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PREFACE TO THE FIRST EDITION.

THE present work 1s essentially an abridgment of my
larger treatise on Geometrical Optics, and 1s pﬁlﬂ:ﬂ.-l.‘ﬂ}’
intended for the use of students who require an exposition
of the principles of Optics and their application in the
use and construction of optical instruments, without very
extended and complicated mathematical analysis. It is
elementary, inasmuch as it uses no mathematics beyond
trigonometry.

In the task of selection and arrangement, I have de-
parted somewhat from the traditions of previous writers
of elementary text-books on Optics. My object has been
to mclude only those parts of the theory which could be
mvestigated completely and satisfactorily by elementary
methods, and to treat those parts as fully as possible.
Thus, while giving an account of the method of correcting
optical instruments for their most important defect, that
due to chromatic dispersion, I have omitted entirely the
theories of aberration and of thin peneils, believing that
they are not suited to elementary treatment and that they
should be postponed until they can be Investigated by
more advanced and comprehensive methods. On the
other hand the theory of lenses, as developed by Gauss,
has been worked out completely, and the description and
theory of the ordinary optical instruments are given in
much greater detail than has been usual in elementary
treatises. The theory of vision through lenses is based
npon Cotes’ theorem, after the manner of the older
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English writers on Optics, Cotes and Smith. An elegant
geometrical construction for the deviation of a ray at a
refraction, due to Prof. P. G. Tait, furnishes an elementary
theory of the rainbow. Numerous easy exercises are
scattered through the text, and several typical examples
are fully worked out, while the more difficult are col-
lected at the end of the chapters. The articles marked
with an asterisk may be omitted at a first reading.

Suggestions which may improve and extend the use-
fulness of the book and notifications of errors will be
very thankfully received by the author.

R. S. HEATH.

Mason COLLEGE, BIRMINGHAM,
August, 1888,

PREFACE TO THE SECOND EDITION.

The present edition exhibits nearly the same changes
45 were made in the second edition of the larger work.
The theory of lenses is developed throughout on a uni-
form plan with a uniform notation. The later portions
now include the theories of diaphragms, angular aperture,
field of view and magnifying power treated after the
mamner of the modern German writers on Optics.

My thanks are due to my colleague, Mr Lawrence
Crawford, M.A., Fellow of King’s College, Cambridge,
for his valuable aid in reading through the proofs and
his many criticisms and suggestions.

R. S, HEATH.

MasoN CoLLEGE, BIRMINGHAM,
March 1st, 1897.
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CHAPTER L

THE NATURE AND GENERAL PROPERTIES OF LIGHT.

1. LiGHT may be defined as the external conditions
which, acting through the instrumentality of the eyes,
produce the sensation called sight.

When a lighted lamp is brought into a dark room, we
become sensible by sight of the existence not only of the
lamp itself, but of the walls of the room and the other
objects contained in it, which before were invisible to us.
Bodies, such as the flame of a lighted lamp and the sun,
whose presence is necessary to enable us to see anything,
are called self-luminous bodies. Bodies which in them-
selves are not luminous, become luminous in the presence
of other luminous bodies and are then visible to us. The
sensation of sight is caused by certain vibrations, which
pass from the things seen into the eye; it is these
vibrations which we shall call light.

2. We know by experience that we can see through
certain bodies, such as air, glass and water, but not
through others, such as wood, stone and iron; in other
words light can be transmitted through the former, but not
through the latter. Bodies through which light can be
freely transmitted are called transparent, the others are
called opaque. There is an intermediate class of bodies,
such as oiled paper, thin porcelain, thin gold-leaf, which
will allow a little light to pass through them in an
rregular manner, but through which we cannot see an
object distinctly. ‘Such bodies are called ¢ranslucent. They

H. 0, 1



————————

R — e —
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will not be considered further in this book, because the

light transmitted through them does not obey any simple
geometrical law.

Any space through which light can pass, whether
occupied by matter or not, is called a medwum.

3. When the medium is homogeneous, light travels
through it in straight lines. This is a law which is being
constantly verified by experience. In fact, to test roughly
whether a given line is straight or not, it 1s not unusual
to look along it; if the line is straight the different points
along it appear to be superimposed, but if the line 18 not
straight the points cannot be made to appear superim-
posed.

Light consists of separable and independent parts;
if part of the light proceeding from a luminous body be
intercepted by an opaque obstacle this will not 1n any way
affect the other portion which is allowed to pass. When we
look at any bright body, it is only a very small portion
of the light emanating from the body which can strike the
pupils of our eyes; if we shift our position our eyes will
intercept a different small portion of the light. It is thus
often convenient to consider the portion of light which
travels along some particular line In space apart from the
rest ; such a portion of light is called a ray, and 1t will be
supposed to have the form of an indefinitely slender cone,
whose axis is the line under consideration. A collection
of rays which during their course never deviate far from
some fixed central ray is called a pencil of rays, and the
central ray is called the aais of the pencil. If the rays of
a pencil meet in a point, that point is called the focus of
the pencil.

As we shall have continually to mention the eye in the
course of our work, it may be well here to refer very
briefly to the theory of the eye. Every point of a
Juminous body (by which we mean every indefinitely
«mall area on the surface of the body) is giving out light
in all directions ; a pencil of rays limited by the aperture
of the eye is by the aid of the refracting surfaces of the
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eye brought to a focus on the retina, forming an image
there; and it is by means of this image that the point
is seen. Corresponding to all the bright points of the
luminous body there will be images on the retina, and
these 1mages enable us to form a mental picture of an
extended surface,

4*. In general, light from two independent sources
may travel along the same path without interference.
From this experimental fact we infer that light is capable
of quantifative measurement. For the present we shall
suppose that the light with which we are dealing is all of
the same kind and homogeneous, and that its quantity or
intensity is measured in terms of some fixed standard.

If lines be drawn from a point so as to generate a
conical surface of any form, the solid angle of the cone is
measured by the area intercepted within it on a sphere of
unit radius whose centre is at the vertex of the cone.

If a bright point be emitting light, and the quantity of
light emitted within a cone of solid angle @ be @, then
the mean intensity of emission within the cone is Q.
When the cone is indefinitely slender, the mean emission
within 1t is called the ntensity of emission in the direc-
tion of the axis of the cone.

A bright body emits light in all directions, but the
mntensity of emission is different for different directions,
The law of emission is given by a well-known experiment.
Luminous bodies appear of the same brightness whatever
be the inclination of the bright surface to the line of sight.
Thus if a cylinder of silver be heated ill it becomes
luminous and taken into a dark room, it cannot be dis-
tinguished from a perfectly flat bar; and similarly, a
luminous sphere (like the sun as seen through a mist)
appears like a flat disc. The same experiment is true of
the intensity of the heat rays radiated from a hot body ;

in this form it is intimately associated with the Theory
of Exchanges,

_ This experiment shows that the intensity of emission of
light from any element of @ bright surface in any direction

1—2
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18 proportional to the cosine of the wnelination of the direc-
tion of emassion to the normal* to the element of the surface.

For suppose that a bright body is viewed through a
tube of small aperture ; when the tube 1s directed so that
the element of the bright surface seen is normal to the
line of sight, let the area of the element be . Then when
the tube 1s directed so that the normal to the element of
the bright surface seen through the tube makes an angle ¢
with the line of sight, the area of the element will be
wsec 8. Let £(0) be the intensity of emission per unif
area in a direction making an angle @ with the normal to
the element ; then the whole amount of light transmitted
to the eye when the element is inclined to the lme of
sight at an angle 6 is o sec 8. /(0).

But this, by experiment, is independent of 6, and
therefore £(6) « cos 6.

Let B be the area of an element of the bright surface
and let wB denote the intensity of the light emitted
in the direction of the normal to the element. Then u
may be called the intrinsic brightness of the element.

5*  If Q be the quantity of light which falls on an
area a of illuminated surface, then @Q/a 1is called the
mean intensity of illumination of the area. When the
area of the element of bright surface 1is indefinitely
small, the mean intensity of illumination is called the
intensity of illumination within the element.

We shall now find the illumination of a small area a
due to an element of any bright surface (3. Let C be the
centre of the element of the luminous surface PCQ and O
the centre of the illuminated area AOB, and let OC=r.
Let 8 be the inclination of OC to the normal at 0, and ¢
that of OC to the normal at C.

Then if a subtend a solid angle @ at C, the quantity

of light it receives will be @B cos ¢ . o, where w 1s the
intrinsic brightness of the element.

