focus of P. The
term conjugate implies that if P’s position changes, @’s
position changes also; 1t is called a focus because it 1s a
common point of intersection of rays.

It should be observed that any incident light which
passes through the centre of curvature (C) will be so re-
flected as to retrace its previous course. Consideration of

| [ [ 3
the formula -+ -== shews that, if » be constant, as p

T RS
diminishes, ¢ increases; when p =g, p and ¢ are each equal
to . That is to say, when the luminous point 1s at C, its
conjugate focus coincides with it at C. It is obvious that
this must be so, for all rays from (' are normals to the re-
flecting surface, and consequently all the incident light is
reflected along its original incident path.

This may be more instructively regarded from another
point of view. If there be a luminous point at C, spherical
waves are radiating from () and all the elements of a given
incident wave-front must reach the reflecting surface at
precisely the same moment, 7.e. they must all be in pre-
cisely the same phase. Reflection will occur simultaneously
throughout the incident wave-front and consequently the
wave-front will return as a contracting spherical segment
to its centre C. Here the disturbance produced by each
element of the returning wave will be of precisely the same
character, for each element is in the same phase. Each
element will therefore add to the disturbance of the central
particle at C, or increase the amplitude of its vibration, 7.e. (!
1s a focus; for in the language of physical optics a focus is a!
point at which a large number of elements of the same wave-
front arrive in precisely the same phase.

6—2
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As p becomes less than », ¢ becomes greater than »; in
fact, the positions of the conjugate foci with respect to C are
merely interchanged. If in Fig. 21 @ be regarded as the
luminous point, P will be its conjugate focus.

Now let p increase, then ¢ will diminish.

As P is removed further and further away, the rays from
P incident on the mirror include a smaller and smaller angle.
Finally if P be supposed at an infinite distance its rays
become parallel.

Now when p= o , j%-:l or 0;
. when p=w L g "
. wWhen p = ; g,—r?_,m.e.g =5

Consequently when parallel rays fall on the mirror, they will
intersect at a point at a distance of half the radius from the
vertex of the mirror.

This point (F), at which incident parallel rays intersect
after reflection, is called the Principal Focus.

Its distance from the vertex may be conveniently denoted

| ERaEN--
b}"ﬁﬁﬂthﬂ-t }.:?—.

The value of f depends therefore solely on the curvature
of the reflecting surface and so is constant for each mirror.

Consequently our previous formula may be written
il

E L
il
It is clear that if p=f, ¢ =9 , 2e. 1f a luminous point be
placed at the principal focus, the diverging rays that proceed
from it to the mirror will be reflected as parallel rays’.

! When we come to deal with refraction at a spherical surface, we shall
find that such a point is called the first principal focus, whereas the point
towards which incident parallel rays converge is called the second prineipal

| focus. We may say then that when reflection at a spherical surface is under
E consideration, the two prineipal foci are coincident.
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If p be less than f, the value of g is negative. This
means that the distance of @ from O must be measured in
the opposite direction; the point ¢ will therefore be behind
the mirror, Fig. 22. The focus @ in that case is virtual

Fig.22.

Let us consider the matter from another point of view.
When p is a little greater than f, the divergent pencil from
P is reflected by the mirror as a slightly convergent pencil,
the apex of which is at @, @ being a great distance off. As
P approaches F' the divergence of the incident pencil in-
creases, and the reflected rays approach parallelism. When
P falls within F (so that p < f), the divergence of the
mcident pencil 1s so great that it is not overcome by reflec-
tion at the mirror, and so even after this reflection the rays
still diverge.

If now these reflected rays be produced backwards they
will intersect at a point ¢ behind the mirror, which is con-
sequently their virtual focus.

When then p is greater than f, the conjugate foci P and
Q are real, 1.e. an actual intersection of rays occurs at these
points,

When however p is less than f, @ the conjugate focus of
P is virtual, for the reflected rays do not actually intersect,
but their subsequent course after reflection i1s that which
would be pursued by rays that had intersected at . The
focus or intersection at ) is therefore called virtual.

Now let the axis PCO be rotated about C' into a new
position P'CO’ (Fig. 23). Any line such as P'C0O’ which
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passes through C, but does not pass through the vertex of

the reflecting surface, is called a secondary axis. It 1s

evident that the conjugate focus of P’ will be formed on the
5

LY
&

Fig. 23.

secondary axis at the point @ such that CQ' = (. In fact
the axis PCO in its rotation carries the points  and ¥ with
it. Incident light the rays of which are parallel to PO’ will
be reflected to a focus F', i.e. the reflected rays will intersect
at ¥,

If now the axis PCO be turned through a small angle in
all directions about C, the point F will trace out a small
spherical segment F'F. At the same time the points P and
() will trace out spherical segments of a different size. If
then an object be curved towards the mirror exactly as PP,
its image will be inverted and curved away from the mirror
as QQ. In fact the segment @@ may be regarded as the
image of the segment PP’ It may here be noted that all
real images are inverted, whereas all virtual images are
erect ; the reason of this will become more apparent sub-
sequently.
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If the segments traced out by P, @, ¥ and O on rotating
the axis PCO about C are very small, they may be regarded
as approximately plane surfaces. The planes so described at
P and @ are called the Conjugate planes, the plane at F 1s
called the Focal plane, whereas the plane at the vertex of
the mirror O is called the Principal plane. Or, what comes to
the same thing, these planes may be regarded as being drawn
tangentially to the spherical segments at P, @, F, and 0.

As we are at present confining our attention to the
consideration of pencils that are but slightly inclined to the
axis, we may make the following assertions regarding the
properties of these planes.

The surface at which reflection occurs may be regarded
as coincident with the Principal plane.

All peneils of parallel rays that are but slightly inclined
to the optic axis, will after reflection intersect in some point
on the Focal plane, and moreover light from any luminous
point on this plane will after reflection travel in rays
parallel to that secondary axis on which the point lies.

Any point on one Conjugate plane will form an image at
a corresponding point on the other Conjugate plane.

The relation between the distances of the Conjugate
planes from the Focal plane is easily obtained.

: 1S e |

Since — ==

g )

or f+'f-——1,
g

on multiplying by pg we get

Pg—qf—pf=0
and on adding £* to each side

(2= @-F)=F*
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We have shewn how to find the distance of the image from
the vertex of the mirror, when the distance of the object (p)
and the radius of curvature () are known. From the
properties of the centre of curvature, and from those of the
planes just described, we are now able to give a geometrical
construction for determining the position of the image.

Let AB be the object (Fig. 24), and let € be the centre
of curvature. Join BC, and produce it to meet the reflecting

H A

0 F C B
&/515/
1 Fig. 24,

surface at 0. Then the plane HOH" at right angles to the
axis BCO represents the principal plane, and # the mid-point
of €0 1s the principal focus.

To determine the position of the image of a point A
that is not on the principal axis, either of the following
methods may be adopted.

(1) (Fig. 24) Draw the ray AH parallel to the axis
meeting the principal plane in H. Join HF, and produce it
to meet the secondary axis ACH' in a.

Then a 1s the conjugate focus, or the 1mage of A.

For the incident light which is travelling in the direction
AH parallel to the principal axis must after reflection pass
through the focus F': and the light which 1s travelling in the
direction ACH’, since it passes through the centre (C), must
be reflected back along its previous path. If then we regard
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AH, AH" as the extreme rays of the incident cone of light
that diverges from A4, we see that they will be so reflected as
to intersect at @. In fact the incident cone HAH' becomes
the reflected cone HaH' converging towards a. We shall
presently find that when the incident cone is as wide as that
represented in the diagram it is not accurately reflected from
a spherical mirror to a single point a. For our present
purpose however the construction given 1is sufficiently
accurate.

(2) (Fig. 25.) Through A draw the ray AFH" cutting
the principal axis in F and meeting the principal plane in

r o
)
@

H‘/ 3 Fig.25.

H”, and through H"” draw H"a parallel to the principal axis,
meeting the secondary axis ACH" in @. Then since the ray
A H" passes through the prinecipal focus it must be reflected
parallel to the axis, and «, its point of intersection with the
ray drawn through the centre, must be the image of A.
To determine the position of the image of a point B on
the principal axis, some special device is necessary. The
conjugate b is evidently some point on the principal axis, but
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its position can only be determined by finding where this
line 1s crossed by some ray of the light that starting from B
has undergone reflection. -

We may draw an arbitrary secondary axis through €' and
treat it as the principal axis in the previous construction ; or
we may adopt the following method, which is preferable.

Through F (Fig. 26) draw FD at right angles to the
principal axis, then FD represents the principal focal plane.
Take any ray BDH cutting the focal plane in D, and the

A

H Fig. 26

principal plane in H. Join DC, and through H draw Hb
parallel to DC, cutting the principal axis in b. Then b is the
conjugate focus of B.

For if we imagine the point D on the principal focal
plane to become self-luminous, the light from D after
reflection will travel in a pencil of rays parallel to the
secondary axis DC. Now DH may be regarded as a ray of
incident light either from D or from B; in either case Hb i1s
the course of this light after reflection, and b, the point
where this ray crosses the principal axis, is the conjugate
focus of B.

If the distance of the object from the mirror is less than
the principal focal distance, its image is virtual, erect and
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magnified, as is evident from a glance at Fig. 27 where the
construction first described has been employed.

At this point it may be well again to warn the reader
that these geometrical constructions for determining the

d.
;\"‘L"‘Hﬂ-‘
= —r
5 o
; =
H T Ty
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- o, —
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Fig.27.

position of the image only hold good when the incident light
is centric. For example in Fig. 26 the light from B that 1s
incident on the mirror in the immediate neighbourhood of O
may be said to be reflected accurately to the conjugate focus
b, whereas light that is incident eccentrically is reflected in a
different direction. In order to obtain then a clear image of
B at b it is necessary to cover up the peripheral parts of the
spherical mirror so that only the centric portion may be
employed. It is for this reason that the principal plane is
used in the construction, for it i1s evident that the tangent
plane at the vertex is a better representation of this centric
portion than the whole curved surface of the mirror would
be. The line BH, which we have for convenience called the
ray BH, does not therefore represent any ray that is actually
incident on the mirror, for the point of its incidence is so
eccentric that i1t would undergo anomalous reflection. We
are however justified in asserting that a small centric pencil
from B will after reflection come to a focus at the same point
as the line Hb crosses the axis.
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Convex Spherical Mirrors. Reflection from Convex
spherical mirrors will offer no difficulty to the reader who has
understood the preceding sections.

Since the object (P) 1s on the convex side of the mirror,
the point C, which indicates the centre of its spherical
surface, does not lie on the same side as the object; the
radius consequently is measured in the negative direction.

Hence in the fm'mulaiJl— + é — % a negative value must be

| assigned to the symbol ». It follows therefore that ¢ also
must be always negative, that 1s, the image must be always
| behind the mirror and virtual. This is evident also from

Fig. 28

general considerations ; for a convex mirror causes divergence
of the incident rays, and these, if coming from a real object,
must have been divergent even before reaching the mirror.

The geometrical proof of the formula for the convex
mirror is almost identical with that for the concave,

Let POC denote the principal axis, and let PK denote a
ray from P incident on the mirror at K, a point very near to
the vertex 0. Then PK will be reflected as KR which
makes an angle with the normal equal to the angle of
incidence.
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Produce RK to () cutting the axis in ().
Then PKQ is a triangle, the exterior angle of which 1s
bisected by a line C/ that meets the base produced in C.
U
R w0k
Now by taking the point A sufficiently near the vertex O
we may make the difference between PK, K@), and PO, 0Q
as small as we please. Under these circumstances we may

(Euc. vI. A.)

regard ;}g as ultimately equal to %O and consequently in
the limit
PC_ PO
QC = 0Q
o CUs
0C—-0Q 0@

Now 1f we assign to p, ¢ and » the same values as before,
P=PO, qg= lQ{),—- = CO, then OC = — » and OQ:— q-

Qb
ca=rlh —q
or qr + pr = 2pyg,
or 1 s ! = ? _
Lo L

It should be noted that p, ¢ and » are regarded as
algebraic. quantities, 7.e. as symbols, which in addition to
their numerical significance represent direction.

Under these circumstances the old formula ;-t- é =§
holds good for both kinds of spherical mirrors.
If the incident rays are parallel ! pecomes Ti or 0, and

or

-

s

Since 7 1 negative f is also negative, 7.e. inci-

Mo
|
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dent parallel rays after reflection diverge as if from a point ¥,
situated behind the mirror at half the distance of the centre
from the vertex.

Ex. An object is placed 8 ins. in front of a spherical mirror,
and a virtual image of it is formed 4'8 ins. behind the mirror.
What is the radius of curvature of the mirror, and what is its

focal length?
Let us employ the fundamental formula

Bl o2
P g i
In this case p=8ins. and ¢ =—4'8ins., for the image is

behind the mirror; so we get, on substituting for the symbols
their numerical values and paying due regard to the signs that
they bear,

or — == =

48
. #==241ins, and f=-12 ins,
The negative signs shew that the radius and the focal
distance are to be measured in the negative direction, ¢.e. both

the centre of curvature and the principal focus lie behind the
mirror ; in other words, the mirror is convex.

The methods for constructing the image that results from
reflection at a convex mirror are identical with those that

6 — 10 1 904
T

L A

c Fb 0

Fig. 29.
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were employed for reflection at a concave surface. The dia-
gram (Fig. 29) shews the construction for the image ab of
the object A B, according to the method described (p. 88).

Size of the Image. We have now to determine the
size of the image. This may be expressed algebraically in
several different ways, but in every case the same formula
holds good both for concave and convex mirrors, provided
that the appropriate signs are prefixed when numerical
values are substituted for the symbols.

Let AB represent the object (Fig. 30) and ab the image
formed by reflection at a concave surface, and let BCO be

the axis. Join 40 and Oa.
//"—’/""-’//-/_’_'AlL

Fig. 30.

Then since CO is normal to the reflecting surface at O it
15 clear that the angle of incidence 4 OB is equal to the angle
of reflection a0b, and the remaining angles of the triangle
AOB are equal to the remaining angles of the triangle a0b.
it should be noted that the angle a0b is measured in the
reverse direction to the angle 4A0B.
.. tan a0b= —tan AOB,
5 0 el ?,
b0 BO’
ab b0 q

A BiT 5 B0 T
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Now if o denote the height of the object and ¢ the height
of the image, it is clear that

0l e

It 1s evident therefore that all erect images are virtual,
for since 0 and p are always considered positive, ¢ can only be
positive (ze. erect) when ¢ is negative; or in other words,
when the 1mage is formed behind the mirror. For similar
reasons, if ¢ 1s negative ¢ must be positive, which is equiva-
lent to the statement that all inverted images are real.

The size of the image as compared with that of the object
may also be expressed in terms of the distances of the image
and object from the centre of curvature.

Referring to Fig. 24 we see that

b _AB
b0 = BO
P 8 00 00500 =gl
s D_AB_BG_" :B{-;' _PHT --------- -

The size of the 1mage may also be determined without
calculating its position, if the distance of the object and the
focal distance of the mirror are known.

Thus it is evident from Fig. 25 that ab=H"0;

gbil HCO T
- OF = OF ~ BF’

ob G088 3)
AE B = 3).

Consideration of this formula shews that if f 1s positive,
t.e. if the mirror is concave, the image can only be erect and
virtual when p is less than f, and that under these circum-
stances the image 1s always larger than the object. If the
mirror 1s convex, f is negative and 2 is consequently always
positive and always smaller than the object.

?
0
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Again, from Fig. 24 we see that AB= HO,
ab HO AB
S WP OF =~ =F0
B b b —-f f—q
= ot AB=:—W}=Q—1}" =‘f—‘f ...... (4).

Finally, the relation between the size of the image and
the size of the object may be expressed in terms of the angle
between any two rays that proceed from a given point of the
object, and of the angle between these same rays after reflec-
tion has occurred.

Thus in Fig. 26 we see that the two rays BO, BH that
proceed from the point B of the object become after reflec-
tion the rays Ob, Hb, and that OBH 1is the angle between
these incident rays whereas ObH is the angle of convergence
of the reflected rays. ;

Let a denote the angle of divergence OBH or FBD and
let a" denote the angle of convergence ObH or FCD.

Now FD = F(' tan FCD = FB tan FBD,

. FC_tan FBD
" FB tan fch
FC OB f
2 FB~BF ~ p—j
. J _tanFBD tana
" p—f tan FCD ™ tana’’
g WO Sy i ban g ¥
0 (1) f——}} = T u; ............... (D}.
It also 1s evident from (1) that
g_ tana
p tana’’

This expression we owe to Helmholtz.
A few examples are given to shew the way in which these
formulae are used.

P. 0. T
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Ex. (1). A concave mirror has a radius of curvature of
10ins. What is the focal length? An object 4} ins. in height
is placed 50ins. in front of the mirror. What is the height of
the image, and where is it formed ?

Here »= 10, so f or %r:ﬂ ins.
And since 1 + 1 = l-..

p a

Jag ol O

50 "¢ 5’

R S| 9

.l e e Dl‘ T
g 0 a0 s
S.og =32 or 5§ ins.
The image is formed 5] ins. in front of the mirror (since ¢ is
positive). The image is therefore real.

And since q .
0 f‘]
= 50
_i. . —_!.!....
41 Tl
-Tla- -
I=——% or —&I1n
Y or —4

The negative sign shews that the image is inverted; 1its

height is 5 111.

Ex. (2). The object is now placed 3 ins. in front of the same
mirror. What is the height of the image?
It is unnecessary here to determine the situation of the
i

image, so we may apply formula (3) Ezf:}}r’
L e e
37 4% _5__'3“2&':

" t=44 x 2} or 11}ins.
The image is therefore 111 ins. in height, and the positive
sign shews that it is erect.
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If it is required to know the position of this image, we

] [ L |
employ the formula — + — =—..
it P g
L st l
Then §+§:ﬁ’
o 1r_:nr 2
T s R
and g =— 7% 1ins,

The negative sign shews that the image is situated 7} ins.
behind the mirror; in other words, the image is virtual.

Ex. (3). An object 6 cm. in height is placed at a distance
of 9 cm. from a convex reflecting surface. An erect (virtual)
image, 24 mm. in height, is formed of it. What is the radius of
curvature of the reflecting surface !

5
S
1 == = 1 .= —i.?.}
FG—o)=ip or f= 2|
i S8 " 2167 1B 1S
e T 460 T =h76 48 4’

Since =
0

L | [ Y =
a s .;:r? ﬂl’fZ—-fi'Hl mm., or 7= -—{"'Jmm.

As the sign is negative the surface is convex. |

It may be noted in passing that this is the basis of the |
method by which the radius of curvature of the cornea or of the |
lens of the eye is determined. A special apparatus is used to
measure the size of the images reflected from these surfaces, and
from this measurement the curvature is calculated precisely as
that in the example.

Principle of same phase not least time. We have
already alluded to the principle of least time in connection
with the path that light takes when it is reflected by a plane
surface. It can easily be shewn that when the reflection

7T—2
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takes place at a convex surface the same principle holds
good, but when the surface is concave we shall find that we
must modify the statement that light always travels to its
destination by the quickest route.

Convex mirror. Let SP (Fig. 31) represent a ray
incident at a point P on the surface of a convex mirror, and

let PH represent its course after reflection, making NPH
equal to SPN.

Through the point P draw a tangent plane to the convex
surface.

Then it is obvious that the path SPH is the shortest
path from S to H by way of the mirror. For not only would
any other path involve penetrating the tangent plane twice
to reach and return from the mirror, but the path by any
other points in the tangent plane would involve a longer

course,
For if possible let SR, RH be a shorter course. Let the

incident ray SR cut the tangent plane at @ ; join QH.
Then

SP+ PH < SQ+QH (p. 77) < SQ+ QR+ RH,
. SP+PH < SR+ RH.

Therefore the path SP + PH is the shortest path from S to
H by way of the mirror.
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Concave mirror. Let SP (Fig. 32) rePreéenlt the
path of light incident at P on the concave spherical surface
PR, and let PH denote its course after reflection.

Q P

Fig.32.

Describe an ellipse, with S and H for foci, touching the
spherical surface at the point P.

Now if the curvature of the spherical surface be greater
than that of the ellipse at P, it will be readily seen that the
path actually taken by the light instead of being a minimum
1S & maximum.

For suppose it took any other course such as SR, RH,

then SR+ RH < SR+ RQ + QH = SQ + QH.
But by a well-known property of the ellipse
SQ+QH =8P+ PH,

.. SR+ RH < SP + PH.
In this case therefore the course actually taken by the
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hight 1s a maximum, and the time taken to traverse i1t is the
greatest, and not the least.

The principle of least time is not therefore universally
true. Let us see if we cannot formulate a principle which
1s true under all conditions. It will be remembered that,
according to Huygens’ principle (Chap. I.), the general form
or contour of a wave of light is determined by the coinci-
dence of elementary waves in the same phase of disturbance.
It will be reasonable therefore to expect that every point in
a ray of light (z.e. in the normal to the wave surface) shall
be a point of coincidence of the neighbouring elementary
waves In the same phase. For this to be the case it is
necessary that the elementary waves that originate in the
immediate neighbourhood of the point of incidence ()
should give rise to disturbances that reach H in the same
time.

In considering the phenomena of reflection, we have
found that the course pursued by the reflected light is either
that which occupies the least time or the greatest time.
Now 1t 1s a property common to all maxima and minima
that an indefinitely small variation in the variable makes no
difference in the result.

A maximum or a minimum may be regarded as a turning
point, and it is a property of all such turning points that in
their immediate neighbourhood the variation is exceedingly
small. If a train, the speed of which 1s steadily increasing,
be suddenly retarded by putting on a brake, a turning point
or maximum of the speed 1s obtamned just before the
application of the brake. It is clear that the speed of the
train half-a-second before the brake was applied is very
nearly identical with the speed half-a-second after its ap-
plication, and indeed with the maximum speed attained.
The smaller the interval of time taken the less error shall
we introduce by regarding these three speeds as 1dentical.
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Therefore when reflection occurs at P in such a way that
the course taken by the light occupies either a maximum or
a minimum time, a very small change of path will make an
inappreciably small change of time. In fact the elementary
disturbances originating indefinitely near to P will reach H
in the same time, and therefore in the same phase, as those
which originate directly from P. Indeed this is the only|
condition of non-interference of elementary waves, so that
the observed fact that H is a luminous point is proof positive/
that elementary waves have reached it in the same phase. |

We see then that, as far as reflection is concerned, we
have found one common characteristic property of the
behaviour of light, however much at first sight it appears
to differ under different circumstances. It is hardly neces- |
sary to point out how much more reasonable and scientific |
1t 18 to regard the existence of light as dependent on |
the condition of non-interference, than to ascribe to it a
power of discrimination and an intelligent choice of the
minimum or maximum path,
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QUESTIONS,.

(1) An object 10 em. in height is placed 150 cm. from a
concave mirror of focal length 25 em. Where is the image
formed, and what is its height?

(2) The radius of a concave mirror is 16 ins. What is the
distance of the image from the mirror when the object is
respectively at 12, 4, and 7 ins. distance?

(3) A real image ‘5 em. in height is formed at a distance of
6 cm. from a concave mirror of an object 2°5 em. in height.
What is the radius of curvature of the mirror?

(4) An erect image one-fourth the height of the object is
formed by a mirror. If the distance of the object is 9 ins. what
is the radius of curvature of the mirror?

(5) An inverted image of a candle is thrown on a screen at
a distance of 6 feet from a mirror of focal length 6 ins. Where
is the candle placed, and what is the relative size of the
image ?

(6) What is the diameter of the image of the sun formed by
a concave mirror of focal length 1 m.? The apparent diameter of
the sun is 31'9”. Given tan 31" 9" = -00906.



CHAPTER VL

ECCENTRIC PENCILS. FOCAL LINES. CAUSTICS.
CONTOUR OF REFLECTED WAVE-FRONT.
APLANATIC REFLECTING SURFACES.

Eccentric Pencils. In the preceding sections we have
been considering the reflection of small centric pencils only.
Referring to Fig. 21 the point @ is the point of intersection
of those rays that indicate the course of the light which,
coming from P, has been reflected by the small segment
KOK, Light from P incident on peripheral portions of the
mirror will not converge to the point ¢) but will be reflected
in such a way that the rays cross the principal axis at points
on the mirror side of (). This is easily seen by constructing
a diagram similar to Fig. 21 and taking a point K" on the
peripheral part of the arc that represents the mirror. The
reflected ray K”Q", determined by making the angle CK"Q"
equal to the angle PK”(, crosses PO at a point on the mirror
side of .

In Fig. 33 light from the luminous point S 1s supposed to
be reflected by a concave hemispherical mirror. To avoid
confusion in the diagram the incident rays are omitted with
the exception of the small beam incident at P@. The rays
of reflected light are seen to intersect the principal axis at
different points on the mirror side of /. The rays near the
axis converge very nearly to the point /7, the conjugate focus
of S, whereas the eccentric rays cut the axis at progressively
increasing distances from [.
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All the reflected rays touch a certain caustic surface
which has a cusp at Z. The light is most intense in the
neighbourhood of the cusp for the reason just given. A

familiar example of such a caustic is that observed on the
surface of the fluid in a teacup; this is formed by the light
reflected from the sides of the cup. The diagram (Fig. 33)
gives a view of a section of the caustic surface; the surface
itself would be generated by the revolution of the figure
about the axis OCS.

Fig. 34 gives an enlarged view of the caustic LM'I 1n
the neighbourhood of its cusp. The aperture KK, repre-
sents the central part of the mirror in the preceding figure.
The marginal reflected rays KL, K L, intersect the principal
axis and each other at G. If the light reflected by the
mirror K, were received upon a screen, it would be found
that with the screen in the position LL, it would be illumi-
nated by a circular patch of light, the outer edge of the
patch being especially bright. As the screen is moved
towards 7 this bright ring will gradually contract. When &
is reached a bright spot develops in the centre; when MM
is reached the circular patch of light reaches its smallest
dimensions, being brightest i the centre. Beyond this
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point the circle of light expands again while its central
bright part still contracts, until I is reached, when an

Ki

mtensely bright point of light is seen at / surrounded by a
dimly illuminated marginal zone extending to N'N. The
distance GI is called the longitudinal aberration, or some-
times simply the aberration of the marginal ray K@, while
the distance JN is called its lateral aberration.

The circle at MM’ 1s called the circle of least confusion,
and i1s what may be regarded as the blurred image of the
laminous point S formed by the mirror KAK, If the
peripheral parts of the mirror be blocked out by an annular
diaphragm so that only a thin centric pencil is reflected at the
mirror, a sharply defined 1image of the point S is formed at 7.

When the light reflected from the mirror is viewed by
the eye directly i1t must be remembered that it is itself
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provided with an annular diaphragm, the iris, and therefore
can only receive a very slender pencil of rays.

Referring again to Fig. 33 we see that an eye at %,
which receives only the small pencil of rays incident at PQ,
will perceive a bright line at F, where the reflected rays
intersect each other. The reason why a line is seen, and
not a point as represented in the diagram, will be immedi-
ately obvious. The diagram is merely a sectional view; con-
sequently, if we are to take into consideration the solid cone of
light that enters the pupil of the eye at E, we must imagine
the figure to revolve through a small angle about its axis
OCS. The arc PQ will then trace out a small element of
the reflecting surface, in fact, the only part of it which
reflects light to the eye at £; and the point of intersection
F, will trace out a small are, approximately a straight line at
right angles to the plane of the paper. This is called the
primary focal line.

Meanwhile since the reflected beam is supposed to rotate
round the principal axis, there will be a horizontal line of
light on either side of F, where the reflected beam traverses
the axis. If through the centre (F,) of this line a line be
drawn parallel to the tangent at P it will on rotating the
figure map out a figure with two slender loops something hike
a figure of eight, which may be regarded as approximately a
straight line. This is called the secondary focal line.

The lines at F, and F, are in fact the cross-sections of the
reflected beam at these two points. It is usual to call the
plane that contains the axis of a pencil, and the axis of the sur-
face that reflects or refracts 1t, the primary plane. We see then
that the primary focal line 1s at right angles to the primary
plane, and that the secondary focal line is in this plane.

A glance at Fig. 35, which gives another aspect of the
reflected pencil (shaded in Fig. 33) on a greatly enlarged
scale, will make this clear.

The figure 1s somewhat diagrammatic. Thus the portion
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of the reflecting surface traced out by the above-mentioned
revolution is considered to be a rectangle PQRR, viewed

obliquely. The light reflected by this portion converges to
a primary focal line at F, and to a secondary focal line F.,
which is in a plane at right angles to the line at F,. The
shape of the reflected pencil between these two lines is what
1s termed in crystallography a sphenoid. A cross-section
near F, would be oblong in shape, the width of the section
being much greater than the height. A little further on the
section would be nearly square. A section near F, would be
oblong again, its height being much greater than its width.
It will be seen that an eye which receives this obliquely
reflected pencil cannot see a sharply defined image of the
point S. The place where the rays are nearest together is
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denoted by KD, where the cross-section is approximately
square. The blurred pateh of light at this spot represents
then the image of the point S to an eye in the situation
under consideration. If, as is more usual, the reflecting
element be considered of an elliptical shape, we may regard
the section at DD, to be circular. It may be represented by
the circle inscribed in the previous square, and may be called
the circle of least confusion.

The eccentric reflected pencil shewn diagrammatically in
Fig. 35 is not therefore conical in shape. Such pencils
which, converging to two focal lines at right angles to each
other, do not converge to a point, are called astigmatic
(@, priv., otiypa, a point).

Position of the Focal Lines. It is not difficult to find
the position of the focal lines that are formed by the re-
flection of a small oblique pencil which is incident on a
peripheral part of a spherical mirror,

Fig. 36.

Let SP represent the axial ray of the obliquely incident
pencil, and let S represent an extreme ray of the pencil
considered. Join SC' and produce it to meet the mirror in O,
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then OCS is the axis of the system. Let the reflected ray
PF, cut the axis in F,, and let the reflected ray QF, cut PF,
in /). Then F, marks the centre of the primary focal line,
and similarly F, marks the centre of the secondary focal line.
These points, the centres of the focal lines, are often called
the primary and secondary foci of the pencil.

Join CP and (C); then since these normals bisect the
angles at P and (), we have

QCP = QCO — PCO = QSC + CRS — (PSC + CPS)
=QSC+ 3§ F,QS — PSC — 1 F, PS,
. 2Q0P =2QSP + F,QS — F,PS.
But from the equality of the vertical angles
F.Q8S + QSP =QF,P + F, PS,
. 2Q0CP = QF,P + QSP.

Now since the incident pencil 1s very small, we may
regard the angles C QS and F,QC' as equal to — ¢, the angle of
incidence of the axial ray of the pencil, and as @ 1s very near
to P the angle PQC may be regarded as a right angle.

We shall now adopt the following convention with regard

to the application of algebraic signs to the sides of a triangle.
In any triangle such as QSP we shall consider the ratio

sin QSP L g . o Dl 1) &

Pge ™ bearing the same sign as the ratio sp ' Py
e e QP '

but the opposite sign to qp-

Then in the triangle QF, P,
PQ _sinQFP_ sinQFP__sinQRP
F.P sin PQF, sin(90—-F,QC) cos¢ °
and in the triangle QSP,
PQ sin@QSP _ sin@QSP  sm@SP
SP ™~ sin PQS ™ sin(90+CQS) ™ cos¢p
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On replacing the sines of these small angles by the angles
themselves we obtain

or.p=L %??f B nd OSP %“P““""’ 0
and the equation 2QCP = QF,P + QSP becomes
PQ P cos qb PQcos ¢
== gD S
If as 1s LlSll:;LI we denote the distances SP by u, F\P by
v, F,P by v, and the radius CP of the spherical surface
by r, we have

I SR

' v, rcos¢’
Again, since the triangle SPF,=SPC + CPF,,
or Luw, sin 2¢ = Lur sin ¢, + 47v, 510 ¢,

sin 2¢ 1L
+_J

?Hm:i: vy W
' 1 e 2ieos

S +—=----—¢.
% U r

Circle of Least Confusion. Now that we have found
the position of the focal lines of a small eccentrically re-
flected pencil, we can determine the situation of the circle of
least confusion with reference to them. Let DD, (Fig. 35) be
that situation, the circle being that inscribed in the square
there represerited.

Let DE=DD, =kL.

In the figure PQRR, represents that portion of the
mirror which 1s reflecting the pencil under consideration.

Let QP and PR, be denoted by « and b, and let the
distances F, P, F,P and DP be denoted by v,, », and .

Then by similar triangles

DE  F,D Db POSVOF

PR FPY s DR PT.0 P
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| F,D
i.e. k=b—2— and ﬂ-'=m'—D£-l,
s v,
gy el G
v, v,
.o @ (av, + byy) = v, (a+ D),
or E+E=EL+P .................... (1)
U Vo @
Woainisince =1 ang 22 _%
& BTG e b

we obtain by addition the value of &k the side of the square

of least confusion

T.-rg o JU]_ Tr-r] Hg
= — %3 e e T A i e T e e L 2 L
ke ath )

If the reflecting surface PQRR, be square or circular,
a=0>b and the expression (1) becomes

2 14 Pl e
';i_Tl + .1‘13 = q— ........................ (3)1
and from (2) we get AP s Bl AN (4).
v, 4+

This determination of the magnitude and position of the
circle of least confusion is applicable in every case of an
astigmatic pencil whether it be formed by reflection or
refraction.

Aberration. The aberration of a direct pencil after
reflection at a spherical surface may be treated approxi-
mately in the following way.

Let S represent the luminous point on the axis of the
spherical mirror KK’. Let KSK’ represent the incident
cone of light which may be considered to be made up of
numerous thin pencils of different degrees of obliquity. Let
the centric pencil be so reflected as to converge towards the
point I, then I is the conjugate focus of the point S. Let
SK represent the axial ray of the marginal pencil that is

P. O. o]
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incident at K, and let the corresponding reflected pencil
meet the axis in G. Then GI or a is the aberration.

K

H—q

Let the angle of incidence of this marginal pencil be
denoted by ¢, and let the angle OCK subtended at the
centre by the semiaperture of the mirror be denoted by 6.

Then CK ¥ sin CSK r _sin(f —¢)

SC ~sinSKC ' SC~ sin G

e CK I sin CGK r  sin (6' + ¢)

CG ~sinCKG & 0CG~  sin e
By subtraction

r r _ sin @ cos ¢ + cos 0 sin ¢ — sin 6 cos ¢ + cos fsin ¢
CG~ SC  sing
= 2cos 6.
For the centric pencil, 8 = 0 and CG becomes (7,
r 9
I @

On subtracting the former of these equations from the

latter we obtain
.?“
o7 O’G_' 2(1 — cos 0),

r s
ﬁi_g—-?__q_a=2(l—cmsﬂ) ............ (1).

or
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If 6 be so small that powers of 8 above the second may

be neglected,
1 1 cG-0C1 ¢°

OI:.08 % Or.0G v
g2 . g2 A
. 1@ = = CI* approximately or =l q),

where ¢ denotes the distance IO of the image from the
mirror.

If g or sin 8 be substituted for &, which 1s allowable in

the order of approximation to which we are now confining
ourselves, the longitudinal aberration

a2
GIoru=-— i”: (P=gPiicnn e (2).

If the incident rays are parallel,

and GI=—£ op =2

If r or f 1s negative, G/ 1s positive. The cusp of the
caustic consequently points towards the centre of curvature
of the reflecting surface.

When we come to deal with refraction at spherical
surfaces we shall find that the aberration varies as 17 or the
square of the semiaperture allowed, when we limit ourselves
to the second order of approximations. A convenient ex-
pression for the position and magnitude of the circle of least
confusion for a direct pencil may be obtained by making use
of this theorem.

Circle of Least Confusion. In kig. 34 KN, K N’
represent the axial rays of the marginal reflected pencils

g9
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intersecting on the axis at . Let RT represent the axial
ray of another reflected pencil cutting the principal axis at 7',
and the ray K N" at M. Then if RT be that particular ray
whose intersection with K N’ is at the greatest possible
distance from the axis, the point M’ shall be the point at
which 1t touches the caustic surface, and all the reflected
rays shall pass through a circular space of which M'X is the
radius.

When M'X 1s a maximum, M'X defines the size and
position of the circle of least confusion.

Let the ordinates of A, and R be denoted by — y and 7/,
and let the distance GX be denoted by « and the aberration

G1 by a.
In Fig. 34, x and @ are negative.
MX KE — ya
J oW EAE Gy, ) ) e R
Now ox = cg M'X GE

But as —y and GE are invariable, M'X is a maximum
when @ is a maximum, so that we have only to find when =
1s & maximum,

: - v 0T —yz OT

l\l(}'ﬁ XF—MXRU— G;{‘;’T‘RG‘

And when the aberration is very small, the difference
between GE and T'0 is negligible.

. PR Lo R . ;
A=y = approximately.
And GT=GX+XT=¢+$Z
But GT'=GI-T1.
_y"f : £
T 1L e (r=gk Y=y

Le-qp ¢

T
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On equating these values of GT we get

. (y_+!y_) Y=yt

= *—

Y s
a g
or m=¥(yw—y)y ..................... (1).
dr « | Y
i B e e T N Sh g =2
Then i (y — 2y")=0, when y 5
Hence 2 and consequently M'X is a maximum when
i A
y'=2.
L Ja
Therefore from (1) z = - and consequently X7I = =
And since
MX GX . e N
-f\?fI=GI,JIX_-LVIa,_T'

The approximate distance of the circle of least confusion
from the conjugate focus I is three-fourths of the longitudinal
aberration.

The approximate radius of the circle of least confusion is
one-fourth of the lateral aberration N'7.

These results are approximately true in the case of
refraction also, for they hold good whenever the aberration
varies as the square of the semiaperture allowed.

It 1s evident from the figure that

NI K&
GI GE’
If the aberration is small, we may take /4 or ¢ as a rough
approximation to the value of GE,

In that case i _T;—i’{u.
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In the case of a spherical mirror when the incident rays
are parallel, the longitudinal aberration

=

e
a ..

: Sf
the lateral aberrati Nl

ral aberration /i ?fﬂ’
the distance of the circle of least confusion
3 Y
32 f’

the radius of the circle of least confusion

5 E Ea e
—
Ay

E
Mx §é f"

The Contour of the reflected Wave-front. A
Caustic Surface may be regarded as the envelope of the
reflected (or refracted) rays. A glance at Fig. 33 shews
that the caustic curve there shewn is the locus of the
intersections of the consecutive reflected rays. But these
rays are normals to the new wave-front. The source of
light at S 1s sending out spherical waves expanding in all
directions. On encountering the spherical reflecting mairror,
a new shape is 1impressed upon the incident wave-front. It
is obvious that were the source of light placed at C, the
centre of curvature of the mirror, the incident expanding
spherical wave-front would be reflected as a contracting
spherical wave-front to the centre C again. In fact the
focus €' would coineide with the source of light, and there
would be no aberration and no caustic.

If however the source of light is not situated at C, the
reflected wave-front will be no longer spherical in shape.
We proceed to discover the contour of the reflected wave-
front under these conditions. The caustic surface is clearly
the evolute of this reflected wave-front.
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Let S (Fig. 38) be the source of light. In order to find
the direction of a ray of light SP after reflection at P, we
may use the method given on p. 80. At P draw the

K

Fig. 38.

tangent PT, and from S let fall the perpendicular S7K upon
it, making 'K equal to S7. Join KP, and produce to Q.
Then P is the corresponding reflected ray.

The locus of K is easily found.

Draw CNN perpendicular to SK.

Then

SK = 28T =2 (SN + NT)=2(SC cos CSN + CP).
If we denote the radius vector SK by », the radius CFP
of the reflecting spherical mirror by ¢, the distance SC of

the source of light from the centre of curvature by «, and
the angle CSN by 6, we get

r=2(a cos 8 +c).

The locus of K is therefore a limagon. When, as in the
diagram, a > ¢, a complete limagon is not formed, for the
mirror forms only a part of a reflecting sphere. If a=c the
limagon reduces to a cardioid. Fig. 39.
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Now since the reflected rays are normals to the reflected
wave-front, it follows that the shape of the reflected wave-
front must be a parallel to the above limagon. That 1s, the
tangent at any point of the reflected wave-front is parallel
to the tangent at the corresponding point of the limacon.

The caustic curve which is the evolute of the reflected
wave-front is in the case of spherical mirrors the evolute of

a limacon.

Caustic Surfaces. In some simple cases it is easy to
find the form of the caustic surface geometrically™.

Let the circle SPA represent the concave spherical
mirror, and let S denote the source of light, situated on the
circumference of the circle that indicates the curvature of
the mirror. From centre C describe a circle of radius CF
equal to one-third of C'A, the radius of the mirror.

Fig. 39.

1 The method used in these cases is taken from T. Preston’s Theory
of Light.
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Let SP represent one of the incident rays. Join CP,
cutting the smaller circle in 7% On PT' as diameter describe
a circle PQT, its centre being denoted by G. Make CPR
equal to SPC. Then PQR is the reflected ray corresponding
to SP.

Then since CP=0C8, CSP=8PC,
and FCT=CSP 4+ SPC=2SPC,
But TG0 =2 TPQ =2 SPC,

arc QT arc FT
Gy Sy RER

And since FC=4AC=3PC=GT=-TG,

the arc QT is equal to the arc F'T.

If therefore the circle PQT roll on the circle TF, the
point @ will trace out the epicycloid SQF, which has a cusp
at F.

Now since PQT 1s a right angle, being the angle of a
semicirele, and Q7" is always normal to the path of @, as 7 is
the instantaneous centre, the line PQR is a tangent to the
epicycloid at Q.

The epicycloid is therefore the envelope of the reflected
rays in the plane of the paper. The caustic surface is
described by the revolution of the epicycloid round the
axis AC.

In the above example, where the rolling circle 1s equal to
the fixed circle, the epicycloid described is a cardioid.

If the distance SC were infinite, so that parallel rays of
light were incident upon a hemispherical mirror, a geo-
metrical construction similar to the above would illustrate
the case. The only modification in the construction would
be that in this case the circle T'F described about the centre
C' would be made of radius 3CA4 instead of 1CA. The
rolling circle PQT will therefore have a diameter equal to

. TGQ=FCT, or
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the radius of the fixed circle T'F. The caustic will be this
epicycloid (see Fig. 41).

General Expression for Caustics. The method given
above 1s well suited to a few special cases, but if a general
method is sought to enable one to trace any caustic curve, 1t
will be found that the tangential-polar form of equations
furnishes the simplest and most convenient way of dealing
with the problem.

If CA be the initial line, and if 4 be the angle which
the tangent to the curve makes with 1t, and if p denote the
perpendicular from ' upon the tangent, the relation between
p and 4 forms a simple equation to the curve.

Before dealing with any example of a caustic surface, it
will be well to prove the following lemma, which enables us

; 1 ;
to determine the curvature (,5) at any point of the surface.

Lemma p=p+p’-

Let CA be the initial line, its origin being €. Let
(!N =p, the perpendicular from the origin on the tangent

¥+ At

Fig. 40.
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to the curve at P. Let PN =t, the length of the tangent at
P to its intersection with CN. Similarly draw CN’, the
perpendicular from the origin on the tangent at an adjacent
point . Let 4 be the angle which the tangent to the
curve at P makes with the initial line.

Then STN' = NCS = A,
SN = TS sin STN,
TS g

sin ST N’ &_\b :
In the limit when @ coincides with P, T'S= PN,

PN or t= gﬁ Let it be denoted by p".

N.B. PN or p’ is obviously equal to the perpendicular
from C upon the radius of curvature at P.

This, as will appear presently, is a very useful point
in using tangential-polar equations for determining the
position of cusps.
ds _ Lt QT+ 7P

Again P=d;,[; AU
dt _ 1, QN — PN
dr gl
but TP+PN +QT-QN'=TN-TN',

_ds £ T e e
3 dt dﬂ i
--P=P+&E=P+d{,§=}’+ﬁ :

Examples.