* The normal at any point of a surface is the straight line through
that point perpendicular to the tangent plane to the surface.
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We must next find the value of . With centre C
and radius OC' deseribe a spherical sur-
face cutting the cone, and let A'OB’ be
the part of the spherical surface en-
closed within the cone. Then the solid
angle is given by the equation

w=A'0B'[r.
The small areas 4 OB and A’0OB’ may be
regarded as plane; the inclination of
their planes is 6. Also since 4’0B’ cuts
the generators of the cone at right
angles, A’OB’ is the projection of the
area A0 B, and therefore

(area A’OB’) = (area AOB) cos 8 = a cos 6.
Thus o= G;S J :
and therefore the quantity of light received by a from the
element 3 1s

cos @ cos
pag 200,

This is symmetrical with regard to the two elements,
and would therefore represent the quantity of light re-

cetved by 8 from the element o, were it of intrinsic bright-
ness p.

Let o be the solid angle subtended at O by the bright
element 8, then it may be shown as before that

Bcosg
=i
then the illumination of & due to the element B is

pa cos 6,

6% The illumination of a small area a due to any
finite surface of uniform brightness may now be found.

Take any small element of the brich
. > bright surface P and
as before let o be the solid angle subtended by it 3} the
centre O of the illuminated area. Let 6 be the angle
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between the line OC and the normal at 0. Then the
illumination due to the bright element 1s

po cos 0.

Describe a sphere of unit
radius with O as centre; this
will cut the small cone sub-
tended at O by the element
PQ, in a section whose area is
o ; hence ocos@ will be the
projection of this small section
on the plane of the illuminated
area and may be denoted by
= ; then the illumination due
to the small element 1s pw.

By addition we arrive at the following method of
determining the illumination of a small area at O due
to any finite bright surface.

From O draw radii to all points of the boundary of the
bright surface as seen from 0, forming a conical surface.
Let the part of the surface of the sphere of unit radius
whose centre is O, intercepted within the cone, be pro-
jected on the plane of the area illuminated. If = be the
area of the projection, the illumination of the area will be

given by the equation

I = pw.

Ex. To find the illumination due to a spherical luminary.

Let a be the semi-vertical angle of the cone whose vertex is at
the centre of the area and which envelopes the bright sphere. The
curve in which this cone cuts the sphere of unit radius is a circle
whose radius is sina. Hence if 8 be the zenith distance of the

luminary, the illumination on a small horizontal area 1s
[ = pr sin® a cos 6.

7%, Objects appear equally bright at all distances.

The apparent brightness of an object may be measured
by the whole quantity of light entering the eye from the
object divided by the area of the picture of the object on

the retina of the eye.
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Let P be any point of the object, p the corresponding
point of the picture on the retina; then it will be shown
afterwards that the line Pp passes through the fixed point
0, the optical centre of the eye.

Let S be the area of a small object and s that of the
picture and let OP=R, Op=r. Then S: R*=3¢g : 72

Now the quantity of light entering the eye is uSw/R?,
where w is the area of the aperture of the eye. This may

P

be written usw/r*; hence, dividing by s, we get the intrinsic
brightness of the image, which is equal to uw/r*.

We shall assume for the present that as the eye adjusts
itself to different distances, » does not change.

Thus the apparent brightness is independent of the
dustance of the object.

The area of the aperture of the eye chan ges according
to the brightness of the light. But if we suppose the
aperture to remain the same, as the object is removed, no
change in brightness has taken place, so that the aperture
does not need further adjustment.

When the object is very distant the area of the picture
on the eye gets to be very small indeed, so that the nerves
of the retina cannot distinguish it from a point. In this
case the brightness must be measured simply by the quan-
tity of light ; and therefore, by the same investigation, the
brightness varies inversely as R
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EXAMPLES¥,

1. The li%ht from two sources is allowed to fall upon the same
screen. One light is at a distance @ and the light falls directly from
it on the screen. From the other, which is at a distance 3a, the
light falls at an obliquity of 60°. The illuminations of the screen

from the two sources being equal, show that one source is 18 times
as bright as the other.

2. A small white surface being placed horizontally on a table,
and illuminated by a lamp or candle placed at a given horizontal
distance a, show that the Eeight of the flame from the table which
will give the greatest possible illumination is equal to a/y/2.

3. If candles of equal brightness be placed at the angular points
of a regular polygon, prove that a small plane area placed at the
centre of the polygon will be equally bright on both sides, whatever
be the orientation of its plane.

4. A small plane area is placed at right angles to the axis of a
%?éabﬂloid of revolution whose convex surface is uniformly luminous.

ve that the illumination produced at the point of the plane
where it meets the axis varies inversely as the distance of this
point from the focus of the paraboloid.

5. A small plane area is placed parallel to a plane lamina of
intrinsic brightness 7, of breadth 2¢, and of infinite length, at a
distance ¢ from the centre of the lamina in a line perpendicular to
the lamina. Prove that the illumination at the centre of the plane
area 18 mal//(a?+c).

6. The sides a of triangle are the bases of three infinite rect-
angles of the same brightness, whose planes are perpendicular to
the plane of the triangle ; show that al points within the triangle
are equally illuminated. Find the position of a point in the plane
of the triangle, such that the illuminations ab that point received
from the three rectangles may be equal.

7. A luminous point is placed on the axis of a truncated conical
shell ; prove that the whole illumination of the surface of the shell
varies as

(i ¢
=
(c2+a?)} (2 4a2)?’

where @, « are the radii of the circular ends of the shell and ¢, ¢
the distances of the luminous point from their planes.

8. A right cone of vertical angle 26 is described about a given
self-luminous sphere, and at the points of the sphere in which the
axis of the cone cuts it, tangent planes are drawn ; prove that the
mean illumination of that part of the cone which is enclosed between

these two planes varies as cos 36 cos* 6.




CHAPTER IIL

REFLEXION AND REFRACTION OF RAYS OF LIGHT.

8. WHEN a ray of light travelling in one medium is
incident on the surface of another medium, 1t 1s usually
divided into three separate portions which behave in dif-
ferent manners.

(1) A portion is reflected back into the original me-
dium, in a direction determined according to a certain
law.

(11) Another portion passes into the new medium,
having its direction changed according to another law;
this portion is said to be refracted into the new medium.

(11) A third portion is said to be scattered by the
surface bounding the two media; the bounding surface
becomes illuminated and itself acts like a source of light
sending rays in all directions.

When a ray of light is incident on a solid opaque body,
the second portion does not exist, and all the light 1s
either reflected or scattered. The quantity of light reflected
depends upon the nature of the surface ; the smoother and
more highly polished the surface is, the more light is re-
flected. The scattering of light is probably due to the
unevenness of the surface; the incident light is reflected
by minute portions of the surface which act as mirrors
distributed irregularly in all directions. It is by the scat-
tering of light that non-luminous bodies become visible
when in the presence of a bright body.

Thus if the rays of light from the sun strike a window, part of
the light passes into the glass and out again into the room ; for an
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observer inside the room can see the sun distinctly. Another part
of the sun’s light is reflected back into the air ; for a person stationed
outside can see a picture of the sun in the window as in a looking-
glass, A third portion serves to render visible the specks and marks
on the window-pane ; this light is said to be scattered.

9. The plane containing the incident ray and the
normal * to the surface separating the two media, is called
the plane of incidence, and the acute angle between the
incident ray and the normal is called the angle of incidence,
and the acute angle between the reflected ray and the
normal, the angle of reflexion.

When the direction of a ray of light is changed by
reflexions or refractions, the angle through which the
original ray produced must be turned in order to bring
it into the position of the final ray, is called the deviation
of the ray.

The law according to which a ray of light is reflected
at a surface may be thus stated.

The angles of incidence and reflexion always lie in the
same plane and are equal to each other.

10. If the ray be incident on a plane surface the re-
flected ray may be found by a simple geometrical con-

P R

P
struction. If P be any point on the incident ray PQ, and
if from P a perpendicular PN be drawn to the reﬂectmg
plane and be produced to P’ so that P’N is equal to PX,
then in the triangles PNGQ), P'NQ, the two sides PN, N Q
are equal to the two sides P'N, NQ, each to each, and the

* See note to p. 4.
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angles PNQ, P'NQ are both right angles, therefore the
triangles are equal in all respects, and the angle PQN
is equal to the angle P'QN. Hence P'Q) produced and
P@Q make equal angles with the plane N and therefore
with the normal to it. Thus P'Q produced will be the
reflected ray.

If the surface be not plane, we may substitute the
tangent plane to the surface at (), for the plane of the
mirror in the previous construction.

11. When a ray is reflected at a plane surface the
wncident ray and the reflected ray make equal acute angles
with any line in or parallel to the reflecting plane.