(1) A plane wave-front of light (i.e. light of parallel rays) is
incident on a reflecting hemisphere. Find and trace the caustic.
Let SCA be the centric ray passing through (' the centre of
the hemisphere. Let SP be any incident ray reflected from the
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mirror at P in the direction PN. Then SPC=CPN=¢ the
angle of incidence or the angle of reflection. Also AT'P or ¢=24.

Fig. 4.

Now CN or p=rsing=+sin -, where » = the radius of the

i) |
hemisphere.
s DL e
j_U' ] Ei';; 2:
g s G Y

ploor —— *411‘1
dy®

)

1

2
3r . U
p=p+p" 45-:.1113

'“rhﬁﬂ llb':{)., (f):[}’ P:G, p_ﬂ’pf'__
There is a cusp (#") on the initial line at distance % from C.

As  begins to increase, p is positive and increases.
The curve advances from this point (#) on SCA with con-

: BT
tinually decreasing curvature, until y==. Here p= R and a
small arc of the circle of curvature can be drawn.
Clearly the curve is symmetrical with respect to SC4, and we
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have a cusp at the starting point. When ¢ =0, p'= 12 , and p’

we have seen is the perpendicular from C upon the radius of
curvature, or normal. The cusp is midway between (' and the

. v
reflector, at distance - from C.

Any point on the caustic curve can be found at which the
tangent makes the angle ¢ with the initial line SC4, and the
radius of curvature (p) at the point determined.

E.g. Draw CR parallel to the tangent (or reflected ray) PN.
Make C'R=p' or 3} oS l{: Draw RK perpendicular to 7V meeting

PN in K. Then A is the required point on the curve, and the
radius of curvature at this point is p or - Sin E}

The caustic surface is given by the revolution of the caustic
curve about the initial line SCA4.

(2) Light from a luminous point .S on the circumference of a
circle is reflected once at all points round the circumference.
Find the caustic.

Fig. 42.
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Here SPC = CSP = ¢,

. ATP or =3¢,
p:rﬂn¢=vﬁn%,
P =-§cusg,
== ;—;sin%,

=»+ )”—8?-‘ :=:-,inlE
p“’f _.? _‘9 31

when =0, ¢=0, p=0, jl'=%, p=0.

There is a cusp (') on the initial line SCA4, at clisbanceg

from C. The curve advances from this point F, gradually re-

dueing its curvature until = }—:T , Where p=7, p'=0, p= Sﬁ? -

Here therefore .5 is the point on the caustic curve ; its radius
; ; o By
of curvature at this point being - g
The curve represented in Fig. 42 is identical with the cardioid
in Fig. 39 which was described by a different method.

A general expression will now be given, by which the
caustic curve, produced by the reflection at a spherical mirror
of a luminous point, whatever may be its position, can be
traced.

Let S be a luminous point distant a from the centre '
of a sphere of radius 7.

Find the caustic after one reflection.

Let SP be an incident ray, and P the corresponding
reflected ray.

From (' let fall the perpendiculars p and n on the
reflected and incident rays respectively.

Then the two triangles NPC, QPC have the angles
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NPC, PCN equal to the angles QPC, PCQ, each to each,
and the side PC common; therefore the base n is equal
to the base p.

P
W n
B
o]
Fig. 43.
Now p=rnd=n=asmé@ .........c.ccceezn... (A)
1p=2¢>+3=23in“§ e B O (B).

Differentiating with respect to 4Jr, we obtain from (B)
- ,

1 .
2 {;p o 9 ;P!
r (1 -2 (1 £ 3"3)
 lis (8

Eseﬂq!:_l_senﬁ'

1

Il

Sk
TR @
Differentiating again, we obtain
4

a,r I !
—p : sec ||
! =;.=51nd}sec*:;b.P—;E-%&smﬁsec*a&?,p- -

sec @

3

P
}; =— f; sec’ pp’® — {%ﬁsees Op".
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Let this expression be denoted by @p™.

- 1 . ! ar 3
Now p=p+p“"=p(1+Qp )=j}{] +Q@a$ec¢+rsm€} }
e A — 2a® sec® ¢p — 1° sec? ﬁ') ar :
PadE -

e { _ 2a’ sec® ¢ + 77 sec? H}
L (20 sec ¢ + 1 sec )]
Faxamples.

(1) Let a=0,
S is at the centre and ¢ = 0.

Sop=0, p=0, p=0.
The caustic reduces to a point at the centre.

(2) Let (=

sl 5

Y Loy :
)= — sin B =rsin
? L) r

3
e
= e e S
2a sec ¢ + 1 sec §
| 2a* sec® ¢ + 1° sec’ §
P2 (2a sec ¢ + 7 sec 0)°)

P’

K
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‘When 6 =0,
i
s SRR
p=0, ¢= .P—.m—ﬁs p=
3
There is a cusp at a point on the diameter distant g from C.
When ﬂ:%,
T
P-Ea
¢=sin"11=19" 28-2731...,
p'=0.

The expression for p.involves a fraction of the indeterminate
form 2 but it can be easily evaluated, for
It . 20’ sec®  + rsec’ 0 _ LF 2a° cos® 6 +1° cos’ ¢
0=5(2a sec p +rsect)®  — °=3(2a cos 0 + r cos ¢)?
_17cos’P
T dcos’p ]
Sop=pil-11=0.
There is a cusp at a point determined by
9=90°, ¢=19°28"273...,

¥ =2¢ + 0 =128 56'546..., p= %

There is another cusp at the corresponding point on the

negative side of the diameter when 0 =—12r.
When 6 =, r is negative,
$=0, y=m,
..rfa’

'F-.- 3 — —
S S o
=

There is a cusp on the diameter distant » from (',

P. O. 9
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If ¢ = -, 0 can be found.
y—0

T - - -
For p=+ sinf@=7rsin ¢ =rsin 5

3
/\/ — COS (QU E) \/1 —sin 6
o r 2 L .

whence 1sinf= \/ L -sin '9
or smzﬂ—ﬁ—;—)gmﬂ
Sosinf=-7 + ,\/9 81 9 J_EE' _ -84933 (Gr 2_1_.?’5?22),
4 4
T — 5 -84233....

This value of p and  will form a guiding tangent LDL' to

part of the caustic curve,
The caustic surface is traced out by the curve when it is

revolved round the axis SC.

(3) Let a= (Fig. 45),

sin @ =7 sin ¢,
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gt i
P-Z(sec¢+secﬁ)’
x 1 sec® ¢ + sec® H}
fimd {1 (secp +sec ) J
#=0,

P:U‘, ‘#:DI PI:E: P=ﬂ*

‘When

There is a cusp at a point on the diameter distant E from C.,

When H-E
r
P=§s
¢=sin”1‘$=sin‘1§-= =,

o= - =0,
2 (sec T +sec E)
6 2

The expression for p involves again a fraction of the in-

determinate form 2.
As before,
1 ] 3 1 3 3 3
isec’p+sec’d _gcos H+cnsq‘:h cos® ¢
=3 (cos @ +cosp)® cosi¢p '

q

&
Loz (sec ¢ + secd)®

There is a cusp at the point determined by B—; ¢ =%,
D T
i=g 270
When 0 ==, r is negative,
r=0,
=0, y=m,
— ¥ = —00
e i
)
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The expression for p involves the indeterminate form 0 x e«
which on evaluation is seen to be equal to wo.
The initial line is an asymptote to the caustic.

If o =g, @ can be found as before.

-0
2

r . : :
For p=§sm9=i~'sm¢=w*sm

]mcns(z—- ) s
) i 2 il /l—smﬂ
I T !

whence 1 sin B:,\/l —;m E,

or sin®* =2 — 2 sin 6,

. sin @=—1+,/2+1="73205... (or— 2:732...),

7
W p =g 73205....
S p 2?3 05

This value of p and ¢ will form a guiding tangent LDL' to
part of the caustic curve.

(4) Let a> g, <r. For example let ﬁ=_23_,r (Fig. 46),
P:%‘Siﬂﬁzfsiﬂ b,
2r
o 3 Dr
- Al )
S§c¢+secﬁ 4sec + Isec
{ {1 _16sec’s + 27 sec’
ek (4 sec ¢ + 3 sec"t?)i} 3
When 6 =0,
2r

P=Us 'if':[}-.- E’r:—?-, P=U.

; : : : 2
There is a cusp at a point on the diameter situated ~ from C.

/|
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When 9=g,
I
=
¢ =sin"! 3 =41° 48"6185..
p =0,

Fig.46.
Lt 16sec’ p+ 27 sec’d ., 16 cos®d + 27 cos® ¢
0=3 (dsecp +3secH)  6=5 (4cosf+3cosp)
_2Tcose
(3cosg)y
=p(1-1)=0,
There is a cusp at a point determined by
0=90°, ¢=41°48"6185,... y =2+ 0=173°37237..., p =%’-‘j

If ¢="'—2f,

p= 2—§qsi113 framcﬁ: h\/l-—zmﬂ,

i

sin®f = 2 — % sin 4,
osinf=— f 4.2+ (%) = 638085... (or — 1'763085...),

p="y 638085... = 42539...n.
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This value of p and ¢ will form a guiding tangent LDL',
When 6 =, r is negative,

p=0, =0, p'=2r, p=0.
There is a virtual cusp on the axis produced in the negative

direction at a point situated 2 from e.
By finding other points on the figure corresponding to other

values of 6 between ;ﬂ: and m, the curve can be traced as in the

2
diagram.
(5) Let a=r.
As before, the caustic curve becomes a cardioid (Fig. 42).
(6) Leta=oo.

As before, the caustic is an epicycloid, such as is traced out
by the rolling of one circle upon another of twice its radius
(Fig. 41).

Nore. If rotation counter-clockwise is regarded as the positive direction,
on making ¢ =CPS and = PT4 (Fig. 41), the expressions used in this section
still hold good.

Aplanatic reflecting surfaces. It is an easy matter
to discover the form of surface that shall reflect light
originating from a given point S to a given focus F without

aberration.

Real Focus. We have already seen from the “ principle
of same phase” (p. 102) that light originating from S must
arrive at /' by way of the mirror in the same phase, what-
ever point of the mirror reflects it. In other words, if S and
F be the conjugate foci, the sum of the focal distances to
every point of the mirror must be the same, so that the
light from S may arrive at F in the same time whatever
may be its point of reflection. As is well known an ellipse
may be defined as a curve traced out by a point which moves
in such a manner that the sum of its distances from two
fixed points, called its foci, is always the same.

If then a concave mirror be of the form of an ellipsoid
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of revolution about its major axis SF, Fig. 47, it will reflect
light from S, incident at any point of the mirror to the
conjugate focus K without aberration.

Fig. 47.

For SP+PF=8SA+ AF=SP + P'F etc.

So the reflected light reaches # in the same phase whatever
1ts point of incidence.

If the incident light present a plane wave-front, in other
words, if the source of light be at an infinite distance, so that
the incident rays are parallel, it will be readily seen that the
surface of the mirror must be that of a paraboloid of revo-
lution about its axis S4, Fig. 48.

Incident parallel rays of light will reach the point S in
the same phase that they would reach the directrix HO
before the interposition of the mirror for

PS=PH, and PS=PH ete.
Therefore all the incident light is reflected to S without
aberration.

Virtual Focus. If a mirror be required to form the
virbual image of a point S at a given point S’ without
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aberration, it will be found that the reflecting surface must
present the form of a hyperboloid of revolution about SS'".

Fig.48.

Let AP, Fig. 49, be the required reflecting surface, S and
S’ the given points. Let SP represent an incident ray, PR
its corresponding reflected ray.

Fig. 49.
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Then since the reflected light appears to come from S, it
is clear that the locus of R must be a sphere whose centre is
at S’, for the reflected light must present a spherical wave-

front with centre S
Again, since the locus of R is a wave-front

SP + PR =a constant,
and S'P+ PR=a constant ;
.. SP— 8P =a constant.

The curve AP must therefore be a hyperbola, and the
required surface must be a hyperboloid of revolution about
S8S".

If the luminous point be on the concave side of the
mirror, the reflecting surface must be a similar hyperboloid
of revolution, as is easily seen by substituting S, S and W
for S, 8" and R in the preceding proof.

Neither elliptical nor hyperbolic mirrors are practically
made, for in the first place there are very great mechanical
difficulties in the way of grinding such surfaces, and secondly,
even if made, each mirror would be only aplanatic for one
specific distance of the object. An attempt is made by
opticilans to give a parabolic form to the concave mirrors
which are used in reflecting astronomical telescopes. The
wave-front of the incident light may be considered to be
plane, and the function of the mirror is to impress a spherical
form on the reflected waves.

This investigation will have served its purpose if it
shews more clearly what aberration means, and that its
occurrence 1s due to using a reflector of the wrong shape.
A thin centric pencil is reflected by a spherical mirror
without appreciable aberration, because the vertical portion
of any conic section presents a curve that very nearly
resembles the arc of a circle.
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QUESTIONS.

(1) A pencil of parallel rays is incident at an angle of 60°
on a small concave spherical mirror of diameter 1} ins., and of
6 ins. radius of curvature. Find the position of the focal lines,
and the position and radius of the circle of least confusion.

(2) A pencil of parallel rays is incident at an angle of 45°
on a small concave spherical mirror of diameter 1in. Find the
position of the focal lines and the position and radius of the
circle of least confusion.

(3) In the above example suppose the incident pencil to be
small so that the diameters of the effective reflecting surface is

1 in, in the primary plane, and £ in. in the secondary plane.

N2
Find the position and the radius of the circle of least confusion
in this case.

(4) A luminous point is situated on the principal axis of a
concave spherical mirror at a distance of 12 feet from it. The
diameter of the mirror subtends an angle of 120° at its centre of
curvature, its radius of curvature is 1 foot. What is the longi-
tudinal aberration? Use expression (1) p. 114.

(5) Parallel rays are directly incident upon a convex spheri-
cal mirror of which the angular aperture is 10° 20’, and the
radius of curvature is — 10 em. Find approximately the longi-
tudinal aberration, and the size and distance of the circle of
least confusion from the principal focus. (sin 5° 10" =-09.)



CHAPTER VII.

REFRACTION AT A PLANE SURFACE. PRISMS.

Refraction. So far we have been considering light
travelling always in the same medium, and the alterations of
1ts course ensuing from the interposition of certain reflecting
surfaces in its route. We have now to investigate the
alteration of course, or refraction, that it undergoes when
it enters a different medium. We shall confine our attention
to such media as are homogeneous and isotropic, and for the
present we shall limit ourselves to the consideration of the
behaviour of homogeneous light in such media. The term
homogeneous light means light of the same kind, 7.e. light of
the same wave frequency or colour. We have already shewn
how the velocity of light has been experimentally determined,
and 1t will be remembered that light travels with different
velocities 1n different media. Further, 1t has been shewn
that its refraction on entering a new medium results simply
from the alteration of the speed of its transmission.

The laws of the refraction of light in homogeneous and
isotropic media given below were discovered experimentally
by Willebrord Snell in 1621.

I. The refracted ray lies in the plane of incidence.

II. The sines of the angles of incidence and refraction
are 1n a constant ratio for the same two media.

This constant ratio is really identical with the ratio of
the velocity of light in the first medium to its velocity in
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the second; it is usually denoted by the symbol u. We
may therefore express the second law by the formula that
we made use of in the Introductory chapter.

:: ::- = E = p a constant,.

Let us take as an example the refraction of light, or
rather of a small element of a wave-front at a plane surface.

It 1s convenient to have some word by which to express
the fact that light travels in a given medium with a rela-
tively rapid or slow velocity. The terms rare and dense are
universally used in Optics with this specific meaning ; they
do not however in books on Optics necessarily involve any
other physical property. Adopting these terms let us
consider a small element of a wave-front travelling in a
given direction in a rare medium, and let us see how it
changes its course on meeting a dense medium which 1s
limited by a plane surface.

Let AB, Fig. 50, represent the bounding surface sepa-
rating the two media, and let S7 represent the incident ray,
w.e. the direction in which the element is moving in the rare
medium, then 7R represents the refracted ray in the dense
medium
.. sin NIS sin NIS sin NIS SN
if ——— or . ; O ————==5 OF == =,
sin NIR = sin(w+N'IR) —simNIRE NR
where u denotes the constant ratio or the relative index of
refraction for these two media. It will be noticed that as u

is the velocity ratio -, it must have a positive value, and

[l
SN and N'R are both measured in the same direction. The
sine of the angle of refraction is therefore sin NIR not
sin N'IR. In Fig. 50 the angle N/E is measured clockwise.
If the first medium be air, and the second medium be
water, the value of p has been found by observation to be

about 4, so that when these two media are being considered,
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sin % .
sin 7
equal to 4, and this fraction expresses the ratio of the speed
of light in air to its speed in water.

Since the speed of light is less in dense media it is
evident that the refracted rays are bent towards the normal
when light passes from rare to dense media and vice versa.

Let us take the case of light travelling from a dense
medium to a rare medium. We may now regard RI as
being the incident ray, it will become in the rare medium
the refracted ray IS
sl sm NTR RNY V. 5 agid
e (T T il AL T St
It is clear then that the course of light is reversible, that
18 to say, if light travels backwards in the direction of a
refracted ray it will on emerging travel in the direction of
the incident ray. This is obvious from the consideration
that the alteration of its course depends entirely on the
alteration in its speed of transmission in the new medium,
and this speed depends upon the nature of the medium.

whatever the angle of incidence may be, the ratio

for
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In Fig. 50 since SIS" represents the original path of the
light and IR represents its path after refraction, the angle
S’IR is the deviation from its original course. Now since
sin N/R=sin(— N'IR)=sin RIN’, and sin NIS =sin 8'IN’
the angles of refraction and incidence are very commonly
regarded as S'JN’ and RIN’. The deviation S'/R 1s con-
sequently ¢—7. The angles of refraction that correspond
to the given angles of incidence at the surface of glass
(v =154) are arranged below in parallel columns. The
third column gives the corresponding deviation.

It will be noticed that when the angle of incidence
increases uniformly, the angle of refraction increases slower
and slower, and consequently the deviation (¢ —r) increases
faster and faster. This 1s a law which holds universally for
all media; a general proof will be found in a subsequent
section (p. 201).

g R D
I
2T S C e 10!
| 40° 24° 40’ 15° 20/
| |
60° 34° 13 25° 47"
I &
; 80° 39° 45’ 10° 15

It is easy to see that if a medium, bounded by two
parallel planes, be interposed in the path of light travelling
in a homogeneous medium, the light on emerging will
pursue a course parallel to its original course. We may
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extend the proposition to any number of media bounded by
parallel planes, for if V,, V,, V,,... represent the speed of
light in the first, second, third,... medium respectively, and if
¢y, P, bs,... denote the angles of incidence in these media,

sim¢, V, sing, V,

sin ‘ibﬂ= V! élﬁ"ﬁ’;_ Vs
for since the media are bounded by parallel planes the angle
of refraction at one surface is equal to the angle of incidence
at the other surface. Thus if there are 4 media interposed,
Fig. 51, and the angle of emergence into the original medium

be denoted by 6
, | : b
sin 6 =ﬁ. sin ¢, and sin ¢; = 7 sin ¢, etc.
s A R R i
.*. sin H_—F,; ﬁ.-ﬁ.—ﬁ.?l.sm N
.. sin @=sin ¢, or in other words the final and initial rays
are parallel to one another.

ete.,

G
Fig. 5.

In the diagram the third medium is represented as more
rare than either of those adjoining it. Consequently ¢, is
greater than ¢ and ¢,
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Since the index of refraction is identical with the velocity
ratio, we can easily find the relative index of refraction
between any two media, if their absolute index is known.
For example, the index of a certain kind of glass 1s 14, that
of water is 11 ; what is the relative index of refraction from
water to glass? If we denote by V,, V,, V,, the velocity of
light in vacuo, in glass, and in water respectively,

v, 33(15__%
Vor s

The relative index of refraction from water to glass 1s

V’“’adv | %39
)74t U, o .

Consideration of the second law of refraction reveals the
curious fact that light in dense media incident at certain
angles on their surfaces, is unable to get out.

For if x represent the angle of incidence in the dense
medium and if ¥ be the angle of refraction in the rare medium
Sl Va where V; is less than V,.
sin ¥y V,

Now when the angle of refraction is nearly 90°, Fig. 52,
the refracted light just skims along the surface of the dense

Fig. 52.
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medium. If the angle of refraction be 90° or more than 90°
the light will remain below the boundary that separates the
two media, in fact it i1s unable to leave its original medium
directly by transmission. Experiment shews that it then
undergoes almost total internal reflection at the bounding
" surface.

The critical angle at which this phenomenon of total
reflection occurs can be easily found. We have merely to

give y its maximum value of 90° and the formula given
sin & L Vd . sl V,:g
above becomes T 17,6, SIN &= e
For example, the critical angle for water and air is about
48° 34,
gine T{’};_ 3

for sm90 V, 4

or more accurately 13336

: 1

. < —il oWy

S B=8INT g aaas OF 48" 34/,
Since the absolute index differs but slightly from the
relative index for air, we might have replaced i—rf by i, where

g

p represents the refractive index of water, and expressed the
critical angle as that angle whose sine is the reciprocal of the

- - . - ].
index of refraction for sinz=—.
Fu

We see then that part at any rate of the light in a rare
medium can always enter an adjoining dense medium, for
the angle of refraction will always be less than the angle of
incidence, but that when light in a dense medium is incident
at any angle greater than the critical angle, none of it will
leave the medium, it will all be totally reflected.

Images by Refraction at a Plane surface. The
position of the image of a point in one refracting medium
bounded by plane surfaces seen by an eye in another re-

P. 0. 10
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fracting medium that is in the normal to the boundary-
plane.

Let P, Fig. 53, be a source of light in a dense medium
which is separated from a rare medium by a plane surface

T I S —

E A

Fig. 53.

AB, part of the light which 1s diverging from P will take
the path indicated by the ray PN ; this will be refracted in
such a way that its new course will be given by NE, where
sim HNP V¥,
sim HNR™ V,°
coming in the direction NE; we have now to determine
from which point in this line the light will appear to him to
have started, or in other words we have to determine the
situation of the image of P under these circumstances. For
this puyrpose we must find the point of intersection of the
several rays that are directed towards the pupil of the
observer’s eye. We will take the simplest case, by con-
sidering that the observer’s eye is at some point £ in the
line PA normal to the boundary AB. Consequently we

An observer then at R will receive light
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shall only have to consider the narrow pencil of rays about
the axis £A P, that enters the pupil of his eye.

Now NR and PAFE are both in the same plane (Law I.)
and the angles RNA and NALE are together greater than
. two nght angles, consequently RN 1if produced backwards
will meet the normal PA.

Let @ be this point of intersection.

Then 2 APN=/HNP and £ AQN=2 HNQ,

. sin APN i sin HNP e sin HNP & sin HNP V,
'"Sin AQN ° sin HNQ © —sinKNR sin HNR™ V.,

Now it N be very close to 4, the lines PN, QN will
nearly coimnecide with P4, QA4, and so the values of PA, QA
may under these conditions be substituted for those of PN,
QN. At the same time @ will assume a limiting position
which we will proceed to determine,

NA
sin AQN~- NA PN _P4 ultimately,
QN

so that under the conditions named gj Ed.

If then we consider the very small penml of rays that
would reach an observer’s eye at £ on the normal from P to
the bounding surface AB, they would diverge in the rare
medium as if they came from @), the distance QA4 being
V. A
Tﬁ- PA. If for example a small object is placed at the

&
bottom of a tumbler-full of water and if it is viewed from a
point immediately above it, its apparent depth below the
surface of the water will be £ its real depth, for the ratio
V

?d with respect to water and air is .
g

[ ]

10—
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It appears then that a point P and its image @ lie on the
normal drawn from the point to the bounding surface, pro-
vided that the eye of the observer be also on the normal,
and they both lie on the same side of this surface. If P
moves, () moves also in the same direction and proportionally
to the movement of P.

If the object be in the rare medium its virtual image, to
an eye in the dense medium, will be further off than the
object really 1s, for under these conditions the refracted ray
1s bent towards the normal.

It is important to remember that as in the case of
reflection at spherical mirrors, this determination of the
situation of the virtual image is only true, when very small
pencils are considered; in this case indeed there is the
further limitation that the incidence must be nearly normal
to the surface.

The consideration of the refraction of oblique pencils
must be deferred to a later section. It will be sufficient
here to point out that an oblique pencil undergoes con-
siderably greater refraction, so that if an object of appreciable
size is placed so that its base is at P, its virtual image to an
eye at & will be distorted and tilted, for its upper edge will
only be seen by light the rays of which are oblique to the
surface.

Refraction through a Plate. If an object be viewed
through a medium bounded by parallel planes, it will appear
distorted, and 1ts position will apparently be altered, the
extent of the displacement and distortion will depend on
the thickness and density of the medium, as well as on the
obliquity of the pencil by which the object 1s seen.

We will suppose that the observer is so situated that the
narrow pencil of rays directed towards his eye from the
luminous point P is nearly normal to the surfaces of the
thick plate ANMB that represents the dense medium.
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The extreme ray PN on entering the glass will become
the refracted ray NM which if prolonged backwards will
intersect AP produced in @ in such a way that

QA= % PA or uPA.
i

Since the diverging pencil in the dense medium proceeds
as if from @ it will on emerging proceed as if from @ a
point in PA B, such that QB = IT:.‘; B or i QB. It will be
noticed that MR is parallel to PN.

R

Fig.54.

To determine the distance QA we have
@l =08 ABior i Q'B— AB,
o =ﬁ (QA+AB)— AB,
1 1
04— .#PA—AB(I—-— ,
p ps

T ) ’“‘;—1 AB.
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Thus a small object seen directly through a glass plate
1} ins. thick will appear to be half an inch nearer the
observer than it really i1s if x=1'5. The displacement being
equal to one-third of the thickness of the glass plate.

Fig. 55 represents a small object S seen obliquely through
a glass plate. Two points will be noticed, firstly, the virtual

Fig. 55,

1mage S’ 1s displaced upwards far more than when the object
1s viewed normally ; secondly, it is displaced laterally. Had
the object S been of appreciable size the image S’ would
be both blurred and distorted. The discussion of these
points will be reserved for a subsequent chapter (Chap. IX.
p. 189).

Prisms. Any refracting medium bounded by two plane
surfaces which are inclined at an angle to one another is
called a prism. The inclination of the faces to one another
1s called the refracting angle or apical angle of the prism.
We proceed to demonstrate certain properties which are
common to all prisms.

I. When light passes through a prism, which vs denser
than the surrounding medium, it always undergoes a deviation
wn the direction opposed to the edge of the prism.
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When light traverses a medium bounded by parallel
planes, each emergent ray is parallel to its corresponding
incident ray (Fig. 54).

If the face BM be rotated through a small angle clock-
wise about B the plate will become a prism with its edge
upwards, and the angle of incidence at this face will diminish
until passing through the value 0 it becomes negative.
Any ray therefore such as NMR will on emergence be
deviated away from the edge.

If the rotation of the face BM be counter-clockwise, the
prism formed will have its edge downwards. At the same
time the angle of incidence at this face will increase and
hence also the angle of refraction. The deviation therefore
of any emergent ray will be upwards, v.e. away from the edge
of the prism.

If the prism be less dense than the surrounding medium
all these effects are reversed.

II. As the refracting angle of a prism increases, the
demation also wncreases.

This follows immediately from the proof given above
of I

III. When light traverses a prism, the sum of the angles
which any ray makes with the adjacent normals within the
prism s a constant of the prism considered, and is equal to
the refracting angle.

Let SIRT denote a ray of light passing through the
prism ABC, Fig. 56. Draw the normals at 7 and R. Let
the angles of incidence and refraction at I be denoted by ¢
and ¢, and let the angles of incidence and emergence at R
be denoted by ¥+" and 4. The angles ¢" and 4" within the
prism are to be reckoned positive when the ray which forms
_ them lies above the intraprismatic portions of the normals.
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Let the refracting angle, BAC, of the prism be denoted
by A!. The angles ¢’ and 4" are measured counter-clockwise.

A

Fig 56

Then in the triangle ARI the angle at I 1s equal to
90 — ¢" and the angle at R 1s equal to 90 — .

A +90— ¢ +90 — ¥ = 180,
. ﬂ=¢r+\;f¢

This result is umversally true, for if the path of the ray
within the prism is such that one of the angles of the
triangle at 7 or at R is obtuse, the value of ¢" or 4" must
be negative.

1 If A is greater than twice the critical angle of the medium all light
incident on one surface AB will reach the other face AC at an angle greater
than the critical angle. It will econsequently be totally reflected at this
surface. A glass prism for example having a refracting angle of 82° will not

transmit light. Any light which enters the prism ean only get out after
undergoing one or more internal reflections.
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IV. The total deviation s equal to the sum of the angles
of wmetdence and emergence less the refracting angle of the
PrISm.

If the rays T'R, ST be produced so as to intersect at D
and we consider the triangle DRI its exterior angle D 1s
equal to its two interior and opposite angles ¢ — ¢', and
¥r — 4. And the angle D is the total deviation of the ray
from its initial direction due to the prism

D=¢—&+¥ -,
. D=¢+4—A.
The relation between ¢ and ¢’ is given by the equation

: b . :
sin ¢ = —sin ¢’ or sin ¢ = psin ¢';
i

%
while that between 4" and +r is sin ' = E‘i sin r,

ny

T sl
n.e. sin ' =
7

or sin Yr = u sin Y.

V. When a ray passes symmetrically through « prism
the deviation ts a minimum.

A ray passes symmetrically through a prism when the
angle of incidence is equal to the angle of emergence, z.e.
when ¢ =+

If ¢ increases ¢’ increases also, at the same time 4’
diminishes and consequently 4 also.

But the deviation ¢ — ¢’ increases faster than the devia-
tion Yr — " diminishes (p. 142). Consequently the total
deviation increases. If we consider the path of light
reversed, it appears that when the angle of incidence is
diminished the total deviation increases.

Hence this symmetrical position is the position of mini-
mum deviation.

When the refracting angle of a prism is very small, and
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when the prism is placed in the position of minimum
deviation, ¢' and ¢ are both very small, hence sin ¢ and
sin ¢’ may be replaced by ¢ and ¢, and ¢ may be replaced
by pd'.

Then D being minimum deviation, ¢ =+ and ¢’ =+
D=2¢—A4 and 4 =2¢’

o D=2ud’'— A =(u—-1) A.

This 1s a most useful formula but it is frequently mis-
applied in ophthalmic literature from neglect of the two
limiting conditions. We find that the deviation produced
by a weak prism of glass is about half the apical angle.
This i1s approximately true even if the prism is not exactly
in the position of minimum deviation. For oblique pencils
however the formula does not hold good. Thus if 4 =10°
and ¢ =40°, D =73, the refractive index of glass being

1-54 ; whereas the formula w—1 4 would give 5°24’ as the
value of D, involving an error of 30 per cent. If ¢=20° the
error introduced by the formula is about 10" or about
3 per cent. These examples will assist the reader in dis-
tinguishing the cases in which the use of the formula is
legitimate from those in which its application is unjustifiable.
The relative index of refraction of a substance with
respect to air may be determined in the foliowing way.
Take a small prism of the substance and measure its re-
fracting angle A. Place 1t in the position of minimum
deviation with respect to a beam of a certain kind of light,
the rays of which are parallel. Each ray then undergoes
the same deviation D). Measure this deviation. :
Then because the deviation 1s a minimum

d=1+ and ¢’ =+,
. D=24p—A and 4 =24/,
sin¢ _sin 3 (4 + D)
sing’~  sin}(4)

or
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When the substance is a liquid its refractive index may
be determined in precisely the same way if it be put into a
hollow prism the faces of which are plane plates of glass.

The instrument by which these observations are made is
called a spectrometer. It consists essentially of a horizontal
graduated cirele, Fig. 57, on which a collimator and a small
telescope with cross wires are so mounted that they are

directed towards the centre of the circle. The collimator is
an apparatus for obtaining a plane wave (of parallel rays);
it is a tube with an achromatic lens at its proximal end and
a narrow slit at its distal end at the focus of the lens. The
source of illumination is placed close to the slit, the light
which emerges from the collimator then forms a narrow
beam of parallel rays. At the centre of the instrument
there is a small support or table which ecan be rotated about
a vertical axis; on this the prism 1s placed.

The first step is to measure the refracting angle (4) of
the prism. The edge of the prism is directed towards the
collimator. The telescope 1s then moved round the graduated
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circle until the reflected image of the slit from one face falls
on 1ts central cross wire. The angle on the circle is noted.
The telescope is now turned into such a position that the
reflected image from the other face of the prism occupies the
centre of its field. Another reading is taken. The difference
between the two readings 1s equal to twice the angle of the
prism (p. 71). The angle of minimum deviation is now
determined. The prism is so placed that the light from the
collimator enters at one face and emerges at the other.
Owing to dispersion the narrow beam of light that enters is
broadened out into a spectrum on emergence. It is necessary
therefore to consider one particular line of this spectrum.
The prism is now rotated until the position of minimum
deviation 1s obtained for this line. Any further turning in
either direction from this position increases the deviation.
The assigned line of the spectrum is now made to coincide
with the central cross wire of the telescope and its position
1s read off on the graduated circle. The prism is now
removed and the telescope is turned round so as to view
the slit directly, and the reading is taken. The difference
between the two readings gives the minimum deviation.

The method given above 1s unsuitable when the substance
to be examined can only be procured in small quantities.
In such cases the critical angle of the substance is determined
by experiment and the value of p is found from the formula

sin By this method the refractive index of a liquid
5

may be determined even from a single drop. The drop is
placed in the centre of the lower face of a right-angled
prism immediately over a small marked hollow on a table.
Part of the light entering the hypothenuse-face of the prism
is reflected at that portion of the base to which the drop is
attached and emerges at the other face to enter the eye of
the observer, who is furnished with a telescope on a graduated
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scale. As he slowly lowers the telescope from that position
in which he can see the mark through the drop he will find
the spot at which the mark just disappears. The eritical
angle of the medium can then be determined by noting the
angle (6) of inclination of the telescope to the vertical

.

Fig. 58.

Since no light from the hollow U is received by the telescope
the incident light must have been so refracted on entering

the glass as to be totally reflected at the surface of the drop.
The angle MLN 1is the critical angle «,

L MNL=90—ua and 2 TNH =90-4.
Then if the refractive index of the glass be denoted by

Ve
or ==
L Vy’

& siq T.N.H_m:r_sﬂ.

b =Sin MNL  cosa’

: vV u? — cos?
OB = , and sin a = L e H!.
I
And if the relative refractive index of the liquid and the
V. i
glass be ==, sin a = E?

7 Ve
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But u' the refractive index of the liquid is equal to
Yoy W
i
oo @ =psinea or Vu?—cos? 4.

Principle of Same Phase. It will be found that
Snell’s law of refraction follows at once from the principle of
same phase provided that the assumption be granted that
the number of vibrations per second is independent of the
medium. This assumption is not valid in every case; we
shall refer to this point again (p. 181).

Let SP, SP’ be closely contiguous rays from S, Fig. 59,
incident at P and P’ on the plane surface of a dense medium.

Fig. 59

Let fall the perpendiculars PN, Pn upon the incident and
refracted rays respectively. Then since SP and SP’ are
contiguous we may regard SP’ as equal to SN.

Therefore at P’ and N there is the same phase at the

same time. :
The principle of same phase involves the condition of the
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points n» and P in the refracted rays being in the same

phase.
Therefore the time of traversing the distance NP
(DI‘ I;T;f) is equal to the time of traversing the distance
1
. (o 5
B S
S PR
sin ¢
o =R

Images by Refraction through a Prism. We must
now briefly consider the appearance that an object will
present when viewed through a prism. The object may
be regarded as an assemblage of points each of which is
scattering light in all directions. But we have seen that
the deviation produced by a prism is not proportional to the
incidence. A difficulty therefore arises which we had not
to face when dealing with reflection at a plane surface.
For from each point of the object light will be incident on
the prism at various angles and will consequently undergo
various deviations. The corresponding emergent rays from
the prism will form an astigmatic pencil, 7.e. they will not
intersect in a point if produced backwards. Now in each
prism there is one angle of incidence which gives rise to the
minimum deviation; whether the obliquity of the incident
light is increased or diminished, the result is the same, the
deviation 1s increased.

From what we have said above (p. 102) it follows that if
we consider a very small cone of light of which the axial ray
undergoes the minimum deviation, we shall not introduce
any appreciable error by saying that each ray of the cone
undergoes the same (minimum) deviation. The smaller the
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cone, z.e. the smaller its apical angle, the more nearly true
will this approximation be.

If then we confine our attention to such a small pencil
or cone of light we are justified in asserting that all its
constituent rays after refraction will intersect in one point
if produced backwards. In this way a point or focus corre-
sponding to each point of the object may be found.

Fig. 60.

Let Pp represent an object placed before the prism 4 BC.
Of all the light scattered in all directions from P, consider
only the cone PIJ the axial ray of which undergoes minimum
deviation. If then the angle IPJ be very small the ex-
treme rays will also on emergence undergo the same
deviation. Hence the emergent pencil must have the same
angle of divergence that the incident pencil had. Produce
the extreme rays RKTL backwards to meet in . Then @
1s the focus of P with respect to this small pencil. The point
@ will lie on the axis of the emergent pencil produced. It
will be situated considerably above P and nearer to the
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prism, by about one-third of the thickness of the glass
through which it is viewed. Similarly a small divergent
pencil from p undergoing minimum deviation will retain its
original divergence, so that the intersection of the emergent
rays produced backwards will be at ¢g. This point ¢ is then
the virtual image of p to an eye suitably placed to receive
this emergent pencil. It is however obvious that no observer
could receive both sets of emergent pencils, so that it would
be erroneous to conclude that Qg is the virtual image of Pp.
If the pupil of the observer’s eye be so placed that the
narrow beam that enters it from P has a virtual focus at @),
the small pencil that reaches it from p must have traversed
the prism by some other path than that of minimum de-
viation, and hence will not have a definite virtual focus at
all; the image of p will consequently be blurred. It will
be shewn in a later section that if the emergent rays of this
aberrant pencil be produced backwards, they will intersect in
two focal lines and not in a point; there will however be a
spot between these focal lines where the cross section of this
produced pencil will be very small. This is called the circle
of least confusion and we may consider this spot as roughly
representing the focus of the aberrant pencil.

It must be remembered that the cross section of the cone
of light that enters an eye is exceedingly small, being limited
by the size of the pupil. It 1s owing to this that the con-
sideration of only small pencils gives fairly trustworthy
results. A rough idea of the position of the circle of least
confusion of an aberrant pencil may be formed by the
following considerations. The axial ray of the aberrant
pencil entering the eye must be incident on the prism at
an angle either greater or less than that which corresponds
to the minimum deviation. Referring to Fig. 60 let us
suppose an eye at RT; the light which reaches this eye
from p must have some such initial direction as pX. The

P. O. 11
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angle of incidence of pX on AB 1s obviously greater than
that which corresponds to the mimimum deviation. Let us
confine our attention to a small pencil of rays from p about
an axis pX ; it is clear that the lowest ray of the pencil will
undergo less deviation than the uppermost ray of the penecil.
Hence the point of intersection of these extreme rays will
be further off than the point from which they originated,
neglecting the influence of the thickness of the glass. We
may presume then that the circle of least confusion where
all the constituent rays of the pencil are closest together
will be at a point ¢” somewhat further from the prism than
g and above the level of g¢.

If however the eye be situated at S, the pencil that
reaches 1t from p will be composed of rays that intersect at
q. The pencil that reaches the eye from P will now be the
aberrant pencil and will consequently undergo a greater
deviation, the blurred image of P will be formed at a
point " above the level of () and slightly nearer the prism.

Some of these points can be very easily verified. If fine
type be observed through a prism of 20° edge upwards, 1t
will be found that in the neighbourhood of one position the
type appears bright and fairly distinet, although displaced
upwards by about half the apical angle of the prism. If
the prism 1s rotated from this position in either direction
the type appears to move upwards and to become blurred,
as well as less bright. If the edge be turned towards the
observer the height of the object appears diminished, for
in this case the effective rays from the lower part of the
object undergo a greater deviation than those from its upper
part. If the rotation be in the opposite direction, the height
of the object appears to be increased, for now the path of the
rays from the lower part of the object is more nearly that of
minimum deviation than that of those from its upper part.

The diminution of brightness in the image as the prism
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1s rotated from the position of minimum deviation raises
an interesting point, and one which is of fundamental im-
portance in the explanation of the rainbow.

Let a widely divergent cone of light traverse a prism and
let the axial ray undergo minimum deviation, the rays in its
immediate neighbourhood undergo almost the same deviation,
whereas the rays in the immediate neighbourhood of either
of the extreme rays diverge widely. Consequently more
light travels in or near the path of minimum deviation than
by any other route. This phenomenon 1s often referred to
as the condensation of rays that have undergone minimum
deviation.

If the refracting angle of a prism be small, as is usually
the case in the prisms used in ophthalmic practice, the
confusion circles are very small, and the blurring of the
virtual image is not noticeable. If the angle of the ‘prism
be 10° we may consider its deviation about 5° for all pencils
whose aberration from the direction of minimum deviation
does not exceed 20°,

An object viewed through the prism will appear bodily
displaced upwards towards the edge of the prism, as though
rotated through an angle of 5° about an axis passing through
the prism.

Up to this point we have merely been considering the
path of the light that traverses a prism in a plane at right
angles to both its faces. The light however that travels in
a direction that makes an angle with this plane does not
traverse the prism with the same deviation. If a prism is
placed edge upwards before the eye, and observation be
directed towards a window, it will be noticed that the hori-
zontal parts of the window-frame appear concave upwards,
whereas the vertical sides still appear vertical and straight.
The horizontal parts will also appear fringed with colour,
this we shall for the moment neglect. Again, if the prism

112
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be rotated about a vertical axis the image will undergo a
further distortion, one of its diagonals becoming lengthened
while the other diagonal is shortened.

A popular explanation of this distortion is somewhat
difficult to give. Let us confine our attention to a point at
one end of the horizontal limb of the window-frame. The
small cone of light from this point that eventually reaches
the eye of the observer must have traversed the prism
obliquely in the horizontal direction. The principle of same
phase forces us to believe that the time taken by light to
travel along each one of the constituent rays of the small
pencil is the same, for under no other condition could an
image of the point be formed. Now 1t 1s clear from what we
have said above (p. 102) that this condition will be satisfied
if we make the axial ray of this oblique pencil take the path
which occupies minimum time. As the speed of light in
glass is less than its speed in air, the longer its path in the
glass the more time will the journey take, other conditions
remaining the same. Now the light must preserve its
horizontal obliquity unchanged if it 1s to reach the eye of
the observer, there is therefore only one way of shortening
its journey through the glass, namely, by traversing the
prism higher up, 7.e. nearer its edge. But this increases the
length of its path through the air, so a limit is placed on the
vertical obliquity of its path. There will thus be one route,
which will take the least time to travel; this will be that in
which the path through the glass 1s diminished at the
expense of that through the air in a certain proportion.

When then the axial ray of the small cone that we are
considering takes the route we have indicated all its con-
stituent rays will represent journeys of the same length as
regards time. This cone will consequently reach the eye as
if it had started from a single point. This is the only cone
which forms an 1mage of the point and is consequently the
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only cone that we are considering. Since therefore this cone
traverses the prism above the level of the cone from the
middle point of the object, it will appear to the observer to
be coming from a point considerably above the level of the
middle point of the image. Both extremities then of a
horizontal line viewed through a prism edge upwards will
appear raised. The greater the obliquity of the incident
pencil, the higher will be its course in the prism and the
more elevated will the image be that it forms. If the edge
of the prism be downwards the conditions will be reversed.
In every case then when a line parallel to the edge of a
prism is observed the image of the line will appear curved,
the concavity of the curve being in the same direction as
that of the edge of the prism.

If the prism, edge upwards, be rotated through an angle
about a vertical axis, the cone of rays from one extremity of
a horizontal line incident on the prism will become more
oblique, while that from the other extremity will become less
oblique, the image of the line will therefore be tilted as well
as concave, If the object be a rectangular window, one side
of the window will appear raised while the other side is de-
pressed, consequently one diagonal will be increased while
the other is diminished.

SUMMARY.

A square object presenting a plane surface when viewed
through a prism, edge upwards, will give rise to an image
with the following peculiarities.

The plane of the prism is the median vertical plane that
bisects the apical angle.

1. When the plane of the prism is parallel to the plane
of the object,
The image 1s raised above the level of the object, the
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sides are more raised than the mid-vertical line. The upper
and lower edges are consequently concave upwards.

2. When the prism is rotated through a moderate angle
about a horizontal axis parallel to its edge,
The image rises.
If the edge of the prism be turned towards the observer,
The height of the image is diminished.
If the edge of the prism be turned away from the
observer, \
The height of the image is increased.

3. When the prism is rotated about a vertical axis in
such a way that its right side is turned from the observer,

The right margin of the image is raised above the left
margin, its right superior and left inferior angles are con-
sequently rendered more acute.

When the rotation is clockwise so that the left side of
the prism is turned from the observer,

The left margin is raised above the right margin and the
angles specified above become the obtuse angles.

4. When the prism is rotated about a horizontal axis at
right angles to its edge, eg. about the visual line of the
observer,

The image of the object rotates also about the same axis.
The image being always displaced towards the edge follows
1t 1n its rotation.

The last point demands a little further investigation, as
it is closely related to a problem which frequently arises in
practice.

Let us suppose that a thin pencil of light, the rays of
which are parallel, traverses the centre of a prism in the path
of minimum deviation. Let us now imagine a screen placed
at a distance ! from the centre of the prism Fig. 61, and so
arranged that its surface is normal to the incident ray, which
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if produced would meet it at 7, and to the plane of incidence
and refraction. The deviation D undergone by the light

Fig. 61.

will be indicated on the sereen by the distance I7 that in
this situation separates the refracted pencil from the incident
pencil produced.

Suppose now that the prism were rotated about an axis
ST the spot of light on the screen at 7' would trace out a
circle of radius /7T, the centre being at I. Fig. 62 represents

Fig.62.

this circle where R =IT. If the prism be rotated through
an angle p from the horizontal, the oblique deviation may be
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resolved into two components, one horizontal () and one
vertical (¢), and these would be represented on the screen
by the lines R, H and V respectively.

Then 2= H2 4 PV
And from Fig. 61 it is evident that
R=1tan D.

and similarly H=Itan#, and V =1[tan ¢;
.. tan® D = tan? @ + tan® ¢.
L e tanp

ballp= o

If then D and p be given, ¢ and € can be found, and
vice versé.

In ophthalmic practice such problems frequently arise,
and their solution is rendered extremely easy from the fact
that the prisms used clinically are so weak, that we may
regard the tangents of their deviating angles as proportional
to the angles themselves. Hence we may replace R, V' and

H by D, ¢ and 6 in the equations R=+H2+ V* and

Also

V
tan p = ff.

For example, suppose that we wish to find the strength
and position of a single prism which shall be equivalent in
effect to the combination of a prism of 2° dev. edge out and
a prism of 1° dev. edge up.

Then replacing H and V by the values of € and ¢ we
have D or R=~H?*+ V=241 approximately ;

2. D or R=4/5"=2" 14 approximately,
and tan p = 3.
This ratio is found on referring to a table of tangents to

correspond to an angle of 26° 34/,
Hence a single prism of 2° 14" if placed with its base
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apex line inclined 26° 34’ upwards from the horizontal will
produce the desired effect.

If a set of mathematical tables is not at hand Maddox
suggests the following simple geometrical method.

Draw a horizontal line of length proportional to the
deviation of the horizontal prism. Thus let 1t contain as
many inches as the angle of deviation contains degrees.
From one extremity erect a vertical line at right angles to
the former line containing the same number of units of
length as the deviation of the vertical prism contains
degrees. Complete the triangle. The hypothenuse represents
the strength of the equivalent prism and the angle which it
makes with the horizontal base line represents the angle at
which this “ resultant ” prism should be set. An inch scale
and a protractor or a circle divided into degrees is therefore
all that is necessary to arrive at an approximate result. The
error indeed will probably be considerably less than that of
the optician who has the far more difficult task of making
the prism to order.

After the consideration of the distortion and blurring of
the images produced by prisms, the reader may be inclined
to think that objects can never be seen satisfactorily through
prisms of any kind, and that therefore they can not be
practically used with advantage in ophthalmic cases. It
would be almost as rational to object to glass windows on
the ground that no object could be distinetly seen through
a plate of glass. Unless the plate be thick and the pencil
be very oblique, the confusion circles are so small that they
only occupy one retinal element (retinal cone), and as long
as they do not extend beyond this small area on the retina,
the effect produced is precisely identical with the effect of
a single point of light.

Similarly with very weak prisms the distortion and
blurring of the image is so slight as to escape recognition
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by the eye under ordinary circumstances. When the devia-
tion of a prism exceeds 2°, some distortion of the image may
be just detected; this is especially noticeable with oblique
pencils. Consequently it is only under exceptional circum-
stances that prisms of more than 2° dev. can be ordered for
constant use with advantage, vision through them must be
direct and not oblique, or the objects viewed will appear
indistinct.

QUESTIONS.

(1) The refracting angle of a glass prism is 60°, and its
refractive index is 1:54 for a certain kind of light. What is the
minimum deviation for this kind of light on traversing the prism?
Given that sin 50° 21" 14" =77,

(2) If the refracting angle of a prism be 60°, and the

minimum deviation for the D line be 30°, what is the refractive
index for the [ line?

(3) If the refracting angle of a prism be 60, and the
refractive index be /I find the limit within which ¢ must lie in
order that the light may be able to emerge at the second face.

(4) A prism of small refracting angle 2° with refractive
index 15 is placed in water of refractive index §. Shew that
its deviation is only a fourth of what it is in air.

(5) It is found that when a plate of glass 7-7 mm. thick is
placed over a microscopic object, the microscope must be raised
2:T mm. to bring the object into focus again. What is the
refractive index of the glass?

(6) When viewing a distant object each eye of a patient is
found to deviate outwards 1° 44’ (nearly ./3°), while the right
eye deviates above the level of the fixation-line of the left eye 1°.
What prisms might be given which would relieve this defect ?



CHAPTER VIIL

DISPERSION. ANOMALOUS DISPERSION.
ACHROMATISM.

Dispersion. We have hitherto confined our attention
to the refraction of homogeneous light, we must now con-
sider what occurs if the incident light is not homogeneous.

Waves of widely different periods are being continually
radiated from the sun through space. The waves however
which are capable of setting up the specific stimulus in the
retina that gives rise to the perception of light have but a
limited range of period. The waves of longest period, when
they reach the percipient structures, induce an impression of
red light, those of shortest period induce an impression of
violet light. The ultra-red waves are capable of stimulating
other percipient structures but the sensation produced is
then that of heat, not of light. Similarly the ultra-violet
waves do not give rise to any sensation directly, though we
have no reason to assume that they consequently may be
neglected. Indeed the intimate structure of many sub-
stances, as for instance that of certam silver salts, 1s
profoundly modified by these ultra-violet waves. It is
probable indeed that they exercise an injurious influence
on the delicate structure of the retinal cells if they are in
excess.
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The terms ultra-violet and ultra-red are not strictly
applicable to waves at all. Colour is a subjective term
which merely expresses the sensation produced by a certain
kind of stimulus on a certain kind of cell. Before light
waves reach a colour-seeing organ, they cannot be said to
have colour. No one would apply the term nauseous to
waves of the sea, though under certain circumstances they
may induce nausea in certain individuals. If it be clearly
understood that by the expression red waves or red light is
meant a set of waves of that period that induces a sensation
of red in most individuals, the term will be found a con-
venient abbreviation.

As we are dealing with light waves only, we need not
now consider the properties of the ultra-red and ultra-violet
waves, and our study is accordingly confined to waves whose
frequency varies from about 391 billions per second to 759
billions per second.

Now it is found by observation that in free space and in
air red waves (i.e. those of relatively long period and long
wave-length) travel at the same rate as the shorter violet
waves, If this were not the case, if for instance red waves
travelled quicker than violet waves, a star reappearing after
eclipse would appear first red and then gradually change
tint until it became white when all the colours had had time
to arrive. Now no change of tint has ever been observed,
even in the case of variable stars, such as Algol, which are
so distant that it takes several years for the light from them
to reach us, and hence we may conclude that waves of any
period between the limits that the eye can appreciate, travel
at precisely the same rate through free space.

It has been found indeed that waves of electrical dis-
turbance of a period a million times longer than any light
wave travel through free space at precisely the same rate as
light waves. The ether of free space is then regarded as
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homogeneous, or if it has any structural heterogeneity its
parts must be so infinitesimally small, that it can deal with
wave-lengths of a hundred-thousandth of an inch in precisely
the same way as wave-lengths of a hundred miles.

We have however no right to assume that the ether in
matter is also homogeneous. We have indeed some ground
for thinking that in matter part of the ether is free, streaming
freely through the pores of the matter, and part of the ether
is bound, associated with the particles of matter in some
way, so that it behaves differently. If the ether in matter
is to be regarded as heterogeneous in this way we can no
longer say that the velocity of transmission of an undulation
depends solely on the nature of the medium, the wave-
frequency or the wave-length of the undulation may prove
to be an important factor in the expression for its velocity.
We must resort to experiment to see what actually does
happen.

If the white light of the sun be admitted through a
narrow shit into a darkened room and a prism be held in the
path of the entering sunbeam, the light will be deflected
and form a broad coloured band on the opposite wall. The
order of the colours is red, orange, yellow, green, blue, indigo,
violet, of these red 1is refracted the least, and violet the most.
Now we know that refraction depends upon the velocity of
propagation; and we may infer that the white light of the
sun 1s really composite, consisting of these several colours,
but for some reason violet light is impeded more than red
light when traversing glass, and hence the prism refracts
violet more than red. It will be found that when the colours
are brought together by another prism or by a lens, the
colours disappear and a white patch is formed. The whole
series of colours however 1s not necessary to produce white,
it 1s found that they consist of pairs of complementary
colours, each pair when in proper proportions, and received
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on the same part of the retina, producing the sensation of
white,

Thus Red is complementary to Bluish green,
Orange 5 e ,» Sky blue,
Yellow - o ,, Violet blue,
Greenish yellow ,, % , Violet.

The sensation of white is always due to a mixture of at
least two colours, but the eye alone is quite unable to
distinguish a white produced by the mixture of all the
spectral colours, from that produced by a mixture of only
two or three of them. The difference 1s at once made
manifest by examining the colour with a prism, which will
decompose 1t into its constituent spectral colours. Certain
interference experiments have proved most conclusively that
in free ether one coloured light differs from another both in
wave-length and in wave-period. The more refrangible
colours, 7.e. those nearer the violet end of the spectrum,
have both wave-length and wave-period shorter than the
less refrangible colours. And since the spectral colours are
differently refracted by glass-prisms, the value of the re-
fractive index of glass must vary according to the exact colour
which 1s used as a standard, indeed the term index of refrac-
tion has no definite meaning unless the period, wave-length
or some constant of the wave to which it refers is also given.

It will be necessary to digress somewhat to show what
means we have for describing waves of a definite period and
length independent of the colour-sense of the observer. On
p. 155 a short description of the spectrometer is given;
which is an instrument for obtaining what is called a pure
spectrum. If its slit be directed towards a candle flame a
succession of images of the slit is seen in every colour
forming a continuous spectrum. If however the sun’s light
be examined, it will be found that colours corresponding to
certain wave-periods are very faint, so that the spectrum
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appears to be crossed by certain dark lines. These lines are
the images of the slit in those tints which are defective in
sunlight, they appear dark against the bright background.
With powerful instruments some 10,000 lines have been
detected in the visible part of the solar spectrum, and by
other means' the ultra-visible part of the spectrum has
been shown to present nearly as many more. The most
prominent of these lines have been named by the letters of
the alphabet, thus 4, B and € are in the red portion of the
spectrum, D 1n the orange yellow, & in the green, #' in the
blue, G in the violet blue, and H in the extreme violet.
These lines always correspond to a definite wave frequency
and a definite wave-length, and, being easily recognizable,
form convenient marks for determining refractive indices.
Now it is found that all incandescent solids give continuous
spectra, like that of a candle-flame which owes its luminosity
chiefly to the incandescent carbon particles that it contains.
However incandescent gases or vapours give rise to dis-
continuous spectra consisting of a finite number of bright
lines,. Thus incandescent hydrogen gives rise to three
bright lines, two being in exactly the position of ! and F,
the other being near to G. Similarly incandescent sodium
vapour gives rise to a double bright line in the position
of D or rather D, D,, for with powerful instruments this line
is resolved into two adjacent lines. Incandescent vapours
radiate light of specific period, and according to the theory
of exchanges they must absorb undulations of that period
which they radiate. The explanation of the dark lines of the
solar spectrum is simple. The photosphere would give rise
to a continuous spectrum but that it is surrounded by an
atmosphere of incandescent vapours. If special means be

! The lines in the ultra-violet part of the spectrum have been mapped

out by means of photography, while those in the infra-red part have been
discovered by Langley with the bolometer.
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taken to view this layer alone a discontinuous spectrum is
seen of bright lines.

This layer is so much less bright than the photo-
sphere that it absorbs far more undulations than it radiates,
hence, when the glowing nucleus of the sun is seen through
its atmosphere, undulations of certain periods are largely
absorbed. The dark lines crossing the solar spectrum indicate
where this selective absorption has occurred, and afford a
means of recognizing many metals and gases which are
present as glowing vapours in the atmosphere of the sun.

According to Captain Michelson’s experiments in 1882,
the velocity of light in free ether 1s 299,853 kilometres per
second, and according to those made in the same year by
Professor Newcomb, the velocity is 299,860 kilometres per
second. In air its velocity 1s about 298,594°5 kilometres per
second. Similarly in all gases the velocity of light is less
than in free ether, but in most of them at the ordinary
temperature and pressure no dispersion has been observed,
in other words both long and short waves seem to be trans-
mitted at the same rate. At the end of this chapter will
be found a table of the wave-lengths, wave-frequencies and
periods of the more prominent spectral lines in air. The
index of refraction for all of these in air is practically the
same, as air has no sensible dispersive power. When we
come to deal with glass, we find that the index of refraction
p undergoes a slight progressive increase in value as 1t
is measured for the A line or for the H, line. Further
than this, different glasses disperse to different extents,
the material that causes the greatest deviation does mnot
necessarily possess the greatest dispersive power. The
diamond with a refractive index of 2-5 has not such a high
dispersive power as flint glass.

No completely satisfactory explanation of all the phe-
nomena of dispersion has yet been given, but an attempt
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will here be made to shew in what direction the true
explanation seems to be forthcoming.

We may note that it is found by experiment that the
intensity of light exercises no influence on the amount of its
deviation after traversing, for example, a glass prism. If
however we supposed light to be due to an actual movement-
vibration of the ether particles, we should expect some
alteration of deviation to take place when the excursion of
the particles was comparable to the intermolecular spaces of
the glass. This, as far as 1t goes, supports the electric
theory of light, s.e. that the ether particles do not actually
move up and down or from side to side, but that they
undergo periodical changes of electrical state. We shall
continue to use the terms vibration and undulation, as they
keep prominently before our minds the fundamental notion
of periodicity.

Now since the vibrations of the ether in the glass are
directly due to those adjacent to them in the air, there seems
at first sight no reason why their period should be altered.
Let us see how far we can explain dispersion on this
hypothesis. We find by experiment that light, for instance
that corresponding to the A line, travels quicker through air

than through glass. And since V= -;l,, 1t follows that if the

period T remains unchanged, the value of A the wave-length
must undergo a shortening in the glass corresponding to the
retardation that this light undergoes in the glass. If then u
denote the relative refractive index between air and glass
; 2 T . % e
(‘L.E’-. the ratio V“) for this 4 line, its wave-length in air
g
must be p times its wave-length in glass:—

Ag

Na = BN, and A, =
a g 2
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Now consider waves of a shorter period 7", those for
instance that correspond to the line H,. Since these travel
through air at the same rate as those of the period T it
follows that their wave-length must be proportionately less,

A A
for ? =V = T

In glass however the velocity of these short period waves
is less than in air. Ou the assumption that their period 7"
remains constant, we must suppose that this diminution of
veloeity 1s due to a diminution of their wave-length.

If now we assume that the ether in the immediate
neighbourhood of a matter particle behaves as if 1t were
more dense, 1t 1s clear that the ether in a glass prism, for
instance, assumes a heterogeneity depending on and re-
sembling the molecular arrangement of the glass itself.
This might impede those waves most which were of shortest
wave-length, and so we might explain the fact of dispersion.
Referring again to the analogy we made use of before, sup-
pose a column of soldiers six or seven abreast were marching
obliquely towards a wedge-shaped piece of rough ground.
In the open country each soldier might be taking steps of
different lengths and yet, if the frequency of the steps was
rightly adjusted, all the soldiers would be travelling forwards
at the same pace. On reaching the rough ground they all
would have to take shorter steps, but the nature of the
ground might be such as to affect most those who took the
shortest steps. If the period remained unchanged, the
velocity of the short waves would be especially diminished
and so their refraction would be increased. If the obstruction
were of a different nature, it might affect all the waves equally
whatever their wave-length. If for instance our soldiers were
provided with diving dresses, and were made to walk at the
bottom of the sea, they would certainly each take shorter
steps, but it is quite possible to conceive that the progression
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of each would be impeded to an equal extent. Similarly it
i1s found by experiment that the dispersion produced by
a substance does not depend on the mean deviation produced
by it. Air for instance at the ordinary pressure has ap-
parently no dispersive power, yet its refractive effects are
readily noticeable, while fuchsin has an extraordinarily great
dispersive action with quite a moderate refraction.

Anomalous Dispersion. The dispersion produced by
fuchsin is very peculiar; the spectrum of light transmitted
through a fuchsin prism shews the colours in the following
order: violet, then follows an interval, then red, orange and
yellow in their natural order. Green does not appear, for
that colour is not transmitted by fuchsin. Such anomalous
dispersion as it is termed is well displayed in most of the
aniline dyes, and a slight form of it, irrational dispersion, is
presented by almost all transparent bodies. It is found for
instance that some substances disperse one part of the
spectrum more than another part, in other words, the
deviation of light is not proportional to its wave-length.

Theory of Dispersion. It is plain that the simple
view we have been adopting does not explain the facts.

Kundt has shown that anomalous dispersion is best dis-
played in substances that have strongly marked absorption
bands, and that in going up the spectrum from red towards
violet, the deviation is abnormally increased below an
absorption band, while above the band the deviation is
abnormally diminished by the absorption.

The assumption is regarded as untenable that the
undulation period remains constant, whatever the nature
of the medium may be. Let us consider the case of fuchsin
more minutely. When sunlight is transmitted through a
rectangular glass cell containing a weak solution of fuchsin
and examined with a spectroscope, the ordinary spectrum is

12—2
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seen with a strongly marked dark band cutting out the
green and extending into the regions of the blue and yellow
on either side. The surface colour of fuchsin is green, that
is to say that fuchsin has the property of responding in a
peculiar way to vibrations of the period of green light and
reflecting them almost totally. Now we know that molecules
of matter when 1n a gaseous state are vibrating, and sending
out waves in all directions through the ether in which they
are embedded. Some molecules are able to vibrate to many
different periods, for instance the molecules of iron vapour
vibrate to 450 different periods even within the limits of the
visible spectrum, giving rise to 450 lines of light each of
definite period and consequently of definite colour. The
molecules of sodium vapour on the other hand are only
known to vibrate to two different periods, ‘197590 x 10~ sec.
and '197397 x 107" sec. Waves of these periods produce
a sensory lmpression of orange yellow light. When the
molecules are packed closely together, as in the solid state,
their vibrations are cramped, so that their specific periodicity
1s quite masked by the mnumerable secondary vibrations
that are set np. A white-hot bar of iron gives a continuous
spectrum, shewing that its particles are vibrating to every
period within the range of the visible spectrum. In the
case of certain substances in solution it would seem that the
particles may be permitted a certain kind of motion or
vibration like a tuning-fork, so that they respond more
readily to vibrations that they receive of their specific period
than to any other. Their action is no doubt much cramped
and the light which they reflect is not of definite period, but
involves a more or less wide range of period. The green
light reflected by fuchsin can be analysed by a prism into
yellow, green and blue, and the absorption band seen by
transmitted light is correspondingly broad.

Now presuming that in a fuchsin solution the fuchsin
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particles readily respond to vibrations of a period about
‘176 x 10~* sec,, the surface colour and the body colour of
the dye are explained, and further consideration will go some
way towards explaining its anomalous dispersion. Kundt
found that when sunlight was sent through a fuchsin prism,
the ether vibrations below the absorption band travelled
slower through the fuchsin than those above it; red and
yellow were deviated more than violet. If the vibration ot
the matter particles had altered the period of the ether
vibrations, this might be accounted for.

We have a ready dynamical analogy. If to the bob
of a pendulum P, executing horizontal vibrations, another
pendulum p be attached, executing vibrations of a slightly
shorter period, the effect of p will be to increase the period
of P and vice versi. It may then reasonably be maintained
that the effect of the fuchsin particles, vibrating at a period
of *176 x 10, will be to increase the period of the ether
vibrations below the absorption band and to diminish the
period of the ether vibrations above the band. And since

V = =, when the period T is increased the velocity 1s dimin-

T
ished and vice versd, consequently the refraction of the light
below the band is increased, whereas that above the band 1s
diminished.

Now most substances, perhaps all, shew the properties of
selective absorption, and to this fact is to be attributed the
irrationality of their dispersion. Glass, or rather the ether
in glass, which readily transmits vibrations of such a period
as are sensible to the eye is quite opaque to vibrations that
are two or three times quicker or slower.

If the dispersion produced by a prism were due solely to
differences of wave-length, the prismatic spectrum would
resemble in character the diffraction spectrum in which the
deviation 1s simply proportional to wave-length. But all
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prismatic spectra, when compared with this standard, shew
a relative contraction of the red end of the spectrum, and
further most substances disperse different parts of the
spectrum to specifically peculiar extents. This is what is
called irrational dispersion, and it is probably best regarded
as a form of anomalous dispersion due to absorption. Aeccord-
ing to this view we may conclude that prismatic dispersion
1s primarily due to the molecular structure of the prism,
being such as to impede waves of short length more than
those of longer length, and secondarily to the vibration of
the molecular systems reacting on the ether undulations and
tending to alter their period.

Dispersive Power. We shall now endeavour to find
some proper expression for the measure of the dispersive
power of a substance. We must first select some wave of
definite period, the refraction of which through a prism of
the substance we can regard as a measure of the deviation.
We may conveniently take one of the fixed lines in the
brightest part of the solar spectrum, e.g. the D line, and let
p represent the refractive index of the substance for yellow
light of this wave frequency, 506 x 10" per sec. Then if the
refracting angle A of the prism be small and the prism be in
the position of minimum deviation, the mean deviation is
given by the expression (u—1)A4. Let u, denote the re-
fractive index for the extreme red light of a definite wave
frequency, e.g. 391 x 10" per sec., and let w, similarly denote
the refractive index for violet light of the wave frequency of
750 x 10

Then w, A - A and p, A — A represent respectively the
deviations of this violet light and of this red light produced
by the prism. And the difference (u,— p,) 4 represents
the angular dispersion produced by the prism.

Now the dispersive power of a substance is independent
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of the refracting angle if 1t be small, and 1s measured by the
ratio of its dispersion to its deviation. Therefore (f: Z—%')Tf

“:: 7 ‘;’" measures the dispersive power.

Now the dispersive power of one kind of flint glass
is ‘053, while the dispersive power of a particular kind of
crown glass is '032. The prism of the crown glass
(uw=152) whose refracting angle is 60° will in the position
of minimum deviation produce a deviation of 38° 55" and
an angular dispersion of about ‘032 x 38° 55" or 1°14/-72.
A flint glass prism of dispersive power ‘053 will have
the same dispersive effect when its minimum deviation
is about 23° 30" or (u=158) when its refracting angle is
37°26°. If therefore both prisms be placed in the position
of minimum deviation, the edge of the one pointing in the
same direction as the base of the other, the dispersion will
be neutralized, whereas there will be a total deviation of
15° 25’ due to the preponderating effect of the crown glass
prism. The emergent hight will not however be totally free
from colour, as the spectrum formed by a flint glass prism 1s
relatively more extended in the blue part than the crown
glass spectrum. In practice it is found that more perfect
achromatism is obtained when two colours in the brightest
part of the spectrum are united and the rest are allowed
to take their chance. Theoretically only two definite colours
can be fused by two prisms, three colours by three prisms,
and so on, owing to the irrationality of dispersion; but if
the above method is used the complementary colours will be
to a great extent corrected, and the double combination
is sufficiently achromatic for practical purposes. Professor
Abbé and Dr Schott have now brought out many pairs of
kinds of flint and crown glass, such that the dispersion in the

various parts of the spectrum is for each pair as nearly as

or
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possible proportional. The achromatism that can be attained
by this Jena glass with two prisms or with two lenses is far
more perfect than was possible before with a double com-
bination of the ordinary kinds of glass.

It 1s evident also that two prisms of different dispersive
powers may be so arranged that the deviation produced by
the one may be reversed by the other, so that after traversing
both prisms the light is dispersed, but its mean direction is
unchanged. If the refracting angles of the prisms are very
small, we may take (u — 1) 4 as the deviation. If the mean
refractive indices of the two kinds of glass be 1'52 and 1°58,
we have to make 52 4, equal to 58 4,. Then a prism of
crown glass with refracting angle 5”8 will have its deviation
compensated by a prism of flint glass with refracting angle
572 placed in the reverse direction; while the emergent light
will be dispersed through an angle of 3”8, if the dispersive
powers of the glasses be ‘032 and ‘053 respectively.

If the prisms be of greater angle, and if their adjacent
faces be cemented together, the calculation becomes some-
what longer. Let the crown glass prism present a refracting
angle of 60° in the position of minimum deviation; this will
give a deviation of 38°55". If the flint glass prism be
cemented to the crown glass prism it must have a refracting
angle of 55°8 in order to neutralize the mean deviation
produced by its neighbour, and the resultant angle of dis-
persion will be about 50°. This 1s the principle of the direct-

vision spectroscope.

Expression for Dispersion. When we wish to correct
the chromatic dispersion of two specific colours, eg. the
orange and the blue, we cannot make use of the published
tables of dispersive powers, as owing to the irrationality of
dispersion in different substances we have no right to assume
that the dispersion in this selected part of the spectrum is
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proportional to the total dispersion. We must therefore
obtain another expression in terms of the refractive index,
tables of which for various parts of the spectrum are pub-

lished for many substances.
Let ¢, ¢’ be the angles of incidence and refraction at the

first surface of the prism, and let ', 4 be the angles of
incidence and emergence at the second surface. Then these

are connected by the equations

sin ¢ = p sin @',
sin Yr = p sin Y,
A=¢ +

To make the problem more general we will suppose that
the incident light has been already dispersed before reaching
the prism. Then let ¢+ d¢p, ¢'+ d¢’, etc. denote the cor-
responding angles for any other light whose refractive index
18w+ dp.

By differentiation we obtain

cns¢dj=5in¢’+peus¢’@,

du
cos yYr d”[’r——mn«.}r + p cos 1,!r’ ‘4’
dg¢’
D= v + 1.
. d¢’ d¢’ dy , 5
Then since d'{tr-’ =—1, 9 —_ EF: and we can eliminate

the last terms of the first two equations by multiplying the
former by cos 4" and the latter by cos ¢,

. €os ¢ cos Y’ % = sin ¢’ cos Y’ + p cos ¢’ cos Y’ i‘; ,
cos ¢’ cos yr ﬁj = cos ¢’ sin Y’ + w cos ¢’ cos iﬁ 2

. cos ¢ cos té—i + cos ¢’ cos Y % =sin (¢'+).
Or in differentials cos¢ cos Y’ dep + cos ¢’ cos Yrdyr = dp sin 4.
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If the incident light is not dispersed the term involving
d¢ vanishes and the dispersion of the emergent light is
dwsin 4
Gl ¢ cos
When the incident light falls perpendicularly on the first
surface ¢'=0, Y'=4 and sinyr = pusin 4,

dp
I‘I d = e t £ ]
Alr 7 an

When the prism is in the position of minimum deviation
for the standard wave-length, ¢'= ¢ =3}4,

. sin 4 =2sin ' cos ¢’ = Esin Jr cos ¢,

S dalr= gif tan .

The position of minimum deviation is not therefore the
position of minimum dispersion, which is that which makes
the product cos ¢’ cos ¥ a maximum. The maximum dis-
persion 1s obtained when this product is a minimum; this
occurs when 4»=90°. Hence the dispersion produced by a
prism whose refracting angle is ever so great may be counter-
acted by the dispersion of another prism of the same material
whose refracting angle is ever so small, provided it be placed
in a sultable position.
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QUESTIONS.

(1) Shew that a longer spectrum will be obtained when a
prism is put in the position of minimum deviation for violet rays,
than when it is put in the position of minimum deviation for red
rays.

(2) Shew that at a single refraction at a plane surface
the dispersion is proportional to the tangent of the angle of
refraction.

(3) The refractive indices of a medium for three particular
kinds of light are 1525, 1:533, 1'5641. What are the dispersive
powers between these kinds of light !

(4) The refractive indices of another medium for these same
kinds of light are 1-628, 1:642 and 1-:660. Give the dispersive
powers, shewing that they are not proportional to those of the
previous medium,

(5) What refracting angle should a prism of the first medium
have in order to annul the chromatic dispersion of the two
extreme kinds of light produced by a prism of 3° of the second
medium ?



CHAPTER IX.

OBLIQUE REFRACTION AT A PLANE SURFACE. FOCAL
LINES. CONTOUR OF THE REFRACTED WAVE-
FRONT. CAUSTICS.

Oblique Pencils. It has been already stated that
when a pencil enters a refracting medium, that is bounded
by a plane surface, obliquely, the constituent rays of the
pencil on being produced backwards do not intersect in a
single point.

Let O be a luminous point (Fig. 63) and APQ a plane
refracting surface. Let OF represent the axial ray of an
oblique pencil of rays, and let OQ represent one of the
extreme rays of the pencil. Produce the refracted rays
RP, R'Q) to meet in F;, and let RP cut the normal to the
surface from O in F,. Now if we suppose the figure to
rotate through a small angle about 04, PQ will trace out a
small area on the refracting surface, and OP@ will trace out
a solid cone incident upon it. Meanwhile the point F, will
trace out a small arc, approximately a straight line. Also
the line indicating the cross-section of the pencil at F, will
trace out a slender ‘figure of eight, approximately a line.
These lines at F, and F, are the primary and secondary focal
lines respectively. The secondary focal line is in the
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primary plane, i.e. the plane that contains the axial ray of
the pencil and the normal to the surface from the origin of
the pencil. The primary focal line is mn a plane at right
angles to the primary plane. It is evident then that the
refracted cone does not intersect in a point. The refracted
pencil if produced backwards would become oval in section,
then getting narrower would finally form a line at F,.
Beyond F, the lateral rays would have crossed, and the
section would gradually widen and at the same time become
thinner, until it would merely be represented by a line at F.
At some spot between F; and F, the section would be
circular : at this place the cross-section of the pencil is the
smallest. It is called the circle of least confusion.

Position of the Focal Lines. The position of the
primary and secondary foci may be determined in the follow-

Ing way.
Let OP =u, FP=yw, B =
: sm¢p F,P
Then S
o gl
STy L LS
Again, sin ¢ = w sin ¢,

Differentiating we get
cos b dep = pcos ¢’ de'.
Now when the pencil is very small, d¢ represents the
angle POQ, and d¢’ represents the angle PF\(Q).
And in the triangle POQ,
PQ sin POQ sin POQ
OP ~ sin OQP  cosdA0Q°
Y. g sin POQ)
Since the pencil is very small we may replace o5 200
£ POQ
Oy e AOP
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Thus BLZ o9 :
0 cos ¢
Similarly
Pg T A o L PF\Q do’

v s FQP " sinF,PA cosAFP * cos¢’
The equation ucos@'ddp’=cospdp may therefore be
transformed into

plLQcos* ¢ _ PQ cos’ ¢

i"l il
cos® ¢’

v = Pl ———— .
1 =AY cost @

Fig. 63

The figure represents an oblique pencil of light passing
from a rare medium to a dense medium. Had the light been
travelling from a dense to a rare medium (u < 1) the point
F, would have been situated above the axis OA.

These formule enable us to determine the position of
the primary and secondary focal lines of an oblique pencil
after any number of refractions, provided that each refracting
medium is bounded by a plane surface.

Let us consider the form of an oblique pencil after tra-
versing a glass plate of thickness w bounded by parallel plane
surfaces’.

1 The reader is recommended to draw a diagram for himself.
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Let the angle of incidence of the axial ray of the pencil

be ¢, and let the angle of refraction into the glass be ¢'.
cos® ¢’

Then v,=pu o d (1), and o= pu......... (2).
- The pencil in the glass will therefore proceed as if from
these two focal lines; on reaching the distal surface of the
glass the angle of incidence will be ¢’, and the angle of
emergence or refraction into the air will be ¢, since the faces
of the plate are parallel. The index of refraction from the
glass into the air will be }; It 1s required to find the posi-
tion of the primary and secondary focal lines of the emergent

pencil. Now, since the axial ray of the emergent pencil on
being produced backwards does not pass through the point
of incidence on the proximal surface of the glass, it will be
necessary to measure v,” and »,” from the point of emergence
on the distal surface. We must therefore take into account
the length () of the axial ray within the glass.

We can determine the distances of the primary and
secondary foci #,, ;" from the point of emergence by making
the substitutions indicated in the first and second equations.

In both equations for the second surface we substitute ~1ﬂ,
i

¢ and ¢ for p, ¢" and ¢, and, while the expression v + !
takes the place of w in the first equation, v,+ ! takes its
place in the second equation. Thus we get

0s? cos® ¢

i D) 2P or ik
Y T cos® ¢’ p cos® @’

1 [
v, == (v, +10) or u+—.
p p

Now if the angle of incidence or ¢ be 20°, the expression
cos® ¢
cos® ¢’
between air and glass.

= ‘92 approximately, when the refraction takes place



POSITION OF FOCAL LINES. 193

! o COs? iz -
If again ¢ = 80°, c_c:us"?c% =05 approximately.
: [ cos® ¢ :
The distance — (1 — T) between the two foci may be
L cos® ¢

taken as a measure of the indistinctness of the image.
If the pencil considered be small and direct, the two foci

) AN ! :
coincide at a point situated u + i from the distal surface of

the glass and the image is distinet. As the obliquity of the
pencil increases, the separation of the foci becomes more
noticeable, and the image appears blurred. However oblique
the pencil may be the distance separating the foci cannot

[ : !
exceed —. Hence we may say that if the glass 1s very thin

L
an object viewed through it appears distinct and nearly in

its true position for v," =u =v," approximately. It is evident
that /= w sec ¢, where w represents the thickness of the
glass, and we might have substituted this expression for  in
the formule above, but they are easier to remember in the
form given and are more generally useful.

The position of the focal lines of any small pencil travers-
ing a prism can be determined in a similar way.

If » be the distance from the source of light to the point
of incidence on the first surface,

s con
t Y cost g ?

and v, = pu.

If I be the length of the axial ray of the pencil within
the prism and +" be the angle of incidence at the distal
surface and yr the angle of emergence,

SHETR cos? cos® ¢’ cos® [ cos?
I?.-F] —_— = {‘EJI + E) e 5‘2 .I.P:f 01‘ E'E' q(ﬁ' . 5 ’.P; + T -E_#r;
7 cos? Jr cos®¢ cos® Y’ u cos* e
1 /
and vy =—(,+1) or u+-.
i I
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Hence if the prism be in the position of minimum devia-
tion ¢ =+ and ¢’ =+, and we have

) | cos?
vl=”'+_'_ﬂ}rffr
#cﬂsﬂ/‘
’ E
‘I'.l'.;

The image is nearer the edge of the prism than the
object, but 1ts definition in the position of minimum
deviation 1s as good as that produced by a plate of
glass of corresponding thickness (i.e. I). This result is of
fundamental importance in spectrum analysis, for if the
prism of the spectroscope be placed in the position of
minimum deviation, 1t is possible to obtain a definite 1mage
of the slit, and hence a pure spectrum. With the prism
In any other position the coloured images of the slit will
overlap and consequently the spectrum will be impure.
When a collimating lens 1s used and is properly adjusted,
1t has the effect of virtually removing the slit to infinity, as
the light coming from the slit after traversing the collimator
presents a plane wave-front. In that case w = and the
distance v,' — v’ becomes practically negligible. Thus when
a collimator is used and the prism or train of prisms is not
in the position of minimum deviation, the effect will be to
increase the breadth of the lines and to proportionally
mcrease the length of that part of the spectrum.

If the prism is so thin that its thickness may be
neglected, »’'=u = v, approximately, and we may say
that both image and object lie at the same perpendicular
distance from the principal plane of the prism.

From the consideration of the primary and secondary foci
of thin oblique pencils we naturally pass to the combination
of a thin direct pencil with pencils of varying degrees of
obliquity, in other words to the locus of intersection of all
the refracted rays from a wide pencil. The caustic curve
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formed by the refraction of the wide pencil AOP will be
the locus of F, for all the small pencils of which AOP is
composed (Fig. 63). The locus of F, is of course on the

normal 04. We will first consider the contour or shape of
the refracted wave-front.

Contour of the Refracted Wave-front:. Let S be a
luminous point, LI the refracting surface, ST any incident
ray. Draw SD perpendicular to the surface and produce
it to S, making DS’ equal to SD. Describe a circle about
SS'Z, and produce the refracted ray IR backwards to meet

Ny Fig. 64.

! The method adopted is taken from H. M. Preston’s Theory of Light.
13—2



196 CONTOUR OF THE REFRACTED WAVE-FRONT.

the circle at @, and the normal S’S in G. Through @ draw
S'QK, and join @S, QL.

Then since LI bisects S8’ at right angles, LT is a diameter
of the circle and the angle LQJ in the semicirele is a right

angle,
ZGOQL =2 LOI.
And since
SD = DS, arcSL=arc LS and </ 8SQL=LQS,
N 2GHS="s Ol =L =i

the angle of incidence.

And £ QGS =4, the angle of refraction.
sing SG
sing’ SQ°

Again since ZKQG=28QI=2GQS
the refracted ray IQG bisects the external angle of the
triangle S'SQ,

Therefore in the triangle QG'S,

. 8G _ S¢
R
sing SG 86 SG_BETSY
CSnd L R0 Bon SO0=R0 ED=80E
S8 —-SQ = oF a constant.
M

The locus of @ is therefore a hyperbola with S and S” for
foci. The refracted wave-front RR' 1s consequently a parallel
to this hyperbola. The normals to this wave-front are the
refracted rays and the envelope of these rays is the caustic
surface.

The caustic surface cc’ may therefore be described by

drawing the evolute of the hyperbola S’Q—SQ:%? and

then causing the figure to revolve about the axis SS'.
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Similarly it may be shewn that if the second medium be
less refractive than the first,

'3

S
SQ+SQ= & a constant.
M
The locus of @ 1s therefore an ellipse, and the caustic
surface 1s the surface traced out by imagining the evolute

of this ellipse to revolve round the axis SY'.

Caustics. The caustic curve produced by refraction at
a plane surface can also be directly traced by employing a
different method.

RH“aH
R
p e
]
9 S
H""-.
Fig.65.

Let S be a luminous point in a medium the refractive
index of which is 1. Let OP (Fig. 65) be the plane surface
bounding the medium at which refraction occurs: let its
refractive index be denoted by w. Let SO represent the
principal axis of the divergent pencil of rays issuing from S.
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Then SO is normal to the plane surface OP. Let SO be
denoted by a. Let SP represent an incident ray, PR the
corresponding refracted ray. From O let fall the perpen-
diculars n and p upon the incident and refracted rays respec-
tively.

Then the angle OT'P or 4r which the refracted ray makes
with the axis is equal to ¢', the angle of refraction. Similarly
the angle OSP is equal to the angle of incidence ¢.

Now sind=mEind’ oo G (A),

n=a8in ¢,

OP = n cosec (1; - cﬁ) = p cosec (g - ¢’) =nsecp=psecd’;

'.‘p=usec¢c*05 ¢’'=atanpcosgd’ ...... (1),
or i{, =@ cos ¢’ sec’ b - I — a tan ¢ sin ¢,
d :
From (A) cos ¢ {ﬁ?’ =y cos ¢,
o p'=pacos® p'seci p—atan psing ...... (2),

p’ E— = 3ua sect ¢ cos® ¢’ sin ¢ E‘Ig . —2u0 sect ¢ cos ¢'sin ¢’

o g
—a tan ¢ cos ¢’ — @ sin ¢’ secﬂcpji’,,

o p=atan ¢ cos ¢ {Bu® sect ¢ cos® ' — 3 sec® p — 1],
=p+p"=p3u*sect P cos* ¢’ — 3sec* ¢} ...... (3).
Let =15
When ¢ =0,
g — 0 n e ne—tn o s

There is a virtual cusp on the principal axis distant pa
from O.
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¥in

When ¢= 1’

¢ =sin™! ﬂj_%& say 28° 7”53, p=acos ¢'="882... q,

p = 21@;&& cos® ¢’ — a sin @' = 2'8295... a,
p=p {12p*cos’ ¢’ — 6} = 15°0069... p=13-237... a.

The adjoining figure (Fig. 66) represents the caustic
formed by the refraction of a luminous point in a dense
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medium (eg. water w=4). The line OP represents the
bounding surface of the rare medium the refractive index of
which 1s 1. The refractive index of the second medium

18 theref'm'eﬁ of that of the first.

When | ¢=0,
a
'=0, p=0, p'=-, p=0.
¢ Rttt
There is a cusp on the principal axis ¢ from O.
When b= %

¢ =sin"! (§ + &) =sin"? = 41° 48’ approximately,
p=a tan ¢ cos ¢’ ="'4304... a,

P'="= cost ¢’ sec’ b — a tan ¢ sin ¢’ = 2569...,
e

p=1p {E sect b cos? &' — 3 sec? qs} —1004... a.
When ¢ =sin" % the critical angle, 48° 36",
¢'=",p=0, p'=—11339...q, p= 0.

The tangent to the caustic passes through O at right
angles to the axis. This limiting point of the caustic is
1'1339... a distant from O.

It will be noted that as ¢ increases from 0° to 48° 36', p
first increases and then diminishes while p’ changes sign from
positive to negative. It will be found that when the angle
of incidence is 39° 43"285... the value of p’ will be 0, while
p will have 1ts maximum value of 4349... a.

On applying the general rule for converting all formula
relating to refraction to the case of reflection (p. 219), it will
be seen that the caustic reduces to a point situated on the
negative side of the mirror.
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For on giving the values — 1 to u and — ¢ to ¢,
(1) p=atan ¢cos(— ¢)=-+ asin ¢,
(2) p'=—acos®*(— ¢)sec® ¢ — atan ¢ sin (— ¢)

R e —_ =2 e
(:0595(1 sin®g) a cos ¢,

(3) p=p{3sec'pcos®(— ¢p)—3sec*dp}=0.
A well-defined virtual image will be therefore formed of
the point —a from O whatever be the angle of incidence.

Variation of Deviation. Certain statements were
made in the preceding chapter concerning the changes
that the angles of refraction and deviation underwent on
varying the angle of incidence. It will be found that the
two following assertions are universally true ; they are indeed
involved in the acceptance of Snell’s law.

(1) The greater the angle of incidence, the greater will
be the angle of refraction and the greater will be the angle
of deviation.

(2) As the angle of incidence increases uniformly, the
angle of deviation increases at a continually increasing rate.