For let PO, OQ be the incident and reflected rays, and
let the plane of incidence meet the reflecting plane in the

e

A

Ime MON. Also let AOB be a line drawn through O
parallel to the given line. On the lines OP, 0@ measure
equal lengths OP, 0@, and through P, @ draw planes per-
pendicular to the line MON meeting this line in the points
M, N and the line 40B in the points 4, B, respectively.
Then in the triangles POM, QON, the angles at M and NV
are right angles and the angles POM, QON are equal, by
the law of retlexion, and OP is equal to 0 ; therefore the
trlata%les are equal in all respects, so that QM = ON, PM

. Also in the triangles 4OM, BON, the angles at M
and IV are right angles and the angle AOM is equal to the
angle BON ; therefore AM = BN and 40 = OB, Also in
the triangles PMA, QNB the two sides P} , M A are equal
to the two sides QNV, NB each to each, and the angles at

—
—
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M and N are right angles; therefore AP =B(). Finally
in the triangles A0 P, BOQ), the three sides of the one are
equal to the three sides of the other, each to each ; there-
fore the angles AOP, BOQ are equal. This proves the
proposition.

Conversely, if two lines PO, 0@ lie in a plane normal
to the reflecting plane and make equal acute angles with
any given line in the plane, they may be taken to represent

an incident and the reflected ray, respectively. The proof
is similar to the preceding.

It follows from the preceding proposition that if @ ray
of light be reflected in any manner successwely at two plane
surfaces, the tnitial and final rays are equally inclined to
the line of intersection of the plane surfaces.

12. Ifa ray of light be reflected at a surface, the pro-
jections of the wncident and veflected rays on any plane
through the normal, themselves obey the law of reflexion.

For along the incident and reflected rays measure
equal distances OA4, OB;
then AB will be bisected
at right angles by the nor-
mal to the surface ON. Let
PN(Q be the projection of
ANB on any plane through
the normal, so that O.P, OQ
are the projections of the
incident and reflected rays.
Then in the triangles A PN,
BQN, the angles at P and
Q are right angles and the
angles ANP, BNQ are
equal to each other, and *
AN = NB. Therefore PN =N@. Hence the triangles
PNO, QNO are equal in all respects, anf;l therefore 0P,
0Q are equally inclined to the normal ON.

Further, it is easily seen that the triangles AOP, BOQ
are equal in all respects, and therefore the angle AOP 1s
equal to the angle BOQ. In other words, the wcident and

o
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reflected rays are equally vnclined to any plane through the
normal.

13. Let a ray of light be reflected successively at two
plane mirrors, to find the direction of the ray after any
number of reflexions.

We shall first consider the case in which the reflexions
take place in a plane perpendicular to both mirrors.

B

Let 04, OB be the plane mirrors and let PQRST...
be the ray of light which is reflected successively at @, R,
5 87 A

Let e denote the angle between the mirrors, and let
6,, 6,, 6,... be the acute angles formed by the ray with the
reflecting surfaces at the successive incidences, ~Thus the
angles at ) are each @,, those at R, 6,, and so on: so that
from the triangle QOR we find 0, =0, + ¢, and similarly
0;=0,+¢ &c. These equations may be written

BE_ ﬂl1=,€:
33_92=E!
Oy — n =6y

and therefore, by addition
9n+1 = 91 = 'H-E.

When n is even, the angles 0,., and 6,, are measured
from the same mirror, and therefore Bnis — 6, is the angle
between the initial and final rays ; therefore the total
deviation is equal to n times the inclination of the mirrors,
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The deviation is the same whatever the angle of incidence,
so that any two rays are inclined at the same angle to each
other after reflexion as before incidence.

When the ray is reflected twice, once at each murror,
the deviation of the ray is twice the angle between the
mirrors. This is the principle of Hadley’s Sextant.

At each reflexion the value of € 1s increased by e.
When 6 becomes greater than 47 the ray will begin to
come back from the angle outwards, generally by a differ-
ent path; but if the angle 8 be so chosen that one of the
subsequent angles is equal to 7 the corresponding inci-
dence is direct, and the ray will return by the same path.
When 6 becomes greater than s reflexions will cease ; for
the ray becomes either parallel to one of the mirrors or
meets 1t only when produced backwards.

If the incident ray do not lie in a plane perpendicular
to the line of intersection of the mirrors, the preceding in-
vestigation will apply to the projection of the path of the
ray on such a plane. If, further, we remember that the
inclination of the ray to this plane changes at each re-
flexion just as if the ray were reflected at 1t, the direction
of the emergent ray is completely determined. After any
even number of reflexions the ray makes with the principal
plane the same angle as ab first, and after an odd number
of reflexions, an equal angle on the other side of the

plane.

EXAMPLES.

1. If a ray of light after reflexion at each of the sides of a
triangle in succession retrace its path, show that it must proceed
along the lines joining the feet of the perpendiculars drawn from
the angular points to the opposite sides.

9. What must be the inclination of two mirrors in order that
a ray incident parallel to one of them may, after two reflexions, be

parallel to the other ? Ans. 60°,

3. Two rays emanate from a point in the circumference of a
reflecting circle in the plane of the circle; supposing that their n'
points of incidence coincide, prove that the angle between their
original directions is any one of a series of (n—1) angles in arith-

metical progression.



13—14.] REFRACTION OF RAYS. 15

4. Two plane mirrors inclined at an angle 6 intersect in 0; P
is a point between the mirrors and PR a ray emanating from P
reflected at the mirrors in succession so as to return to P; show
that OF bisects the angle QPR and that the length of the path is

20P sin 6.

5. If the angle of a hollow cone, dpc-lished internally, be any
sub-multiple of two right angles, a eylindrical pencil of rays incident
parallel to the axis will, after a certain number of reflexions, be a
cylindrical pencil parallel to the axis, and of the same diameter as
tga incident pencil.

6. Show that a pencil of light emanating from the focus of a
prolate spheroid whose inner surface is reflecting, will be accurately
reflected to a point. Show also that a pencil of light emanating
from the focus of a paraboloid of revolution whose concave surface
is reflecting, will be reflected as a pencil of parallel rays.

14. When a ray of light passes from one medium
to another by refraction, the two portions of the ray be-
fore and after incidence on the new medium are called the
wnevdent ray and the refracted ray ; and the acute angles
which they make with the normal to the surface of sepa-
ration at the point of incidence, are called the angles of
wncvdence and refraction, respectively,

The angles of incidence and refraction lie always in the
same plane, and their sines are to one another in an in-
variable ratio.

This is the fundamental law of refraction. The con-
stant ratio depends on the nature of the two media and
the kind of light transmitted; it is called the refractive
index from the first medium to the second.

If a ray of light pass from a vacuum into a given me-

dium, the constant ratio is the absolute refractive index of
that medium.

If ¢ be the angle of incidence and ¢’ the angle of re-
fraction, as a ray passes from one medium into another. the
law of refraction 1s expressed by the equation ’

sin )
Ei!l ¢.r = M,

'ﬁ;}];ere # 1s the refractive index from one medium to the
other.
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15. It is an experimental law, that the path of a ray
of light is reversible; in other words, if a ray travel back-
wards through the second medium along the direction of
the refracted ray, it will after refraction into the first me-
dium retrace the path of the incident ray.

__If we denote the two media by 4, B and the refractive
md!ex from A into B by paw, and the refractive index from
B into A by wpa, this experiment shows that

sing _ sing’

sin ¢r = Hady o b = Hvas
with the previous notation; and therefore, eliminating ¢
and o',

Hap - Moo = L.

16. Also, it is found by experiment that if a ray of
light pass through any number of media bounded by
parallel planes, into a medium of the same nature as that
in which it was originally travelling, the initial and final
directions of the ray are parallel to each other.

Let A be the original medium, BiCneses the other
media. Let ¢ be the angle of incidence on B, ¢, the cor-
responding angle of refraction. Then ¢, will be the angle
of incidence on O, and so on. The final angle of refraction

| P
A D c B A
%
el
@7“@"

G

Lo 1S

¥ :
U i

:1to A is shown to be ¢ by the experiment. Using the

aame notation as before to express the law of refraction at
the successive surfaces, we arrive atb the relations




15—16.] REFRACTION OF RAYS. 17

sin ¢

N,

sin ¢;

sin ¢, 1
singn, <

By multiplication,
Mab « Bbe « Med «oeeenass Mka = 1.
If there are only three media, this relation becomes
Peab - Pye - Bea =1,
or MHae = Map « Mpes
For example, let us take the three media, air, glass

and water. The values of the refractive indices from air
to glass, and air to water are, respectively, ug, =8, paw = 4.

The preceding formula enables us to find the refractive
index from glass to water.