Let the refraction be supposed to take place from a rare
to a dense medium, then < 1; and let ¢ denote the angle
of incidence and let ¢’ denote the angle of refraction,

sin ¢ =psing’; then ¢ > ¢

Differentiating with regard to ¢ we obtain

cOS ¢ = p COS tﬁn'%,
. d¢’  cosp sing’cosdp tan ¢’
"dp  pcosd sindceosd tang’

Now the angle of incidence ¢ cannot exceed 90°, conse-
quently tan ¢’ must always be less than tan ¢ and bear the
same sign as tan ¢.

tan q.': cp
~ tan qb d¢

must be always positive and less than 1.
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The angle of duviatiﬂn we have observed, is given by the

qs{r,‘b Si=1 —d-i , which 1s always
positive and less than 1.

Therefore the greater the angle of incidence, the greater
will be the angle of refraction and the greater will be the
angle of deviation. In this case, when p >1 the increment
in the angle of incidence is always greater than the corre-
sponding inm-e-ments in the angles of refraction and deviation,

for both q; and — (tj: ¢’) are less than 1.

However as

expression ¢ —¢’. And -

¢’ | d¢’
= - *ht
dqf cﬁ(cﬂtqfatancj:) cot ¢ sec” ¢’ dé cosec® ¢ tan ¢’
= cot?® ¢ sec® ¢’ tan ¢’ — cosec?® ¢ tan ¢’
2 tan &7 (250 1)
= cosec® ¢ tan ¢ (cnsﬁ & 1 )
and EE: ‘ﬁ, must be positive and less than 1,

i o
SrE 1s negative.
Therefore as ¢ increases, the rate of increase of ¢’
decreases. -
gy : *¢b’
Again, ;,ftib’ (p—¢)=— dep?
Therefore as ¢ increases the rate of increase of the
deviation increases.
In other words, if the angle of incidence increases uni-
formly, the angle of deviation increases faster and faster.
The table given on p. 142 illustrates these statements in
the special case where pu=1'54.

If w<1 it is evident that ¢ < ¢’ and that the deviation
¢ — ¢’ is negative, or measured in the reverse direction. It

and 1s therefore positive.

: : : d¢’
follows that in this case tan ¢ <tan ¢’ and that —qi:}l

dé



VARIATION OF DEVIATION. 203

Consequently if ¢ increase by a certain amount, ¢’ increases
by a still greater amount, and the negative quantity ¢ — ¢’
increases also.

d*¢ do’

Again, in this case d? is positive, and therefore ——-

d¢
increases with ¢, or in other words, as ¢ increases uniformly,
¢ 1increases at a continually increasing rate, while the

negative quantity ¢ — ¢’ increases also faster and faster.

QUESTIONS.

(1) A small pencil of light, which is obliquely refracted
through a plate of thickness w, is received by the eye. The angle
of incidence being tan~'p, shew that the distance between the
original point of light and the secondary focal line after emergence
o p=1

15 __2___ w;.
JLI.

(2) Shew why a straight stick that is partly in and partly
out of water appears bent at the surface of the water, when
viewed obliquely ; further, why does the part that is in the water
appear curved !

(3) A small white pebble at the bottom of a pool of water
10 ins. deep is seen by an observer standing on the margin. If
the refractive index of the water is & and the angle of incidence be

./
353,

=

30°, shew that the distance between the focal lines is

(4) In the last example the cross section of the astigmatic
pencil that enters the eye has the following dimensions at the
point of emergence: in the primary plane ‘0047 ins., in the
secondary plane ‘0062 ins. Find the position and size of the
circle of least confusion,

The secondary plane is that which contains the axis of the

emergent pencil and the first focal line. Use expressions (1) and
(2), p. 113.



CHAPTER X.

REFRACTION AT A SPHERICAL SURFACE. CONJUGATE
FOCAL DISTANCES. SIZE OF IMAGE.

Concave Spherical Surface. When a widely divergent
pencil of rays undergoes refraction at a spherical surface, its
constituent refracted rays do not intersect in a single point,
but they touch a certain caustic surface, somewhat similar to
that which oceurs when reflection takes place at a spherical
surface. If however a point be taken on the principal axis
of the refracting surface, and if we confine our attention to
a very small centric pencil of rays incident on the surface, 1t
will be found that after refraction the pencil will converge
to a single point, or at any rate proceed as if i1t had arisen
from a single point.

(1) Let the refracting medium (g > 1) be bounded by a
concave spherical surface KA (Fig. 67), the centre of which
1s at '; and let P be a luminous point on the principal axis
PAC. On the surface take a point K near to the vertex A4
so that the angle KPA is very small. The ray PK may
then be regarded as an extreme ray of the small axial pencil
mcident on the spherical surface. From centre €' draw the
normal CK and let QKR represent the direction of the
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refracted ray, which being produced backwards meets the
principal axis in Q.

Fig. 67

Then < CKP is the angle of incidence ¢, and £ CKQ is
equal to the angle of refraction ¢', and in the APKC,

PC  sm¢

CK ~ sin KPC"
and in the ACKQ,

QC _ sing’

CK = sin KQC’

By dividing the first expression by the second, we get

PC _sin¢ sin KQU
QC sing’ * sin KPC"

: : sin KQP PK
Bllt- S111 KQG—- S110 KQP E:'!:Ild SIHE{PQ — QIE. -
S EC - IK
o e o
Now since K is very near to 4, the distances P4 and QA,
or p and ¢, may be substituted for PX and QX,

il approximately
g—r F'q PP ¥

r denoting the radius C4 or CK,
ve. ppr—rg=pq(p—1).
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Dividing by pgr we obtain . 1 — e
9 P %

If now the figure be supposed to revolve round the axis
P(CA, the extreme ray PK will trace out the limits of the
thin centric pencil that we are considering; and it is clear
therefore that all the constituent rays of this pencil after
refraction will proceed as if diverging from the point ¢. In
other words @ 1s the virtual image of the point P.

The effect of refraction at such a coneave surface is, if
p >, to increase the divergence, or to diminish the con-
vergence of the incident rays.

Let us suppose that the incident light is convergent;
after refraction its rays may be slightly convergent, parallel
or even divergent, according to the degree of convergence of
the incident pencil.

If the refracted rays are parallel (Fig. 68), ¢= o, so

and

-
-
.-.'.l‘

— 2
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The negative sign shews that the distance f’ is to be
measured on that side of the refracting surface which is
remote from the incident light. The point (F"”) towards
which the incident rays converge under these circumstances
is called the first principal focus. It is situated in this case
in the second medium at a distance -;—T-— from its bounding
surface.

If the convergence of the incident light be less, 7.e. if the
incident rays converge to a point beyond F”, the refracted
rays will diverge as if from a point in the first medium.

If the incident pencil consist of parallel rays,

1
=w and —=0,
= P

—1

and te e el P e o
- T

pr sl

or i i

If then the incident rays are parallel, they will after
refraction diverge as if they had proceeded from a point F”

in the first medium situated -7 from the vertex.

w—1
Now let the incident light diverge from a point P on the
axis in front of the refracting surface. As P approaches
from infinity, its image ¢) moves from F” up to C.
On reaching C the incident rays from P are normal to
the surface, and therefore traverse the second medium with-

out refraction. This 1s also evident from the formula

if p=r; g=r.

As P moves onwards from C' to 4, @ also moves in the
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same direction at a gradually increasing rate, so that when P
reaches 4, ) 1s also coineident with A.

The distinction between the two focal distances should
be carefully noted. It i1s evident that

= uf”
and that —(p—=1)f'=m,

that 1s, the numerical difference between the first and second
principal focal distances is equal to the numerical value of
the radius of curvature.

When the refracting surface (x> 1) is concave, the image
of an actual object 1s always virtual and situated in the first
medium. The formula therefore for the concave refracting
surface may be conveniently regarded as the fundamental
formula, as all the quantities p, ¢, and r as well as f” lie on
the same side of the refracting surface, and consequently
have positive values. The formula may be applied to re-
fraction at any spherical surface by paying due regard to the
signs borne by these symbols when the conditions are
changed. That is to say, when numerical values are sub-
stituted for the symbols they must be preceded by the
negative sign, whenever they refer to distances of points in
the second medium, distances in fact that lie on the side of
the refracting surface remote from the object.

Convex Spherical Surface. If the surface be convex,
r becomes negative. Two cases however now arise, for the
1mage may be either virtual or real.

If ¢ be positive, @ 1s virtual, for () lies on the same side
of the refracting surface as P.

If g be negative, @ is real, for ¢) now lies in the second
medium. :

This ready method of treating refraction at a convex
spherical surface may however appear somewhat unsatis-
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factory to the reader, it may be advantageous therefore to
discuss the subject in greater detail.

It then the refractive index is less than unity the pre-
ceding method of proof is applicable, for if RK be regarded
as a ray incident on a convex spherical surface bounding a
rare medium (px<1), KPP may be taken to represent its
course 1n this medium after refraction.

If however the refractive index be greater than unity
a slight modification in the proof will be necessary.

—_—
: T —
E—

c A
// Fig. 69.

As before (Fig. 69) let P represent the luminous point
and PK the extreme ray of the thin centric pencil considered,
and let KR represent its course after refraction.

Then if RK produced meet the axis in @, ) is the virtual
image of P,

Now ¢=2NKP, .. sin¢=sin NKP=sin CKP,
and ¢ =2 NKQ, ... sing’=sin NKQ =sin CKQ.

As before

PC_QC_ sing  sing’ _ sinKQP
CK ™ CK ~ sin KPC ™ sin KQC ~ "sin KPQ’
REONT X
L0 gR?

Fd+40. PK
ga+40 "OR

or
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As before let us denote P4, QA and C4 by p, ¢ and 7.
Now as K approaches 4, the distances PK and QK differ
finally from PA and @4 by a negligible quantity.
So in the limit we have
PA+AC PA-CA P4
Q4 + AT ga—ca > oa

TR )
or g_?_-—,u-q,
1.e. ‘E'—1=‘u'"1

g p r

This 1s the same expression that we found before, only in
this case C4 or  is measured in the negative direction. It
will be found that there is no ambiguity in the interpretation
of the results of calculations based on this formula, if only
due regard be paid to the signs which the algebraic symbols
bear.

Now however the effect of the refraction in every case is
to render the incident rays more convergent. Consequently
incident parallel rays converge to a point F” in the second
medium, whereas #’ the point, from which those rays diverge,
that after refraction become parallel, is situated in the first
medium. We see then that f’ is now positive and that f”
is negative.

The expression for the distances of the conjugate foci
may also be put in another form which is sometimes con-
venient.

1 1
From e — =0
QR
we get H‘? —'; =-—1,
or ‘%+"%=1,
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and on adding f'f” to both sides of this equation we get
=)@~ =rr"

Ez. 1. What curvature must be given to the bounding
surface of a refracting medium (x=3) for the virtual image of
an object in the adjacent medium (w=1) at 4 ins. distance to be
formed at a distance of 16 ins. ?

As the image is virtual, it must be formed in the first medium,
or in other words, ¢ is positive.

And since & 1:;.:.—_11
qa P r
i a1, 1
3x16 4 3’
- l_ 2
e g == 15
. r=—21ins,

The radius of curvature must therefore be 2 ins., and since it
carries the negative sign it must be measured in the negative
direction. The surface must therefore be convex.

Fx. 2. A refracting medium (u = %) is bounded by a convex
spherical surface, its radius of curvature being 5 mm.: find
the foci.

As the surface is convex, » = — 5 mm.,
and since S === = -
]
-5
J|=— E-- ) or 15 mm.
T — ].
Also since A s
f f-‘L_ 1 )
4 (_
f"=—3{ ) or — 20 mm.

£

The second principal focus (#") therefore lies 20 mm. behind
the refracting surface, while the first principal focus (#") lies
15> mm. in front of it.

14—2
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It will be subsequently shewn that the complex optical
system of the eye with its various refracting media may be
roughly represented by a simple system consisting of a single
refractive medium (u = %) bounded by a convex spherical surface,
representing the cornea, with a radius of curvature of 5 mm.
It would appear then that if the retina be 20 mm. behind the
cornea, a fairly definite image of a distant object would be formed
upon it. The first principal focus of this “reduced eye,” as it is
called, is situated 15 mm. in front of the cornea.

Formation of Images. The images formed by refrac-
tion at a single spherical surface may be either virtual or real.
Virtual images are situated on the same side of the refracting
surface as the object, that is they are in the first medium,
whereas real images are situated in the second medium.

The geometrical construction for the image formed by
refraction 1s very similar to that which we used for the image
formed by reflection.

Let AB (Fig. 70) represent the object situated on the
principal axis BC0 which passes through C, the centre of the
spherical surface, and let HOH’ represent the principal plane,
t.e. the plane touching the spherical surface at O where the
axis cuts it. Let F* be the first principal focus, and let "
be the second principal focus of the refracting system. From
what has gone before it is clear that if the refracting surface
be convex, and p >1 (Fig. 71), F' lies on the object-side or in
front of the surface and F'” lies behind it. If however the
refracting surface be concave (Fig. 70), F” lies behind the
surface, and F” lies in front of it.

Two methods may be employed for determining the image
of a point which i1s not on the prineipal axis.

For example, to find the image of the point A we may
draw the ray A H parallel to the axis meeting the principal
plane in H, then F”H will be the corresponding refracted
ray. Join AC and produce it if necessary to meet F“H
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produced in @. Then a is image of the point 4. (See Figs.
70, 71, 72.)

Fig. 70. (Concave Surface )

e [=

Or we may adopt the method employed in (Fig. 73).
Through 4 draw the ray F’A passing through the first
principal focus, and produce it to cut the principal plane at
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H. Then the line Ha parallel to the axis represents the
direction of the corresponding refracted ray. As before, join

a

; D

F" C 0 B E b

Fig. 7. [Coavex Surface) H

AC and produce it if necessary to meet Ha in a. The point
of intersection a is the image of A.

H

- ’<>'/a

F:'g. 72 {E‘anwexﬁurface,l H

The position of the image of a point on the principal axis
may be found by the method given on page 90.

If B is the point on the axis, take any ray BD cutting
the first focal plane in D, and the principal plane in H'.
Join BC, and through H’ draw H'b parallel to DC' cutting
the principal axis in b. Then b is the image of B. For
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since D is a point in the first focal plane, the pencil of rays
from D incident on the principal plane HH’ will after refrac-

H a

/

P < & B
Fig. 73.

L |
o

tion proceed with 1ts constituent rays parallel to the secondary
axis DC. (See Figs. 70, 71, and 72.)

Size of the Image. In each of the diagrams ab repre-
sents the image and A B represents the object, and it is clear
from the similarity of the triangles acb, 4CB (Fig. 70),

i e I P

aB " o BOT p—r’
where p, ¢ and r are positive.
The condition represented in Fig. 70 is chosen as the

standard case. It will be noted that in Fig. 71 » is negative,
whereas in Fig. 72 both r and ¢ are negative.

Also since ﬂ_ _#;U (page 205);

(2) g N
= o

Again, since AB = HO (Fig. 70),

ﬂb F”’b f |l'.||l

HO F.H — f”

In Fig. 71 /" is nega,tive but in Fig. 72 both f” and ¢ are

(3) L
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negative. We may also express the relation between the
dumensions of the 1mage and object in terms of the distance
of the object and of the first principal focus.

For our standard formula we must select a case in which
the first focal distance is positive, and in which the image 1s
virtual. Referring to Fig. 73 where these conditions are
fulfilled we see that ab= HO.

. 3 _H0 FOR

et ABT BT =

No difficulty will be encountered in using these formulz
if due attention is paid to the geometrical meaning of the
signs borne by the symbols.

Distances on the object-side, or in front of the refracting
surface, are considered positive, and distances behind the
refracting surface are considered negative. Similarly all
distances above the principal axis are positive, while those
below the axis are negative.

If then the ratios,

g=r lgoijicswg
Pt f g g =

iyt 2p "
have positive values, the ratio : has also a positive value,

and consequently the line indicating the height of the image
1s measured in the same direction as that indicating the
height of the object, and similarly with its other dimensions :
in other words the image is erect.

[f these ratios have negative values the image is inverted,
for the height and the other dimensions of the image are
measured in the reverse direction to the corresponding dimen-
sions of the object.

It can be easily seen that all virtual 1mages are erect, and
that all real images are inverted.
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Ez. 1. An object 4 mm. in height is placed 150 mm. from a
convex refracting surface (u = %), the radius of curvature of which
is 5mm. Is the image real or virtual? What is its size and
position !

1 —1

From the fundamental formula g oty "ui—
we obtain on substituting for the symbols the given numerical
values with their appropriate signs

) Ly
9 160 (=5 - iIp’
S g=—290 or — 93-9mm,

The negative sign shows that the image is formed in the
second medium, or in other words that it is real. It is then
situated 22:2mm. behind the refracting surface. |

We may determine its size by applying the formula (1) or (2).

Thus by (2) s g

o mp’

q 3= 99

i=1(750) 1
. ¢ =—4mm.

The image is then *4mm. in height, and the negative sign
shews that it is inverted.

If the data had been different, one of the other formuls
might have been employed.

Ewx. 2. The first principal focus is situated 15 mm. in front
of the bounding (spherical surface) of the refracting medium.
‘What is the size of the image that it forms of an object 4 mm in
height and 150 mm. distant?

h=p
&1 - 1B 1
I IE=180" 0

= — 4 mm.

Since

gl

or —+1,
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It has been already stated that as far as refraction is
concerned the eye may be roughly represented by a single
refracting medium (u = %), bounded by a spherical surface with a
radius of curvature of 5 mm. An eye then (with relaxed
accommodation) would form the image of an cbject 150 mm. off
at a point 22-2 mm. behind the cornea. If we take 20 mm, as
representing the distance between the cornea and the retina of
“the reduced emmetropic eye,” we see that the image on the
retina of this object would be blurred unless accommodation were
called into play.

If however a certain eye is 2:2 mm. longer than normal, its
punctum remotum is situated at a point 150 mm. from the cornea,
or in other words, the eye is myopic to the extent of 6:6 dioptres.

It will indeed be shewn subsequently that each dioptre of
axial ametropia corresponds approximately to an error of one-
third of a millimetre in the antero-pesterior diameter of the eye.

Exz. 3. What curvature must be given to the bounding
surface of a refracting medium (p= %), in order that an object
150 mm. in front of it may give rise to a real image 20 mm.
behind it? If the object is 4 mm. in height, what is the size of
the image !

Nince e —l ='u_—1,
g L
i( 1 \1_ 1 =-‘;—1
3\—-20/ 150 s
1 e
S LT 1T T
L or==3%mm. or — 44 mm,

The negative sign shews that the surface must be convex.
The dimensions of the image are given by the formula
i1 g

o p'p’

g _20)____1_
T (150 I

=] 2

S i=—+4mm.
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If then an eye of normal length be bounded by a cornea, the
convexity of which corresponds to that of the case just considered,
its far point will lie at a distance of 150 mm. The curvature
myopia of this eye is equivalent in degree to the axial myopia of
the eye in Ez. 2. The two conditions do not however resemble
each other in every respect; for the retinal image of the same
object is in the one case ‘4 mm. and in the other case "4 mm. in
height. Consequently in axial myopia smaller objects should be
recognized when placed at the far point, than in curvature-
myopia of equivalent degree. It follows therefore that the
results of testing the acuteness of vision by such methods are
not directly comparable in the two cases. No reliable conclusions
for instance can be drawn as to the sensibility of the retina in
the two cases, without making due allowance for the difference in
size of the respective retinal images.

Helmholtz’ formula. We may also express the dimen-
sions of the image and of the object in terms of the divergence
from the axis of any ray before and after its refraction.

Let us denote by a the angle OBH’ of divergence of the
ray BH' from the principal axis, and by &' the angle ObH’
which the corresponding ray H'b0 makes with the axis
(Figs. 70 and 72).

HO )
Then tan a = B0 and tana = 50 °
tana _ b0 ¢
s tana’ BO };
But e
o pp’

+ 1 tana

"0 u tana’
Relation of the formulae of refraction to those of

. V .
reflection. In the case of refraction, p= T"l’ the ratio of
o
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the velocity of light in the first medium to that in the
second medium. In the case of reflection the reflected light
1s travelling at the same velocity in the same medium but
in the reverse direction.

Hence in the case of reflection u = — 1.
And since the angle of reflection is measured on the
opposite side of the normal to that of incidence ¢ =— ¢'.

On making these changes any formula relating to re-
fraction at a single spherical surface can be changed into
the corresponding formula for reflection at a spherical
surface.

Thus instead of E—l——_"u';l, we write in the case of
qg p 7
reflection

Instead of
b g Bl s Debatiig
o RD I L) Ao

we have 1n the case of reflection

Ca= 0 _ tana

o T Tf—p: @ Ghw
Instead of D = ¢ — ¢’, we have in the case of reflection

D=¢+¢=2¢.
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QUESTIONS.

(1) When does a concave refracting surface with u >1 have
a converging effect !

(2) What curvature must be given to the bounding surface
of a refracting medium for the formation of a real image 20 mm.
behind it, of an object 300 mm. in front of it, (i) when p= %,
(i1) when p=2? (iii) Compare the sizes of the images.

(3) The second principal focus is situated 20 mm. behind a
curved refracting medium ; a real image {%; of the height of the
object is formed. Where is the image formed, and if the index
of refraction is  where is the object !

(4) A sphere of glass p=2 has a speck within it, halfway
between the centre and the distal side. Where will its image be
formed as seen from either side!

(5) If the back of the sphere be silvered, where will be
the image that is formed by one reflection and one refraction !
Consider both cases (i) when the surface near the speck is
silvered, (ii) when the distant surface is silvered.



CHAPTER XI.

THIN LENSES. CONJUGATE FOCAL DISTANCES.
SIZE OF IMAGE.

A SPHERICAL lens is a portion of a refracting medium
bounded by two spherical surfaces; the straight line that
joins their centre is called the axis of the lens. The distance
between the bounding surfaces, measured along the axis, is
called the thickness of the lens.

A lens bounded by two concave surfaces is called a
double concave or a biconcave lens, whereas a lens bounded
by two convex surfaces is called a double convex or biconvex
lens. A lens of which one face is convex and the other
concave 1s called a meniscus. The terms plano-convex and
plano-concave scarcely require explanation; the plane face
may be regarded as a spherical surface of which the radius
1s infinite.

Thin Lenses. The relation of the conjugate focal
distances of a thin spherical lens can be easily determined
from the formule that we have already found.

Let us consider, for example, a meniscus of glass, the
surrounding medium being air, Fig. 74, and let the curvature
of the first surface be greater than that of the second surface.
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Let P be a luminous point on the axis of the lens, and
let P face the concave surface of the lens. Under these
circumstances the conjugate focal distances and the radii of

K Fig. 74

curvature of the two faces of the lens will all be on the same
side of the lens as that of the incident light, all the measure-
ments will consequently be positive.

Let @, be the conjugate focus of P from refraction at the
first concave surface of the lens, and let p or ]I::“ be the
g
relative refractive index between air and glass.

1 -1
Then e o N (a),
h P g '
where @ 4,=¢, and PA,=p and where 7, denotes the
radius of curvature of the first surface.

The light from P will traverse the substance of the lens
as if it had originated from €);; on reaching the second
surface it will again undergo refraction, so that on emerging
from the lens it will proceed as though it had originated
from a point ..

Since the refraction now takes place from glass to air the

b

. ] L 1 : :
index of refraction 1\1—;5"—} is now — , and if the lens is so thin
a’ M

that its thickness is negligible, we may regard Q,4,, the
distance of the point from which the light appears to be
proceeding, as equal to @, 4, or g,.
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To determine the distance ), 4, or ¢, we have therefore

the formula,

1y

.
TS : o
Or multiplying by g,

I

2 T Ty 2
On adding (a), ‘; —;—J = f“_"’:_]l )
we obtain !jl;_ 11; =(u—1) (?171 - %) ............... (b),
or changing the signs throughout
%_;;H“_l)&_%z):ﬂ ............ (¥)

If p be infinite, in other words, if the incident rays be

parallel, l:ﬂ and ¢, becomes the second principal focal

distance (f").

1 A
0= (= 1”5‘%) .................. (o).

Thus parallel rays incident on the concave surface of such
a lens as that represented in Fig. 75 will after traversing

the lens diverge as though they were proceeding from the

pnint VA
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If ¢, be infinite, that is if the emergent rays are parallel,
p becomes the first principal focal distance f”.

1 1
grrier Ol )

The principal focal distances are consequently numerically
equal to one another and differ oenly in sign, that is to say,
they are situated on opposite sides of the lens. Thus in
order that light after emerging from the lens, Fig. 75, should
proceed in parallel rays, it must before refraction have been
converging to a point F", situated on that side of the lens
that is remote from the incident light, and at a distance
equal to that of F” from it.

On combining the equations (b") and (¢) we obtain

We may suppress the subscripts if we remember that f
denotes the second principal focal distance. These two
formule (0) and (d) should be committed to memory, as
they contain the whole theory of refraction of centric pencils
through thin spherical lenses of any form. The only re-
quisite, when numerical values are substituted for the
symbols, 1s that due regard be paid to the signs that the
symbols bear.

Ex. (1). The radius of curvature of the first surface of a
meniscus is 6 ins., the radius of the second surface is 4 ins.,
where is the second principal focus of the lens? (u=15.)

jlr:_(F_])(“_Tlg)—{Ié_l -3 =-4p
.

Incident parallel rays will consequently converge to a point

24 inches from the lens on the side opposite to the incident light.
P. O. 15

— 24 1ns.
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Such a lens is called a converging meniscus. It may be
noted that in all converging lenses /' is positive and f" is
negative, whereas in all diverging lenses f' is negative and f"
is positive. Moreover all converging lenses are thickest in
the middle, whereas all lenses which are thinnest in the middle
are diverging in function, or what amounts to the same thing,
their second principal focus (/™) is virtual, being situated on the

object-side of the lens (p. 267).
i
Fig. 76. &

Ex. (2). A lens has one concave surface, its radius of
curvature being 8 ins., what curvature must be given to the
other surface, in order that a real image at 24 ins. distance may
be formed of an object at 12 ins. distance !

Since the image is real, it must be formed on the side of the
lens remote from the object, in other words ¢ has a negative value.

[ i [
Then since = | (A_..)z{)!
LAY {PL } 1 7T

1 1 Ll
iRt R e

o 127217 16 27,
B g aal
8 "o,

Since the radius of the second surface is positive, it must be
measured in the direction of the incident light. The lens is
consequently a converging meniscus, the curvature of the second
surface being three times greater than that of the first surface.

1 1
(_ZE ﬂ-ﬂd "];—_-g).
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Ex. (3). If the lens considered be bounded by two concave
surfaces, r, bears a negative value, for the radius of the second
surface is measured in a direction opposed to that of the incident
light. If, for instance, the radii of the two faces of the lens are
8 ins. and — 12 ins.,

. ' il = = s T
o =48 or 93 ins.

Since /" is positive, F'" lies on the same side of the lens as the
incident light. Incident parallel rays will proceed after refraction
as if from a point 9% ins. from the positive side of the lens, that
is to say, the parallel rays will diverge after refraction.

Hwx. (4). An object is placed at 8 ins. distance from a
biconcave lens whose focal distance is 4 ins.; where is the
image !

As the lens is biconcave, the second principal focus (#") is
virtual, so f is positive.

Then since 1—-1 + 1”:{},
pog f
) o
L = 2% Ins
*g—surg—dﬁ- ;

Since ¢ is positive the image is virtual,

Ex. (5). A lens has one convex face the radius of its
curvature being 9 ins., what must be the radius of curvature
of the other surface, in order that /" may be real and situated at
a distance of 6 ins. from the lens?

Since £ is real, it must be situated on the side opposite to
the incident light, consequently /" must have a negative value.
As one surface is convex, let us place the lens so that its radius

15—2
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is measured in the positive direction, 7.e. let 9ins. be radius of
curvature of the second surface,

s
e
T D R T
B
TR e e
1 2
; E:—Ec}rr,_——ééma

The radius of the first surface must consequently be measured
in the negative direction. The lens is therefore a biconvex, the
curvature of one face being twice that of the other.

il sl | S
(:-"1 =3 and ’T'g =-§) ;

It will be noticed that to the degree of approximation to
which these formuls apply, it makes no difference which surface
faces the incident light. For had we put », =-9,

1 fAS 1 ,1
~6 718 2
1.e. the radius of the other surface would have the same

numerical value as before, but it would have been measured in
the positive direction.

or 7, =44 ins,,

Fx. (6). An object is placed 12ins. in front of a biconvex
lens, the focal length of which is 24 ins.; find the position of
the image.

Since the lens is a converging lens, /" lies on the side of
the lens remote from the incident light, /" consequently has a
negative value.

1

P

+—1—=0,

el
19 g =2

12
2

Licuiad]

)
G

1 —

1

% 1
12 24 247
. ¢g=24ins.

or

T
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The image of the object is consequently virtual, for it is
situated on the same side of the lens as the object, and its
distance from the lens is 24 inches.

Ex. (7). 1If the object is placed 36 inches from the above
lens, where is its image formed?

| S e |

%67 =
P 1 1 2=3 =1
¢ 36 324" 72 72

The image is therefore situated on the side of the lens
opposite to the object, consequently the image is real.

Ewx. (8). The focal distance of a symmetrical biconvex lens
is 10 inches, what is the curvature of each surface, the refractive
index of the glass being 1117

1 il
I T = =T 1 e e _) *
j i (Ju' ) ?,1 ,}..2

Since the lens is biconvex, it is converging in function, so
F" is negative, and #, is also negative ; and since it is symmetrical,
r, 18 numerically equal to #,.

LR s S [ SR
-*:m‘ﬁ(‘% a)-‘a*

That is to say, the radius of curvature of each surface is
numerically equal to the focal distance.

A similar result is found for symmetrical biconcave lenses,
and as the refractive index of the crown glass commonly used
for lenses is about 1-54, the focal distances may in general be
regarded as equivalent to their radii of curvature, when only
rough approximate determinations are required.

Formation of images. As we are at present considering
symmetrical lenses so thin that their thickness 1s negligible,
we may regard the principal plane HOH' bisecting the lens
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symmetrically at right angles to the optic axis as the single
surface at which refraction takes place.

All rays passing through the optical centre O of the lens
may be considered to traverse the lens without refraction,
for any deviation that they may undergo on encountering
the first surface of the lens will be reversed on emerging
from the second surface of the lens.

Let AB represent the object and let the image be
denoted by ab (Fig. 77). For a point A not on the optic axis,
draw AH parallel to the axis, then HF”a cutting the axis

Fig. 77.

in B represents the corresponding refracted ray. The point
a of intersection of this line with the ray 40Oa drawn
through the optical centre of the lens determines the
conjugate focus of A (Figs. 77, 79).

The following is an alternative method, Fig.78. Through
A draw the ray AF'H’ cutting the axis at the first principal
focus F”, then H'a drawn parallel to the axis represents the
corresponding refracted ray. The point a of intersection of
this line with the ray A Oa drawn through the optical centre
of the lens determines the conjugate focus of A.
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For a point B on the optic axis, Figs. 77,79, take any
ray BH' cutting the first focal plane in D. Join DO, and

Fig.78.

draw H'b parallel to DO, cutting the axis in b. Then b 1s

the conjugate focus of B, and ab is the image of the object
AB.

A
Y
LS
Y
"
LS
My,
bt
,
b
L%
-
LY
E Y
L%
"
F — B
< Fig. 79
D
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When the lens is diverging in function the image 1is
virtual and erect, and it is always situated nearer the lens
than the object. This is evident from the geometrical
construction (Fig. 79), as well as from consideration of the
formula

L eilie Al

+ =
P ey

It 1s clear that% must be always less than -(lj since [ is

0.

in this case always positive ; consequently p must be always
greater than gq.

When the lens is converging in function the image is
virtual and erect (Fig. 80), or real and inverted (Fig. 77),
according as the distance of the object is less or greater than
the focal distance of the lens.

Fig. 80.

Size of the image. Inspection of the accompanying
diagrams, Figs. 77, 78, 79, 80, shews that

ab b0

AB B0 =
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Moreover from the construction employed in Fig. 80 it is
clear that ab= HO, and that

HO - F'0

AB~ F'B’
Velarhel
0B =D =

This formula is very convenient, as 1t enables us to
determine the size of the image in terms of the principal
focal distance and the distance of the object without putting
us to the necessity of calculating its position.

Again from Fig. 79 it is evident that AB = HO and that

ab  F"b
70~ F0
fff o g
= s e (3)

From this formula we can determine the size of the
image, if its position and the focal length of the lens is
known, without ascertaining the position of the object.

If ¢ be pusitive}% or E 1s also positive; that is, the line

that denotes the height of the image is drawn in the same
direction as that which denotes the height of the object, in
other words the image is erect and therefore virtual (Figs. 79
and 80).

Similarly if —;f or if f——?—f be positive, the image is

=g %

virtual and erect; if it be negative the image is inverted
and real,

In Fig. 80 f' is positive and f' — p is also positive, as f~
1s greater than p; the image is therefore erect and virtual ;

f

whereas the image is inverted in Fig. 78 as gl it 1s negative,

=
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p being greater than . With diverging lenses (Fig. 79) 7*
£

1s negative, the fraction 7 -has therefore a positive value,

and the image 1s consequently always erect. If the lens be
converging in function #” lies on the opposite side of it as
in Figs. 77, 78; f” is therefore negative.

FExz. (1). A convex lens, the focal distance of which is 4 ins.,
forms the image of an object placed before it at a distance of
6 ins. behind the lens. What is the size of the image compared
with that of the object !

Since the lens is convex /' is positive and /" is negative, and
since the image is formed behind the lens the value of ¢ is also
negative.

B

The formula = 7 y
i_(—dr)-—{-ﬁ) _I
6 =g T

The image is therefore inverted, and its linear dimensions
are half those of the object.

Had the situation of the object been given instead of that of
the image, formula (2) might have been applied.

Ex. (2). An object 5 ins. in height is placed at 12 ins.
distance from a convex lens, the focal length of which is 4 ins.,
what is the height of the image?

A B
o
4

—_— ——
p— —_— —

: 1
g &£=19 L
. i=-2}1ins,

The image is inverted and 21 ins. in height.
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Magnification. When the image is real it can be
projected upon a screen, and the results of such investiga-
tions as to the size of the image can be actually verified
with an ordinary foot-rule. But when the image is virtual
it 1s not actually formed, but 1t only appears to be formed to
the eye that sees it. The size therefore of a virtual image is
only apparent!. Now the apparent size of an object or of
an image, whether real or virtual, is determined by the
tangent of the visual angle under which it is seen, as was
mentioned in a previous chapter; and in the case of virtual
images, where we only wish to know what size they appear
to the eye, 1t 1s only necessary to consider the tangent of the
angle subtended by the image at the anterior nodal point of
the eye.

Let us consider first the apparent size of a real object
AB, Fig. 81, situated on the optic axis BK where K denotes
the position of the nodal point of the eye. Then the appa-

A
B
Fig. 8.
1 The formule found above may be used in the case of virtual images,
provided that their meaning is clearly understood. For instance Z_—.‘if—: 1

means that the light from the object after traversing the lens proceeds as if
from an image situated at a distance ¢ from the lens, the size of this ima-

i

ginary or virtual image being J times that of the object. It will be found

that it is only under one condition that the apparent size of the image to the
eye is of this value.
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rent size of 4B is determined by tan € where € denotes the
angle subtended by 4B at K.
tan 6 = A5 :

It 1s evident that tan @ could theoretically be indefinitely
increased by diminishing BK indefinitely. In other words
the apparent size of the object could be indefinitely increased
by bringing the eye close to it. The nature of vision how-
ever forbids this, for the eye is incapable of distinct vision if
the object perceived lies within a certain distance. This
distance of the punctum prozimum, as 1t 1s called, varies in
different individuals, and increases with age so that it is
impossible to assign to it any definite value which shall be
applicable to all cases. It is usual to take 10 ins. as the
distance at which most eyes can see objects distinctly with-
out discomfort, and to estimate the magnifying power of an
instrument on this assumption. Ifl denote the least distance
for distinct vision of the individual eye considered, then the

greatest value that tan @ can actually have is given by

making BK equal to /; when tan6'=-i$}.

Similarly if A B denotes the image of an object, 1t 1s seen
under the largest visual angle when the eye is situated at
distance / from 1it. '

We will now consider the very important case where a
convex lens is used as a magnifying glass (Fig. 80).

Let K denote the situation of the nodal point of the eye
on the axis KOb, and let 6’ represent the visual angle sub-

tended at K by the virtual image ab.

ab. o

bK m+q’

where m represents the distance OK of the nodal point of the
eye from the plane of the lens.

Then tan @' =
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Now © increases with ¢, therefore if m + ¢ 1s to be equal
to I the eye should be brought close up to the lens, making
m as small as possible, and ¢ nearly equal to {. As the nodal
point of the eye is situated rather more than a quarter of an
inch behind the cornea, the smallest value that can practically
be assigned to m is about half an inch.

If m+ q =1,
tﬁnﬁ’:E=?f-:q.
P

But when the object is placed in the most favourable
position for viewing with the naked eye its greatest apparent
size is represented by tan € or 2

[
Therefore the magnifying power of the glass so used is

an0 i s 1
tan @ Vi Vo
When the lens is convex " is negative ; when the lens is
concave f” is positive, and the glass has a diminishing effect.
There is another way in which a lens may be used as a
magnifying glass, viz. when the object is placed in the first
principal focal plane of the convex glass (Fig. 82).
The incident cone of rays HAO diverging from the point

< A




238 MAGNIFICATION.

A of the object will after traversing the lens proceed as a
pencil of parallel rays in the direction of the secondary axis 4 0.

Similarly all the incident rays diverging from B will after
refraction proceed as a pencil of parallel rays in the direction
of the principal axis BO. In this case the convex lens does
not form an i1mage, either real or virtual, so we must consider
the image, if any, that i1s formed by the eye itself.

If an eye be placed on the axis BO behind the lens, an
image of the point B will be formed at the second principal
focus of the eye by the beam of parallel rays that it receives
from B. Similarly an image of the point A will be formed
at a certain point on the second principal focal plane of the
eye by the obliquely incident beam that originally arose from
A. In fact a complete image of the object AB is formed at
the principal focal plane of the eye. It is clear that the size
of the image in such a case is independent of the position of
the eye, for the actual size of the retinal image depends upon
the inclination of the pencil from A to the pencil from B,
i.e. upon the angle BOA. The apparent size of the object

when viewed through the lens 1s tan &', or tanBOA,url}%,
whatever may be the distance of the eye from the lens. The
maximum visual angle under which the object may be seen

distinctly being 6, its apparent size when viewed under the
: : 0
most favourable circumstances 1s tan @ or Iz

The magnifying power of the lens when used in this way
tan 6 [

ol

It should be noted that in order to see the whole of 4B
the pupil of the observer’s eye must receive light from every
point of the object AB. If therefore it is situated beyond X,
the central part only of the object will be seen, though under
the same magnification as when the eye is close to the lens.

15
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The greatest linear extent of object visible through a lens in
any position is called the field of view. It follows that the
nearer the eye is to the lens the greater is the field of view.
On comparing the magnifying power of a convex lens
used in these two different ways, we see that in the first

e ] Bobgnd o o
case 1t 18 1 —fﬁ,',- or 1 +£—,, and in the second case 1t 18 = or

7

™+ 9 Therefore if m is less than J ' the first method gives

f.’

the higher magnification and vice versd.

QUESTIONS.

(1) The focal length of an equiconvex lens is 10 ins. If
the index of refraction is 1'54, what is the radius of curvature
of each surface?

(2) The radius of curvature of the first surface of a lens of
equal power is —6ins. What is the curvature of the second
surface when p=1541

(3) The focal length of a convex lens is 6 ins.; an object
is placed 36 ins. from it. 'What is the relative size of the image,
and where is it formed ?

(4) An object 5 ins. in height is placed 50 ins. from a
planoconvex lens of which the radius of curvature is 7 ins., and
the index of refraction is 1-54. Find the position and height of
the image.

() A convex lens of focal length 1 in. is used as a
magnifying glass. The nearest point of distinct vision is 9% ins.
from the cornea or 10ins. from the nodal point of the eye. Find
the magnifying power (i) when the lens is }in. from the cornea,
(ii) when it is 1} ins. from the cornea, (iii) when the object is
Lin. from the lens and the eye is emmetropic.

(6) Give the magnifying powers of a convex glass of focal
length 4 ins. under the same conditions.



CHAPTER XII.

REFRACTION OF A CENTRIC PENCIL THAT TRAVERSES
A SYSTEM OF THIN CENTRED LENSES.

Equivalent Lenses. Let Fig. 83 represent a series of
thin lenses of focal lengths f,, £, f;, ..." so placed that their
centres of curvature all lie on the same straight line. Such
a series 1s called a centred system.

Let us suppose that the lenses are in contact with each
other and that their thicknesses are negligible.

Let P (Fig. 83) be a luminous point at distance p from
the nearest lens. Then if ¢, denote the distance of the con-
jugate focus of P due to the refraction of this lens,

| g [ |

— — =

+_=
Wi

gk
2w

! In this chapter the term focal length and the symbols f,, f,, f; ete. refer
always to the second principal focal distance.

0.
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The rays which reach the second lens will therefore pro-
ceed as though diverging from a point at this distance g,.
The refraction that they undergo at the second lens will so
alter their course that they will appear to be diverging from
a point at a distance ¢, from the second lens, such that

[ A | @ 1
@ S

Similar equations may be formed for the remaining lenses

of the system provided always that the thickness of each lens

be neglected.
We thus obtain a series of equations,

| S [ | '
s el
g |
BT
1o
By addition % — q{ + (fll +;—; ‘lei,) B
If now a lens of focal length /' be taken such that
Ly e
BT

1t may be regarded as equivalent to the combination of lenses
that we have been considering, and

T 1 e
S ho
In the case illustrated by the figure, f, and ¢, are positive,
while f; and ¢, as well as £, and ¢, are negative.
This result is also obvious from the following considera-
tions. The greater the refracting power of a lens the shorter
Pi0, 16
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1s 1ts focal length. The refracting power of a lens is repre-
sented by the deviation that it produces on a ray of incident
light. If for instance, Fig. 84, the incident ray SH undergo
the deviation HF" after traversing the lens whose principal

Er """""" .l\ 5
F* 0
\/ e

plane OH is at right angles to the incident ray, the refracting
power of the lensis « S"HF” or « OF”H. 1If only a rough
approximation 1s required, we may replace this angle, when
not too large, by its tangent, and say that the refracting power

1s measured by HO or 1 :
Oop- = =
distance from the principal axis. When a series of lenses i1s
placed together, the refracting power of the combination 1s
roughly represented by the algebraic sum of the refracting
power of each member of the series.
In practice it is found very convenient to denote the
strength of lenses not by their focal length but by their re-

, 1f we agree to take H at unit

fracting power (i.e. — the reciprocal of their focal length, — }) :
The unit universally adopted is that of a lens of 1 metre focal
length. This unit of refracting power is called a dioptre, and
1s denoted by the symbol D. Thus a 2D lens means a lens
whose focal length 1s { metre, a 10D lens means a lens whose
focal length is {4 metre, and so on. Further, it has been
agreed to denote converging lenses by positive signs and
diverging lenses by negative signs. Thus to find the refract-
mmg power of a series of lenses 4, B, ' in contact, where
A=+10D (f"=-100mm.), B=-2D (f"=500mm.),
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('=—4D (f"”=250 mm.), we have only to add the respective
dioptric powers

+ 10D — 2D — 4D =+ 4D.
The combination 1s therefore equivalent to a converging or
convex lens, the focal length of which is } metre or 250 milli-
metres.

So far we have been considering the lenses that compose
the refracting system as being in contact with each other; if
however they be separated from each other by measurable
intervals these must be taken into account.

Let two concave lenses of focal length f, and f, respec-
tively be situated at a distance a from each other on a common
axis AB. Let SH, represent the axial ray of a thin pencil of
incident light, the course of which is supposed to be parallel

R
H-E
-ﬁ _______ o l:l_r 5
S L‘“‘_q_
i
| "'-._‘
| "-..__
1 e
B X N A F,

to the principal axis. Since the thickness of each lens is a
negligible quantity, we may regard the refraction as taking
place at the principal planes AH,, BH,. On meeting the
first lens the incident ray SH, is refracted in the direction
H\H, as if it were diverging from the point #), the second
principal focus of the first lens. On reaching the second
lens a further refraction takes place, so that the ray now

16—2
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takes the direction H,R as if it were proceeding from the
point XV,

And on substituting the corresponding values in the
familiar formula

-
o

1 Mg

Bl

1

FB~ NB

_I —_1_.+1_ " 1__+!.
NB™F.B f._.‘” FAXAB™ !
1 1 j1+ﬁ+o:

“WR faw f., A

If then a lens of focal length NB or f’{ﬁ -~ were
2

placed at B instead of the previous system, it would so alter
the course of the incident light (SH, produced) that it would
after refraction appear to be proceeding from the point NN.
This 1s not however what is usually understood by the
term equivalent lens, for the course of the light refracted by
such a lens would not be parallel to H,R. It is evident that
the incident ray SH; would meet such a lens at B, not at H,
but at a point the distance of which from the axis would be
equal to AH..

One lens is said to be equivalent to a centred system of
lenses when it produces in the axial ray of an eccentric
pencil, incident parallel to the axis, the same deviation as the
system does’.

The power and position of the equivalent lens can be

[}

we obtain —— 4 — =

uﬁh

Jo {‘f1+‘1]

1 It is important to remember that a lens the focus of which is *=~—=—

cannot, as is frequently stated, be regarded as equivalent to the eombination
of the two lenses. The virtual image formed by a lens of this power is of a
different size to that formed by the combination. Several errors have found
their way into certain books on ophthalmology from neglect of this point.
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determined in the following way. Produce SH, to meet
NH,in K, and from K draw KX perpendicular to the axis.
It 1s clear that a lens at X' of focal distance NX would be
equivalent to the system considered, for the path of the light
refracted by this lens would be identical with the final course
of the light refracted by the system.

By similar triangles we have
NX_EX  Hd
NB “HEB  HBE’
HA FA s
Alﬂﬂ —H';B —}113 or f;_—i—_ﬂ.’
/i hH_ f(fita)
AT L S L
N j1+r:LN NHitae fotfita
The focal distance NX or f, of the equivalent lens is
therefore
St

}Cg +_f1 +
L e B
Jadi AT
To determine the position of the lens we have
NB H.B HB KB
NX> KX Ha4 FA’
CNX - XE HA+ AR
T R 15 R
AB el
7oA 7
The equivalent lens should be placed therefore at a dis-

tance XB or a '% in front of the second lens, or a (1 _-J;’.”)
1 1

behind the first lens of the system.
If the system consist of more than two lenses the power and

or

G X B=NX
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position of the equivalent lens can be found by the same
method.

For example, let there be three lenses 4, B, ' of focal
lengths £, f, f; respectively, the interval between 4 and B
being @, and that between B and (' being a..

If a lens of focal length f, be equivalent to the combina-
tion A and B when placed at a distance X B or # from B,

l - 1_ it £ 4 U
Je i b
The system of three lenses may be replaced by two lenses
of focal lengths 7, and f; separated from each other by the
interval «,+a. The focal length £, of the lens equivalent
to this combination is given by the equation

) [ s S E
= -,
fﬂ fﬂﬁ fE fmfi

Substituting for « the value obtained above,

Fﬂé?
e
1 1 . 1 a, /1>
e i ﬁ fs(s) 7\p)

‘ 1_1_+_+1 a1 1) ag(l_]_) Ayl
st et e e
This equivalent lens must be placed at a point 1" such
that its distance YC' (or y) from the third lens fulfils the
condition

= (a, + :x!) f:u

The distance A Y from the first lens is

T

a,+a,—7vy, or a,+a, —(mﬂ—m)f :
&
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Precisely the same process may be applied for the deter-
mination of the power and position of the lens equivalent to
any number of lenses. The expressions in such cases are
somewhat cumbrous and their evaluation 1s laborious, but
they present no actual difficulty in their application.

Practically we have rarely to deal with a combination of
more than two lenses or two simple refracting systems.

From consideration of the expression

i g
Je TH A RS
it appears that the greater the interval that separates two

concave glasses the stronger must be the refracting power of
the equivalent lens.

Ez. (1). Let us consider the combination of a concave lens of
focal distance } m., with another similar lens of focal distance
1 m., the interval between the first and the second lens being } m.

Since _!_1+l+m_
T T
1 12
j(:-.'u‘:3+4+?=n+

The equivalent lens has a positive focal distance of {4 metre.
We have however still to determine the position in which it should
be placed in order that its action may be identical with that of
the system considered.

:1::&? or %_ : %: ‘075 m. or 75 mm.

The equivalent lens must therefore be a concave lens of focal
distance 100 mm. and must be placed 75 mm. in front of the
second lens or 250 — 75, 7.e. 175 mm. behind the first lens.

If however the two lenses had been placed in juxtaposition
the term involving the interval « vanishes and we have the power
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of the lens -1- denoted by 3 + 4 or 7, so that in this case a lens of
]
1 metre focal length might be substituted for the combination

since its action will be precisely the same.

If any of the lenses that constitute a given system are
converging in function, attention must be paid to the signs
carried by the numerical values, when these are substituted
for the symbols in the formula. For since the symbols
Jr Jur Jor ete. all refer to the second principal focal distances,
these will have negative values when the lenses to which they
refer are convex.

Ez. (2). Find the position and power of the lens, the
action of which is equivalent to the system formed by one convex
lens whose focal distance is 500 mm. combined with another
convex lens whose focal distance is 250 mm., the interval between
the two being 333:3 mm.

Let the incident light strike first the lens whose focal distance

is 500 mm. or ; m. Then
f——‘}l’l’l, ffz IT a = ;1;1'11,

From the formula

Leda 1l o
hH o Sufe
1
we getl 4-4-:.“*—2—44--%:—1}0“].

S

The focal distance f, is then
= m. or — 300 m.;
10 o
the negative sign shews that the lens is convex.
If x be its distance from the previous position of the second

lens,

?—1(_3){ 9) = -2 m. or 200 mm,

The lens is therefore to be placed 200 mm. on the positive side

P S =
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of the second member of the system or 133:3 mm. on the negative

side of the first member.
If however the system had been turned the other way, so that

the incident light struck the lens of 250 mm. focal length first, we
should have obtained a different result.
In this case

Si=—1tm, fo=—3m, a=;5m.
As before, So=—F5m.,

but its distance from the second lens must now be increased.

;u#ar'}f—; z-;; (;3) (—4) = 4y m. or 400 mm,
1

But 400 mm. is greater than the interval 3333 mm. between
the two lenses. The equivalent lens must therefore be placed
666 mm. in front of the previous position of the first lens of the
system.

It will be found that if the interval between two convex
lenses be greater than the sum of their focal distances
(a > fi+f.), the value of f, becomes positive and the value
of & becomes negative. In other words the combination is
equivalent to a single concave lens placed on the distal side
of the second lens. The reason will be apparent when it 1s
remembered that such a combination would have the effect
of twice inverting the 1mage of a distant object. ' The final
image will therefore be erect, as that formed by a concave
lens.

Ex. (3). A screen is fixed at a distance of 7 ins. from a
convex lens of focal distance 10 ins. What additional lens will
be required, and where should it be placed in order that an image
of the sun may be formed on the screen of the same size as
that which would be formed by the original lens at a distance of
10 ins.?

Here e==10. f=—10 XB=3.
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Nince

L f]fu | .f‘l {_ 10)
f";_fﬂﬂ—fl-l-u’ =

Therefore a lens of focal length f, must be placed 10 ins. in

front of the given lens, i.e. in its first focal plane.
And

_;—10+f'1+ﬂ*; J.oa=+10.

b —-10 - 100 !
XB:S:QI}“;:IGII 3 +.fl:'T';—33%lnﬂ.

The total deviation produced by the system of lenses at 4 and
B is equal to the deviation D produced by the equivalent lens at
X situated at its focal distance (10 ins.) from the sereen.

In the figure (Fig. 86) & represents the position of the screen,

F, the second principal focus of the lens at B. If the lens at B

Fig. 86.

and the screen at N represent a badly focussed camera, the addi-
tional lens at 4 will cause a distinct image of a distant object to
be formed on the screen of precisely the same size as would be
formed by drawing out the lens to X. The determination of
suitable correcting glasses for errors of refraction in the eye
involves a problem of a precisely similar nature.
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QUESTIONS.

(1) Two convex lenses, whose focal lengths are 3f and f, are
placed at a distance apart equal to the difference of their focal
lengths. (A Huygenian eyepiece is such a combination.) Find
the focal length of the equivalent lens and its position.

(2) Two convex lenses, whose focal lengths are each equal to
/1, are placed at a distance apart equal to 3 /. (Ramsden’s eyepiece
is such a combination.) Find the focal length of the equivalent
lens and its position,

(3) A real image 1 m. in diameter is formed by the object-
glass of a compound microscope. When the eyepiece is so placed
that the emergent rays are parallel, give the magnifying power of
each of the above eyepieces.

(4) A concave lens of focal length 5 em. is placed 3 cm.
beyond a convex lens of focal length 5cm, Find the focal length
and the position of the equivalent lens.



CHAPTER XIII.

CARDINAL POINTS.

WHEN after having traversed one medium light meets a
second and then a third, and so on, each medium being
bounded by a surface of different curvature and being of a
different refractive index, the problem of calculating the
position and size of the image formed by such a refractive
system becomes much more complicated.

We have hitherto been considering lenses the thickness
of which was negligible ; if we were to consider the formation
of an 1mage by a lens of considerable thickness we might
first find the position and size of the image formed by the
first surface, and then regarding this image as the object for
the second surface find the final image formed by it. If we
had to calculate the refraction through several such media,
as in the case of the eye, such a calculation would prove very
tedious and wearisome. Fortunately the labour of such work
has been considerably reduced by the investigations of Gauss’
on the refraction of thin axial pencils. We proceed to give
an account of some of the results of his mathematical investi-
gations.

He has found that in every dioptric system, formed of
any number of media bounded by centred spherical surfaces,

L (Gauss, Dioptrische Untersuchungen.
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there exist two pairs of cardinal points situated upon the
axis; to these Listing has added another pair, the so-called
nodal points.

These six cardinal points are the two principal foci, the
two principal points, and the two nodal points.

The first principal focus (F') is the point on the principal
axis where the incident rayvs intersect, or would intersect
if produced, which emerge from the system parallel to the
axis.

The second principal focus (F'') is the point of intersec-
tion of the emergent rays, whose direction when incident has
been parallel to the principal axis.

The principal points have the following property: when an
incident ray (produced if necessary) passes through the first
principal point (H’) the corresponding emergent ray (pro-
duced if necessary) passes through the second principal point
(H"), but the incident and emergent rays are not necessarily
parallel to each other. The principal points are each the
image the one of the other.

The nodal pownts are two pomts on the principal axis
such that every ray which before refraction is directed to-
wards the first nodal point (K’) (see Fig. 88), seems to come,
after refraction through the system, from the second nodal
point (K"), and takes a direction parallel to its direction on
incidence.

These two parallel lines may be called the lines of
direction ; they play the same part in the complex system
considered, that the straight line, drawn through the centre
of curvature of the spherical surface bounding a single refrac-
tive medium, does in that simple system. The two nodal
points are mutually the image of each other. The distance
between the two nodal points is equal to the distance between
the two principal points. The two planes drawn through F”
and F, and H' and H"” at right angles to the principal axis,
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in the case of axial pencils, are called the two focal planes
and the two principal planes.

The rays that originate, or appear to originate, from a
point on the first focal plane, are after refraction parallel to
each other and to the lines of direction.

The incident rays which are parallel to each other, inter-
sect after refraction in some point on the second focal plane.
This point is where the corresponding line of direction cuts
the second focal plane.

The principal planes have the following property. If
through the point J, (Fig. 88) where the incident ray (produced
if necessary) cuts the first principal plane J,H’, a line 1s
drawn parallel to the principal axis meeting the second
principal plane J,H" in J,, J, will lie in the corresponding
emergent ray produced if mecessary. In other words, the
directions of an incident ray and its corresponding emergent
ray cut the two principal planes in two points situated on the
same side and at the same distance from the principal axis.

The second principal plane 1s the optical image of the
first and wvice wversd. The principal planes are sometimes
called planes of unit magnification, for if an area of definite
shape and size be considered in the first principal plane, a
virtual image of precisely the same shape and size will be
formed in the second principal plane. They are the only two
conjugate images which have the same size and are situated
on the same side of the principal axis.

The first principal focal distance ( /') 1s the interval F"H’
which separates the first principal focus (F”) from the first
principal point (H'). The second principal focal distance is
the distance F"H" between the second focal principal focus
(F") and the second principal point (H"”).

We proceed to find the situation of the cardinal points of
a lens the index of refraction of which is w surrounded by a
medium whose refractive index 1s 1. The thickness of the lens
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at the centre 1s £, and the radii of curvature of the two surfaces
of the lens are denoted by 7, 7.

In order to obtain a general expression for the position of
the cardinal points which may be applicable to every kind of
lens, 1t will be convenient to take as our standard example a
meniscus in which the principal points lie on the positive side
of the lens. Lines measured in the direction of the incident
light are considered positive, those in the reverse direction
negative.

The Principal Points and the Principal Planes.
(Fig. 87.) As the second principal plane is the optical image

-

l.l. HI

o
o
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i

F.r;g, 87

of the first principal plane, we may regard the first as form-
ing an image at 0, distant 04, from the first surface due to
the refraction on entering the lens ; then the second principal
plane will be the image formed on leaving the lens of the light
that comes from this presumed image at O,

Let h,=H'A,, the distance of the first principal point
from the first surface of the lens; and let h,= H"A,,

Then the following relation obtains between 0A, and %,

s Tk ]

Ml o

On leaving the lens an 1mage is formed at %, as if from

wl
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an object at O, distant Od4, from the second (posterior)
surface of the lens;

1 1
0o kN
P NI TR R
On multiplying by »« we obtain
Liubays L il
I;'-: = Uﬁj f; ..................... (,(%:L
o (s L 5.
Also trom («) 7 S0l +f1, ..................... (a');
p(s =04;)
h 0
W #ﬁ"_iu-"‘ll ................ ()
O0A4,. fi

We have, in addition, given to us the characteristic
property of the principal planes, that they are conjugate
images of each other of the same size, and that they are
situated on the same side of the prinecipal axis.

Now if m denote the magnification of an object by a lens
1t may be regarded as consisting of two components, m, due
to the refraction at the first surface, and m, at the second
surface. Obviously m =m,m..

In this case i, = il 9‘1' -
01 ,l'-f-‘hl
1y I, #"hﬂ
My=— = = :
0:* 1 O.A.g Udl
n
And mym.=1;
'::r-’:f"ij ,ldf*e =l
e O
04, h,

04, hy
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Now from () we have

A 04, B/~ 04y
L 04,7 (i +0d4,)

On dividing by ;z—' or %1 we get

_Sin(fy —04,)
Jo (wfi’ +04,)

And remembering that uf;’ = — f;” we obtain this relation

ﬁrOAl _f"l.r.rfsr' =ﬁ”0¢‘ig—ﬁﬂf;,

1=

ik M
Oﬁl_i_u—l_#—l_ii_l
OA j‘; -'?'g Jﬂr’?g Ta
e
n
But 04,= 04, +t,

OA,=“;:-1-(OA1+5).

or 04,(1-2) ="
Tl o T
t Si't
i OA1 e R 4, - "
Ty — 1 f - A
ot it
d 04,= " = .
an o e
Now from (a')
Fif

O.lﬂlfl’ e f; _fl_” = ﬁ o
Oyt wfi ™ FIT o THA
f:.r___flu

* It may be observed that O is in the position of the optical centre of the
lens (p. 275).
Bl 0 : 17

-111 =
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Similarly from (2)

};lr = _._Oéi‘f;_
2 p(f. —04,)
2 1 — T i
and —=— = — i
L
Sisi't
palda b L U R
2 OAE___]{E.F E.rt _f, £+ﬁu_ﬁ;.
uf; _ﬁﬂ 2

The distance H"H' between the two principal points is
now easily obtained for

H'"H'=H"A,— A, A,— H'4,=K'—t—F,
e s g S it

RRETE
_ St G- g+ pf) - fit
t‘i‘ﬁ” _fﬂ.-
_(e=DAI-f)-¢
t_i_ﬁu_f; .

The Principal Foci. In finding the situation of the
principal foei we will first find their distances from the
anterior (4,) and posterior (4.) faces of the lens. Knowing
the position of the two principal points (H’ and H™) we can
then easily determine the principal focal distances (F“H" and
FE):

Let @, ' denote the distances of the object and its first
image, with relation to the surface 4,, respectively; and let
y, 4y denote the distances of the final image and the first
image with relation to the surface A4,, respectively.
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Then from our fundamental formula we have

EJ_L.'?}-I_IT*-D ..................... ({E-),

1| i (R |
e R b),
Ky Yy v
and e B e o SR (e).
But RN YT T e from (b),
Y fﬂ + py ( }
and & = “fmﬁ’ .................. from (a),

A -
wyfy _ pefi

And since — pufy'= f,” and f)' =— uf.’,
t___ _.-’_sz']” gf‘ér
AR AT
LA =) (R —y) = (L —y) =yt (A - @)
or thfy' —a@f + ') =ytf - L) —wyt+ "= 1));
¢ ’ 2”_ ¢ ;.r 1” i ) ot 5 3
i flf {E(:;: ff_f._)=tﬁ_ﬁﬁ_m(t+ﬁ _f"a)v
If y=w, the emergent rays are parallel, and the corre-
sponding value of x will give F\'A4, the situation of the first

principal focus with regard to the first surface.
Therefore this value of z, z.e.

Again,

t ]-' EH t 1 i T £
ff y(f ff‘.t tﬁ; +f1f_ -wy(t+ﬁ o
If @ =, the incident rays are parallel, and the corre-
sponding value of y will give F"A,.
17—2
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; tfﬂ" +ﬁ!ff i
F A t+f1”_f2 :

The first focal point /' is situated on the negative side
of 4, in the figure (Fig. 87), whereas H" 1s on the positive
side of A4,.

Therefore F'H' =FA,+ A, H =FA,- H’Al,

Therefore

F:H: tﬁ ﬁﬁ 43 ﬁ't ok s Hﬁf
I = R e
A“d F H” =F”_A_2'HH”AE,
FHHH tf + f; __f:’:_‘f-‘ o ﬁ ,]c.]

t+f1”_f- t+f-1;.r _ﬁ:_tTf;ﬂ_ﬁr-
It 1s easily seen that the principal focal distances F"H",

F"H'" are numerically equal to each other, but are measured
in opposite directions from the corresponding principal planes.

For
1
Ly i i RN Ya My B &
flf”"(,u.—l, 1 o= ( Rl (T
g | -—1
p po

I
=
s BOH == P
This numerical equality of the principal focal distances
occurs in any combined system of refractive media, provided
that the first medium and the last have the same refractive
index.

The Nodal points. In every complex refracting system,
in which the initial and final media have the same refractive
index (i.e. when F"H"=H'F’), the nodal points XK', K"
coincide with the principal points H', H”. In order to give
a geometrical construction for ascertaining their position
generally, we must take a case in which the final medium
has a different refractive index from the initial medium.
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Fig. 88 represents the principal planes and the focal
planes of a converging refractive system in which the final
medium is denser than the initial medium. Such a system

Js J 5
D,
F i H H
K K F
{1z !
£ |
Fig. 88.

is found in the eye, the refraction of which we shall have to
consider in detail in a subsequent chapter.

Let S be a luminous point in the first focal plane, and
let SJ,J, represent one of its rays, viz. that parallel to the
prineipal axis. We know that it will be deviated on leaving
the refracting system in the direction J,F” where J, is the
point on the second principal plane, corresponding to J, on
the first. Similarly any other incident ray SZ, meeting the
first principal plane in /, will emerge in the direction 7, R,
parallel to J,F"”, where 7, is the point on the second principal
plane, corresponding to Z, on the first.

In order to find the nodal points we have merely to draw
a line SK' parallel to J,F”, cutting the axis in X’ and the
first principal plane in D,. Through D, draw D, D, parallel
to the axis, and through D, on the second principal plane
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draw D, F parallel to J,F”, meeting the axis in K" and the
second focal plane in E.

Then K’, K" are the two nodal points, for an incident
ray SK’emerges, after traversing the system, in the direction
K" E which is parallel to SK”.

And since K'D,D,K" 1s a parallelogram,

Kol = =" B

Now as the sides of the A F'K'S are parallel to the sides
of the A H"F"J, and the side J,H" 1s equal to the corre-
sponding side SF', F'K'=H"F".

It is customary to denote the distance of the first
principal focus from the first nodal point by G’ and its
distance from the first principal point by F'. Similarly G”
and F” denote respectively the distances of the second
prineipal focus from the second nodal point and the second
principal point,

l.. G.f:ffF!FIJ:_FJ'IH.H____FH.

Similarly as F"E = J,D, = J, D, it can be shewn that

A KR E =80 B,
R =S = =R
or G'=-F.
Now when F'=—-F", — G" = G’ (Fig. 89),
',' ﬁTfHIz_-FJFHI!‘:FI'Xf’
and similarly F“H" = F“K".

The nodal points consequently coincide with the principal
points whenever F' = —F",

The value of ¥ 1s considered positive if the first principal
focus F” is on the positive side of H', that is, if it is on the

same side of H' as the incident light.
Similarly G 1s positive, it F” 1s on the positive side of K.
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The distances F'”, G” are reckoned positive or negative
according as the situation of the point #” 1s on the positive
or the negative side of the points H”, K" respectively.

Distance of the Image. If the distance of the object
from the first principal point BH' (Fig. 89) be denoted by p,
and the distance of the image from the second principal

Fig. 89.

point bH"” be denoted by g, it will be found that the formnla
%- - F? =1 still holds good when the proper values are

given to the symbols.
For on consideration of the diagram (Fig. 89) it will be
seen that
e FH LH db
s AT ~ T " LJ
ab bF” bF" q¢q-—F"

=.__t};?g.=_jﬂm=bH” q
: FF : F.H"
- e
P q
This is true universally.

=1
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And since F” = — F in the case considered in Fig. 89,
1L e |

whenever the final medium 1s of the same refractive index
as the mitial medium.

In a similar manner it may be shewn that the old
formule for the size of the image formed by a thin lens,
hold good also for a thick lens when p, g, F', F" are
measured from their respective principal points.

The cardinal points of the usual forms of lenses are
indicated in the accompanying diagrams. In all of them
the value assigned to w is 1°5.

Fig. 90 represents a biconvex lens.

__.-‘:'I:,:‘| nggj t=3.
= =8 A= = =12
. =l it 1 s
T e e e =
= | &
I
ﬁ:t o ﬁ"t e AV 2"‘1‘ BN i
h,= =7 D BRI = 16;
Lt
L R :
F —flf oA _q? F;!H” ﬁ -}(ﬁ _:—3'2.
_13 =
L e [N B
fi U f; f:

Fig. 90.
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Fig. 91 represents a biconcave lens.

=4 r,=—2t=2.
fi==8, fi"=12; f; =—6, f”=4=;
e -1 o
i=p =5 = b=t 5= 20 e
8 o g fi 8 W e T S
PE =0 T e 4 FUH =24

: E'\ AL /.. el
F: / \1 ;

Fig 9/

Fig. 92 represents a converging meniscus.
'?"] == ‘ij rg —_— 2, t= 1.5|

ﬁr=_81ﬁu=12; 'fﬂ’:G-ffH:_

h1=-’%=',f N6 h,_-?--ff’_--s;
F’H*—;”i—w FUH" = — 64

rg.92.

Fig. 93 represents a planoconvex lens.
rn=+®, =2, t=13.
'-ﬁ1=?|:m,ﬁ”=-_i-xgﬁ’“—"ﬁ,f_.”=—4'

I'.l't
h.,=—-fﬁ,---- ,=0.
T Ay
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The second principal point therefore is at the point of
intersection of the convex surface with the optic axis

The remaining cardinal points are of the indeterminate
>

form —.

e

The expression for ;, can be easily evaluated for

L_tef = _t=F—uf_t=f:

: B
hl ,ﬂ flft fl t
. = e 1 == -1
..whenﬁ—ac,hl-—t— or hl_,u,
In this case hyo=— 1_.,3 =—1.
1)

Similarly since

1 t‘Jr‘_fl” ﬁf t_]z‘! 4
PET A TiRE R
FE=L—_p,

which in this case 1s 4.
Also since

1 f = .?(:"' £ i £ ol
mn = w5 + =, When =w, F'H =f,".
F'H J1 Iﬁ f*:‘ fl f

f_ H\t'/ F' :
- 2
\ Fig. 43.

Fig. 94 represents a planoconcave lens.

m=+w, n=—2, t=15.

flr_—';m:flr::i:':; f:;_—'—ﬁ: fsﬁ‘—"ﬂl-
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As before
hH:U, k.r:j:_ 1 ; FJHJ':_"?;H e _4! F.HH'H =J¢;n= "I;'

Iz
3 3
Fig.94.

Fig. 87 represents a diverging meniscus which has this
peculiarity : it is thickest in the middle.

rn=2 rn=4 t=3.
f.r=_4- ﬁ#=6.ﬁr=12 fﬂ#f=_8;
ht 12_ __f”t — 24 _
h, = D 3 4; hy T =8;

FIHJ—ES";*——IG FHH!.I"_ __‘4'3§ il 1{}

The following considerations will make the conditions on
which this peculiarity depends apparent.

If F” H" is positive, the lens is diverging in function: if
negative, it is converging.

Now
ury =1,
F'H" = fln.ﬁl” .-’-" =il '.-"-" — 1
Y Ay ST
,u. — 1 =1

Then in a meniscus, in which the values assigned to »,,
and 7, are both positive.
If v, <r, " H"” must be negative.
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That 1s, the lens must be converging in function, and be
thickest in the middle (Fig. 92).
If T ==

.l"‘"-.,l

#
¥
]

f2 \_ E
i Fig.9s.

Three cases may now arise :

(1) If the centre of the first surface lies within the

centre of the second surface, the lens i1s thinnest in the
middle.

?12 = ?'1 ::' t.

(2) If the centre of the first surface coincides with
the centre of the second surface, the lens is of uniform
thickness.

Ty =1, =1

(3) If the centre of the first surface lies without the
centre of the second surface, the lens i1s thickest in the
middle.

TE = ?’1 '{: t-

In this class three subdivisions may be made:
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It is evident on consideration of the above formula that
F”H" is positive in cases (1), (2) and (3'), F”H" is infinite
in (3”), whereas F“ H"” is negative in (3").

Fig. 95 illustrates case 3".

=1, n=3 1t=6

QUESTIONS.

; : : : -1
(1) A meniscus is made in which ra—m=t%“—". Show
13

that incident parallel rays will emerge parallel, that, when the
concave surface is turned towards a radiant point at finite
distance, it acts as a converging lens, but that when turned the
reverse way it acts as a diverging lens.

(2) Show that in the case of a sphere of any refracting
medium the principal points are coincident with the centre of the
sphere.

(3) A thick meniscus is made in which »,—» =¢ Show
that this will act as a diverging lens as long as the radiant point
lies to the right of the centre of curvature, but that it will act
as a converging lens when the radiant point lies to the left of the
centre of curvature.

(4) From Fig. 89 show that
i q F’ F'—q

—

i p F=p F-
when  p=BH', g=bH", ¥ = F'H, F"= F"H".



CHAPTER XIV.

ECCENTRIC PENCILS. FOCAL LINES. CURVATURE OF
THE IMAGE, CODDINGTON LENS.

IN the preceding chapters we have confined our attention
to the consideration of the refraction of thin centric pencils
in media bounded by spherical surfaces. We have now to
consider the more general problem when the incident pencils
are not so limited.,

Focal lines. We will first take the case of a thin pencil
incident on an eccentric portion of a refracting medium
bounded by a spherical surface.
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Let O be a luminous point, and let C' be the centre of
curvature of the spherical surface (x> 1). Join OC and pro-
duce it to meet the surface in A. Then 04 is the principal
axis. Let OP represent the axial ray of a thin eccentric
pencil from O incident on the spherical surface, and let 0@
represent an extreme ray of the thin pencil considered.
Let PR, QR represent the refracted rays; produce them
to meet in F, and let RP produced cut the principal axis
0A in F,.

Now if we suppose the figure to rotate through a small
angle about the axis COA, PQ will trace out a small
segment of the spherical surface, OPQ) a small solid cone
incident upon it. Meanwhile the point F, will trace out
a small arc, approximately a straight line, and the line at
F,, indicating the cross-section of the refracted pencil, will
trace out a figure that also may be regarded as approximately
a straight line. We proceed to determine the position of
these two focal lines.

Let OP = u, FP =y, and F,P = »,.

Join PC and QC. Then the angles of incidence of OP
and 0Q are CPO and CQO respectively, whereas the angles
of refraction are CPF, and CQF,, Now when the incident
pencil 1s very small, the angle PO@ is very small, and the
axial and extreme rays of the pencil may be considered to
form equal angles of incidence (¢), and equal angles of
refraction (¢"). Moreover, under these conditions the arc
P@Q may be replaced by the chord PQ, and the angle CQP
may be regarded as a right angle.

Then in the triangle OP@ we have

PQ sin POQ sin POQ _ sin POQ

OP ~ sin OQP ~ sin (CQP — CQ0) ~ cos CQO’
o £P0Q=PQ.°%9
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Similarly, in the triangle F,PQ),

PQ _sin PFQ _ sin PFQ _sin PF\Q
F\P  sin F,QP ~ sin (CQP — CQF)  cos CQF,’
o ZPEg-E0 = g
"
And £PoQ="1.

Now 1f we wish to find the limiting value of the ratio
between the small quantities CQO — CPO and F,Q0 — F,PO,
we can no longer regard these differences as vanishing
quantities.

Since the vertical angles of the triangles PLO, QLC are
equal,

£ POL+ 2 LPO =2z LOQ + 2 CQL,
or LPOQ+d=2PCQ+ ¢+ Ad.
. OAdp=2 POQ—2 PCQ.
Similarly, from the triangles PKF,, QK C we have
LPRK +2KPF =2 KCOQ+ 2 CQK,
or LPFQ+¢' =2PCQ+¢ + A
. A’ =2 PFQ— £ PCQ.

Then = or in the limit

A
PO (-;-055{)_ gl lﬁl
dp _ 2PO0Q—2POQ__ "\ w 7/
de¢'~ 2PFQ—2PCQ PO (cu;: ¢ ?1) ;
But since sin ¢ = p sin ¢,
dp :
cos ¢ &-(ﬁ,—#C{}S(ﬁ.
cos¢p 1
. pcosd TR

cos ¢ e cug?’ R 1=

8 T |
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H_Q_USE ‘#’ il cost ¢. _ pcos ¢'.r ___GES—? (1)
Ir'E"l U i3 A g ey B

or
Again, since the area of the triangle CPO is equal to the

sum of the areas of CPF,, F,P0,
lr(—u)smp=%r(—v)sin @ +$v,(—u)sin (¢ — @)

— w7 Sin ¢’

Dividing by - 5 , we have

Lo )

wou rsin ¢’
p 1 singcosdp'—cospsing’ pucosdp’ —cos¢ 2)
% U rsin ¢’ i r Gt

On combining (1) and (2) we obtain
peos’d’ cos*d  u 1 pcosg’—cosd 3)

—— =
I

7 u v, U 7
A similar result is obtained, whatever may be the position
of the source of light (0). An examination however of equa-
tion (3) shews that the relative magnitude of #, and w,
depends upon the value of u; w.e. upon the position of (.
For equation (3) may be written

et paint i 1o simtdy o 1

7 Y, (7 u v, Ut
sin®¢’ sin® : ' | 1y
or E_E:Ff_i_ --=51n'2¢\____l;
T.:Il 'Ur_! ‘Ul JH #1"1 t-f 5
2, Sin?
 U— U= — —,,{ﬁ(fz-::-,twl}.
up’

Hence v,=v, if ¢=0; e if the point O is at the
centre of the concave refracting surface, when there is no
refraction. In this case w=1r, which excludes the case of
the convex refracting surface, for u 1s positive and cannot be
equal to » which is negative.

= -
1 — =
Also v, = Uy as U S p.
P. 0. 18
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It is evident that », cannot be equal to v, it the surface
be convex. For, since w and p are always positive, v, must
also be positive (or virtual); and if pw>1, v, >u; and if
p<1l, v, <u Therefore if the refracting surface be convex
u cannot be equal to wv,.

If the refracting surface be concave v, =1, that is, there
is no aberration, if »=u»,. The oblique eccentric rays are
in that case so refracted as to appear to come from the same
point @ as the axial rays, where

gt el

— ——

g ipnie G

But then g and cnnsm‘[uently‘g= .

ik L el
e E
Or (w+1)r=p.

Whether the refracting surface be concave or convex, it
will be evident that when v, > v, the cusp of the caustic
points away from the surface, but that when w,< %, the
cusp of the caustic points towards the surface. When the
refracting surface is concave, there are two cases in which no
caustic is formed, viz. when p=r and when p =7+ un.

Hence 1t 1s evident that under certain conditions a
spherical lens may be formed that shall be entirely free
from aberration. The lens must be of the form of a meniscus
with its concave surface facing the object P. If » denote
the radius of curvature of the first surface, and if P4, or
p =1+ pr, the result of the refraction at the first surface will
be the formation of a definite virtual image at (), such that

QA1=%11~1 (Fig. 97). If now the second surface of the

meniscus be such that r,=@QA4,, the image at @ will be dis-
tinct and free from aberration.
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Similarly an aplanatic converging meniscus for the point
P may be obtained when PA, =1, and

Pfl._,=?"g(1+l),
L

uPA

or . = 2

Ly T

Fig. 97

The distance of the image @ from the second surface is
Q4. and
Q4,

Ph,
These are the only conditions under which an aplanatic
lens can be formed of spherical surfaces.

Optical Centre. Before considering the refraction of
small oblique pencils by thin lenses, it will be convenient
to investigate the position and nature of a point which is
known as the optical centre of the lens.

The optical centre is the point in which the line, joining
the extremities of parallel radii of the two bounding surfaces,
cuts the axis.

Let BAOC,C, represent the axis of the lens (Fig. 98), and
let C.J, represent any radius () of the first surface, and let
C.J, be a radius (r,) of the second surface parallel to C\J,.
Join J.J; and produce the line to meet the axis in 0. Then
0 is the optical centre of the lens.

18—2
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B}' similar tria,ngles,

G0 GJ, n

(G o s
The point O is therefore a fixed point on the axis what-
ever pair of parallel radii we employ, since its position on the
axis depends merely on the dimensions of the radu.

Let the thickness of the lens AB be denoted by ¢, then
we have
GIU sor ™ = OA 3! 1
C.:0 * 1,—t—04 " 7’

ol = b o p= Tl
Ta— 11 ™

If the lens is biconvex =, is negative, if biconcave 7 is
positive but =, is negative, consequently under these condi-
tions the optical centre lies within the lens.

The centre of a lens thus determined has the following
important optical property. Any beam of light such as PJ,,
passing through a lens in such a manner that its direction
while within the lens passes through the centre, will on
emerging from the lens have a direction J,Q parallel to its
direction when incident on the lens; and conversely, every
emergent ray that is parallel to its corresponding incident
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ray must have been directed towards the optical centre in
its course through the lens.

This follows at once from the fact that the tangents at
the two points where refraction in this case takes place, are
parallel, and therefore the effect on this ray i1s the same as
that due to refraction through a plate,

It 1s evident that two cases of oblique refraction through
a lens may occur.

(1) Oblique centrical refraction, when the axial ray of
the oblique pencil passes through the centre of the leus after
refraction at the first surface. In this case the axial ray of
the pencil undergoes no deviation. Whenever light from
any natural object so falls upon a lens as to reach its whole
surface, the refraction is usually centrical.

(2) Obhque eccentrical refraction, when the axis of the
oblique pencil while within the lens does not pass through
the centre of the lens. This usually occurs when the
light considered falls only on a peripheral portion of the
lens,

Oblique Centrical Refraction. Fig. 99 (1). Let P
be the origin of light, PK’ the axial ray of the pencil con-

Fig. 99 (]
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sidered, and let K'OK” be the direction of the axial ray
within the lens, passing through O its optical centre. On
emerging from the second surface of the lens this axial ray
will proceed in a direction K ”( parallel to its incident
direction PK",

If we regard the thickness of the lens as negligible we
may replace the two nodal points A" and K by the optical
centre O, and HO will represent the principal plane. Then
in Fig. 99 (2) PO represents the axial ray of the incident

el Fig. 99(2)

pencil, p, and p, represent the situations of the primary and
secondary focal lines after refraction at the first surface, and
1, ¢- denote the primary and secondary focal lines after the
second refraction. It will be noticed that as PO > up,0,
2.0 > p,0. |

Let ¢ be the angle of incidence of the axial ray PO at
the first surface and the angle of its emergence at the
second surface, and let ¢’ be the angle of refraction within
the lens.

Lot PO=T, 0=V " q0=7,
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For the first refraction

peosd’ cos’d  pcosd’ —cose

e —

20 R R, ;
# 1 _pcosd’—cosg
ST R, 2

For the second refraction ¢’ is the angle of incidence,

¢ that of refraction, and : is the refractive index. We have

therefore the relations

7 cos® ¢ ol cos ¢ — cos ¢’
R
1
7 1 l cos ¢ — cos ¢’
s 5™ R
l

On multiplying these equations by p and adding the first
of the latter pair to the first of the former pair, we obtain

cos’¢p cos*dp S S0
S U = (pcos ¢ cnstﬁ}(RI Rg)'

Similarly on adding the remaining equations together we

have
3 : i)
7~ 7= (meosd —cosd) (- 1)

If the angles ¢ and ¢ are small we may neglect all
powers beyond the second, and we may replace cosd¢ by

1-— %, cos*p by 1—¢?* cos¢p'=1— % , and, by Snell’s
law, ¢ by ud’;
, hos i B
. cosp =1-— L
and

(pcnsfﬁ'—cmtfn)(ﬁ—%;)={;.e—1)(l+ %—D(éi—%i)
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Now let the second principal focal distance of the lens be
denoted by f, then

1 /1 1
7=6-D(z-z)
(== s (D
and cos® ¢ (Vl U) = n\I - E#) il
approximately.
1 i
+—
N e T
01 -I:_’Tl U—f.1_¢2 —j-.{1+¢2K1+2#)}
approximately.

If # denote the distance of the circle of least confusion
from the centre of the lens, and if we regard the cross-section
(at O) of the astigmatic pencil, that enters the pupil of the
observer’s eye, as circular, we have

R
T
| O I ] B 1 1
e — ==l s+ .
o (2+2p)}

If then a lens be so inclined that the plane of the glass
makes an angle with the incident wave front, two focal lines
are formed when the refraction i1s centric. Consider, for
example, a plane wave incident on a biconvex lens at an
angle of 20°.

pw=154, R, =—10S mm., R,=108 mm.

5]
i (vid. p. 113 (3));

When the angle of incidence is normal,

1= ( 1 1 ) Sl
7SN 108 08, 00

In other words the lens is 10D convex.

On inclining this lens 20° to the vertical or normal plane
cos? 20°  cos?20°

o
— (1 cos 12° 49’ 54” — cos 20° (—)
V, 00 ( )

108
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L | e =2
and o U:(,u,coslz 49" 54" — cos 20 )(1(}8)'
As the incident light is considered to be of plane waves

U is infinite, and therefore the term containing o vanishes,

U
Thus '..3;3 __(154x ;951'; —9397) _ ai&
and % =— 5{_?;8 :
Therefore V,=-— -5—%;-'1183 = — 848 mm.
and Vem— o7 == 961 mm,

The lens so inclined in fact refracts light in much the
same way as a

+10'4D sph. T + 1'4D cyl. ax. — 180.

This property of tilted lenses is sometimes of service to
aphakic patients. After the lens has been removed by opera-
tion, the cornea is usually rendered less convex from above
downwards than from side to side. As these patients usually
require strong convex glasses, their astigmatism if slight may
be corrected by inclining the convex spherical lenses instead
of providing them with spherocylinders.

The cornea of a hypermetropic or of a myopic person is
very often more curved from above downwards than from
side to side. Hence astigmatic myopic patients often see
best through biconcave lenses when they are tilted. Such a
patient, if not provided with the appropriate spherocylinders,
will wear his pince-nez inclined on his nose, and so will be
able to correct his astigmatism if it be of low degree.
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Oblique Eccentrical Refraction. Oblique eccentrical
refraction takes place when for some reason the axial ray of the
incident light does not traverse the optical centre of the lens.
Sometimes an opaque obstacle is in the way. At other times
the source of light is itself an image formed by reflection or
refraction. The light emitted by such an image differs from
that emitted by a real object in that it can only diverge from
the image in the lines in which it had previously converged
to form the image. Hence the pencil of light proceeding from
any point of such an image is limited by its own mode of
formation. Thus in the compound microscope eccentrical
refraction occurs at the eyepiece by which the image
formed by the objective 1s magnified.

The exact mathematical investigation of the form of a
pencil after oblique eccentrical refraction through a lens is
laborious and difficult, and moreover does not admit of any
simple approximate expression. It will be sufficient for our
present purpose to consider the principal consequences of
oblique eccentrical refraction in the case of a microscope or
telescope.

L Fig.100.

L=
a

The compound microscope consists of a system of lenses
called the objective, situated at O, the purpose of which is to
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form an inverted distinet plane image ab of the object AB.
This image ab 1s subsequently magnified by the eyepiece.
In practice 1t is found expedient to form the eyepiece of
two plano-convex lenses separated by an interval ; the lower
lens 1s called the field-lens, for it increases the field of view
of the instrument, the upper lens is called the eye-lens. In
the Huygenian eyepiece, the most common form, the field-
lens F' is placed below the image formed by the objective.
Consequently the image ab is not actually formed, but the
converging pencils, proceeding towards the separate points
of the image ab, are made to converge towards the separate
points of the image a'd’. Now since the cone of light that
corresponds to any point of the image meets only an
exceedingly small portion of the field-lens, we may neglect
the aberrations which occur within each of the incident
cones. The point b’ therefore will be distinct, for it is
formed by a small direct centric pencil. Similarly we may
regard each point of the image a'b’ as being fairly distinctly
formed by a minute eccentric pencil, and we have to consider
in what way the spherical aberration of the field-lens will
affect their relative position. For this purpose we may
consider the non-aplanatic field-lens as consisting of several
annular zones, the refracting power of each zone increasing
with its distance from the centre. The axial ray of the
peripheral pencil aa” will consequently undergo a greater
deviation than that of an intermediate pencil such as ¢
The consequence of this will be that the image '’ will not
only be smaller than ab but it will be distorted, for the
surface elements of the image will be diminished in pro-
portion to their distance from the axis.

Further, since the refracting power of the peripheral
zone 1s greater than that of a more centrally situated zone,
the focus @’ of the peripheral pencil will be nearer the lens
than the focus ¢’ of the intermediate pencil. Hence the
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image will appear curved, its concavity being directed towards
the incident light.

It is important to bear in mind that the distortion of
the image does not depend upon its curvature, though 1t has
been so explained in some of the older books on this subject.
An image may be strongly curved yet may not appear
distorted, and wvice versd.

If the image ab were represented as a network of squares
(Fig. 101), the effect of the field-lens would be to form a
distorted image (Fig. 102) owing to the peripheral parts of
the image being more diminished than the central parts. If,
however, a plano-convex lens were placed on the further side
of ab so as to form a magnified virtual image of it, the
distortion would be opposite in character as in Fig. 103, for

Fig. 102.

Fig. 101.

Fig. 103.

then the peripheral portions of the image would be more
magnified than the more central portions. In like manner
the image will be curved, its concave surface being directed
upwards.
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The construction of the Huygenian eyepiece depends
upon the choice of such an eye-lens that the distortion and
curvature of its virtual image shall be exactly equal and
opposite to the distortion and curvature produced by the
field-lens (Fig. 102). When then the image a'b’ is magnified
by the eye-lens the resulting virtual image is undistorted
and flat’.