For Mgw = Hga « Faw

=%-4=4

that is, the refractive index from glass to water is 8.

Also, let p, p’ be the absolute refractive indices of the
media 4 and B. Then if we denote the vacuum by the

suffix v, pap = pgy. pyy.  But May 18 the reciprocal of w,, or
the reciprocal of 4, and therefore

)

#ar—‘i'
'H‘J'

that is, the relative refractive indes between any two media

may be found by dinding the absolute refractive index of
the second by that of the Jirst,

The law of refraction can now be more symmetrically
expressed In terms of the absolute refractive indices of
the two media, u and #'; using the previous notation,

H. 0. 2
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the relation between the angles of incidence and refraction
becomes

psin = p' sin ¢,

17. Suppose that u’' is greater than p; that 1s,
suppose B to be a more highly refracting medium than A.
Then if ¢ be given, the equation to determine ¢’ 1s,

sin ¢’ = 5 sin ¢.

This value for sing’ is always less than unity what-
ever the value of ¢, so that a value of ¢’ can always be
found for any value of ¢. Thus when a ray of light
travelling in any medium is incident on a more highly
refracting medium, the law of refraction always gives a
direction for the refracted ray.

~ But when a given ray is passing from the medium B
into the medium A which is less refractive, the angle ¢’ 1s
given, and the equation to determine ¢ 1s

!

: oo
sin ¢ ="—sin ¢
? M

If sin ¢’ is greater than u/u’ the corresponding value
for sin ¢ becomes greater than unity; so that the law
of refraction fails to give a real direction for the refracted

ray.
| The angle sin™ (u/w), or, the greatest angle at which
" a ray of light proceeding in the more highly refractive
" medium can be incident on the other so as to be refracted
into it, is called the critical angle between those media.
The value of the critical angle from water to air is about

| 48° 27" 407, and from crown-glass to air, 40° 30'.

When a ray of light 1s incident on a medium less
refractive than the medium in which it is moving, at an
angle greater than the critical angle, the whole of the
light is found by experiment to be reflected ; the refracted
part does not exist. This 1s known as total internal re-

flewion. Since no part of the light is lost by refraction,
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the reflected light is much more brilliant than when 1t is
reflected by an ordinary mirror,

Total internal reflexion may be exhibited by holding a glass of
water above the level of the eye; the under surface of the water

will appear very bright from the li%ht internally reflected at it, and
any object in the water will be seen by reflexion at the under surface
more brilliantly than when it is reflected in a mirror. A glass prism
may easily be held so that the eye may receive light through it after
internal reflexion at one of its faces. That face will appear very
bright. An arrangement of prisms fixed in this manner is often

used to light under-ground rooms.

The subject of this article may also be illustrated by describing
the appearance presented to an eye placed under the surface of still
water. All external objects would appear compressed within a conical

ace whose axis is vertical and semi-vertical angle 48° 27’ 40", the
objects near the horizon being much distorted. Beyond this conical
space objects within the water would be seen reflected by the surface
of the water.

If we suppose that u’'=— u, then ¢ = — ¢/, and the re-
fraction becomes a reflexion. All the subsequent theorems
relating to refraction will give corresponding theorems for
reflexion by making the same substitution u’'= — p.

18. There are two other useful theorems relating to
the incident and refracted rays,

. The angles which the incident and refracted rays make
with any plane through the normal to the refracting surface,
obey the law of refraction.

Also the projections of the incident and refracted rays
on any plane through the normal are connected by a law
of refraction, with a refractive indew depending on the
wnclinations of the rays to the plane.

For let A0, OB be the incident and refracted portions
of any ray, and let the number of units of length in 40
OB be taken equal to u and u/, the refracting indices
of the two media, respectively. Then if AM, BN be
drawn from A and B perpendicular to the normal to the
refracting surface, AM, BN will be equal and paralle]
since they are equal to w sin ¢, w' sin ¢, respectively, ’

2—2
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Let PO, 0Q be the projections of A0, OB on any
plane through the normal, P
and () being the projections
of the points A, B respec-
tively. Then the triangles
APM, BQN are equal in all
respects, by Euclid 1. 26.

Let », ' be the acute >
angles which the incident and
refracted rays make with the
plane; ¢, ¢’ the acute angles
which the projections of these
rays on the plane make with
the normal. Then

AP =psing, BQ=psin7,
and therefore, since AP is equal to BQ,

M P

Q N

psin g = w' sin ',
This proves the first theorem.

Also OP = pcosn, OQ = p' cos n'; and therefore, since
PM is equal to QN,

1 cos nsin ¢ = p’ os 7’ SN ¢,

which proves the second theorem.

19. In any refraction, the greater the angle of in-
cidence, the greater will be the angle of deviation.

For if ¢, ¢’ be the angles of incidence and refraction,
sin ¢ = p sin ¢,

Eill:'b--siﬂti)’__,u-—'l.
and therefore _BE_qu- sin ¢’ p+1°

: tng(p—¢)_p—1
that 18, t&n%(fi)-f"(ﬁf) #-“'"11

o foally,  tend —¢) =L@+
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But the deviation is equal to ¢ —¢". If ¢ increase,
and therefore also ¢, tan §(¢ +¢') will increase, since
1 (¢ +¢') is less than 47, and therefore the deviation will

mncrease,

When the ray is passing into a rarer medium, we have
only to suppose the ray reversed ; then since the angle of
refraction increases as the angle of incidence increases, the
proof comes under the case just considered.

20. We shall now give a geometrical proof of this
theorem, due to Professor P. G. Tait.

Let C be the centre of any circle of radius r; take
an external point O, such that OC = ur, and draw an
line 0P through O to meet the circle in P, @, and join
UP, 0Q. Then if we denote the angle CPQ by ¢, and
COP by ¢/,

sing : sing'=C0 : CP=p : 1,
or SIn ¢ = w sin ¢,

The angles ¢ and ¢’ are therefore related like angles
of incidence and refraction of a ray of light. The devia-
tion ¢ — ¢’ will be the angle PCO, or D say. By varying
the direction of the line OPQ from the position 04 B, to
the position 07" in which it touches the circle, the a,nglé ()
will be made to increase from O to 34, and during this
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change D is increasing also. This proves that the de-
viation increases with the angle of incidence.

The angle of refraction increases from zero to the
value COT'; this angle represents the critical angle.

_ But further, as the angle of incidence or that of refrac-
tion increases uniformly, the deviation increases faster and
Jfaster.

For let Opg be another chord of the circle close to
OPQ. Then the change in D is the angle subtended at
the centre by the arc Pp. And since the angle PCQ is
7 — 2¢, the increase in ¢ is represented by the arc
$(Qq +Pp); and therefore, by subtraction, the increase

in ¢ is represented by an arc § (Qg — Pp).

If we suppose ¢, ¢" and D to have become ¢ + 2,
¢’ + &' and D + 8 respectively, we have

-i{f

, {?i g 1} , by similar triangles.

OP
Hence i; =1 {g—?} + 1} ultimately,
R o . (0Q
and similarly == 3 {O'_P - 1} :

But as P moves from A to T, OQ becomes more and
more nea,rgr equal to OP; so that z/8 and «'/d become
smaller and smaller, which proves the proposition.

EXAMPLES.

1. The angle of incidence being 60°, and the index of refraction
\/3; find the angle of refraction. Ans. 30°.

9 The absolute refractive indices of two media being /5—1
and 2, respectively, find the angle of refraction of a ray travelling in

the first medium and incident on the second at an angle of 30"
Ans. 18°
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3. A ray of light is incident on a refracting surface at an angle
whose tangent is equal to the refractive index. Prove that the
angle of refraction is the complement of that of incidence.

4. The height of a cylindrical cup is 4 inches and the diameter
of its base 3 inches. A person looks over its rim so that the lowest
I{):Jiut of the opposite side visible to him is 2} inches below the top.

he cup is filled with water; looking in the same direction he can
just see the point of the base farthest from him. Find the refractive
index of water. Ans. 4.

5. A ray is incident on a refracting sphere whose refractive
index is 2, at an angle whose sine is 2 ,/6. Show that if the ray be
refracted into the sphere, that portion of it which emerges after
having been twice internally reflected will be in the same direction
as the original ray.

6. A ray of light is incident on a refracting sphere, whose
refractive index is »/3. It is refracted into the sphere and when it
is incident on the inner surface of the sphere, part is reflected
internally, and part is refracted out into vacuum. Show that if
the original angle of incidence be 60° these two parts will be at
right angles.

If the part internally reflected be again incident internally and
be refracted out into vacuum, its final course will be parallel to that
of the ray first incident.