The Huygenian eyepiece consists of two plano-convex
lenses separated by an interval . The curved surface of
each lens faces the incident light. If the focal distance of
the first or field-lens be denoted by f;, and that of the second
or eye-lens be denoted by f,,

f] =3fg and a=_2ﬁ!'

Curvature of Images. The image of a plane object,
whether real or virtual, formed by a spherical lens is not
plane but appears curved.

The effects of spherical aberration may be practically
eliminated by placing a diaphragm pierced with a small
central aperture immediately in front of the lens. The
refraction 1s then limited to the central part of the lens, and
in such cases the curvature of the image 1s entirely due to
the obliquity of the pencils that proceed from those points of
the object that are more remote from the principal axis.

Let O represent the optical centre of a thin concave
lens, the principal axis of which 1s OB. Let 4B represent a
section of the curved object and let ab be its image. The
divergent pencil from B that falls on the lens whose axial
ray 1s represented by BO is centric and direct, whereas the
pencil from A4 will be centric and oblique. Hence the
virtual image @ of the point 4 will not be so distinct as

1 Tt may be also noted that the chromatic aberration caused by the
field-lens is obliterated in the final virtual image formed by this combination,
owing to the inverse chromatic aberration induced by the eye-lens (p. 311).



286 CURVATURE OF IMAGES.

the image of B, for the pencil from 4 will proceed after
traversing the lens as though it were diverging from two
focal lines 1n the neighbourhood of a. Let U be the distance
from O of the point of the object under consideration, and
let the angle of obliquity of the axial ray of the pencil
considered be denoted by ¢.

Fig. 104. S

-----

Then 1f ¢ be small
1 e | : 1 :
T =},{1 + ¢ (1 I 27*)} approximately,

1

and -1——1—1(1+—2)
' Vol Uit 2p)
Either formula may be replaced by the expression

L |
Vil i 46

if 16 be remembered that when V refers to the primary focal

line k=1+ ),l , and when V refers to the secondary focal line
el e
2o
Draw the ordinates AN, an perpendicular to the axis.
For the points B, b, the obliquity ¢ 1s 0;
AL il L 2
B0 = BO £

ke
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and for the points 4, «,
1 Il e
Multiplying the first of these equations by cos¢ or
L
1 9

?

e 050 T AD. B0 "7\~ 9

on subtracting this equation from

n0 NO 1, %%
J

I
fon A0 7Y

bn BN 1 :

ve get 40.50 A0.F0_FE TR

But when ¢ is small, 40. BO = (40} approximately,
. AO.BO.¢*=(A0)P¢*=(A0.5in ¢p)*=(ANYy
approximately.
Similarly a0 . b0¢* = (an)* approximately.

bn BN 2k +1

Sﬂ' we g'Ertl (ﬂ,’j—’]_)é — {A_P‘,TJE = Qf

Now if DB be the diameter (2r) of the circle of curvature
of the object cerresponding to the part adjacent to B,

A
(AN ND’

but ND in the limit when 4 approaches B, is equal to BD
or — 2r;

(AN?=BN.ND or

. 1 _ o BN
=L@y
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S Zipl : :
Similarly if ~ Tepresent the curvature of the image in

the neighbourhood of b, |
1 ¢ bn
~37= Ligany

1 1 2k +1
2 ~ 2% 5 2 _Ef ae
| [ | 2k + 1
or S e i
r r f

This gives the relation between the curvatures of an
object and its image.

If the object be plane, ?1 = 0; and the radius of curvature

of the image has a sign opposite to that of f, the second
principal focus of the lens.

Thus if F” is positive the radius of curvature of the
image 1s measured in the direction opposed to that of the
incident light; and vice versd. In the figure, the curvature
of the object is negative and that of the image is also nega-
tive. If the lens had been convex and the object had been
plane, the image, whether real or virtual, would have been
curved in the positive direction.

It should be remarked that the curvature of the image is
independent of the distance of the object.

In assigning a value to k, we must determine whether
the primary or secondary focal line is to be regarded as the
focus; if the former k=1 + 2 , if the latter r’c=—-]~L—. If on

2u 2u
the other hand the cirele of least confusion is chosen as
representing the focus, £ has the value

1B :
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The defects of an image formed by a lens when the light
1s homogeneous may be summed up in the following way :

I. When the lens is provided with a diaphragm or
~ “stop” (as in the preceding case) and when the object is
real.

The central part of the image 1s distinct, since it is formed
by a direct and centric pencil.

The peripheral parts of the image are indistinct, since
they are formed by oblique and centric pencils.

The whole image is curved owing to the obliquity of the
incident pencils from the peripheral parts of the object.

IT. When there is no stop, and the source of light is
itself an image formed by some previous refraction or re-
flection (Figs. 100, 102, 103).

The individual parts of the image are approximately
distinct if each individual cone of light meet only a very
small portion of the lens.

The peripheral portions of the image are distorted from
spherical aberration, i.e. from the greater refracting power of
the peripheral zones of the lens.

The image is curved from spherical aberration.

III. When there 1s no stop and the source of light 1s a
real object, the whole surface of the lens receives the incident
cones of light.

The central part of the image is indistinet from spherical
aberration.

The peripheral parts of the image are indistinct, both
from spherical aberration and from the obliquity of incidence
of the pencils that form them.

The image is curved chiefly from the varying degrees of
obliquity of the incident penecils.

Refraction of a Sphere. The sphere may be con-
sidered as a kind of double convex lens, and there are

P. O. 19
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certain advantages attending its use as a magnifying glass
which we will proceed to investigate.

We have seen that refraction through a lens may be
direct and centric, oblique and centric or eccentric, but it is
clear that in the case of a sphere all centric pencils whether
direct or oblique pass normally into the lens; further, the
eccentric pencils have this peculiarity that the angle of
incidence (¢) 1s equal to the angle of emergence (4J), and the
angle of refraction (¢") at the first surface 1s equal to the
angle of incidence (') at the second surface.

It occurred to Wollaston to cement two hemispherical
lenses by their plane sides with a stop interposed so as to
exclude all but centric pencils, The idea was followed up
by Brewster and Coddington, who employed somewhat
different methods for the same purpose. The common form
of magnifying glass generally known as the “Coddington
lens ” 1s of the form represented in Fig. 105, The lens may
be regarded as a sphere round which a deep equatorial
groove has been ground, so that all the emergent light
must have passed very nearly through the centre of the lens.
All effective incident pencils may therefore be treated as
though they were direct and centric pencils.

A simple expression for the relations of the conjugate
distances may be readily obtained if we take the centre of
the sphere as the point from which all distances are to be
measured. Let z, 2" denote the distances from the centre of
the object and 1mage due to the first refraction, and let y
denote the distance of the final image due to the second
refraction.

Then since f]—_—f=#§ (p. 210),

g—?“
T T+ 1
JI-‘; F‘a’_.r_i_?,‘l:

or xx’ + ar, = prx’ + ura'.
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On dividing by waz'r; we obtain
1 1 1T
o + ] e + TR
ory g or &

’ $5 o ] [
For the second refraction, by substituting ;L, ', y and 7,
for u, #, 2/, and 7, in the last expression, and on dividing

throughout by u, we obtain
| R g | b 1

—_ =

s -3 s B
On adding these expressions we geb

l_1+(1_1)(1_1)=0_
z Yy AR

If # is infinite, 7.e. if the incident rays are parallel,

1 | 0 S 1L S |

And since r, is numerically equal to r, but is negative in
sign

If the sphere be glass (u=1'5) the second prineipal focus
is at a distance of half a radius from the posterior surface of
the sphere.

The “Coddington lens” is a very serviceable pocket
magnifying glass and has this important advantage over an
ordinary convex lens—the peripheral parts of the virtual

19—2
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image are as distinct as the central part, since the pencil
from A 1is cenfric and direct as well as that from B. In
practice it is found that the central aperture must not
be greater than a fifth of the focal distance of the sphere or
appreciable indistinctness will oceur from spherical aberration.
The image will be curved owing to the greater distance of
the peripheral parts of the object from the centre of the
sphere than that of the more central part of the object.

This form of lens however suffers from two serious defects;
it has a very limited field of view, for only those emergent
pencils are effective which can enter the pupil of the eye of
the observer, and it has a very short working distance. It is
advisable therefore for the eye of the observer to be brought
as close as possible to the posterior surface of the lens.

The Stanhope lens is somewhat similar to the Coddington
lens and may therefore be mentioned in this place. It is
a short glass cylinder with its ends ground convex to an
unequal degree of curvature to diminish the spherical aber-
ration. The length of the cylinder is such that when the
object is placed on the surface of lesser curvature, and the
more convex surface is turned towards the eye, a distinct
magnified 1mage of the object 1s seen.
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QUESTIONS.

(1) Parallel rays strike a thin lens at an angle of incidence
of 30°. Give the ratio of the distances of the focal lines from
the lens.

(2) An aphakic patient requires the following glasses for
distance: + 12 D sph. Z + 1'5 D eyl. ax. —180°. What inclination
should be given to biconvex spherical glasses to correct the
astigmatism, and what should be their focal length if p = 1541

(3) A spherical water bottle of radius 3 ins. is filled with
water. Where is the focus for a small incident parallel pencil,
neglecting the thickness of the glass antd assuming § as the refrac-
tive index of water?

(4) A Coddington lens of 1in. radius is placed so that its
posterior surface is } in. from the nodal point of an eye whose
punctum proxvmum is 10 ins. from the nodal point. What is the
magnifying power, and what is the curvature of the image, sup-
posing the object to be plane? (u=15.)



CHAPTER XV.

LONGITUDINAL ABERRATION. APLANATIC LENSES.
ACHROMATIC COMBINATIONS.

IN this chapter we proceed to find an approximate
expression for the aberration of a wide centric pencil when
refracted at a single spherical surface and when refracted by
a lens bounded by two spherical surfaces. The method
adopted is taken from Professor Heath's Geometrical Optics
with such alteration of the signs as to make the expressions
consistent with the convention employed in this book—that
the direction of the incident light is considered positive, and
the reverse direction negative.

Let P be the source of light, Fig. 106, and let KA K’ be
the refracting surface. We have seen in the previous chapter
that the thin eccentric pencil, whose axial ray is denoted by
PK, will be so refracted that it appears to come from two
focal lines at f; and f,. Now if we consider the wide cone of
incident light on the whole refracting surface, the locus of f
will be the caustic curve produced (shewn in dotted lines),
while the longitudinal aberration is denoted by £.Q), and the
lateral aberration will be represented by 2QR. The longi-
tudinal aberration f.Q) is the more important, and 1s what is
usually understood by the term aberration when used alone.
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Aberration at a single spherical surface. Let CA
be the radius of curvature of the refracting surface KA
(Fig. 107), let P be a point on the principal axis, and
let @, be the focus conjugate to P for the thin centric
pencil from P. Let @ denote the position of the second

N c '-'I'., [\ P

Fig. 107.

focal line formed by the refraction of the eccentric pencil PA.
Let the angle KCA or @ denote half the angle of aperture of
the surface considered.

Then we know (p. 205),

RO B4 p=7 R
g gd gy
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and B0 2 B

. (PO  (CKy+(PCy+2PC.CKcos®
Q0 ¥ (CKyP+(Q,Cr+2Q,C.CK cos 0’
where the angle PCK or Q,CK = — 86, or
(PCP {(CKP+(QCY +2Q,C. CK cos 6}
=u?*(Q.C)Y {(CK)' + (PC)y+2PC. CK cos 6}.

On dividing the last expression by (PC) (CK) (Q,C)* we
obtain

o oo 1 Beosd i LR S L fcﬂ%ﬁ_)
(Q.Cr " (CRy "QC.CK ™ " ((Pw (CKy " PC.CK/"

If we denote

1 . 1 1 1| 1 1 ’
}—}@ o1 .?}T’*" by u, OK or = by Ps QIG or q’—'?" b.}’ v,

by #,, this expression becomes

and —!-— or
QC S

v+ p*+ 20'p cos 0 = p? (u* + p* + 2up cos B)...... (1).

This expression gives the relation between ¥ and w for
all values of 6.
It may be noted that when o' = p*u, the terms involving
6 disappear, so that the value of v* 1s independent of the
aperture allowed.
In this case,
piu? + pf = plut + putpd,

or prut (= 1) =p* (w*— 1),
or pu ==t p,

i.e. ur=p —r,as p must be positive. This is the same result
that was given on p. 274.
Now when 6 is a small quantity of the first order, and we
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merely wish to obtain an approximation of the second order,
2 ;
we may replace cos 6 by 1 — % :
Equation (1) then becomes
(V' +p) = V'pl = p* {(w + p)* — upf’}.
On extracting the square root by the binomial theorem,
and omitting the terms that contain higher powers of 8 than

the second, we get

o Buol
e {(“J’P)”?(Mp)}’
L A
or v+p—p(u+p)= {"*‘P -:-:f.-i-p}'

But when the pencil is thin and centrie, 8 =0, and

v+ p=p(utp);

aaaaaaaaa

2 (VV4+p u+p)

Since 6 1s of the second order of small quantities, we
may replace t',ﬂ by its first approximate value ﬂu?";‘ﬁ

T
or -.

: & (1

' T el
Then ﬂ_‘%_E{q p}'

If we denote % by B, and % by a,

' 6
v —wﬂ=§{,8—,ua}.

Then v" — v, represents a small quantity of the second
order; let it be represented by the differential dv. Similarly
let the differential dB represent a small quantity of the

g

second order such that the fraction 1, WAy be equal to the
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ratio, the result of differentiation which is similarly ex-
pressed.

Then dv = 5 (B — wal.
Now é = %-h i .

Also from the same equation

i_pd

Ui B
Then =L dv= 2 (- Bp(B-po)
"U{F 2P2 :

Now we may replace %_ by #% if y denote the ordinate
KN or the semi-aperture considered, and within the bracket
we may substitute Pf—__la for p.

e W el e :

Then dB = 3 (u—1) (B—a)(B—pa)...ccuenn... (3).

Since B= %, dg=—q%dB,

codg=— yg’__ B—a) (B — pa).
7 2(#_1)*( P (B — pa)

It will be noticed that the aberration Q,), or dg is nega-
tive as in the figure unless 8 is less than pa or unless 8 1s
negative.

Aberration of a Lens. Let @), @, be the conjugate foci
of P due to the refraction at the first and second surfaces of
the lens in Fig. 108.

1 1 PR e
= ==, = - = —, U= y
V=SP4, PEg A P S om P

Let
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and let p,, p. represent the curvatures of the first and second
surfaces of the lens respectively.

Fig. 108.

If the incident pencil be thin and centric,
(@a—p)=p(B—py) and (o« —p)= (8 —py)...(1),

since the index of refraction at the second surface is 1-
' e

When the aperture of the lens is not negligible, we must
take into account the effective aperture at each surface of
the lens. Let the semi-apertures ¥ and 3" be small quantities
of the first order. Then if we consider the extreme pencil of
the incident cone of light, the value of a’ must depend on the

values of 8" and ¥/, or &' =f (8, y’).

E.T.

afaﬁ

where ;%, dB’ means the partial differential of &’ supposing

that ¢’ does not vary, and

0y’
of @' supposing that B does not vary.

~dy y" means the partial differential

Now 1t 1s evident that El — %3 = t where ¢ denotes the axial
thickness of the lens.
a8 e

=
—_—

4B B
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But dg denotes the variation of 8 due to a change of ¥
the semi-aperture of the first surface, and the value of this
was found in the previous investigation (3).

Let 1t be denoted for shortness by «i?,

Y
.aﬁ,dﬁ Bﬂﬁw

2 dal 1
We have now to find T It 1s clear that as we are con-

fining ourselves to the second order of approximations, and g*
15 of that order of small quantities, a first approximation of

'

the value of s, is allowable; equation (1) will serve this pur-

B’

pose, whence we get

a ¥
g ="
oa’ ,8’5"

Therefore Vo L AR = urx — 32

Now gﬂ dy" means the partial differential of &' due to a
Y
change of 4 ; it is therefore comparable to dB8 and may be

denoted by «y” A glance at the figure will shew that % 18
. :

‘l 3
B

tion to which we are working y’* =

very nearly equal to =, and that to the degree of approxima-

g
gy
2
Therefore gj dyi— g Y
l_ﬁ—z _'.*
Then da’ or ;3 -:iﬂ -l-a ,ffy =y k#ﬁ‘-‘ + st)

We have now to assign to « and « their proper values.
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From equation {3)

K= g(# ) (B —a)' (B — pa),

: E ol 8 1
and on making the proper substitutions &', &" and - for a, B

and p, we get
K= A (a'— By (;.m# ﬁ)a

2(1—p)
o (BT s g
: da_ﬂ(#_l)g{ﬁg (B =a)(8 — pa)

o - | SO )

From this expression the spherical aberration of a lens,
whatever may be its thickness, may be determined to the
second order of small quantities, if y the semi-aperture may
be regarded as a member of the first order of small quan-
tities.

When the thickness of the lens is negligible 8’ = 3,

and dd'=g ( } (B —a) (B — pa)— (B — ') (B — pa))j.
But from equation (1) to a first approximation

p—1,

—1
}g_a=#—#—- (pp—a) and B —pua= » -p=(p+1)aj,

and similar expressions are obtained for 8 —a’ and 8 — ua'.
We may substitute these expressions in the above equa-
tion and still to the second order of approximations,

] = 1l e ’ T
da =E2F2' ¥ {(pr—0f(pr— p +1a) = (p. — &) (p. — p + 1))
s (3)

Let us now consider some of the common forms of lenses,
and compare their aberration when the incident light presents
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a plane wave-front. The distance of the object is then in-
finite, so
1
i

First let us take a plano-spherical lens with its curved
surface facing the light, then p, =0,

a=0, and o =

Ry ey ,
da'= HQ—F;J 2o + o (p+ 1)}
; ;oo 1
and since o ==p—1p,
i
da’ = yﬂpls # ( T S (A).

If the plano-spherical lens be turned the opposite way,
so that its plane surface faces the incident light, p, =0 and

.-'_‘"' = ||u' _- IPE:
da’ = — 4% 2(;}.—1) .................. (B)
If the lens be a double spherical lens, either biconvex or
biconcave, which has surfaces of equal curvature, p, = — p,,
de' =y, J_F-_ (4'#, —dpP=p+2)......... (C)
Now o = %. where f denotes the second principal focal
distance,
dea’ 1 ;
2 — T s 1 = — 2 2
e or df =— fda,
. 1n case (A)w heref—— ——1
—
Y 2
df=— P (i 2#24—2)——5"' SR ()

2u p— J 2u(p—=1)
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in case (B) wheref=;;_1 :
p—1ps
P
df =59 25 2f(,u 1} ......... (B),
1n case (C) where f= —i—
12p,
d=—y2—’a.‘4=._4ﬂ_ Loy e A A = 2
s 4-;4,1&—1(;& D) S Bu(p—1)

It will be noticed that the aberration is least in A’
greatest in B’ and intermediate in C". Supposing the lenses
to be made of a crown glass having an index of refractiun

1'5 the aberration or df in A"1s — ===, In B’ it is — = while

Gf 2f
in C' it is — gf It must not be thought from this expres- |
sion that the aberration depends upon the focal length ; it |
depends essentially upon the curvature of the surfaces. Thus
a biconvex of flint glass will shew considerably less spherical
aberration than a biconvex of crown glass of the same focal
length. It is found that the form of lens which will bring
parallel rays of light to a focus with the minimum of aberra-
tion must be such that, if », denote the radius of curvature
of the first surface and », that of the second surface,

! L 1
so that if w=1°5, ;‘=— 5 if u=1'686, the lens should have
its posterior surface plane.
Lenses formed with this relation of their curvatures |
to minimize their spherical aberration are called “crossed |
lenses.” It will be seen that in a crossed lens for an index

of refraction 1'5, p,=— 6p,, and from the expression (3) it

o —— -
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will be found that the aberration df = — , so that the

[ —_—
= o
‘wi“-ﬁ

crossed lens 1s little better than the plano-spherical lens for

which the aberration df=— ~ 2-, when made of glass of the

5 f
same refractive index.

Hence in most telescopes the object-glass consists of a
planoconvex lens with its curved surface facing the incident
parallel rays'. The lowest lens in the objective of a micro-
scope consists of a hemispherical lens with its plane surface
facing the object which is placed very nearly in the principal
focus of the lens. The rays of light therefore which emerge
from the convex surface are nearly parallel.

It is indeed impossible to construct a lens of spherical
surfaces that shall be entirely free from spherical aberration,
when the incident rays are parallel. ~When the incident
pencil is divergent and direct, an aplanatic meniscus may be
constructed on the principles described on p. 274. Such an

aplanatic meniscus is represented in Fig. 109, where @ 1s the
virtual image of P formed without any spherical aberration.

Aplanatic Surfaces. We shall proceed to find what
shape the surfaces of a lens should be in order to bring
incident. parallel rays to a focus without aberration. Hitherto

1 For a similar reason, when sphero-cylindrical glasses are ordered for
astigmatic patients for distance, the optician should so arrange them that the
cylindrical side faces the eye, while the spherical side faces the incident light.
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it has not been practicable to make lenses of this shape, for
there are great mechanical difficulties in the way of grinding
glass to any shapes other than plane, spherical or cylindrical.
It should be remembered that white light consists of various
coloured components, each of which travels with a different
velocity through glass, or in other words p has a different
value for each of these components. Since the form of a lens
of a given power depends on the value of y, it 1s impossible
to obtain a lens which shall give the minimum spherical
aberration for more than one of the components of white
light.

In order therefore to find the theoretical shape of a
surface that shall refract incident spherical waves of light
to a focal point without aberration we must consider the
light to be homogeneous.

Let S (Fig. 110) be the monochromatic luminous point
from which spherical waves are diverging in all directions

in the first medium ; and let S" be the point in the second
medium, which is bounded by the surface 4 P, towards which
it is required that the incident waves should converge
without aberration. A definite image of S will be formed
at S if all the incident light that enters the second medium
reaches S’ in the same phase. The surface AP must then
be such that the light incident at any point of 1t P must
take the same time to traverse the course SP+ PS'.

P Al 20

T e ——
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Let the velocity of the light under consideration in the
first medium be V and its velocity in the second medium
be V.

Then the time taken in traversing the path SP + PS’
must be constant,

SP P
7 i T constant,
Multiplying by V and remembering that L3 1s the

V.l"
relative refractive index of the second medium,

SP + wPS' = constant.

The locus of P determined by this equation determines
the form of the surface. But this is the equation to a
Cartesian oval, its more usual form being r + ur’=a, where
p and a are constants. In the case given r+ §r' =144, Itis
only the part of the curve in the neighbourhood of the vertex
that resembles the arec of a circle, which explains why a
spherical surface refracts a thin axial pencil without aber-
ration. An aplanatic lens would be formed by giving the
other surface of the medium a spherical curvature, the radius
of which is 8P, |

If S be at infinity so that the incident light consists of
parallel rays, let the plane H'X’ represent the wave-front at

Fig. i1,
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a finite distance from the surface (Fig. 111), Then if AP
represent the surface of the medium, whose refractive index
1s w, all the light incident on AP will come to a focus
at 8" if H'P+ pPS =c a constant. Draw the plane HX
parallel to H'X’, so that H'P+ PH =c.

Then PH=uPS or %i; =%.

The curve AP 1s therefore an ellipsoid of revolution if
p>1, and a hyperboloid of revolution if pw<1.

If it 1s required to form at S" a virtual 1mage of the
luminous point S a slight modification in the investigation
of the form of the surface will be necessary.

Fig. 2.

Let P be any point on the surface (Fig. 112), then SP will
represent the path of the light from S which is incident
at P. Let this pencil be refracted in the direction P
so that P produced backwards passes through S

Now if all the light that enters the second medium
appears to come from S', it is clear that this refracted light
must present a spherical wave-front with centre at S’; the
locus of @ is therefore part of a sphere;

. S’P 4+ P@Q =c a constant;
. uS' P+ pPQ = pe.

But SP + uP@Q=Fk a constant,

since the locus of () is a wavefront;
.~ SP — uS'P =k — puc a constant,
20—2
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The locus of P 1s then the second form of Cartesian oval
usually denoted by the expression » — ' = a.

If the constant k=pe, SP—uS'P=0 and
(Fig. 113). '

SP _
SP

Fig. 3.

In this case the Cartesian oval becomes a circle, as indeed
might be expected from the result obtained on p. 274 where
we found that in refraction at a single spherical surface there
was no aberration when u = uw.

If k< pe, the constant k— uc 1s negative, and for one
negative value the point S will coincide with the point S'.
There will then be no refraction and the Cartesian oval again
becomes a circle, for the equation reduces to SP (1 —u)=—>0

b
T

Achromatic Combinations. When the incident light
1s heterogeneous, v.e. when 1t 1s composed of light of different
wave-frequencies, the value of w, the refractive index of the
glass used, will have a different value for each wave-frequency.
Hence the focal length will also have a different value for

a constant, and the radius of the circle is SP or
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each wave-frequency, for }.= p—1 (rlTl —:—n) If then the
incident light coming directly from the sun traverse a simple
convex lens, a series of images of the sun of different colours
from violet to red will be formed along the axis of the lens.
Now owing to the different dispersive powers of different
kinds of glass we have some means of partially getting rid of
this defect by uniting two lenses of different kinds of glass.
We cannot make a combination of two lenses perfectly
achromatic owing to the irrationality of dispersion (p. 183).
We shall shew in an elementary way how light of one wave-
frequency, say that corresponding to the line F in the blue-
green part of the spectrum, may be brought to the same
focus as the orange coloured light of the line D.

Let the thickness of the lenses be negligible, and let the
focal distance of the first lens for the blue-green light be
denoted by fiz, and for the light intermediate between F
and D by £,.

1 — g |
ThEIl —_— = —1(———).
I 17 L& 'y Ta
S S (1 = l).
1D {6 [
Therefore the difference between these is
1 1 Gls il = 1l =
ol VAT [ﬁ__)=r“:F__:‘_"ﬂ_‘= 1
le fm (p— p) \ry 7 TSI f1
where m‘l=H;—:—'£;D, the dispersive power of the lens con-
sidered,
fate 1 1 W
Similar] —_—— =
2 il I

Hence in order that the two images may coincide it is
necessary that

e
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This is the condition that two thin lenses in contact may
form an achromatic combination for # and D. It is obvious
that f, and f, must carry opposite signs. Thus the object-
glass of a telescope usually consists of a biconvex lens of
crown glass cemented to a diverging meniscus of flint glass

such t]l&t‘& = — 21 In order that the two lenses may be
f 2 g
cemented together 1t 1s necessary that the posterior curvature
of the first lens should be equal to the anterior curvature of
the second lens, 7.e. 7,=1",. As the achromatism of a com-
bination of two lenses in contact can never be made perfect
for sunlight, Herschel recommends the union of the kinds
of light denoted by the D and F lines of the spectrum which
are at the same time powerfully illuminating and wvery
different in colour. He says, “The exact union of these
will ensure the approximate union of all the rest, better on
the whole than if we aimed at uniting the extremes of the
spectrum, and a far greater concentration of light will be

produced.”

It is often necessary to correct a system of two lenses
separated by an nterval for chromatic aberration. The
necessary conditions when each lens is made of the same
kind of glass can be easily found. Let @ denote the interval
between the first lens and the second lens, then

b Lo d
& h A
or - ¢=¢’1+¢e+ﬂ¢1¢’ﬂ
where qb=}7=;_—1{%—%)=ﬁ—lk.
de

g, = ateta (parey + i),
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This expression must be equal to 0 if the combination 1s
to be achromatic ;

S5 S Ky + Ks
i 7 ¢2E1+¢1E2’
; a= 1 el L (l _1)
< B2 =1) .  2(p-D\m  x/)’
_f2+f:
9

This condition is satisfied by Huygens’ eyepiece which is
formed of two plano-convex lenses, the focal length of the
field-lens f, being three times the focal length of the eye-lens
/2, and the interval between the lenses being numerically
equal to 2f,.

The condition is not satisfied by Ramsden’s eyepiece in
which f,=f, and a=—2f. Ramsden’s eyepiece is therefore
not achromatic.

QUESTIONS.

1. A refracting medium of index 4 is bounded by a convex
spherical surface with radins of curvature —5mm. If it be
provided with a diaphragm having a central aperture of diameter
12 mm., what will be the longitudinal aberration for incident
parallel rays?

2. What is the radius of the circle of least confusion, and
what is its distance from the principal focus? (See p. 117.)

3. Shew how an achromatic object-glass of 4 ft. focal length
can be made for a telescope out of these two kinds of glass:
Flint pp=160, pp=161; Crown py=152, pp=1526.
Spherical aberration may be considered sufficiently corrected
by making the combination a plano-convex.




CHAPTER XVI

CONTOUR OF THE REFRACTED WAVE-FRONT.
CAURSTICS.

Contour of the refracted Wave-front. We will first
investigate the form of the wave-front of a system of spherical
waves, that have undergone refraction at a single spherical
surface. The method adopted 1s taken from Professor Heath'’s

S

Fig. 114

Geometrical Optics. Let C (Fig. 114) be the centre of the
refracting surface, S the source of light, and SP an incident
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ray, PR the corresponding refracted ray. Through S describe
a circle touching the radius CP in P; let this circle cut SC
in H,and PR produced in . Join HP, HQ and SQ.

Then BUSCEH =1, (Eue. 111. 36.)

and as SC and CP are constant, H is a fixed point, also the
triangles PCH and SCP are similar, having their sides about

their common angle proportional ;

%?j; = gig which i1s a constant ratio.
The angle of incidence ¢ = CPS=supplement of SPT
=supplement of SQP in the alternate segment.
(Euc. 111. 32))
And the angle of refraction ¢'=CPQ=PSQ in the
alternate segment.

And in the triangle PSQ,
SP _sinSQP _sin¢
P@Q  sin PSQ ™ sin ¢’

= i a constant,

S :
Therefore also —— 1s a constant ratio.

PQ
Now SP.QH + HP .S8Q=P@Q.SH;
op (Eue. VL. D)
=g
ce == QH + == .8Q=SH.
Pg QH + T

If the variables QH and S be denoted by 7 and 7, the
ratios by w and A, and the constant SH by ¢, the equation
becomes

B R e s (1).

The locus of @ is therefore a Cartesian oval, of which S
and H are the foci.

On differentiating (1) with regard to s we get

dr dr’

#Eﬁ‘l'hdt—?-#ﬂ. .................. (2),
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But, as 1s well known, ﬂ and d—T are the cosines of
ds ds
the angles which the radii vectores » and »' (QH and SQ)
make with the tangent to the oval at the point .
If o, " be the angles which the normal at @ makes with

the radi1 vectores,

ﬁ; = ¢0s (90 + w) = — sin w, and GEE,% = c0s (0’ —90) =sin o’ ;
e e SIN @ : SIN @'
" ds ds O e
But from (2) % :g="?‘—:ﬁ‘*5

‘. Silw : Sinw =\ : W
Now it is seen from the figure that
HP sin PSH sin PQH
SP = siu PHA ~ 5o PQS|’
HP X sin PQH sinw
SP i sin PQS ~ sine’

In other words, the angle SQH between the radii vectores
of the oval is divided by the line QPR into two parts, such
that their sines are as A : g, 7.e. as sin @ : sin @',

The line QPR, the direction of the refracted ray at P, 1s
therefore the normal to the Cartesian oval at Q.

Similarly every refracted ray in the new medium must
be a normal to the Cartesian oval considered.

The wave-front in the new medium must therefore be
parallel to the Cartesian oval.

The caustic formed by refraction at a spherical surface
may be regarded as the envelope of the normals to a Cartesian
oval.

In a similar way it may be shewn that if the refracting
surface present a convex spherical surface to the incident

and from (1) Therefore

L]
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light, and if w>1, the locus of @ is a Cartesian oval
of the form wr—Ar'=c.

The construction becomes impossible if the luminous
point S be placed at an infinite distance, or if 1t be situated
at C' the centre of the refracting spherical surface. In the
latter case there is no refraction, and the wave-front in the
second medium maintains 1ts spherical form.

There is one other case in which the form of the wave-
front in the second medium is spherical, viz. when the

: i e
constant ¢ or SH vanishes, for then the ratio 718 constant,

and the oval reduces to a circle.

In all other cases, when spherical waves enter a refracting
medium bounded by a spherical surface, the form of the
refracted wave-front becomes a parallel to a Cartesian oval.
Consecutive normals will not therefore intersect in a single
point, but they will intersect along a certain caustic surface
similar to that which obtained after reflection at a spherical
surface.

When a widely divergent pencil of light, arising from a
luminous point on the axis (as in Fig. 106), undergoes
refraction at a spherical surface it may be considered to
consist of an axial core and of a number of oblique pencils,
which are incident upon eccentric portions of the refracting
surface. It is only true of the axial core that light proceeds
as if from a definite point @, the position of which is given
by the familiar formula ¥ — }J =1

Each of the oblique pencils after refraction loses its
conical shape and assumes that of a sphenoid, converging
to two focal lines at right angles to one another. The
primary focal line touches the caustic surface, while the
secondary focal line is the cross section in the primary
plane of the refracted pencil where it crosses the axis,
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It will be readily seen that the caustic surface may be
regarded either as the locus of the primary focal lines, or as
the envelope of the refracted rays, or as the evolute of the
Cartesian oval.

Caustics. The caustic curve produced by refraction at
a spherical surface for a luminous point can be traced directly
by using the method that was adopted for finding the caustic
produced by reflection.

Let S (Fig. 115) be the luminous point, distant a from €
the centre of the spherical surface that bounds a refractive
medium of index .

Let SP represent an incident ray, PR the corresponding
refracted ray.

Let PSC be denoted by 6, CPS by ¢, KPR or CPT by ¢,
and PT'C by .
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From € let fall the perpendiculars p and n on PI and
SP, the refracted and incident rays.

I. We will first consider the case when the light is inci-
dent upon the concave surface of the medium.

Now AR =B ..iersnrsrennasinns (A).
D=r sin¢’=£sin¢ .................. (B).

n=asin@=rsinod=up ............ (C).
:.J,=H+¢.—cp’=5111—1Fp+3111—1#p-—5i11—1§...(])).

*. from (C), P

I

I

o

—

=
= o
—
[
el

1 d, 1 dp
F Py =L el Hel
rom ( ) a (1 F‘f}EJéd‘!’ 7 ( = Hzﬁ-.-)ir d,#.

a-rﬁ ; .}1-'.“
P B
(=
?..‘.'."
Let ﬁx"ﬁf be denoted by p’, and — (w‘ hl D
L L L R
Thenf—&secﬂﬁ—?i sec ¢ ~sec¢’;

ir

) .
= —}—,: ¥ sin @ sec?
Y/

0% sec B + £ si 2= g
~ P+ sin ¢ sec qST sec ¢p

]‘ . i .I'I Lty
- —5111¢ sec? ¢ —secqbp:

rr

. %____faizpwsqecﬂg “1;’3qec3¢+i31 *sec® @',
ar

N = —_— ... 2).
o L 5 + pa sec qb — a sec ¢’ )

Let this expression be denoted by P , then 1 = Pp'.
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Similarly let the previous expression for % be denoted

by @p”.
Now
3 1 Q

=p+p'=p{l+Qp%l=p{Pp+Qp°l=p {]}3} :

= Q}_ 7[ a®sec® ' — i sec® 8 — pia’ sec? ¢
P—P{l‘}‘}_ﬁ: =pat (r 5ec8+pc¢s&c¢—_ﬁ_ﬂéﬂ¢)3}

These three equations are sufficient to enable the caustic
curve to be traced whenever the light from a luminous point
falls on the concave surface of the medium. In the following
examples the value of u will be supposed to be 1°5.

Ee. (1). Let a =10,
p=0 0 s =

The caustic reduces to a point at the centre of curvature of
the refracting surface, 7.e. it i1s coincident with the situation of
the luminous point.

Ex. (2). Let a=pr. (Fig. 116.)
p=¢*sin¢'=gsin$=r3inﬂ;

. ¢ =60 and ¢ =d,
p=p+p =0

In the triangle SPC, — o ke
sing @ pr
In the triangle PT'C,
sing” 7C sinf 1
Sinal 0 r SN

e
A

o
-

i

| E—
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The caustic reduces to a point on the diameter situated
o
— from (.
M

Ezx. (3). Let a=r. (Fig, 117.)

r . e i
p=-singp=—sinf=-sinf;
1z 7

[
S =0, and ¢ =260 -¢" when 6 is not greater than %,
’ r
P —

2usec —secq’’
sec’ ' — 2u’ sec® @
LFy {1 " (2p secO—sec ¢';.s}-

When 6=0,
p=0, $=0, ¢'=0, y=0,
e

p=0.
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0 EXAMPLES.

There is a cusp on the diameter situated .,;LT-T from C'.
When 6=,
p= E sin E == #J:,j =474 9.
¢=7, ¢'=sin28°7"7
p = ’ - ="321675 ... 7.

2p 2 —sec ¢ 310872

:
p=1p {1 =l ‘} — 413 ...p="1947 ...

" (22— secd)’

When 6 =
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Lo e WS R R
q,*.,-é—, ¢ = sin 1;_5111 1;_41 486 ...

‘P’ :.0!

# { sec® ¢’ — 2p® sec’ H}
p=2 2u sec O —secd')’)

1+{

The fraction is of the indeterminate form — % but i1t can be
cos? § — 2p° cos® ¢’
(2w cos @' — cos ¢)°

easily evaluated by putting it into the form

which is equal to — ] when 6=

L2l

R
-.P—P —1 —4_#"?'— T
Bx. (4). Let  a=3r (Fig. 118.)
p:éfsinl?:Isincﬁ;
o M
.. ¢ =sin"13sin 6,
" 3r
P = secO+3usech—Bsecd
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When 8=0,
IP:U: ¢'=0: ‘F{'*:OI '1|'r‘r=0: P=DJ
37 -
Phe= a'.,}_ o
There is a cusp on the diameter 4fi 5 from C.
T 1 S
When 6 =tan ‘EL:ta.n"g:IB 26'.

This is the maximum value of 6 for light incident upon the
concave surface of the medium.

p= T A= 6824
=
b="T1°34, & =30°14
P 3r ot T R
P = secO+3usecp—_3seced 1103049 20120t

) {1 2828°2...
P=P "~ [11939...)

} = — 6617 p=—-41847... 7.

Ezx. (5). Let a=w. (Fig. 119.)

It is required to find the caustic produced by refraction at a
concave spherical surface, when the incident light presents a
plane wave-front.

Since the rays of incident light are parallel, 6=0 and
=19 +¢. Hence we must take ¢ as the variable instead of 6.
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ik g Lt
..——;Eﬁcqu—rﬂﬂﬂtﬁ -

-P —sm:,ﬁ-sec ¢ secqbp—lsmnﬁ sec” qﬁ—secq!:p,

2

p !
N p 2 ra
.,F—Jz—ﬁsecﬂﬁp + - sec d'p=Qp”.
' b
Now fia= T P,thenl Pl ciiaea i (2),
L f s F P3+Q
=p+p =P{1+QPE}=19{P“P“+QP“'}=?{ 75 }
e N _ sec® ¢’ — p’ sec® cf.:}
p_p{“Ps}_p{1+(ysec¢_sec¢,}s ............... (3).

Fig. 118,

When ¢ =0,
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There is a cusp on the principal axis or diameter distant

r

—— from C.
a1
When b= E,
¢ =28°7"7...
-
p= ——="4714 ... 1.
D
p =101
— 8'0879...
= + == P =—3489...
P‘P{l (-98?39...}3} D !
When ¢ = ;, its maximum value,
¢ =41°48"6...,
St
D i
P,=Dt

y sec’ ¢’ — pl sec® ¢
=B

The fractional expression is of the indeterminate form -_T:- It
can be easily evaluated by putting it into another form, for

It cos®dp — pPeos’d’
e
4'! Pzp {1-1}:[}r

There is a cusp at the point determined by

y=48"11"4 (=~ ¢) and p=".

T

II. When light is refracted by a medium bounded by a
convex surface, the same formulae hold good provided that
proper values are given to ¢ and ¢,
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Thus in Fig. 115, if the surface were convex, KPS
would be denoted by ¢ and KPR by ¢, the angles being
measured in a clockwise direction.

We have again, remembering that » is now negative,

I?..lu- {I‘ -
= — BiN$ == BN @ ivisiiiissssnsones 1),
P = ¢ o (1)

’ or

= e 2),
P= rsec 0 + pa sec ¢ — a sec ¢ )

& a*sec® ¢’ — pir® sec® 6 — pia’ sec? ¢}
Eel {1 (ursec 0 + pa secp —asecd’) | 8)

Ex. (1). Let a=-—3r. (Fig. 120.)
7 — 3r
=—sin¢p=—sin6;
P ¢ a
S ¢ =sin"!(— 3 sin 6).
When 6 =0,
ngr ‘1"5:0: ‘¢"=U:
P b S 6T
PNz A

Fig. 120,

The small centric cone of rays diverging from § will traverse
the second medium parallel to the principal axis,
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When §=sin"! 1} = 19° 28'-27....
This is the maximum value of 8, for then

¢=-90° ¢'=-41°48"6...,

G
?JEI':
Pr=ﬂs

p will be found 0, for

T o8 o’ sec’ ' — pird sec® O — p’a’sec’ b
=35 (ursec O+ pasec p—asec ')’
There is a cusp at the point determined by

— =0 U =——dpTianysiiy
P m y U

Ex. (2). Let a=w. (Fig.121.)
As before 0=0, y=¢ — ¢/,
ot
= — 511 y
p= o8l b
.J'_.. T
V= secp—secod’

p=p+p =F{L+WHE¢HSW¢T

sec’ ' — p’sec’ P} {— S sec ¢ sec ¢’
} 8 (usec p—secd)?)

*
&
o,
*
'
-

Fig. 121,

When G=0

p=0.
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There is a cusp on the principal axis at a point ﬁ from C,

i.e. at a point 2r from C measured in the negative direction.

m™

‘i’:-ﬁ:

31 cos ¢ cos ¢’
(i cos ¢ — cos ¢:)2}

There is a cusp at the point determined by

- 1
=—, ¢'=sin™? (—~ —) =—4]1°48"6, y=-48°11"4.
i @ H W



CHAPTER XVIL

THE HUMAN EYE.

THE human eye is a nearly spherical ball, capable of
turning in any direction in its socket. Its outermost coat
is thick and horny, and is opaque except in its anterior
portion. The opaque part is called the sclerofic. The
transparent portion is more protuberant, and has the shape
approximately of a very convex watch-glass. This is called
the cornea (Fig. 123).

The eyeball has two other linings. Immediately within
the sclerotic is a vascular coat called the choroid. This coat
1s attached to the inner surface of the sclerotic, but at the
corneo-sclerotic junction it becomes free, and passes in a
nearly vertical plane behind the cornea as the #ris. The
iris terminates in a circular aperture, called the pupil. The
iris being opaque forms an annular diaphragm for the optical
mstrument.

Within the choroid is a thin membrane which is traversed
by a ramified system of nerve fibres diverging from the optic
nerve. This is the retina, the part of the eye that is sensitive
to impressions of light. It is lined posteriorly by a layer of
pigment cells which absorb the light. It is consequently in
this region that the energy of light is transformed into
energy of another kind; and the processes here started

=N ¥ R
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travel from the layer of rods and cones to the layer of nerve
fibres on the inner surface of the retina, and thence pass as
visual impulses along the optic nerve.

The space between the cornea and the iris is filled with
a watery fluid called the aqueous huwmour.

Placed immediately behind the iris 1s the crystalline
lens. This is of the form of a biconvex lens, the anterior
surface of which is less curved than the posterior. It 1s
composed of successive layers, whose refractive index in-
creases towards the centre, its solid nucleus refracting light
most strongly (Fig. 122).

Fig.122.