7. Show that when a ray of light enters a medium whose
refractive index is ,/2, its greatest deviation is 45°,

8. A ray of light is incident on a portion of the refracting
medium in the shape of a prolate spheroid, in a direction parallel to
the axis of the spheroid. If the refractive index be 1/e, where e is

the eccentricity of the generating ellipse, prove that after refraction
the ray will pass through one focus.

9. Prove that light which has been refracted into a sphere from
vacuum can never be totally internally reflected.

10. If light be incident on the curved surface of a hemisphere
of a refracting medium in a direction parallel to its axis, show that

there will be no total internal reflexion at the plane surface, unless
the refractive index be greater than /2.

11. If ¢ and ¢ be the angles of incidence and refraction of

a ray of light, show that sin(¢— d')/si R
increases. ) (p—¢')/sin(¢p+¢') increases as ¢

. 2L Any medium bounded by two plane faces meeting
In an edge, is called a prism. The inclination of the faces
to each other is called the refracting angle of the prism.
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At present we shall only consider the path of rays of
light which pass through the prism in a plane perpen-
. dicular to both 1its faces, and therefore perpendicular to
~ the edge of the prism; we shall call such a plane a prin-
~ cipal section of the prism.

When a ray of light passes through a prism which s
more highly refractwe than the surrounding mediwm, the
deviation 1s, tn all cases, from the refracting angle towards
the thicker part of the prism.

Let PQRS be the course of a ray of light through a
prism in a principal section QOR. Draw the normals at
Q and R meeting in L. There are three cases to be con-
sidered, according as the triangle OQR is acute angled,
or contains a right angle or an obtuse angle.

(o]

In the first case the rays PQ and RS lie on the sides of
the normals away from the vertex, and therefore the devia-
tions both at ingress and egress will be away from the

edge of the prism.

In the second case let one of the angles of the triangle

elv the angle ORQ, be a right q.ngle; at the
gﬁi’ ;’mﬁmi{,}ence .Rg;;here will be no deviation and at
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other angle, OQR, being acute. Then the ray SR lies
on the side of the normal towards the vertex, so that the
corresponding deviation is towards the vertex, while at
Q the deviation is away from the vertex. But the angle
of refraction at @ is greater than that at R, the former
being the exterior angle of the triangle QRL and the latter
an interior angle. Hence the deviation at @ is greater
than that at R, so that on the whole the deviation 1s away
from the vertex.

If the prism be less highly refractive than the sur-
rounding medium, all these effects are reversed.

992, This theorem may also be proved by comparing
the action of a prism with that of a plate.

When a ray of light passes through a plate bounded
by two parallel faces, 1t emerges parallel to its original
direction. Let PQRS be the path of a ray through such
a plate bounded by the faces AB, CD. Let RN be the

normal at the second face.
A

c| I p

Now suppose the second face turned about R towards
AB. in such a way as to make a prism whose edge 18
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perpendicular to the plane of the ray. Let RN’ be the
new position of the normal to the second face and RS’
the emergent ray. Then, as may be seen from the figure,
the angle of incidence at the second face is increased;
hence the deviation at the second face is increased. The
ray is therefore deviated towards the thicker part of the
prism.

Similarly, if the second face CD be turned in the
opposite direction, the deviation at the second face will be
diminished and the same result will follow.

23. Let PQRS be the path of a ray through a prism
whose edge is at 0, and whose refracting angle 1s .

o

Draw the normals at Q and R, LOM and LRN re-

spectively, meeting in Z.

Let ¢, ¢ be the angles of incidence and refraction at
@, and let V¥, ¥ be the angles of emergence and incidence
at R, respectively. We shall consider ¢ and +r as positive
when they are measured from the normal towards the
thicker part of the prism, so that ¢’ and ' will be
positive when they are measured from the normals to.

wards the vertex. In the fiour / eyl
positive. gure &, ¢, ¥, ¥ are all
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By the law of refraction we have
sin ¢ = p sin ¢’
sin yr = w sin Y’
Also, the angles at the base of the triangle OQR are
respectively 37 — ¢, and 47 — 4, hence

c+ i — ¢ + dm—Y =,
or ' e o P (2).

This result is also true when the triangle OQR 1s
obtuse ; in this case one of the angles ¢’ or 4~ would be
negative.

If v be the critical angle for the medium, then ¢’ and
' can never be greater than . If therefore, the re-
fracting angle of the prism be greater than 2+, no ray can
pass through the prism. If ¢ be greater than v, ¢’ and 4
must always both be positive.

Let D be the whole deviation of the ray as it passes
through the prism. Then at the first refraction the ray
is deviated through an angle ¢ —¢’, and at the second
refraction it is further deviated through an angle y» — "

Therefore
D=¢—¢ +¥ =¥,
or D=+ Y —teiriiiaininaananns (3).

The whole theory of the path of a ray of light in a
principal section through a prism is contained in the
equations (1), (2) and (3).

o4 The deviation s a minimum when the ray of lught
passes synmetrically through the prism.

Let ¢, be the value of ¢ for this symmetrical path,
and let ¢ gradually increase from .. Then ¢' and ¥
increase and decrease, respectively, by equal increments
by virtue of equation (2); hence, since ¢’ becomes greater
than ¥/, the deviation at the first face increases faster
than that at the second face diminishes, so that on the
whole the total deviation increases. The same result 1s
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easily seen to be true even after ¥ becomes negative
(if it does become negative before ¢ reaches $7). Hence
as ¢ increases from ¢, the deviation continually in-

creases.

If ¢ diminishes from ¢,, then 4r increases from A,
and we have only to consider the reversed ray to see that
the same result follows.

Hence, when the ray of light passes symmetrically
through the prism, the deviation 1s a unique minvmum.

The theorem may also be proved by means of the
formule of the preceding article.

The equations (1) are
sin ¢ = p sin ¢’
sin Y= psiny’}’
and therefore adding,

sin ¢ + sin Yr = p (sin ¢ + sin '),
or

Zsin (¢ + ) cos § (b — ) = 2usin §(¢'+)cos § (¢'— ),

that 1s sin (D + ¢) = p sin Lcas-&-(qb _1’&).
3( )=p 3 COS é(qﬁ—‘l‘b")

Suppose that ¢ and 4 are unequal, and that ¢ is
greater than +». Then the deviation ¢—¢’ is greater
than the deviation y»—+; therefore ¢ —4 is greater
than ¢’ —+, and therefore cos §(¢’— ) is greater than
cos §(¢p — ).

Similarly cos 4(¢'— ) is greater than cos F(p—) if
¥ be greater than ¢. Hence 1n all cases in which ¢ and
¥ are unequal sin §(D + ) is greater than wsin }..

But when ¢ =+, sin 1 (D + 1) = u sin 4.

Hence when ¢ =+, D is a unique minimum.
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EXAMPLES.

1. Rays are incident at a given point of a prism so as to be
refracted in a plane perpendicular to its edge. If ¢ be the angle of
the prism and a the critical angle, show that the ray will pass
through the prism if the angle of incidence be such that

sin ¢ sin a > sin (¢ —a).

9. If the angle of a prism be 60°, and the refractive index J/%,
find the limits between which ¢ must lie in order that the ray

may be able to emerge at the second face.
Ans. 30° and 60°

3. If the angle of a prism be 60°, and the refractive index /2,
show that the minimum deviation is 30°.

4. The minimum deviation for a prism is 90°. Show that the
least value possible for the refractive index is 4/2.

5. Prove that in prisms of the same material, as the refracting
angle increases, the minimum deviation also increases.

6. The refractive indices of three rays with respect to a given
prism are py, pg, pg; Show that if Dy, Dy, Dy their minimum
deviations through it are in Arithmetical Progression, then

sin}D, sin}D +sin Dy
) prt s '

7 Two prisms of the same vertical angle but of different
refractive indices are placed in contact with their edges parallel
and their angles turned opposite ways; prove that the deviation
due to the system of a ray which 1s incident per{)endmula.ﬂ;f,r on the
first surface of the system increases with the angle of the prisms.

8  If the minimum deviation for rays incident on a prism be a,
the refractive index cannot be less than sec 4a, and the angle of the

prism cannot be greater than = —a.

95 When the refracting angle of the prism 1s small,
then the deviation will be small. By equations (2)
and (3), |

”;’F —t 95 )
Yy=1+D—¢.

Hence, sin (v 4 D — ¢) = p sin (v — ).