It will be easily seen that the action of the lens is more
powerful than if it were composed of a homogeneous
substance that had the same refractive index as the nucleus,
For it may be regarded as the combination of a double
convex lens n (the nucleus of a high degree of curvature)
with two diverging menisci ¢« and b. Consequently the
higher the refractive index of the menisci, the less is the
total refracting power of the lens. This explains the
so-called acquired hypermetropia of old age. As Donders
has shewn, at the age of 60 the refraction of the eye has
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diminished a third of a dioptre, at 68 1t has diminished one
dioptre, while at the age of 80 a person, who has been
emmetropic until 53, becomes hypermetropic to the extent
of 2:25 dioptres. With age the index of refraction of the
peripheral layers of the lens increases; on oblique illu-
mination therefore one sees an increased reflection from
the surface of senile lenses, which may even be so intense
as to simulate cataract (p. 62). An examination by trans-
mitted light proves however in these cases that the lens is
perfectly transparent. This acquired hypermetropia must be
sharply distinguished from presbyopia which is a progressive
diminution of the power of accommodation, .. a diminution
of the power of voluntarily altering the curvature of the lens
and hence 1ts focus. This presbyopia is due to the increasing
rigidity of the lens with age.

In youth the increase of the refracting power of the lens
from the outer layers to the inner nucleus serves partly to
correct the spherical aberration, by increasing the convergence
of the central rays more than that of the extreme rays of the
incident pencil.

The space between the lens and the retina is occupied
by a semiviscous fluid called the vitreous humour. From
an optical point of view 1t may be considered as a fairly
homogeneous medium of a refractive index practically equal
to that of the aqueous humour.

The Eye considered as an Optical Instrument. The
mean values of the optical constants of the normal human
eye have been elaborately worked out by Helmholtz from
data obtained by direct observation of the eyes of living
persons.

These values with some corrections by Stammeshaus are
given by Landolt in the Traité Complet d’Ophthalmologue,
and are as follows:
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(@) The radii of curvature of the bounding surfaces
have the following values:

(1) The anterior surface of the cornea
7= — 7'829 mm.
(2) The anterior surface of the lens
r,=— 100000 mm,
(83) The posterior surface of the lens
7, = 6000 mm.
(b) The distances between the refracting surfaces are:

(1) From the anterior surface of the cornea to the
anterior surface of the lens
A,4, =36 mm,

(2) From the anterior surface of the cornea to the
posterior surface of the lens

A,Ad, =72 mm.
(83) The thickness of the lens therefore
A, A, or t =36 mm.?
(¢) The indices of refraction are :
(1) For the aqueous and vitreous humours

p=13365.
(2) For the lens (total)
p =14371.

As might be expected the surfaces presented by these
different refractive media have not a geometrically true
spherical form, nor indeed the form of any simple geometrical
surface. The cornea for instance was regarded by Helmholtz
as part of the surface of an ellipsoid of revolution. Sulzer?
has however recently shewn that it has no axis of symmetry;

1 This is the usually accepted value of the thickness of lens in the living
eye. When the eye has been removed the thickness of the lens is much

greater. Glaucoma p. 89, Mr Priestley Smith.
? La Forme de la Cornée humaine. Dr D. E. Sulzer.
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that three-fourths of the total number of cases investigated
by him were characterized by the following peculiarities :

1. The nasal parts of the cornea were more flattened

than the temporal parts, and the saperior parts than the
inferior.

2. The visual line cut the cornea at a point within and
either above or below the point of maximum curvature of
the cornea.

The value for r, given above must be regarded as the
radius of curvature of a small area of the cornea, the centre
of which is the point of intersection of the visual line. This
small area may be regarded as a small spherical cap termi-
nating the unsymmetrical cornea.

Similarly the values given for  and 7, are the radii of
curvature of minute areas of the anterior and posterior
surfaces of the lens in the immediate neighbourhood of the
points of intersection of the visual line.

The index of refraction of the cornea is not given, as
practically it may be neglected. For the two surfaces of the
cornea are very nearly parallel, and as the anterior surface
1s always moistened with a watery fluid, the conjunctival
secretion, whose refractive index is the same as that of the
aqueous humour, the cornea acts like a plate of refracting
medium and produces no deviation in the incident rays.

What is called the total refractive index of the lens i1s
determined in the following way. The focal length of the
lens is found by experiment and, its shape being known, that
value 1s assigned to the refractive index which the lens
would have were 1t homogeneous. From what has been
said it follows that this total refractive index is greater than
that of the nucleus.

Before determining the position of the cardinal points of
the eye according to the method previously given, there is
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one condition that ought to be satisfied. Is the optical
system of the eye accurately centred? Unfortunately, as
we have just observed, this is not the case; indeed the
visual line cuts the cornea at a point usually situated on the
inner side of the optic axis. However, this deviation being
slight, an approximate result can be obtained by using
Gauss’s method.

We begin by determining the focal distances of the
several refracting surfaces.

I. Surface of the cornea (or aqueous humour).
First foecal distance

re =Ty o 1820
i pw—1" 3365

Second focal distance
n_ Hre _ (1'3365)(—7'829) iy

= 28-2659732...

S = gl geE 310949732...
II. Anterior surface of the lens.
First focal distance
T (-13885)(=10) oo oens
f = = TisTi—T-33gs = 1328528827...
Second focal distance
e D0 ST 10) | 498598897,

~ p—p 14371 —1'3365

III. Posterior surface of the lens.
First focal distance

i — p'ry 29 (—14371) (6)
P p—pu' 13365 —1'4371
Second focal distance

e _J'-‘wlﬁ Eiln (13365) (6) — ey iy
o T R T97117292...

= 857117292...
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The principal point of the cornea is on its surface at the
point of intersection with the optic axis.

The principal points (H,, H,) of the lens and the
principal focal distances (¢, ¢.) can be easily found by the
formule already given (pp. 257—260), for the surrounding
mediums are of the same refractive index. The nodal points
of the lens coincide with the principal points (Fig. 123).

Fig. 123.

oo Tt (132:85288) (3:6)
FIL T ~ 36—142:852882— 85711729

H. A, = t-i-ﬁ”—ﬁa — 224r96461

The principal focal distances (¢, ¢”) of the lens measured
from H, H, are

=—2125980..,

= 1-275588..

\_ _=Ff__ —(13285288)(85T117) _ .o
¢ = - (B S TID) 5017073,
g S (A0 (TR S

R — 22496461
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We have now determined all the cardinal points of the
two refracting systems of which the eye is composed. We
proceed to find the cardinal points of the complex system
presented by the eye.

Principal Points of the Eye. It is easy to see that
the principal plane of the cornea plays the same part with
respect to the principal planes of the crystalline lens, as the
first surface of a lens plays with respect to its second surface.

To find the first principal point (H') of the system, we
have only to substitute the appropriate symbols in the
expression for the lens.

Instead of

St : Joe
—t—— We Write o i
t '!'ﬁ —ﬁ; € ']'fu == ¢’
where
e=A A, + A, H=4,4,— H A,=36+212598 =572598;
8 T foe % (23:26597) (5°72598)
- g + 1 = ~ 5772598 — 3109497 — 50°61707

=—1753001...

Similarly to find the distance of the second principal
point (H”) of the system from the second principal point of
the lens, we have

e (=35061707) (5'72598)

H"H,= TG —T508605 — 3014749...

Now

H"A,=A,A,— (A, H,+ H,H")y=— A, 4,+(H,A,+ H"H,)
— — 72+ (1'275588.. + 3:814749..) = — 2:109662. ..

The second principal point is therefore 2:109662.. mm.

behind the cornea, whereas the first principal point is
1'753091.. mm. behind the cornea.
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The distance between the principal points,
H'H"=A,H" — A,H = '356571 mm,

Principal Focal Distances of the Eye. By similar
reasoning we shall obtain the first prinecipal focal distance
(F"H") of the eye by substituting the appropriate symbols in
the expression for the lens.

Instead of
Mo ek —Jo 9
:H-fl —fn we write €+ﬁ”—¢”

e —Ji® _ —(23:26597) (5061707)
FH T qS = 7598606 =15498308.

Similarly
prgpr 09 _ (= 31:09497) (= 50-61707)

6+ﬁ.” b & —75'98606..
= — 20713489,
The ratio TH should be equal to the ratio of the

index of refraction of the last medium to that of the first
mediunm

—F’H” _ 20713489 _ 13365
FH T 15498308 1 °

Now
FA,=FH +H'A,=15498308 — 1753091 = 13'745217,
and

F'A=F'H'+ H'A,=— 20713489 — 2 109662
= — 22823151,

The Nodal Points of the Eye. We have already seen
(p. 262) that F'K'=H"F” and F"K" = H'F".
Then since
K'F=F'H" and K'A;=K'F'—A4,F=FH"+Fd43
K'A,=—20713489 + 13745217 = — 6:968272.
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And since
F'RK"=—FH and K"A,=F"A,— F"K"=F'A,+ FH,
K"A,=—22:823151 + 15498308 = — 7-32484.3.
The distance between the nodal points
K'K'=4,K" — A,K'=7-324843 — 6-968272
=+356571=H'H",
The following table gives the distances of the cardinal
points from the cornea, and from the principal points.
A, represents the anterior surface of the cornea.
H' and H"” represent the first and second principal points

of the eye. The signs attached to the numerical values of
the distances denote whether the points mentioned are on
the positive or negative side of the cornea or the principal
point from which they are measured.

It will be noticed that all the cardinal points, with the
exception of the first principal focus, are situated on the
negative side of the cornea, v.e. within the eye.

Cardinal points of the eye.

|

H'A, - 1753091 mm. | H'H" l *356571 mm.
H"4, | -2109662mm. | |

| | |

|

: ORRITE H'K' =915

K'A, | — 6968272 mm. H”ﬂ"”} | 5215181 mm.
K"A, — 7324843 mm. |

| 6 356571 mm.
F'A, 13:745217 mm. F'H' 15-498308 mm,
F'd, | —22-823151mm. || F"H” | —20:713489 mm.

-]
o
-3
(5
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It will be noticed that the two principal points and the
two nodal points lie very close together, so that without
introducing much error we may regard them as coinciding
in one point H and in one point K, so that

HA,=-1931377, KA4A,=— 7146557, HK = 5215180,
Then F'H=15676594, F"H=—20'891775.

On this supposition

—M"H

and » which must be equal to —(w—1)F’ must be
— 52151... mm,

This is the principle on which the ‘schematic eye of
Listing ’ is founded. The figures given by Listing vary very
slightly from those given above.

The ‘schematic eye of Listing’ corresponds to a single
refracting medium bounded by a spherical surface, the vertex

of which 1s at the principal point H.
' We owe to Donders a further simplification of these
figures. The “reduced eye of Donders’ is exactly equivalent
to a single refracting medium (p = §) presenting a spherical
surface whose radius of curvature 1s —5 mm. The principal
point (H) 1s at the vertex of the spherical surface, and its
centre of curvature coincides with the nodal point (K).

The first principal focus (F'H') of this reduced eye is
therefore 15 mm,

The second principal focus (F”H™) of this reduced eye is
therefore — 20 mm.

The simplicity of this reduced eye makes it exceedingly
convenient to use in practical questions that relate to the
refraction of the eye, as the calculations with regard to it
can be executed in one’s head; the results are sufficiently
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accurate for most practical purposes, as will be seen in the
following examples.

The mode of using the cardinal points in any
combined system. Let H'H”, K'K", F'F” be the first
and second principal points, nodal points, and focal points of
any combined system of refractive media. Let AB (Fig. 124)
represent an object distant p from H’, or ¢’ from K', and let
ab represent its image distant ¢ from H”, or g” from K".
In order to find the position of the image graphically we
have merely to draw the line AJ'J"” parallel to the optic
axis, cutting the first principal plane in J’ and the second
principal plane in J”. Then the line J"F" will represent
the direction of the corresponding emergent ray from the
system.

If AK' represent an incident ray, K''a will represent the
corresponding emergent ray, where K "“a is parallel to AK'.
For we know that every ray that on incidence is directed
towards the first nodal point K', seems to come after re-
fraction through the system from the second nodal point K",
and to take a course parallel to its original direction.

Or we may make use of the property of the first principal
focus F'. Any incident ray as AF'I' which passes through
F, and meets the first principal plane in 7', will emerge as
I"a parallel to the optic axis.

The point @ is the point of intersection of all the
emergent rays that originate from A. It is evident that the
incident cone of light diverging from A (viz. J'41’) becomes
after refraction the cone of light (J”al") that converges
towards a.

It is convenient to denote the distance F'H' by F’, and
the distance F”H" by F”, and to regard them as positive or
negative according as the points F’, F” are on the positive
or negative side of H', H" respectively.

992
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Similarly the distances F’K’ and F”K" are denoted by
the symbols G’ and G” which are regarded as positive or
negative, according as the points F”, F are on the positive
or the negative side of K’, K" respectively.

Size of the image. Since the triangles ABK’, abK"
are similar,
*i ab bK" g
S AR BE ¢

In the ﬁgure g” is negative whﬂe g’ is positive, therefore
the 1mage 2 1s negative or inverted.
Since AB =J"H", and the triangles J"H"F", abF" are

similar,
e T -y JH W ¥ —g
e NH T P’ FHY T W
Again, since ab=I'H’, and the triangles I'"H'F’, ABF"
are similar,
e e PR . FH 00 OF
o AB FB HB-HF FH -BH F-—-p
These expressions are evidently analogous to the ex-

pressions for the similar ratios that we obtained when
considering the size of an image formed by refraction at a

single spherical surface, with the exception that Eg_ 18

substituted for }% -

Distance of the image. Since the triangle aJ”/” 1s
similar to the triangle F”ab,

ENVH FH I'H o _ ab

— BH’= AJ, =-I,J, =IHJH__J.F.FII|I"I
ab _ bF" _bH'-F'H" _q—F’

and A i =

— —_—

Y H.Hb bH”’ q
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Then :Fl—=[:'!r_:ll'=I or E-I-F
p q P q

or (p—F')(qg—F")=F'F"
Ex. 1. If an eye be one millimetre longer than normal, where
will its punctum remotum (p,) be
That is, if the antero-posterior diameter of an eyeball be
23-823151 mm. instead of 22-823151 mm. (the lens being normal
and in its usual position 36 mm. behind the cornea), at what
distance must an object be situated in order that a definite image
of it shall be formed on the retina ?
In this case ¥ and F” have their normal values, and ¢ is
negative, being equal to " -1 = — 20:713489 - 1.
F' +F”= 13, -'- F‘: :g“Fh: = 1 5
P P q i
o p=—Fqg=—(15-498308) (- 21-713489) =336-522... mm.
in front of the first principal point, or 334:769 mm. in front of the
cornea.
Using Donders’ ‘reduced eye’ and the second formula for
convenience,

=

(r-F)(q-F)=FF,
(p=15) (— 21 +20)=(15) (— 20);
C.p—15=300 or p=315mm,

This is a fairly correct result for such a rough and ready
method.

Ez. 2. In the above example if the object is 5 mm. in height
what is the height of the image? How many retinal cones will
it cover assuming that the cones are in contact with each other!

The transverse diameter of a foveal cone is ‘002 mm. ; in other
parts of the retina the diameter of a cone is ‘006 mm.

i -
—_— F""' y
i 1 e ey
"B —20-713489° " 7T 20°713489

—+241388.. mm.
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The negative sign shews that the image is inverted.
The approximate result given by Donders’ reduced eye is

i_mF"—-q 3 i’.. 1 Bl o
E__H_F” g o+ 5-—_'—9[), 2 E-—-E—- S IIm.
The number of foveal cones it will cover is
241388
e 2 > "a
002 12069

Ez. 3. In a normal eye what will be the minimum visual
angle ?

The extreme minimum will be the angle subtended by a foveal
cone at the second nodal point.

If a denote the minimum visual angle and ¢ denote the trans-
verse diameter of a foveal cone,

[H [H
o L TR L .
3- KF  FH 15498308
. a=26"-617 approximately,

000064523,

Errors of Refraction. The Refraction of the eye is
the term used to denote its minimum power of altering the
direction of incident rays of light, making parallel rays con-
vergent, and divergent rays less divergent. The refraction
of the eye can only be determined when the eye is at rest,
v.e. without any effort of accommodation. The refraction of
an eye is said to be emmetropic (euperpos, @yr) when ncident
parallel rays converge to an exact focus on the retina, while
if the incident light is at all convergent, it comes to a focus
in front of the retina. Incident divergent rays however may,
by a special effort of accommodation, whether conscious or
unconscious, be brought to a focus on the retina. Thus an
emmetropic child of 8 or 9 is one to whom the stars appear
as points of light, yet by a special effort of accommodation
he may be able to focus light on his retina that is diverging
from a point only 2§ ins. from his eye.
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If the curvatures and refractive indices of the media of
the eye are normal the second principal focus of the eye
must, as we have seen, be 22:823151 mm. from the cornea.
The retina must therefore be situated at this distance from
the cornea.

Ametropia denotes that condition of the eye in which the
second principal focus of the eye is not situated on the retina.
It may be subdivided into three varieties.

Hypermetropia when the retina 1s in front of the second
principal focus. Incident rays must therefore be convergent
in order that they may be adequately converged by the eye
to come to a focus on the retina.

Myopia (pbw, ér) when the retina is behind the second
principal focus. The rays of light therefore which come to a
focus on the retina must have been divergent on incidence.
Hence the vulgar term for this defect is near-sightedness.
The word myopia alludes to the habit many such patients
have of half closing their eyelids when viewing objects at
a distance, They obtain a clearer view of distant objects by
looking at them through a narrow aperture as this diminishes
the size of their confusion-circles.

Astigmatism (a, otiypa) is the condition in which the
refraction of the eye in different meridians is different. This
is usually due to the curvature of the cornea being different
in different meridians. It may be associated with either of
the other forms of ametropia. The stars are not seen by
astigmatics as points of light but as small ovals or some other
distorted form.,

In what is called regular astigmatism the refraction of
the eye is such that an incident pencil converges to two
focal lines which are at right angles to each other. The
most common form of regular astigmatism 1s due to the
curvature in the vertical meridian of the cornea being greater
than that in the horizontal meridian.
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In this case the first focal line is situated 1n the horizontal
plane nearer to the cornea than the second focal line, which
is in the vertical plane. To remedy such a defect cylindrical
glasses are required, plane in the vertical direction but
curved to an appropriate degree in the horizontal direction.
Should the patient be also hypermetropic or myopic this
defect can be easily remedied in addition, by giving the
requisite spherical curvature to the opposite face of the
cylindrical glass.

Irregular astigmatism does not admit of accurate correec-
tion by cylindrical lenses. It is usually due to what may be
called a minute crumpling of the cornea resulting from the
contraction of scars of previous corneal ulcers.

Hypermetropia or Myopia may depend on one or more of
three physical conditions.

1. The most usual condition is a defect or excess in
length of the antero-posterior diameter of the eyeball. If the
eye has not developed to its full size, and the retina is in
front of the second principal focus of the eye, hypermetropia
results. If the eye has grown too big, or if in any way the
retina is behind the second principal focus, the eye is myopic.
Such abnormalities are called azial hypermetropia and axial
myopia respectively.

2. Hypermetropia may also result from an undue flatten-
ing of one or more of the refracting surfaces. The cornea 1s
the surface most usually at fault. An increased bulging of
the cornea will similarly give rise to a curvature-myopia.
These curvature defects are however relatively rare.

3. Ametropia may also result from a change i1n the
index of refraction of the medium. Reference has been
already made to “acquired hypermetropia” resulting from
an increase of the refractive index of the cortical part of the
lens. It may be added that sometimes in incipient cataract
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a central myopia will be found. The first stage of the forma-
tion of senile cataract is usually sclerosis of the nucleus.
If now spaces filled with serous fluid are formed in the
cortical layers of the lens, the refractive index of the cortical
part diminishes and consequently the total refracting power
of the axial part of the lens is increased (vid. p. 329), where-
as the refracting power of the peripheral parts of the lens is
diminished. When the pupil is widely dilated the central
refraction of the eye may be myopic, while the refraction of
the peripheral zone near the pupillary margin may be hyper-
metropic.

Correction of ametropia. We must consider in greater
detail the typical form (1) of ametropia, and the means that
we have for 1ts correction.

Suppose that an eye i1s [ mm. too long ; its retina is then
situated [ mm. behind the second principal focus of the eye.
(Fig. 125.)

Let p denote the distance of the punctum remotum (P)
from the first principal point (H') of the eye. Let g denote
the distance of the retina from the second principal point
(H"), and let the focal distances from their respective prin-
cipal points be denoted by ¥ and F“. Then ¢—F" is a
negative quantity denoting the distance between the retina
and the second principal focus of the eye,

cg—F'=—]|
Light from P will on entering the eye converge to a focus
on the retina. In order that distinct images of distant
objects may be formed on the retina, a lens must be placed
somewhere between P and the cornea such that incident
parallel rays may after traversing the lens diverge as if they
had come from P.

Now it will be shewn presently that there is a peculiar
advantage in placing the correcting glass in the first prinei-
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pal focal plane of the eye, that is about half an inch in front
of the cornea.

If the second principal focal distance of the glass be
denoted by f” when f“=p—F’, the proper correction will
be given. With such a glass incident parallel rays will be
converged to a focus on the retina by the system formed of
the correcting glass and the eye,

But we know (p. 342) that

(p—F)(g—F")=FF,

A g o
. q - F e }"] = Fr
FF’  (15498308)(— 20713489) —321:024...
Qr” . = E — S e g o o .
o i i

This expression [ = :%— gives the relation between the '

amount of axial ametropia and the glass required to correct it.

Ez. 1. If the eye be 321 mm. too long, what glass will

correct it for distance?
=2 60
3-21 '

As the second focal distance is positive, the lens must be
concave. The dioptric strength of the glass is given by the
expression :
1000
=
In the case given @ =—10D.

i i

Ez. 2. If an eye be axially hypermetropic and require a
glass of + 1D to correct its error of refraction, what will be its
length? -

. 1000 321

Since =

- [

and in this case =1,

— 321

L= 000

— 321 mm.

|
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Since / is negative the length of the eye must be defective by
— 321 mm.

or g-F"'=-1,
Soq=F"-1=-20713... +-321... =—20-392... mm,
The length of the eye is therefore
q+H"4,=-20-392... —2:109... = - 22-501... mm.

The advantage that is gained by placing the correcting
glass 1n the first principal focal plane of the eye is that when
so placed the retinal image of a distant object formed by the
combined system, is of precisely the same size as that which
would be formed by an emmetropic eye. This renders all
tests of visual acuity strictly comparable to the results of
the same tests applied to an emmetropic individual.

Suppose an axial ametrope, suitably corrected with glasses,
when at 6 m. distance from test types can only read as far as
a normal sighted person can read at 9m. distance. His
visual acuity 1s then & of normal. This defect cannot then
be assigned to any incidental effect of the correcting glass,
for the retinal image is of the same size as that of the normal
emmetrope placed at the same distance from the test types.
The cause of the defect must be sought for in an opacity of
the media, a defect in the retina itself or in the brain and
the nerve fibres uniting it to the retina.

Correcting Lens in First Focal Plane. We proceed
to shew how this peculiar advantage arises when the correct-
ing glass of an axial ametrope is placed in the first focal plane
of his eye.

Consider an eye ! mm. too long provided with a thin
correcting glass in the plane at H, distant HH" or d from
the first principal plane of the eye. Let f', f” be the focal
distances of the lens, and let 7/, k” represent the principal
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points of the combined system of the eye and the lens.

(Fig. 125.)

i ol
Then hH—d_i_fﬁ_F;
If d is the first focal distance F,
: = f'.rF.r _-f;Fr i
hH_F’-"—f‘”—F,_f” b F!
but HE =F or HH=-VF,

.. the first principal point A" of the system coincides with
the first principal point H’ of the eye.

E & (L F'd
Also h'H =+ -7
andwhen” | d=F, WH" = FTﬁ,:— = — 1 (p. 347).

The negative sign shews that the second principal point
of the system (A”) is situated / mm. on the retinal side of the
second principal point H” of the eye. (Fig. 125.)

Now if § and §” represent the distances of the first and
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second focal points of the system from the principal points
iR,
%; _"f F he '_f F =F.|'}

— af:f” ___ F'* — _‘;('.’- -
r IH-FI" i’
and 5 =E;E_f;“”——-]§" =F",

The principal focal distances of the system have therefore
under these circumstances precisely the same value as the
principal focal distances of the emmetropic eye.

It follows that if &), " represent the distances of the
first and second foci from the first and second nodal points of
the combined system, ¥/, k",

@,=—%”=—FH=G’,
J'f=“%l =_F! =G”,

The addition of a concave correcting glass in the first
focal plane has no effect on the situation of the first nodal
point, but the second nodal point is situated / mm. nearer
the retina. The retinal image formed by the system is there-
fore of the same size as would be formed in an emmetropic
eye in the same position®.

If we consider the case of an axial hypermetrope whose
eye 1s [ mm. too short we shall find that on the proper addition
of a convex correcting glass the second principal and nodal
points are displaced towards the cornea I mm., so that their
distance from the retina is that which obtains in emme-
tropia.

As before A'H = L s ¥ when d=F".

d+f" —F

1 The mention of the displacement of the second nodal point has been
given to make the discussion complete, but it is really unnecessary for we
could infer the equality of the retinal image since

FF /8 %i‘
F-pr=p

i
==



CORRECTING LENS IN FIRST FOCAL PLANE. 351

Therefore k' coincides with H'.

D N, PP
Also h'H ET ey e = -,
But as [ is a negative quantity (the eyeball being I mm.
too short) A” is situated ! mm. on the corneal side of H",
The relative position of the prineipal points of the system

is indicated in the annexed diagram (Fig. 126).

.
e

Fig 126

A table is given below shewing the required strength of
the glass (in dioptres) which when placed in the first focal
plane will correct an axially ametropic eye.

The first focal plane is situated 137452... mm. in front
of the cornea.

The normal length of the eye is 228231... mm.

The excess and defect of this value is denoted by + ! and
— [ respectively.

The distance of the punctum remotum (p,) from the firs
principal point is given in a separate column. In hyperme-
tropia the value of p, is of course negative.
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CORRECTION OF

AXIAL AMETROPIA.

HYPERMETROPIA. MryoPpIA.

l Py l Pr
(mm.) 2 (mm.) (mm.) D (mm.)
0 0 @ 0 0 @
=t + 3115 | -3055 +1 - 3115 | +3365
-2 + 6-230 - 1450 +2 - 6-230 +176:0
-3 + 9-345 - 915 +3 - 9-345 +122-5
-4 +12-460 - 647 +4 - 12.460 + 957

It is evident that if an axial ametrope requires a concave
glass of — 6:230) in order to see distant objects distinctly, his
eye must be 2 mm. too long. Similarly if, when the fundus
of an eye is examined with the ophthalmoscope by the direct
method, it is found that part of the fundus requires a lens
+ 9D stronger to see 1t distinctly than is required for the
remaining part of the fundus, we may draw the conclusion
that this part is raised nearly 3 mm. above the general level
of the fundus. It is important that the ophthalmoscope
with its correcting lens should be held in the right position
(13-7... mm.) from the patient’s cornea. If for instance the
ophthalmoscope glass be held about 15 ins. from the patient’s
cornea the + 9D glass would correspond to an elevation of
about 37 mm. instead of 3 mm.

e - I

It is only true that [ = *—;‘,—,IL if the glass of focal length

f" is placed in the first focal plane of the eye, ¢.e. at a distance
of 137... mm, from the cornea. If, as in the above example,
the glass is placed 1% ins. or 38'1 mm. from the cornea, it 1is
necessary to add the difference 244 mm. to the denominator
of the expression.
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Since ]Ll:]—?—[u}—f" ”=£_0—-{-}92=—111'1,

= B - g2l =—37... mm
— 1111 + 244  — 867 AT

If a concave glass of — 45D had been required to see
part of the fundus we may draw the conclusion that this
part is depressed below the general level of the fundus by
about 1'4 mm, If however the ophthalmoscope be held at
an improper distance from the cornea, say 14 ins, this
estimation of the depression would be incorrect. For in
this case,

l =

= 1%3? = 2222 mm,,
-~ F'F" 321

[ = =1-3... mm.

2225 1 244 ~ 2466

It will be easily seen that in a similar way the convex
glass, required to correct a hypermetropic eye for distance,
must be stronger the nearer 1t is placed to the eye; whereas
the concave glass for myopia must be weaker the nearer to
the eye it is placed.

Let p, denote the distance of the punctum remotum of
the eye from its first principal point, and let d denote the
distance of the correcting glass, and p the distance of the
object from the first principal point.

The correcting glass will be such that its conjugate foci
are p—d and p,—d. Its second focal distance /" will be
given by the formula

1 1 1=0'

P d Pi— d fFF
A. When the object for which the eye is adjusted is at

: : 1
a considerable distance (6 metres or more) e may be

regarded as equal to 0,
P, 0, 23
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1 1
and el
f P:_d
or iind

Now in myopia p, is positive.

Therefore 1f p. —d 1s positive, /" 1s positive and is greater
the smaller d is. In other words, the refracting power (J—:—“—,)
of the concave lens must be diminished as d becomes less!.

In hypermetropia p, is negative.

Therefore p,— d or £ is negative and diminishes with d.

The lens is therefore convex and its refracting power

1 ; : e
()7,,) must be increased as d 1s diminished.

B. When the object for which the eye is adjusted is
fairly close to the eye (eg. at reading distance or } m.) the
value of i?ﬂ is no longer negligible.

We have then

L b 1 PP
S p—d p-d (p,—d)(p-d)

In myopia p, is always positive, and if the degree of
myopia be above — 3D, concave spectacles must be worn in
order to see distinctly an object at the distance of 1 m.

When as is almost always the case p, — d 1s positive, it is

clear that }, becomes less as d is diminished, or that the
strength of the correcting concave glass must be diminished
the closer it is placed to the eye.

1 If p,—d is negative, " is negative and the lens is convex. An inverted
image of the object is consequently presented to the eye. Such a lens has
been used in this way by a few extremely myopic patients as a hand-glass
held at a distance of 15 cm. or 20 em. from the eye.

UL P
=18 o
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A myopic patient for instance who requires a — 100D lens
in the first focal plane to correct him for distance, will with-
out exerting his accommodation be able to see distinctly an
object at a distance of less than 1 metre by increasing the
distance of the glass from his eye by 10 mm.

For a concave glass of — 10D ( f”=100 mm.) at 23'745mm.
from the cornea has the same effect as a concave glass of
about — 9D (f”=1123 mm.) at 13:745 mm. from the cornea.

The calculation is an easy one.

We have first to find the distance of the punctum prowi-
mum (p,) from the principal point. We know that a lens of
focal length 100 mm. corrects the eye for distance when
placed in the first focal plane (7.e. 154983 mm. from the
principal point or 13745 mm. from the cornea).

S =p.—F,
pr=f" +F =100 + 154983
Now when the glass is placed d mm. (or '+ 10 mm.)
from the principal point

1 1 P =P

100 77~ (p,—d) (p — d)
- p—1154983
~ (1154983 — 25:4983) (p — 254983)°
90p — 2294847 = 100p — 11549°83,
.. 10p = 9254:98... mm.,
p=925498... mm.

The distance consequently for which the —10D glass
now adjusts the eye is 925°498 mm. from its principal point,
or 923-745 mm. from the cornea.

In hypermetropia p, is always negative, and a variation
in the distance of the glass from the eye will have a different

effect according to the value of p, or according to the degree
of hypermetropia.

23—2

-



356 POSITION OF THE CORRECTING LENS.,

e IR o it 8 e T |
f” (Pr_d)(ij_d) prp_d(fjr']'f:')'l'dg

The numerator is always positive, and the denominator is
always negative for d must be always less than p, for the
correcting glass must be placed between the object viewed
and the eye. Therefore /" must be negative or the correct-
ing glass must be convex.

If p, + p 1s a negative quantity or even if it i1s a positive
quantity but smaller than d, the negative value of the deno-
minator diminishes with an increase of d. If p.+p is a
positive quantity and greater than d, the negative value of
the denominator increases with an increase of d.

So we see that with a high degree of hypermetropia,
when p,+ p 1s positive and greater than d, the further the
lens 1s removed from the eye, the weaker the lens should be.
In other words, an increase of d will have the effect of virtually
increasing the strength of the lens,

For example, suppose a hypermetropic (or aphakic) patient
requires + 10D for seeing distant objects when the glass is
15+498... mm, from his first principal point,

p,=—100415498... =—84:502... mm. '

Now if he have lost his power of accommodation, a convex
lens of + 11D at the same distance from his eye will enable
him to see an object 1015°498... mm. from his principal point.
However the original glass (+10D) will serve for the same
purpose, if placed about 1 inch from his eye, say 26:749 mm,
from the principal point instead of 15498 mm. ; for

;l i P—DPr
S ppe—d(p+p)+d”’
shea g 1015498+ 84502 1
OF  77= 858116 — 26749 (930:996) + (267749) "4V
1100 1
= = e

— 100"
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Patients who have been rendered highly hypermetropic
by the extraction of their cataractous lens, are of course
deprived of their power of accommodation. They are how-
ever enabled in this way to virtually increase the strength
of their correcting glass for distance when they wish to
see distinctly objects at a distance of not less than about
1 metre.

Patients with a low degree of hypermetropia have not
the same advantage. For if p.+p i1s negative or even if
positive when less than d, an increase of the distance of the
glass from the eye virtually diminishes the strength of the
glass.

For example, suppose a hypermetropic patient, who has
no power of accommodation requires + 5D for seeing at a
distance of 250 mm. from his principal point—the glass
being in his first focal plane; for what distance will his eye
be adjusted if the glass be removed to 38 mm. (1} ins.) from
his principal point ?

-5 -1

1000 ¥ 200

0 250 —p,
~ 250p, —250 (15°4983) — p, (154983) + (15°4983)’

. p, (200 — 250 + 15°4983) = 50000 — 3874375 + 240-197....

9, = %& =—134398... mm,
Now if the + 5D lens is placed 38 mm. from the principal
point we have
Pt s aldE L.
200 — 1343'98p —38p +(38) (1343°98) + (38)*’
o p (134398 + 38 — 200) = (200) (1343-98)
+ 38 (1343'98) + (38 ),

=9271-8... mm.

o 8215112
e = RT98
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Removing the glass less than an inch from its previous
position has in this case the effect of virtually diminishing
its strength. An object 271'8 mm. from the principal point
1s now distinctly seen, whereas the eye was adjusted for
a distance of 250 mm. when the glass was in its original
position.

Presbyopic patients who are wearing convex glasses that
are too weak for them are often noticed reading with their
spectacles at the end of their nose. A popular but erroneous
explanation of this habit is that by so doing they virtually
increase the strength of the glass. As we have seen, unless
the hypermetropia is extreme, increasing the distance of the
glass from the eye virtually diminishes its strength. The
true explanation 1s that by this action the second nodal point
of the system is placed more anteriorly, hence the retinal
images are larger, and the print though indistinct is easier
to decipher.

Aphakia, (a, dakos), or Absence of the crystalline lens.
This condition is produced after the extraction of the opaque
lens 1n cataract operations and occasionally to relieve extreme
degrees of myopia.

The eye is then reduced to the simplest possible refracting
system, viz. one single medium (u=13365) bounded by a
single spherical surface. We will consider the refractive con-
dition of an eye that had been axially ametropic when the
lens was present.

The principal point of the eye is situated on the cornea
at the point of intersection of the optic axis. The second
principal focus

_ pr _18365(=7820) ..
= M= i — —3109497... mm.

An eye then of this length when deprived of its erystalline
lens will if normal in other respects have distinct distant
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vision. But such an eye is 82718 mm. longer than normal
and we know that the strength of the glass required to
correct its myopia when the lens was present is given by the
formula (p. 347)

oo 321
i

If a patient then of this degree of myopia have his lens
removed, he will require no lens for seeing distant objects,
provided that the curvature of his cornea has undergone no
change subsequent to the operation.

It is an easy matter to determine what correctmg glass an
emmetropic patient will require for distance if his lens is
removed. His eye is 22:-823151 mm. long; let it be denoted
by ¢, then the position of his punctum remotum (p,) is given
by the expression

=—2576... D.

R
Pl
N1 | 9865 | o 193656
i B +Zr__'—_'?‘78‘i§+-_22'823151

1 1
~ 2326597 170768’
o pr=—641941... mm

We have therefore to provide the eye with a convex lens
which will cause incident parallel rays to converge to a point
641941 mm. behind his cornea. We must first decide how
far in front of his cornea it is to be placed. There i1s now no
advantage in putting it in the first focal plane, as the retinal
image must necessarily be larger than that of an emmetropic
eye owing to the displacement forwards of the second nodal
point. For convenience we may assume that the spectacles
will be worn in the usual position, 137452 mm. in front

of his cornea. The second focal distance (/") will then be

ff=p,—d=—641941 — 137452 =—T77'9393 mm.
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The dioptric strength of the glass is given by the expres-
sion

s 1000

_-_fl"f

In a similar way the glass required for any degree of axial
ametropia may be found.

For instance, take an axial hypermetrope whose eye is
2 mm. too short (I=-2)

= 12'830 nearly’.

1 1.y SR
p. r ' g-1i 2326597 " —22:823151+2’
1 _ 31094973 —-20:823151 _ 10271822 1

p,  —(20:823151)(2326597) —484471 —47165°

1000 1000 =

The following table gives the position of the punctum
prozvmuwm (p,) and the value of the correcting glass (D)
required for distance by aphakic ametropes. The excess or
defect in the length of the eye is denoted by I. The correct-
ing glass which was required for distance before the lens was
removed is denoted by D'. The column D—D" gives the
change of refraction that follows on removal of the lens. It
will be noticed that this change of refraction increases with
the length of the eye. The correcting glass, required in

1 This is a higher value than is given in English books on the subject.
Most English authorities give +10D as the strength usually required after
extraction of the lens from an emmetrope. Continental authorities have
given a higher estimation of the change of refraction that ensues on removal

1 =
g5 10 g7 OF +11-25D to

more than +13D, It is essential that in judging from clinical experience
one should not be misled by any preceding acquired hypermetropia (p. 330).

of the lens. Thus Landolt gives + 11D, Donders
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l P, D | D =
&E |—8mm.| —40916 | +18294 | +9:345 8-949
&2 |-2mm.| -47-165 + 16417 + 6230 10187
T g |-1mm.| -—54761 + 14+597 + 3115 11:482
0 —64:194 +12-830 || 0 12-830

K S lawin| — 76221 | +11:115 || —.3:115 14230
+2mm.| — 92084 | + 9449 || — 6-230 15679
+3mm.| — 113964 | + 7831 || — 9-345 17-176
2 |+4mm,| — 146089 | + 6256 | — 12460 18716
§: +5mm. | — 197851 | + 4729 | —15:575 | 20:304
= |+6mm.| — 295181 | + 3237 | —18'690 21927
+7mm,| — 545667 | + 1788 || —21:805 23-593
+8mm.| —2638235 | + 377 || —24:920 | 25-297
+9mm,| +1016779 | — -997 | — 28035 27038

aphakia, if 13'7... mm. in front of the cornea does not vary |
directly as the length of the eye. This would only occur if
the correcting glass were placed in the first focal plane of the
aphakic eye, 7.e. 23'26597 mm. in front of the cornea; for then |
(as on p. 347) '
1y ar F:‘F £

If then it is required to estimate correctly the amount of
swelling of the optic disc in optic neuritis of an aphakic eye
with a refraction-ophthalmoscope, it will be advisable to hold
the instrument in such a way that the lens behind the eye-
piece is about 11 in. from the cornea. In that case p —F’is
the second focal distance (/) of the lens used.
_FF” (2326597) (= 38109497)  —723455...

—
———— —— Lohle ot ;

= ';’ £ 73
i 7 7
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or if X denote the dioptric strength of the glass used in this

position
1000
= =] 38325 3
['=—"723455X.

Now —U'=g—F" or the difference between the actual
length of the eye and its second focal distance.
In an aphakic eye of normal length

— I'=—22-823151 + 31'094973 = 8-271822.

The eye is therefore 8:271822 mm. too short.
The correcting glass required 2326597 mm. from the

cornea 1s
— 1:382250' or +11:4337... D.

Whatever the length of the eye, the above expression
will give the value correctly as determined by the dioptric
strength of the correcting glass of the ophthalmoscope,
provided that it be held in the right position and the curva-
ture of the cornea is normal.

Suppose that the edges of the optic disc in an aphakie
eye require a lens of + 3D more than that required to view
~ the rest of the fundus,

V/'=—"7234556X =—217... mm.

The edges of the disc are therefore raised above the level
of the fundus 217 mm. A similar observation of a normal
eye (containing its crystalline lens) would indicate a swelling
of barely 1 mm. if the ophthalmoscope was held } in. from
the cornea.

Size of the retinal image in aphakia. Since the
size of the retinal image of a distant object varies directly as
the distance of the second nodal point from the retina, and
this distance is equal to §’ the first principal focal distance
of the corrected eye, we must find the value of ¥
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In an aphakic eye of normal curvature of cornea
F' =2326597 mm.

If the eye be of normal length it requires a lens
(f"=—"T779393)

at a distance of 137452 mm. from its cornea to correct it for
distance

ol fF - (779393)(23:26597)
d+ f"—F' 137452 — 779393 — 23:26597

c. ' =20-73327... mm.

In a normal emmetropic eye
F' =15498308,

¢ B 2078327 S
I TF 15408308 1oL

It will be found that §’ undergoes a slight variation accord-
ing to the degree of axial ametropia, but for practical purposes
we may consider that a corrected aphakic eye forms retinal
images about one third larger than it did before the extraction
of 1ts lens.

When testing an aphakic eye with test types, this fact!
should be remembered, for what would ordinarily represent a
visual acuity of &, would represent in an aphakie eye a visual

acuity of only 5. |

Means of estimating the refractive condition of
the eye. A. The direct examination of the eye with the
ophthalmoscope. There are three conditions which must be
fulfilled to render this a satisfactory method. The accom-
modation both of the patient and of the observer must be
relaxed, and the ophthalmoscope must be held about } in.
from the patient’s cornea, so that the correcting glasses that
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are required may be placed in the first focal plane of the
patient’s eye. Under these circumstances if both patient and
observer are emmetropic, a distinet view of the details of the
fundus will be obtained without the use of any correcting
glass. For since the patient is emmetropic, his retina lies in
his second focal plane, and the light emerging from his retina
will proceed to the eye of the observer in parallel rays. But
the observer's eye is in such a condition that parallel rays
come to a focus on his retina, hence a distinet image of the
patient’s fundus 1s formed upon it. The weakest convex
glass in the eyepiece of the ophthalmoscope will blur the
image, for the parallel rays which come from the patient’s
fundus will after traversing this lens be rendered convergent,
and hence will come to a focus in front of the observer’s
retina. Similarly if the observer keep his accommodation
relaxed, a weak concave glass will render the light from the
fundus divergent and hence will tend to come to a focus
behind the observer’s retina. It i1s however exceedingly
difficult for a young observer to keep his accommodation
relaxed under these conditions. If he fail to do so, he will
see a distinct image of the patient’s fundus, owing to his
neutralizing the effect of the concave glass by his own
accommodation.

If it is found that on bringing successive convex glasses
before the mirror of the ophthalmoscope, + 20D is the highest
convex glass with which a distinct image 1s obtained, it may
be inferred that + 2D is the glass the patient requires for
distant vision. For + 2D is the lens required to render the
emergent rays from the patient’s retina parallel and therefore
the same lens is required to bring incident parallel rays from
a distant object to a focus on his retina. Similarly should
— 5D be the weakest concave glass with which the details of
the fundus are observed, it may be inferred that a glass of
— 5D will correct the patient for distance.
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Now suppose a case of compound hypermetropic astigma-
tism in which the distance of the cornea to the retina is about
1 mm. too short, and the curvature of the cornea is nmormal
from above downwards but rather flattened from side to side.
In such a case a + 3D glass will be the strongest glass with
which the horizontal vessels are seen distinctly, while a
stronger glass, say + 50 will be the strongest glass with which
the wertical retinal vessels and the lateral edges of the disc
are seen distinctly. The + 3.D glass will render the vertical
meridian of the patient’s eye emmetropic and hence he will
see horizontal lines distinctly, whereas a 4+ 5D glass will enable
him to see distinctly only vertical lines. His correcting glass
will therefore be + 3D sph. 4+ 2D cyl. axis vertical®.