But, since ¢ and D are small, their sines may be very
nearly represented by their circular measures, and their

sy " ol
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- cosines do not differ sensibly from unity, and we geb
(¢ + D) cos ¢ —sin ¢ = pe cos ¢’ — psin ¢’ ;

therefore D cos ¢ =t {p cos ¢’ — cos ¢},

or D=5{Pms¢—1}.

coS ¢

If the ray es nearly perpendicularly through the
prism ¢ and cﬁPE:j;l both be small, and if we exclude the
third order of small quantities, the value of the deviation
becomes

D=(u—1),
which, to this approximation, is independent of the angle of
incidence.
26.  We shall next suppose that the ray does not lie
1n a principal plane of the prism.

Let the same notation as before be applied to the
projections of the path of the light on a principal plane,
Also let 7, 7 be the inclinations of the incident and re-
fracted rays to the principal plane at the first refraction,
€& & the inclinations of the refracted and incident rays
to the same plane, at the second refraction, respectively,
Then by § 20

Sin 7) = w sin 1;:‘}
sin £ = psin £ °

Also, & and 7’ denote the inclination of the same ray

to the same plane, and therefore E'=n"and £=y,

This proves that the incident and emergent rays are

equally inclined to the principal plane, or to the refracting
edge of the prism.

Further, there are the equations of refraction
SIn ¢ cos 7 = y gin ¢’ cos n’}
SIn Y CoS 1) = u sin Y’ eos 5') °
and ¢+ =

These equations contain the whole theory of the re-
fraction of a ray through a prism.
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MISCELLANEOUS EXAMPLES ON CHAPTER IL

1. A hemispherical bowl whose inner surface is polished, is just
filled with water; and a ray is incident on the surface of the water
in a vertical plane, which passes through the centre of the sphere.
After two internal reflexions it emerges, when it makes the same
angle with the normal to the surface of the water as at incidence.
Show that the point of incidence must lie on a ring concentric with
the rim of the vessel and having its bounding radii respectively 4 /2
and /% of the radius of the vessel, the index of refraction for
water being taken to be 4.

9. The concave side of an equiangular spiral being polished,
prove that a ray of light once a tangent to the spiral will always be
a tangent to the spiral, however often it may reflected at the
curve.

3. Rays proceeding from the vertex of a parabola are reflected,
each one at the diameter where it meets the curve. Prove that the
reflected rays all touch a parabola of eight times the dimensions of
the given parabola.

4. A ray of light is reflected a number of times between two

Jane mirrors, not in a principal plane; prove that every segment

of the ray reflected from one mirror intersects every segment re-
flected from the other mirror.

5. A prism, refractive index p' and refracting angle 60°, is
enclosed between two others of refractive indices p and angle 60°
their edges being turned the opposite way to that of the first.
Show that if a ray passes through without deviation, its course

must be symmetrical, and that 3ui=p?+p'+1.

6. Two right-angled prisms each of refracting index A, and a
rism whose angle is 60° and refracting index p, are placed so that
each of the former touches one face of the latter, an the angle of
the middle prism is turned in a direction opposite to that of the
aneles of the other two. A ray passes through the system in such
a girectian that its deviation by the middle prism is a minimum,
and it emerges parallel to its incident direction ; prove that

4N2=p 3. _

7 A direct-vision spectroscope is composed of three prisms, two
of which are exactly alike and are placed each with a face in contact
with the faces of the third and their vertices turned towards its
blunt end. Find equations for the angles of the prisms and their
refractive indices in order that a ra refracted through the three
prisms may be able to emerge parallel to its direction of IDG]dEII(:I."ﬁ.

If the refractive indices of the two similar prisms and the third
be /6 and §/3+1, respectively, and the angle of the t1‘1_1:‘d prism be
120°, show that the angle of the two like prisms 18 tan—1 (643 4/3).
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8. If » equal and uniform prisms be placed on their ends with
their edges outwards, symmetrically about a point on the table,
find the angle of each prism in order that a ray refracted through
each of them in a principal plane may describe a regular polygon.
Show that the distance of the point of incidence of such a ray on
each prism from the edge of the prism, bears to the distance of
each edge from the common centre the ratio of

\/FE—E;,L{}{JBT—E-F]. P ptl.

9. A ray is refracted at one face of a triangular prism in the
principal plane, and after being reflected at each of the other faces
emerges through the first face ; show that the whole deviation is
greater or less than two right angles, according as the vertical angle
of the prism is less or greater than a right angle. Show also that
if the angle of emergence of the ray be equal to the angle of inci-
dence, the deviation will be a minimum when the vertical angle is
less, and a maximum when it is greater, than a right angle.

10. A ray enters a prism of quadrilateral section in a principal
plane and after reflexion at three sides in order emerges from the
one at which it entered, making the angle of emergence equal to
that of incidence but on the opposite side of the normal. Show
that the section of the prism by the principal plane can be inseribed
in a circle.

11. Sunlight falls on a small isosceles prism standing on a
horizontal table and emerges after reflexion at the base, the edge of
the prism being inclined at any angle to the sun’s rays. Show that

the result is the same as if the sunlight had been simply reflected
at the table.

12.  There are two confocal reflecting ellipses ; a ray proceeds
from a point P of either of them in a direction passing through one
of the foci and is continually reflected between the curves, If]
after 2n—1 reflexions, it returns to the point P, the length of the
path is equal to z times the difference of the major axes,

13. A cylindrical pencil of light is incident on a refracting
prolate spheroid in a direction parallel to the axis, the excentricity
of the spheroid being ¢, and the refractive index p ; find the positions
of the rays which emerge parallel to the axis, supposing u>1/e,
and show that none of the emergent rays will be parallel to the
axis if p<1/e,

14. Three plane mirrors are placed with their planes at right
angles to one another. If a ray be reflected by all of them suc-
cessively, its direction will be parallel to its direction at incidence,

15, A ray is reflected at three plane mirrors suceessively, so as
to be parallel to its original directions after the reflexions, and the
three directions which it takes are mutually at right angles to each
other. Prove that the mirrors are mutually inclined at angles of 60°.

H. 0O, 3




CHAPTER III,

REFLEXION AND REFRACTION OF DIRECT PENCILS.

97. HITHERTO we have considered the reflexion and
refraction of single rays only; we shall now consider the
modifications produced in pencils of rays, by reflexion and
refraction.

A pencil of rays 1s incident on a plane reflecting surface ;
to find the form of the pencil after reflexion.

Let QR be any ray proceeding from a fixed point @,
and RS its course after reflexion at the mirror.

] ;
$

g -
d M Q?

Draw QM perpendicular to the mirror and produce RS
backwards to meet it in ¢; this can always be done, for
the lines QM, QR and RS lie in one plane. Then by the
law of reflexion it follows that the angle gRM is equal to
the angle QRM, and therefore the triangles QRM, gRM
are equal 1n all respects, so that gM = QM.
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The position of ¢ 1s independent of the particular ray
chosen, and the pencil after reflexion diverges from ¢. Thus
the foci of the incident and reflected pencils lie on the same
perpendicular to the mirror, at equal distances from 1t, on
opposite sides.

28, A bright point being placed between two parallel
plane marrors, required to find the foci of the reflected
rays.

q.
[ 4 1 t!.l'
Lo r ¥

o

Let @ be the radiant point; through @ draw a line
AQB perpendicular to both surfaces and produce it in-
definitely both ways,

Then, taking Aq¢ equal to AQ, ¢ will be the focus of
the rays from @ after reflexion at the first mirror. These
reflected rays, diverging from ¢, will become incident on
the second mirror. If, therefore, we take Bq” equal to
Bq', q” will be the focus of the rays after a second reflexion
and so on. Again, the rays diverging from Q and incident
on the second mirror will have a focus ¢, where Bq, = BQ;
the rays diverging from this focus and incident on the
first mirror will have a focus ¢ , where Aq,=Agq,, and
S0 on. dThus;hthrla_re aﬁ% an infinite number of foei all
arranged on the line ' -
distaf’o after each reﬂexiu;i.and HEPRRE o ] oy

The distances Qq, Qq¢”... may b '
_ : y be easily calculated,
f]ii‘:}rl, making QA =a, QB=b, and AB— £+ b=¢, we
11

3—2
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Qg =24Q=2a,
Qq¢" =BQ+ B¢ =Qq + 2BQ=2a+2b=2c,
Q7" =AQ+ Aq" =Qq" +24Q=2c+ 2a,
Q¢" = BQ+ Bg” = Qq" + 2BQ = 2a + 2b + 2¢ = 4c,
and so on.

In like manner we find
QQIJ = Zb: qu = 2':1 qu, = 2¢ + 25, Q(IHH e ‘]!ﬂ, &e.

29. A bright point being placed between two plane
marrors, inclined to one another at any angle, required to
find the position and number of the foci of reflected rays.

Let OA, OB be the sections of the mirrors by a plane
drawn through the radiant point @ perpendicular to both

mirrors; and let a perpendicular be drawn from € to the
mirror OA and produced to ¢, so that Qg may be bisected
by the mirror; then ¢’ will be the focus of the rays after
one reflexion at OA. Again, Lstting fall a perpendicular
from ¢ on OB and producing it to q”, at an equal distance
on the other side, ¢’ will be the focus of the rays after
o second reflexion, and so on. In hike manner we find
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another series of foci ¢,, ¢,, q,... if we first take the
rays which are incident on the mirror OB,

Now, by the construction, it easily follows that Og'= 0@,
and in the same manner we find that Og¢” = O¢" = OQ).
Therefore all the foci lie on the circumference of a circle
whose centre is 0, and radius 0.

To determine the positions of the foci, let the arc
Q4 =6, QB=0 and AB=0+6 =.
Then the arc
Qf = 204 =24,
Q7" =BQ+Bq =Q¢ +2BQ =20+20'=2,,
Q" =AQ+Aq¢" =Qq¢"+24Q= 2 + 26, and so on.

Similarly,
Qg; — 25: qu —_ 2"'.’ ng = 25 + 25}, &ﬂ.

And, in general, the distances in the first series are
qumu = 2n, Qq{mﬂ] = 2 + 20,
and in the second series,

Qqem =2ns,  Qgenyy = 2 + 26.

The number of images is limited; for when any one
of the images falls on the arc ab, between the mirrors
produced, it lies behind both mirrors, and therefore no
further reflexion takes place. If the image ¢ be the
ﬁrs’s to fa,u on the arc ab, then, since this is one of the
images which lie behind the second mirror, we must have
the arc Q¢® > QBa; that is, 2ne > 7 — 6, or

T — 6

2n > y
[

If the first image which falls on the arc ab be one
of those behind the f%rst mirror, say Qg®**), we must have

Q"+ > QAb;
that 1s, 2nc+20>7— @, or 200+ 04+ 8 >7 -0

m—40

or finally, on+1>

L



38 -~ .REFLEXION BY PLANES, [cHAP. IIL

‘This is the same result as before, 2n being the number
of Images in the first case, 2n + 1 in the second. There-
fore the whole number of images in the first series is the
integer next greater than (7= —6@)/c; and, in like manner,
the number of images in the second series may be shown
to be the integer next greater than (w — @)/

If ¢ be a submultiple of two right angles, 7r/¢ will be a
whole number, and the number of images in each series
will be 7r/s, since /¢ and 6'/¢ are proper fractions; so that
the total number of images will be 2m/u But mn this
case 1t happens that two of the images of the different
sﬁnes coincide. For if sr/¢ be an even integer, say 2n,
then

Qg™ + Qqon = 2nt + 2m = 2,
and therefore the images ¢V, qun comncide. And if /e
be an odd integer, say 2n + 1,

Qg 4 Qqensy = 4 + 2 (0 + 0') = (4n+2) v =2,
and the images ¢, ¢4y coincide.

If therefore we include the radiant point in the number,
the total number of foct is 2/e.

This theory contains the principle of the kaleidoscope.

30. A kaleidoscope is made in the form of a cylinder, with slips of
mirror inside, arranged so that they form two faces of the equilateral
prism inscribed in the cylinder. In the centre of one end of the
cylinder is an aperture for the eye, and at the other end are bits of
coloured glass. The reflecting surfaces of the mirrors are inwards
and they give six images symmetrically arranged of any bit of glass
lying in the space between them. The kaleidoscope often contains
three strips of mirror forming an equilateral prism inscribed in the
cylinder, the reflecting surfaces being turn inwards. There will
t});en be a symmetrical pattern arranged about each edge of the
prism.

Ex. Two mirrors are inclined at an angle of 50° show that
there will be 7 or 8 images of a bright point between them according
as its angular distance from the nearer mirror is or is not less
than 20°.

Let #, #/ be the number of degrees in the angular distances of
the bright point from the mirrors, respectively. Then as & assumes
all values from O to 50° the fraction (180—)/50 takes all values
from 3% to 2%, and when 2=30" the fraction is equal to 3. Now let
 be the angular distance from the nearer mirror. Then the integer
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next greater than (180—)/50 is always 4, and the integer next

ater than (180 —4/)/50 is 4 or 3 according as &' 1s less or greater
than 30°, that is according as & is greater or less than 20°. Hence
if the angular distance of the point from the nearer mirror be
greater than 20° there will be 8 images ; otherwise 7.

31. From the case of a single pencil we may now pro-
ceed to consider the way in which any object is seen by
reflexion in a plane mirror.

When any object is presented to a plane mirror, every
point of the object is emitting rays of light; when the
rays from any point are reflected at the mirror they will
proceed as if from a focus on the other side of the marror,
such that the two corresponding foci are on the same per-
pendicular to the mirror and at equal distances from it.
To every point of the object will correspond one such
focus, and the aggregate of these foci is called the vmage
of the object. The image will be similar to the object
and equal to it in every respect, since corresponding points
of the image and object are similarly situated with respect
to the mirror. But since the faces of the image and object
are turned towards opposite directions, the position of the
object with respect to right and left will be inverted in
the image. If the eye be placed so as to receive reflected
rays, they will produce the same impression as if they
were radiating from a real object behind the mirror in
the position occupied by the image. We may trace the
rays by which the eye sees any point of the object, by
drawing a pencil of lines bounded by the pupil of the
eye, towards the corresponding point of the image as
far as the mirror, and then joining the points of the

section of the small pencil by the mirror, to the point of
the object.

In illustration of the preceding article, the accompanying figure
shows the manner in which an eye receives rays after reflexion at
each of two mirrors (4, OB at right angles to each other. B
§ 29 it appears that there will be three images of any object (i
which with the object will form a symmetrical arrangement of
images. To trace the rays by which the eye sees the image q", we
draw the pencil of rays from ¢” bounded by the pupil of the eye ;
only the part of the rays between the eye and the first mirror are
drawn continuously, the rest dotted. We next draw the pencil from
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g, bounded by the section of the former pencil made by the mi
04 ; the rays of this pencil are only draI,an cﬂnt-inuou:;ly ?JGT'.LI::;

the two mirrors, and the rest dotted. Finally, we draw the pencil
from @ to the points of the section of the last pencil made by the
mirror OB. Rays issuing from @ are reflected first at the mirror
OB, then again at the mirror 04, and finally enter the eye in the
same direction as if they proceed from an object situated at ¢".

32. The pencils we shall now consider will be very
slightly divergent, or in other words, the solid angles of
the pencils will be very small.

When the axis of the pencil coincides with the normal
to the surface on which it is incident, the incidence is said
to be direct ; in other cases the incidence is obligue.

In general, the rays of the pencil after refraction or
reflexion do not accurately pass through a point; but
there are many useful cases, where the incidence 1s direct,
in which the rays very approximately meet in a point.
We shall now consider a few of these cases.
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A small pencil of light s incident dairectly on a plane
refracting surface; to find the form of the pencil after re-
fraction.

Let the pencil diverge from a point ), the axis of the
pencil, @4, being normal to the plane refracting surface.

w

S u

-
‘‘‘‘‘

Let QRS be the path of any ray of light, and let RS pro-
duced backwards meet the axis in ¢. Then the angle
AQR is equal to the angle of incidence of the ray, and the
angle AgR, equal to the angle of refraction. But if u, u’
be the refractive indices of the two media, the law of
refraction, expressed in the usual notation, is

pSin ¢ = u' sin ¢'.
This may be written,

pAR AR
RN e R
ki
25 RQ™ Ry’

‘When we consider different rays of the pencil the
position of the point R will vary, and therefore the position
of ¢ will vary. But if we suppose the pencil very small,
then AR will be very small and RQ will be very nearly
equal to A@Q), and Rq to Ag, and therefore

40 _4qg
poow
or as 1t 1s more usually expressed

]

u uw

T

m ;n
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where « and «’ denote the lengths A and Ag, respec-
tively. To this approximation, the point ¢ is fixed ; that
18, 1ts position does not depend upon the particular ray
chosen ; so that all the refracted rays produced backwards
cut the axis A in the same point g. The point ¢ is
therefore the focus of the refracted pencil. It is sometimes

called the vmage of the point @; () and g are also said to
be conjugate foc.

It therefore appears that @ point and its vmage lie on
the same normal to the surface, and on the same side of
the surface; if the distance of the point from the surface
changes, the distance of the vmage changes wn the same
proportion, and the point and its image move n the same
dvrection.