If the observer be ametropic he must subtract the amount
of his own ametropia from the result obtained. Thus if the
observer have 1D of hypermetropia and made the above
observation the patient would require for distance

+ 2D sph. + 2D cyl. axis vertical.

Similarly if the observer have — 2D of myopia, the patient’s
correcting glasses will be + 5D sph. + 2D cyl. axis vertical.

For +3D—(=2D)=+5D.

This is much the readiest method of estimating a patient’s
refraction but it requires a good deal of practice to be at all
proficient at it. Even experienced ophthalmologists cannot
attain the same accuracy in their results, as can be reached
by the next method described.

It 1s important to remember that though the optic disc
1s the easiest object to examine in this way, it is the very
part to avoid in an estimate of a patient’s refraction. For 1t
must be remembered that the optic disc corresponds to the

! It should be noted that in a preseription for spectacles, the axis of the
cylinder is always the plane axis, the ‘‘working axis” or axis of curvature
being at right angles to the plane axis.
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patient’s blind spot, and moreover i1s often on a higher level
than the macular region especially in cases of myopia. Now
it 1s the macular region that embraces the area of most acute
sight and consequently 1s the part that requires accurate
correction. Unfortunately however there are no fine blood-
vessels or other markings to serve as good test objects in the
macular region. In addition to this unless a mydriatic has
been previously employed, the pupil at once contracts when
the light from the opthalmoscope mirror falls on the macula.
There are almost always some fine horizontal blood-vessels
passing from the optic disc outwards towards the macula,
and these should be made use of by the observer as test-
objects.

B. Retinoscopy. (Syn. Skiascopy, or Shadow Test).

This 1s the most accurate test for estimating the static
refraction of an eye. It is usually carried out in the
following way.

The patient is seated in a dark room with his back to
a convenient form of artificial light—preferably an Argand
burner. This light 1s placed some little distance behind the
patient and just above the level of his head. The observer,
provided with a perforated concave spherical mirror of 25 em.
focus, stations himself in front of the patient about 150 cm.
in front of the light. He now reflects the light into the eye
he wishes to examine, and looking through the central perfora-
tion or sight-hole of the mirror he will obtain the ordinary
red fundus-reflex from the patient’s eye. On slightly rotating
the mirror from above downwards the illumination may
appear to move across the pupil either in the same or in
the reverse direction according to the refraction of the eye
examined. A little consideration will show the reason of
thas.

If the light be represented by 4 (Fig. 127), 150 em.
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distant from the concave mirror of focal length 25 cm., a real
mverted 1mage of the light will be formed at @, 30 cm. from
the mirror, for

ol AR R T DR e )
ElaE 525 T 150 30
!
/;f 6.
. 7= !
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The light from this image will illumine a small area of
the patient’s retina at b; in fact an inverted image of a will
tend to be formed at b Now on turning the mirror slightly
downwards, the image at « will move downwards to «'.
Consequently the illuminated area on the patient’s retina
at b will move upwards to b. Whether the patient’s eye be
myopic or hypermetropic the illuminated area on his retina
will move in the reverse direction to the mirror. If the
patient’s distance from the observer be less than that of his
far point, the observer will see a magnified erect image of
the patch of light through the patient’s pupil. Suppose the
patient be 1 metre from the observer; then if the patient
be hypermetropic, or even myopic but to a less extent than
1D, on turning the mirror, the observer will see the light
move 1n the reverse direction across the patient’s pupil. If
the myopia is greater than 1.0 an inverted image of b will be
formed at the patient’s far point, which is situated somewhere
between him and the observer. This inverted image will
move in the reverse direction to b and therefore in the same
direction as that in which the mirror is turned.
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Hence in estimating a patient's refraction accurately by
retinoscopy the following method must be adopted. Some
mydriatic (e.g. homatropine) that will temporarily paralyse
the muscle of accommodation must be first instilled into the
patient’s eyes. When his pupils are fully dilated he must be
placed as above described with his back to the artificial light.
The observer at a distance of at least 1 metre from him
directs the light to one of his pupils, the patient being
enjoined to gaze at the mirror. If the observer, on turning
the mirror slightly from right to left, sees the red reflex in
the patient’s pupil move also towards the left, the eye is
certainly myopic in the horizontal meridian. A dark shadow
will be seen to follow the light, and if preferred the course of
this dark shadow may be noted across the patient’s pupil.
Successive concave glasses are now placed in the trial frames
before the patient’s eyes until one is found with which the
shadow just moves in the reverse direction. Suppose with
— 2D the shadow moves in the same direction as the mirror,
whereas with — 225D the shadow moves against the mirror;
we know that with — 2D the patient’s far point is just
situated on his side of the observer. If now the observer be
a little more than 1 metre from the patient we may expect
that — 2D, — 1D, or —3D will correct his horizontal meridian
for distance. If the same observations are made when the
mirror is turned from above downwards, we may conclude
that no astigmatism is present and that — 3.0 sph, will correct
the eye for distance,

It is important that the patient should keep his eye fixed
on the mirror, for then we are sure of correcting his macular
region for distance. In myopia the macular region almost
always bulges backwards behind the level of the rest
of the fundus; hence a stronger concave glass will be
necessary to correct the macular region than the adjoining
parts of the retina. In hypermetropia there is usually no
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posterior staphyloma as it is called, so that if the patient relax
his accommodation by directing his attention to some distant
object, a fairly exact estimation of his refraction may be made
even without the use of a mydriatic.

If astigmatism be present, the illuminated area on the
retina at b will form an oval. In the usual form the cornea
1s more curved from above downwards than from side to side.
The first focal line will therefore be horizontal, and if it be
situated nearer the retina than the second focal line, the
major axis of the oval will be horizontal.

Let us suppose that with +2D before the patient’s eye
the shadow just moves with the mirror when it is tilted from
above downwards or rotated about a horizontal axis. An
‘inverted real image of the horizontal focal line is then formed
between the observer and the patient, and the shadow will
move at right angles to its direction. If attention be paid
to the lateral margins of the image while the mirror is
rotated about a vertical axis, the lateral shadows will be seen
to move in the opposite direction to the mirror.

Let us suppose that +4D has to be put before the
patient’s eye in order that these lateral shadows shall
also move in the same direction as the mirror. Then the
difference (4D —2D) or 2D is the amount of astigmatism
and the correcting glass will be + 1D sph.+2D cyl. axis
vertical.

It may be noted that from the appearance of the edge of
the shadow and from the rate of its movement a rough
estimate of the degree of ametropia may be made. Thus
when nearly —1D of myopia is present a fairly sharply de-
fined image of the light will be formed bounded by a dark
area with a fairly sharp edge. This will be seen by the
observer as a real inverted image if the eye be myopic more
than — 1D, and as a virtual erect image if hypermetropic, or
myopic less than —1D. Hence if the ametropia be not far

P. 0, 24
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removed from — 1D the edge of the shadow will appear fairly
well defined. Also the greater the ametropia the nearer to
the nodal point will the image of the illuminated patch on
the retina be formed. If then the ametropia be of high
degree, the shadow which 1s seen on slightly rotating the
mirror will have ill defined margins and will move slowly.
As the ametropia approaches correction by glasses placed in
the trial-frame on the patient, the edge of the shadow will
become more sharply defined, and its movements will be more
rapid. :

Some ophthalmologists prefer using a plane mirror in
place of a concave one for retinoscopy. In that case since
the image formed by a plane mirror is virtual and erect, it
will move in the opposite direction to the mirror. The
shadow therefore moves with the mirror in hypermetropia
and against the mirror in myopia when a plane mirror is
used. .

If the ametropia be of high degree some details of the
fundus may be seen, when the observer is at a distance of
1 metre or so from the patient, and reflects the light into his
eye. It is clear that if the eye be highly myopie, an inverted
image of the fundus will be formed between the observer and
the patient. If the observer now moves his head from side
to side, the retinal vessels or other details that he may see
will appear to move in the reverse direction.

If the eye be hypermetropic, the observer may see an
erect virtual 1mage of the fundus behind the patient’s eye.
The retinal vessels will therefore now seem to move in the
same direction as the observer’s head.

The angles o, y and «, the visual line and the
fixation-line. As we have said before (p. 333) the surfaces
which bound the different media of the eye are not accurately
centred ; that is to say the several centres of curvature of the
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surfaces do not lie in one straight line, We have therefore to
consider in some detail certain lines and angles which have
received specific names in ophthalmic literature.

In Fig. 128 the line AA'K"¢" represents the optic axis,
F represents the fovea, O represents the object viewed. What

ﬁ:g.128~

is called the visual line consists, strictly speaking, of two parallel
lines, one OK' drawn from O to the first nodal point, the other
K"F drawn from the second nodal point K" to the fovea. It
will be noticed that the visual line cuts the cornea on the inner
side of the optic axis in the diagram. This is always the case in
emmetropia and hypermetropia. Thus if a hypermetrope view
some distant object so that his visual lines are parallel, his optic

24—32
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axes will diverge. This divergence is less in myopia, while in
extreme degrees of myopia the optic axes may even converge.

Now it is found that slight movements of the eyeball may be
considered as movements of rotation about a fixed centre ./,
which is called the centre of motility. The position of this
centre varies slightly in different eyes. Perhaps we may say
that generally it lies about 2 mm. behind the centre of the optie
axis, that 1s about 13-4 mm. behind the corneal,

The fixation-line is the line J/0 joining the centre of motility
to the object viewed.

The angle v is the angle OMA between the fixation-line and
the optic axis. It may, as indicated in the diagram, attain a
positive value of 10° whereas in extreme degrees of myopia it
may be negative.

The angle a was the term used to denote the angle OXE
between the visual line and the major axis of the corneal
ellipsoid when the cornea was thought to be of that shape. We
now know from Dr Sulzer's investigations that the shape of the
cornea is not that of an ellipsoid of revolution and that it has no
axis of symmetry. The angle a is however frequently referred to
in books on ophthalmology, so though it has now no definite
meaning some reference to it is necessary.

The angle « is of importance in measuring the angle of
strabismus or deviation of the eye. It is not easy to determine
at what point the optic axis cuts the cornea, whereas the point
of the cornea opposite the centre of the pupil is easily seen and
therefore forms a simple point of reference from which to measure
deviations of the eye. The angle « is the angle that the fixation-
line makes with the normal to the cornea that passes through
the pupillary centre. As the pupil is usually rather to the inner
side of the centre of the cornea, the angle « is not equal to the
angle vy, but being much easier to measure than y, is far more

! Landolt gives 1373 mm, behind the centre of the cornea, which would
be 232 mm. behind the centre of the optie axis. Donders gives from
175 mm. in myopia to 2'17 mm. in hypermetropia as the mean distance
between M and the centre of the optic axis.
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convenient to make use of in the measurements of strabismus.
For the way in which such measurements are made, books which
deal with the subject must be consulted.

When an object is viewed at a distance for instance of
1 metre, it 1s essential for accurate binocular vision that a
distinet image of the object should be formed on the macula
of each eye. The distinctness of the image is attained by
the exercise of the focussing power or accommodation of the
eye, or, if that 1s insufficient, by means of the spectacles
that may be necessary. In order that an image of the
object may fall on the macula of each eye it 1s necessary
that the fixation-lines of both eyes should meet at the object.
Both eyes will then converge towards the object. It will
be advantageous to consider accommodation and convergence
separately.

Accommodation. Langenbeck, Donders, Cramer and
Helmholtz all found that when attention is directed towards
near objects, the anterior surface of the lens becomes more
convex. The refracting power of the eye is in this way
increased, so that the image of the object is formed on the
retina. Until recently 1t was supposed that this change of
shape 1 the lens was brought about in the following way.
The longitudinal fibres of the ciliary muscle arise from the
junction of the cornea and the sclerotic and are inserted
into the choroid. When these fibres contract the chorcid
with the ciliary processes is drawn forward, and the sus-
pensory ligament is relaxed. The tension of the suspensory
ligament and the anterior capsule of the lens being
diminished, the anterior surface of the lens from its
elasticity bulges forwards, and so it becomes more convex.

Recently however Tscherning has shewn that the lens
of the eye during accommodation has a shape that cannot be
accounted for by this theory. While the central part of the
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lens is more convex, the peripheral part, behind the iris, is
very much flattened. He has caused a similar alteration of
shape in a lens that has been removed by increasing the
tension of the suspensory ligament. According to Tscherning
we must suppose that the contraction of the ciliary muscle
increases the tension of the suspensory ligament. The effect
of this will be that the peripheral parts of the lens are
flattened, while the central part in front of the solid nucleus
will become more curved. The cortex
of the lens 1n young eyes must be
considered as a plastic semifluid ma-
terial that during accommodation is
partially pushed aside by the bulging
forwards of the more convex nucleus.
The loss of accommodation in old age
i1s due to the cortex of the lens be-
coming less plastic.

Convergence. If the distance of
the object, as compared to the distance
between the eyes, may be considered
infinite, the fixation-lines are parallel.
In Fig. 129 MM’ represent the centres
of motility of the two eyes, O the
object situated in the middle line at
1 metre’s distance from either; MN,
M’'N’ represent the parallel fixation-
lines when viewing some infimitely
distant object in the middle line.
Then NMOQO is the angle of conver-
gence which each eye undergoes in viewing an object at O.

oo B
But NMO=BOM =sin 0M"

Now BM is half the distance between the centres of the
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eyes, which of course varies with different people. When
OM 1s 1 metre the angle NMO 1s called one metre-angle
and is denoted by 1 m.a. If the object be I metre off, the
angle of convergence is 3 metre-angles or 3 m.a. It is true
that the angle of convergence is now rather more than three
times the angle of convergence required for viewing an
object at the distance of 1 metre, for angles are not simply
proportional to their sines, but they are so nearly so within
the limits that this notation is used, that the error hereby
introduced 1s negligible.

In adults the average interocular distance MM’ 1s 64 mm.,
so that the average value of BM is 32 mm.

: 3
- L L a1 L
.>. 1 ma. or sin 1(}{}0'1 90" 1%,
# 3(32) & i i
N~ =
and 3 m.a. or sin 1000 5° 30" 82",

Now if a case was presented in which the power of
accommodation was normal although the power of (positive)
convergence was completely lost, the patient would complain
that when reading music at the distance of half a metre he
saw double. Since his fixation lines remained parallel, the
point for which he was focussing his eyes would form two
distinet images on his retina, but they could not fall on the
macular region of each eye respectively. What means have
we to enable him to have macular images of his music in
each eye while his fixation lines maintain their parallelism ?
Clearly an abducting prism of 2 m.a., the deviating angle of
which is 3° 40, must be placed before each eye. Such
prisms with their edges directed outwards towards the
temples worn as spectacles would so deviate the course of
the incident light that it would enter the eyes in the same
direction as the fixation-lines, and so an image of the object
would be formed on the macula of each eye, and the object
would therefore appear single to the patient.
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Similarly in the case of a patient who could not entirely
relax the convergence of his eyes, adducting prisms would
ve required for binocular vision at a distance. Suppose that
when his convergence is relaxed, his fixation-lines meet at a
point 1 metre off. He has then 1 m.a. of convergence, and
to correct his diplopia for distance he would require adduct-
ing prisms of 1 m.a., or prisms of 1° 50" d. with their edges
inwards must be mounted before both eyes.

Suppose the patient had required concave glasses of
— 4D for correcting his refraction for distance 1t would be
found that a stronger prism than 1° 50’d. would be required
to correct the deviation of his eye.

We shall therefore have to determine what 1s the deviation
induced by the combination of a lens and a prism.

Deviation of Prismospheres. In the figure (Fig. 130)
AA’ represents a lens with its optical centre at 0. The
part AP may be regarded as a decentred lens with its
geometrical centre at D distant DO from its optical centre
or as a combination of the prism (marked in dotted lines)
with a convex lens. Such a combination may be called a
prismosphere. A narrow pencil incident in the direction
SD will be deflected towards F, and if € be the angle of
deflection 6 = OFD.

1 There are several different methods of numbering prisms, and some
confusion has resulted therefrom. It will simplify matters if we consider
only the effect of a prizsm, and number it either according to the angle of
deviation it induces when in the position of minimum deviation, or according
to the system of metre-angles. The apical angle of the required prism may
be sufficiently exactly obtained by the nse of the simple formula d=(ux-1) 4
(p. 154).

Thus 1 ma.=1°50 1"d. =38° 23’ 44" 4 if u=1-54.

In other words, a prism that produces a deviation of one metre-angle or
of 1° 50" 1” would be formed by a prism of glass whose index of refraction
was 1:54, the apical angle of which was 3° 23’ 44",
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If [ denote the amount of decentration DO and if f denote
the second focal distance of the lens, tan 8 = f,—g - E, or if the
J
— xl
1000 °
When € is small no great error is introduced by considering
@ proportional to tan 6.

Then = — 2] tan™ 001 = — 2] x 3"4376.

dioptric strength of the glass be denoted by «, tan 8 =

S

Ff'g. 130

F

Thus if a 10D lens 1s decentred inwards 2°6 mm. 1t will
have the same effect as the combination of a + 10D lens
with an abducting prism the deviation of which is

— 26 x 34376 =— 1" 29"377.
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If the lens were concave # would be negative, so 8 would
be positive, and the prism would be adducting in funetion.

This means that a lens decentred ! mm. has the same
effect on the course of light that passes through it, as a
prismosphere the focal length of which is £, and the deviation

@ or tan™ E

i

An eye however which is placed behind the prismosphere
no longer undergoes the deviation of the prism. An eye, for
instance, which is viewing some distant object in the direction
CD, will after the interposition of the prismosphere have to
diverge in order to retain the image of the objeet upon its
macula. If C represent the centre of motility of the eye,
CD represents the original direction of its fixation-line
while U/ represents the final direction it must adopt after
the interposition of the prismosphere. Let the angle DCE
through which the fixation-line deviates be denoted by .
It is easily seen that in this case x > @ the deviating angle
of the prism.

For 6= OFD = CDF < y.

It will be found that only under certain conditions will
x be equal to 6.

If we regard decentration inwards as the positive direc-
tion, @ is positive or adducting if £ is positive as in concave
lenses ; whereas if the decentred lens is convex, f is negative
and @ 1s also negative, or the equivalent prism 1s an abducting
prism,

In order to investigate the relation of y to  we shall
find it convenient to express @ in terms of the decentration
of the lens considered, and then by a simple geometrical
method we shall find a formula which will give the relation
approximately.

Let us consider the case of a concave lens, of focal length
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FO or f, its position represented by a principal plane DM
which passes through its optical centre 0. Let (' represent

(=]
=
M S 0 \¢ R
Fig 131.
A
G Cc

the centre of motility of the eye situated DC' (or £ mm.)
behind the lens. Then D represents the part of the lens
opposite the centre of the eye, and the lens may be regarded
as being displaced or decentred DO or (I mm.) inwards.
Let P be an object situated in the middle line between the
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eyes, a virtual image of P will be formed at . The eye
behind the lens will therefore direct itself towards the image
at () when viewing the object P through this decentred lens.
If CD represent the direction of the fixation-line of the
eye when viewing an object immediately in front of it, CE
represents its direction when viewing the image . The
angle of convergence vy is therefore DCE. Let PM and QS
be denoted by p and q.

y 08 _ OM
LN OW Q—S—Pﬂf—.
. 08==2 ) Oﬂ—g‘i(ﬂu 1}0)—‘3(1}111_3}

Let DM be dem}ted by m

DS = DO+OS_£+q(m E}*--Pfl+pm

Since the angle y or DCEh CQG
ED (G DS

tan ¥ or Clj:QT?:QS-i—_ﬁﬂ”
P — ‘?£+Q

i L S al P

. tany = ey el T (1).

Now if the incident pencil from P be not too oblique the
formula

1 l 1
- ——+—=0 holds good
pa 8
R i= Jp
—=—2=, and ¢="—,
F- g T=F+p
o 2 pl+ fm
mxX=i k. T k(o)
If p be infinite, ¢ = f, and it is seen from (2) that
tan y = L ..................... (3)



DEVIATION OF PRISMOSPHERES. 3581

Whatever the value of p 1t 1s evident that the sign of
tan v and therefore of ¥ must depend on the sign of / in the
case of a concave lens.

In other words, the decentration must be positive or
inwards for adaptation to a converging fixation-line, but
negative or outwards for a diverging fixation-line.

Now consider the case of a convex lens with its optical
centre displaced ! mm. inwards. The second focal distance
of such a lens will be negative so that on assigning the
proper negative value to fin formulas (2) and (3) the direc-
tion of the fixation-line of the eye will be given; or if the
direction of the fixation-line of the eye 1s fixed, the appro-
priate decentration of the lens can be found.

In these examples and in the tables following, the value
assigned to m 1s 32mm., being half the average distance
between the eyes. The distance between the position of the
lens and the centre of motility of the eye is denoted by £,
which when spectacles are placed in their proper position
(13°7...mm.) in front of the cornea is

137... +134... =27 mm. approximately.

Ex. A patient with an extreme degree of hypermetropia
requiring + 10D for correcting his sight for distance, complains
of discomfort when reading at }m. distance with the same
glasses. His accommodation is equal to + 60, v.e. he can read
test types at 6 metres distance with either eye alone when
provided with + 10D or with any glass between that and + 4D,
Explain and state what should be done to relieve his discomfort.
Clearly it is not due to the refractive condition of his eye; for
reading at a distance of 1 m. requires only 30 of accommodation
when wearing the proper correction for distance. This patient
has 6D of accommodation and symptoms of accommodative
asthenopia only arise when more than 2 of the total power of
accommodation is continuously maintained. On examination it
is found that his spectacles are normally centred for distance,



382 EXAMPLE.

t.. that when his fixation-lines are parallel they intersect his
spectacles at their optical centres.

The amount of convergence required when reading with these
spectacles a book at § metre from the centre of motility, is given
by the formula

pl + fm
tan x = —— =
X Jp+k(p+f)

Here 1=0, f=-—100, p=2333'3 — 27 mm. =306 mm. approxi-

mately,

NN (~100) (32) 3200
XS ek (p+/f)  (=100)(306)+27 (306 —100) 25038

S x=tan™*-1278... =7°17'... which is about 4 m.a. of con-
vergence.

The patient therefore when provided with these glasses for
reading has to exert 3.0 of accommodation and about 4 m.a. of
convergence, A normal person can only maintain 3 m.a. of
convergence associated with 30 of accommodation, although he
may by a special effort for a short time increase or relax his
convergence beyond this point.

The patient is therefore presumably suffering from museular

asthenopia due to the improper position of the optical centres of
his glasses for reading.

If the relation between his functions of accommodation and
convergence is normal we may expect that relief will be given by
so displacing his glasses that when reading, his ocular fixation-
lines may pass through the optical centres of his glasses. The
result will then be that the angle of convergence is 3 m.a. when

exercising 3.0 of accommodation

tan 3 m.a. or tan y= gg = Fi :

S l=ktan 5° 30"... =27 % '0963 = 2'6... mm,

We find that all discomfort is relieved when his glasses are
displaced 2:6 mm. inwards, we consequently order him for reading
spectacles with + 10D lenses decentred inwards 26 mm.

It is important to remember that whenever strong glasses,
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whether convex or concave, are required for reading or close
work, they should be decentred inwards to this amount, or
considerable discomfort may arise. Neglect of this precau-
tion is a frequent source of trouble with aphakic patients
who require + 13D or + 15D to read with.

Reading glasses should also be inclined downwards 15°
as the eyes are rotated downwards about this amount when
using them. If this is not done oblique centrical refraction
will occur, which, if the lenses are of higil refractive power,
will oceasion much discomfort from the astigmatism induced.
(p. 280.)

An examination of the formula (3) for distance shews
that in the case of a convex lens decentration inwards must
always be given for diverging fixation-lines, and decentration
outwards for converging fixation-lines,

! ; ;
For tan y = T and with a convex lens f is always nega-

tive and in all the cases that can arise in practice f will be
numerically greater than %, therefore the sign of x must be
opposite to the sign of [.

Similarly in formula (2)

pl+ fm
tan v = — —,
X fp+k(f+p)

when a convex lens i1s under consideration the denominator
J(p+k)+pk 1s always negative. If then [ be also negative
x Will be positive ; x will also be positive even if [ is positive
provided that fm is numerically greater than pl.

If the object viewed is immediately in front of the eye
m=0; if further the object is placed at the first principal

focus of the convex glass, f'=— p and the expression for tan y

AN .
becomes z which is the expression for tan @ where @ is the

angle of deviation of the prism which is equivalent to the
decentration of the lens. This is the only case in which the
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effect on convergence of a prismosphere is equal to that of
the equivalent prism with plane sides.

It will be noticed that whether the lens be convex or con-
cave, tan y =0 when pl/=— fm, and also that tan = tan 3 m.a.

when %: tan 3 m.a. Tables II. and III. have been drawn up

on these two data with the assumption that the tangents
of the small angles considered are proportional to the angles
themselves. Table I. has been drawn up from the formula
l
tan y = A
correct will be found accurate enough for all practical pur-
poses, as they never involve an error as great as 1 per cent.

These tables though only approximately

Examples illustrating the use of the Tables.

Table I. A hypermetrope of + 8D has an esophoria of 1 m.a.
when his accommodation is relaxed; t.e. his eyes tend to con-
verge to a point 1 metre from him. This error of convergence
will be corrected by decentring the + 82 lens 3:1 mm. outwards,
or what amounts to the same thing, by associating with it a
prism of 1° 26'd. (not 1° 50') edge inwards.

Table II. A patient requiring + 120D glasses for reading
who can only maintain convergence for a distance of 1 metre
(2 m.a.), must have his glasses decentred 46 mm. inwards (or
associated with prisms of 3° 11’ d. edges outwards).

Table ITI. A myope requiring — 60 for reading, who can
only maintain 2 m.a. of convergence, must have his glasses de-
centred 4 mm. outwards, or combined with prisms 1° 24" edges
outwards.

Again, the figures given in the tables may be used to give a
rough estimate of the relative range of convergence. Suppose a
myope using — 5D for reading at } metre’s distance can obtain
binocular vision with 4° d. prisms held edge inwards before both
eyes and also with abducting prisms of 12° d. before both eyes.
His relative range of convergence for 1 metre when provided
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with — 570 glasses is not however 16°d. but about 1}?3 or
bout 13° 9, 7.e. a little over 7 m.a. which is sin—! 32_:: 7
abou y B 5% 1000 or

12" OT.

It is sometimes found that patients who require different
correcting glasses for each eye, complain of a curious difficulty
in using them which depends on this property of decentred
lenses. For example, suppose a hypermetrope requires + 1.0
for his right eye and + 4D for his left eye. With these he
may see satisfactorily when the visual line of each eye passes
through the optical centre of the glass. On turning his eyes
from side to side say 30° his visual lines will traverse his
spectacles at points distant about 156 mm. from the optical
centres, If he be viewing a distant object situated 30° to
the left, in order to avoid diplopia his left eye must deviate
outwards nearly 31° while his right eye must deviate inwards
more than 34°, Discomfort may therefore arise from the 3°
of convergence entailed, but the discomfort will be much
more distressing on looking upwards or downwards. A dif-
ference of 1° in the elevation of the two eyes 1s intolerable to
most persons, Double focus glasses have been suggested to
obviate this difficulty, but they are seldom necessary for this
purpose, as such patients soon acquire the habit of turning
their heads rather than their eyes so that they always may
look through the central parts of their glasses.

If double focus glasses are ordered for anisometropic
presbyopes, so that the upper segment of the glass 1s adapted
for distance, while the lower and smaller segment gives the
correction for reading-distance, it 1s most important that the
reading segment should be accurately centred. Since when
reading the eyes converge 3 m.a., and are rotated downwards
about 15°, the optical centres of the reading segments should
be displaced 26 mm. inwards and 7°2 mm. downwards.

P. 0. 25
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CIRCLE OF LEAST CONFUSION. 389

Circle of Least Confusion. A few words may be
added about the circle of confusion. We have seen (p. 113)
that the size of the circle of confusion depends on the
cross-section of the reflected or refracted pencil in the
neighbourhood of the bounding surface. But the size and
shape of this cross-section depends on the size and shape of
the receiving surface. Practically we have only to consider
the cases when a real image 1s formed at the back of an eye
or at the back of a photographic camera. If the position of
the focal lines is known, as well as the distance of the
camera from the bounding surface and the size of the stop
used for the lens, the size of the circle of confusion can be
calculated.

Let us consider the size and position of the circle of
least confusion in the case represented in Figs. 33 and 35
for an eye at K, distant K P or [ from the point of incidence
of the axial ray of the eccentric pencil considered. Now if
R, be the radius of the pupil in the primary plane it is
easily seen that

QP _ R, R,
P FX FP-—KP

L
or —=
Ul ——

1*eﬂectecl pencil at P,

or « 18 half the thickness of the

Similarly if R, be the radius of the pupil in the secondary
plane (Fig. 35)

I 2 R2 R,
FP F}f F,P—KP’
b i
or —_——
Vo Up— I

Now in all ordinary cases the pupil is circular so that
=5



390 CIRCLE OF LEAST CONFUSION.

v (e +b)
But DP or z= m:'ﬂ+bu from (1) p. 113.
Rm
i ( A 3) _ 20— (v + v)
Ruw, + Ri S n+v.—2
v, — —

Also if » be the radius of the circle of least confusion
ﬂb (v, — 1"1) E(v,—v)

av, +bv, v+ v, — 20

The same formulae will be found to hold good in the case
of refraction. For instance, if in Fig. 63 PR denote the
axial ray of the astigmatic pencil, entering the pupil of the
eye at R, and if a represent half the thickness of the
refracted pencil at P, since RP =1 and is negative,

g, R e R i R
EIH-F;_.IJ-FPR_FIP_.RP—'U]_JJ
and -Ei: L .
v, U —

Therefore as before,

_ 290, — (v 4+ vo) £ (v, — )
— vl_l_ﬂgﬁzg &nd’r‘ ‘E,ll-f-'ﬂg—'zg

In health the value of R, the radius of the pupil, varies
from about 1'2 mm. to 2'8 mm. The pupil contracts on
exposure to bright light, and during accommodation for near
objects. Knowing the size and position of the circle of least
confusion, we can easily find the size of its 1mage formed on
the retina. This has an important bearing on the manu-
facture of optical instruments. In a fine instrument the
circle of least confusion corresponding to each point of the
object will form an image on the retina, that is not greater
than the sectional area of a retinal cone.

ol = K 5 e b w



QUESTIONS. 391

QUESTIONS.

(1) Two hypermetropes require + 5D for seeing distinctly
test types at a distance of 6 m. The hypermetropia of 4 is due
to a defect of curvature, that of B is due to a defect of length.

Compare the sizes of their retinal images.

(2) A fragment of glass is imbedded perpendicularly in the
vitreous. The media are clear enough for the following ob-
servation to be made with the ophthalmoscope. The fundus is
distinctly seen with + 1.0, except the part behind the glass which
requires + 1-5.D.

Estimate the thickness of the glass if its index of refraction
is 1-54.

(3) An axial myope requires — 200D to correct him for
distance. After the removal of his lens what correcting glass
will he require for distance, assuming that the curvature of his
cornea has undergone no alteration after the operation.

(4) It has been declared that four of Jupiter’s satellites have
been seen with the unaided eye. Is this optically possible ?

Given that Jupiter's radius =44100 miles, distance of the
so-called first satellite from Jupiter’s centre = 262000 miles, mean
distance of Jupiter from the sun =483 million miles, which may
be taken as the mean distance of Jupiter from the earth.
Diameter of a foveal cone ‘002 mm,

(5) An observer’s eye is 11,/2 ecm. above some water in a
basin, and 33 cm. from it in the direction in which he sees the
point of a needle that is lying at the bottom. The water is
147 em. deep. The radius of the pupil is 1'6 mm. Find the
position and radius of the circle of least confusion, and state
whether the needle point will appear blurred. Diameter of a
foveal cone ‘002 mm,



392 MISCELLANEOUS QUESTIONS.

MISCELLANEOUS QUESTIONS.

2
(I) The equation y=asin f (vt — @) represents a wave dis-

turbance in which v is the velocity of propagation, A the
wave-length, y the displacement of a particle from its position
of rest at the time ¢, and = the distance from the origin of the
same particle, The amplitude of the vibration is denoted by a,
it is the greatest displacement of any particle from its position of
rest.

Prove that such a disturbance is periodic both in space and
time. (p. 3.)

(2) A myope who can only see distinctly at a distance of
24 ins. sees an image of his eye in a concave mirror of focal
length 5 ins. What is his distance from the mirror, and what is
the size of the image !

(3) Where must a hypermetrope whose far point is — 24 ins,
be situated in order to see an image of his eye in the same
mirror without exerting his accommodation ? What is the size of
the image?

(4) A convex lens of focal length f'is placed at the centre of
curvature of a concave mirror of radius r; so that the axes of
the two coincide. If light diverging from a point at the distance
p from the lens, after refraction through the lens, reflection at
the mirror, and a second refraction through the lens, emerges as
a pencil of parallel rays, prove that

1
— +
p

)

+ == 0.
7

=21 b2



MISCELLANEOUS QUESTIONS. 393

(5) The focal length of a biconcave lens, whose refractive
index is 2, is 5 ins. Prove that the distance from the lens of the
image of a distant object formed (i) by reflection at the first
surface is 2} ins., (ii) by reflection at the second surface and
refraction at the first surface is — 1} ins.

(6) Trace the caustic formed by the refraction of a plane
wave-front of light by a + 10D planospherical lens, of which the
thickness is 64 mm. and p=1'54; (i) when the plane surface
faces the incident light, (ii) when the curved surface faces the
incident light.

(7) Trace the caustic formed by the refraction of a plane
wave-front of light by a + 10D biconvex (n=1'54, ¢ = 25'6 mm.).

(8) The punctum proximwm is 100 em. from the anterior
nodal point in a hypermetropic eye and 5 cm. from the same
point in a myopic eye. Give the magnifying power of a + 10D
lens placed 1'5 cm. in front of the nodal point in each case.

(9) If in the last example the punctum remotum of the
hypermetrope is 25 cm. behind the nodal point, and the punctum
remotum of the myope is 7 em. in front of the nodal point, give
the power of accommodation of the two eyes in terms of a lens
situated at the nodal point. '

(10) Shew that the action of an opera-glass may be compared
to that of holding a strong convex lens at a little distance from
a very hypermetropic eye.

(11) Trace the caustic formed by the refraction of a plane
wave-front of light at a spherical surface whose radius of
curvature is — 5. (u=4.)

(12) A hollow spherical shell of glass (p=2) is filled with
water (n=3). Shew that a pencil of parallel rays after passing
through the whole will converge at a distance from the surface of

i—g—: where ¢ is the thickness of the

glass shell, and = is the radius of the sphere of water,

the glass equal to (r + t}i-
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(13) A transparent sphere, radius @, is silvered at the back,
and there is a speck within it, halfway between the centre and
the silvered side. Shew that the distance between the images
formed (1) by one refraction, (2) by one reflection and one
Epzm

B-m)(p=1)

(14) Shew that if a star is seen eccentrically its retinal
image will cover more than one cone. For instance, suppose the
radius of the pupil is 1'6 mm., and the angle of incidence is 10°,
find the radius of the circle of least confusion on the retina.
The diameter of a retinal cone (outside the macula) is ‘006 mm.

refraction is



ANSWERS.

CHAPTER I

(1) The angular velocity is 2im. In ¢ seconds an angle a or 2nwt
is described. .:. the pencil of light describes an angle of 2a or 4art.
But since this angle is small, its circular measure is approximately

S§'_ 13085 013085
T A [ e Y
Now
2RM BarRM 8x256x610xw
e e 013085 = 299,941,010 metres per second.
(2) 1-000294,

(3) Velocity in water, 13982525 miles per second, in the crown
glass 124289°2 miles per second.

(4) -00002315 ins.

(5) The statements are correct ; the reasoning is unsound. Light
cannot be said to have colour, until it reaches the percipient organ ;
and the wave-length of any light on reaching the retina depends on its
velocity in that medium (z.e. on the index of refraction of the percipient
structures) no matter what has been its previous course.

(6) Draw p@ parallel to C'7, meeting TE in ¢,

Then pe _pQ pE_CT CE_CT _ Eﬂ
EK pE'EK CE ED ED V,

Therefore the hemispherical disturbance in the second medium
originating from p will be of radius p@ in the time that the dis-
turbance in the first medium has taken in passing from K to .

Since L EQp=cL ETC,

ET, which is a tangent at 7' to the circle of radius 7, must also be
a tangent at ) to the circle of radius p@.

(7) See p. 147.
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CHAPTER II.

(1) 45 feet. (2) 70 feet.

(3) The quantity of light L falling on the surface S illuminates it
with intensity 7; the same quantity of light illuminates another
surface S’ with intensity /', and L is constant. ... SI/=8'7.

I_5_m?_a
I 8 =2 d'%
by )

If d= I, I = ;FE .

(4) The electric light is 900 times greater than the gas-light.

(5) (i) The shadow cast by the gas-flame will be approximately
8 times more intense than that cast by the electric light.

(1) 7200 : 1 approximately.

(6) 239526 miles approximately.

CHAPTER 1IV.
(1) 1ft, 54, 76

(2) Three images are seen. The third image is due to two re-
flections and undergoes the last reflection at the mirror remote from
the object,

(3) Seven images when a=45°. One image when a=135°. Two
images would be seen if the angle subtended at €, between the observer
and the mirror remote from the object, were less than 60°.

(4) The last reflection occurs at the mirror remote from the object.

CHAPTER V,

(1) A real inverted image 2 em. in height is formed 30 cm. from
the mirror.

(2) 24 ins., — 8 ins., — 56 ins,
(3) 10 cm. (4) -6 ins.

(5) The candle is 6+ ins. from the mirror, the image is 11 times
the height of the candle.

(6) 9:06... mm.
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CHAPTER VI

(1) #»,=14 ins.,, ¥,=6 ins., x=3 ins., K=§ ins.
iR Y . O R_E"__iﬂ

(E:J 1:"1— —4 3 ’E?E—T, & =§, i :
v f 7
(3) xz?’g-a, Rz%ﬂﬂ. (4) a= —54; ins.

(6) «=-02025 cm., X7="01519 cm. nearly, R='00091... cm. .

CHAPTER VII,

(1) 40° 42’ 28", 2 J2

(3) ¢<30°. (5) 154.

(6) Left prism 1° 44’ d. edge out. Right prism 2°d. edge out and
up, its base-apex line inclined at an angle of 30° to the horizontal.

CHAPTER VIIIL

(3) (i) 01512287. (i) ‘014897579.... Total ‘03001876....
(4) (@) *022047244.... (i) ‘027649769.... Total 04968944....
(5) 6

CHAPTER IX.

32743

Y = W:T'Eﬂiﬁ... ins., #="0004065 ins. nearly.
" [ {

CHAPTER X.
(1) When p<r.

(2) (i) r=—41§ mm,, (i) »=974 mm., (iii) 5,:5.
I (3) g=—22mm., p=165 mm. g
(4) (i) g=2r; d.e. the image is at the distal surface, (i) g= 53‘.

(5) (i) ¢g= —2r. The image is at a diameter’s distance on the side
of the sphere nearest the observer.

= 107
. (i1) g=-5"
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CHAPTER XI.

(1) #=-—108 ins., r,=108 ins, (2) r,=54 ins.
(3) g= b g=—T2ins,
(4) g=-—17"51ns,, 1=—1'75 ins.

(6) (i) 48%, (11) 43%, (iii) 50.
6) @) 3%, (i) 3y, (i) 2.

CHAPTER XIIL

(1) Ef — f in front of the stronger posterior lens.
(2) ‘f{ g in front of the posterior lens.

2] 41
(3) H | 3f.l' l‘ R"

:?*

(4) f.=—84 cm. ; 5 cm. in front of the concave lens.

CHAPTER XIII.

T 1(#4"1"*’"&3‘
(1) When p> T

CHAPTER XIV.
Fl ;
(1) 'ITE:I'
(2) The lenses should be inclined 19° 28’ 16” from the wvertical
plane the focal length —86°5... mm., <.e. about +11'5... D.

(3) =6 ins. from the centre. (4) 25%, ;,r—., 73.

CHAPTER XV.

(1) -144 mmn. (2) -00144 mm., 108 mm.

(3) Biconvex of crown ;= —192 ins,, 7,=128 ins,
Planoconcave of flint #, =12'8 ins., =
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CHAPTER XVIIL

(1) Using Donders’ reduced eye, }% i é? 7

(2) 121468,,, mm. (3) +26...D.

(4) If Jupiter’s four furthest satellites were sufficiently bright there
is no reason why they should not be seen with the naked eye. The
angle subtended at the nodal point by a foveal cone is 26:617"... where-
as the angle subtended by the distance between the first satellite and
Jupiter’s edge is 3' 6-1”,

(8) x=9'7966... cm. r='16447.., mm.

Radius of retinal image -00618 mm. nearly.

The point of the needle will therefore appear blurred.

ANSWERS TO MISCELLANEOUS QUESTIONS.

(1) Let #’=2+\

Then y'=asin £8 (v ;—x—-l'—}f} =@ sin {ﬂf (vt—a)F 2#}- =y.
Therefore the disturbance is periodic in space at intervals of A.
Lot =2 .

?

Then
yl_—.qrain EIF {1: (ti %) - t} =t 81N {zf (v —a) iﬂn‘} =1.

Therefore the disturbance is periodic in time at intervals of % or 7.

(2) p=301ns. or 4 ins.

If p=30 ins., an inverted image one-fifth the height of the eye is
seen.

If p=4 ins., an erect image five times the height of the eye is seen.

(3) p=6ins,

An inverted image five times the height of the eye is seen.

(8) Magnification of the lens for the hypermetropic eye is 10-85,
for the myopic eye is 1-35.

(9) Accommodation of the hypermetropic eye is +5.D, of the
myopic eye is +5§ D,

(14) r=-0169.., mm.



INDICES OF REFRACTION.

Solids.
Lead Chromate D 2510297 o (Quartz D Ord. 1-544
Diamond D 247t0275 | 4 3. Extraord. 1'553
Lead Nitrate D 1866 g 5 |l 4, e e
Euby D 1779 Biaik Y 3
Fiieald D 1585 E.,, i r’IqelmuI Spar D Eﬁmm‘d. iéﬁgig
Rock Salt D 154418 B ; ; :

_ ik .2 2 | Tourmaline D  Extraord. 16193
Sugar 4 . 1535 5 & Ord. 1-6366
Canada Balsam 4 1-528 “ | Sodium Nitrate D Extraord. 1-3369
Tallow, Wax D 1492 . c o Gd. 1:5854
Alum D 145601 ‘Topaz D  Max. 1:62109
Tabasheer D 11115 m Med. 161375

% Min. 1-61161
2 | Mica D Max. 1:5997
2 4 Med. 1-5941
E Min. 1'5609
.E | Nitre and D Max, 1-:5064
= L\Pﬂtﬂﬂﬁiuﬂl Nitrate Med. 1-5056

Min. 1-3346

Seven varieties of optical glass made by Messrs Chance.

D F .| D F
Soft Crown 1-514580 1-520994 | Dense Flint 1622411 1-634748
Hard Crown 1517116 1-523145 | Extra Dense Flint 1-650374 1-664246
Extra Light Flint 1541022 1-549125 | Double Extra Dense
Light Flint 1:574013 1-553861 Flint 1710224 1-727257
Liquads.
Carbon Bisulphide A 1-61136 Alcohol A 1-3596
D 1-63054 J D 1-3633
H 170277 r H 1:3745
Chloroform A 1-4440 | Water A 1-32889
D 1-4492 D 1:33298
(i 1-4611 H 1-34343
Gases at 0° and 760 mm. for light of sodium-flame.
Air 1-0002923 Nitrons Oxide 10005159
Hydrogen 1-:0001387 Cyanogen 10008216
Carbonic Acid 10004544

The above table has been mainly taken from Everett's C. . 8. System of Units.

CAMBRIDGE : PRINTED BY J. AND C. F. CLAY, AT THE UNIVERSITY PRESS.
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