33. From the case of a single pencil we may deduce
the manner and position in which an eye sees an object
situated in a medium whose refractive index 1s different
from air, as for instance an object under water. Every
point of the object under water is emitting rays of light:
when the rays from any point emerge in air, they will
proceed from the focus conjugate to the given point. As-
suming the refractive index from air to water to be %,
the focus conjugate to a given point will lie on the same
normal to the surface at § of the depth. To. every point
of the object there will be such a corresponding focus, and
the aggregate of these foci is called the 1mage of the
object. To an eye in air, the emergent rays will produce
the same impression as if they proceeded from a real
object occupying the position of the image. The rays by
which the eye sees any point may be traced by drawing
lines bounded by the pupil of the eye towards the corre-
sponding point of the image, as far as the refracting sur-
face, and then joining the points of the section of the
small pencil by this surface, to the poimnt of the object.

The forms of the images corresponding t0 different
forms of object may be deduced by geometry from the
preceding construction. Thus it is clear that the image
of a plane, will be another plane, the two planes meeting
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the refracting surface in the same line at different in-
clinations; to a sphere, will correspond an ellipsoid of
revolution whose axis of revolution is normal to the sur-
face, and so on.

This representation of the image is only approximately
true ; for of the rays proceeding from any point, 1t 1s only
those which are nearly normal to the surface which emerge
from the image. It is therefore necessary that the object
should be small and that the eye should be almost directly
over it, so that all the rays may pass out in a direction
nearly normal to the surface. The more accurate theory

must be postponed.

EXAMPLES,

1. Three plane mirrors are all perpendicular to a given plane.
Show that if alhright point be placed anywhere on the circumference
of the circle which is described round the triangle formed by the
intersection of the mirrors with the given plane, the three images
of the point formed by one reflexion at each mirror, respectively,
will all lie in a straight line.

2. The locus of the image of a luminous point reflected in a
plane mirror is a circle. Prove that the mirror always touches a
conic section or passes through a fixed point.

3. Show that when an eye is placed to view any image formed
by successive reflexions at two mirrors, the apparent distance of the
image from the eye is equal to the distance actually travelled by
the light in arriving to the eye from the original point of light.

4. A luminous point is placed at the centre of an equilateral
triangle whose side is @ ; show that the distance from the luminous
point to the image formed by 2 reflexions at the sides of the
triangle in succession is na, and to that formed by 2n+1 reflexions
i8 an/(n®+n+}).

5. A speck within a solid cube of glass is viewed directly
through each face in succession ; prove that the six images will

form the angular points of an octahedron, not generally regular
but having all its diagonals equal.

6. A luminous point moves about between two plane mirrors
which are inclined at an angle of 27°. Prove that at any moment
the number of images of the point is 13 or 14 according as the

angular distance of the point from the nearer mirror is less or not
less than 9°,
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7. Two circular plane reflectors, the radii of which are «, b, are
placed so that the line joining their centres is perpendicular to the
plane of each, and a bright point is placed midway between the
centres ; prove that the greatest number of images visible to an
eye looking over the edge of the larger reflector, is expressed by the
greatest integer in (a+0)/2 (a—b).

8. When the angle between a stick under water and its image
1s a maximum, the stick makes an angle whose tangent is /u with
the water, and the sum of the angles which the stick and its image
make with the water is 1.

34. We shall next consider the case of a small pencil
directly reflected or refracted at a spherical surface.

The most general case will not be a plane problem, but
it may easily be derived from a plane problem. We shall
first consider a pencil issuing from a bright point on the
axis of the spherical surface; the whole system of rays
will then be symmetrical about the axis, and we need
only consider rays lying in one plane through the axis,
and afterwards suppose the plane system to be revolved
about the axis. It will be shown that after reflexion
or refraction the pencil will approximately diverge from a
focus also situated on the axis. If the bright point be
not on the axis of the spherical surface, we join it to the
centre of the surface; the joining line is normal to the
surface and therefore may be considered as itself an axis,
and the problem is the same as before.

35. Direct reflezion of a small pencil at a spherical
surface.

We first treat this as a plane problem.

ﬂ F‘M

A Q o] Q

ol iy ?
Let @ be the focus of the incident pencil, QOA being
the axis of the pencil, O the centre, and A the vertex of

the spherical reflecting surface. Let QR be any incident
ray, which after reflexion cuts the axis in @'
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Let AQ=u AQ =4/, and let the radius of the circle
be r.

Then by the law of reflexion, the normal RO bisects
the angle between R@) and R}, and therefore, by Euclid

VL. 3, ]
ROE-URO = 00 = 10C,
Now if the pencil be small, AR will be small, and
RQ will not differ much from AQ nor R from A¢), and

therefore Tt S mi=po v =g,

that is z(r—a)=ao (x—r7);

which may be written,
| 0 v [
e B S e el S )
z @& r (1)

To this degree of approximation we may say that
all rays passing through ¢ will after reflexion pass through
', and vice versa. The points @), @ will be called conju-
gate foci; either of them may be taken to be the image
of the other.

36. The formula we have proved connecting the
distances of a pair of conjugate points from the surface
includes all cases that may arise. If, for instance, the re-
flecting surface is convex, so that AO is measured in
the opposite direction, we must change the sign of r
in the formula. All distances measured to the right of
A are cousidered positive, those measured to the left,
negaftive.

~If the mcident rays are parallel to the axis, so that
1s infinite and positive, or infinite and negative, the corre-
sponding value of #' in each case is

&' = }r = f, say.

Hence if F be the middle point of 40, F is the focus
for parallel rays proceeding in either direction. It is
called the principal focus of the mirror.

The formula (1) may be written

' —af —a'f=0,

or @ =)@ ~f)=1*
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Let u, ' be the distances of a pair of conjugate points
measured from the principal focus in the same direction,

so that
w=x —f)
':E'E-l':mf'—f b

then uy = f2,

From this 1t appears that the whole theory of reflexion
at a spherical surface, whether the surface be convex to-
wards the incident light or concave, and whether the in-
cident pencil be convergent or divergent, may be very
briefly stated by the aid of the principal focus. For let
F be the principal focus, which is the point midway be-
tween the vertex of the mirror and its centre; then a pair
of conjugate foci always lie on the swme side of F, and at
distances, w and w' from ut, such that

ww' = f2, where f=3r.

If now the system be revolved about the axis QUA
we shall have considered all the rays issuing from the

point ().

37. Next let the axis QOQ'A be turned about O In
all planes through a small angle, the points on it being
fixed. Since the line is still normal to the surface, the
points @, @ will still be conjugate foci All the fixed
points on the line will describe small elements of spheres
whose common centre is at 0. To the approximation to
which we are limiting ourselves, these small elements
may be taken to be plane, all these plane elements being
at right angles to A0. Then, corresponding to a small
plane object at @), we shall have a plane image at @'; the
image and object will be similar and similarly situated,
the lines joining corresponding points always passing
through the centre of the mirror. The principal focus F
will also describe a small element of a plane. This plane
is called the principal focal plane. All pencils of parallel
rays inclined at small angles to the axis of the mirror will
have for foci points on the principal focal plane.
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38. Let #, o’ represent the linear dimensions of the
object and its image, then since corresponding points lie
on the same line through the centre of the sphere,

N0

7 0@

Sty

-5

That is, Lt
n &
or 4 Tl,=ﬂ.

Fi €T

It will be noticed that if the conjugate focr lie on the
side of the principal focus on which the centre of the surfuce
lies, the vmage unll be inverted, otherwise erect.

Further details and constructions for conjugate foci
will be given in the case of the direct refraction of a small
pencil at a spherical surface ; these will all be applicable
to the present case, with the usual modifications.

39.  To find the path of a ray after refraction at any
spherical surface.

Let AP be any ray incident on a sphere of radius #
and centre 0. To find the path of the refracted ray.

?
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Let the original medium in which the ray moves have
a refractive index u, and the sphere an index u/. With
centre O describe two other spherical surfaces whose radii
are respectively ru'/p and ru/u’. Produce the incident
ray to meet the first sphere in L; join OL cutting the
second sphere in L', then PL' is the refracted ray.

For, by construction OL . OL'= OF?; hence OP is the
tangent at P to the circle circumseribing the triangle
LPL’, and therefore the angle OPL’ is equal to the angle
OLP, 1in the alternate segment. But from the triangle
OLP

sin [P0 : sim QLR =pu: p,

that 1s, sin LPO :sm L'PO = u @ u,
or psin LPO = ' sin L'PO.
Hence PL’ is the refracted ray.

From this construction it appears that all rays passing
through the point L are refracted so as accurately to pass
through I/. Thus two points on any radius of the sphere
whose distances from the centre are »u'/p and 7ru/w
respectively, form a pair of conjugate points, for all angles
. of incidence. This property is of importance in the con-
. struction of strong objectives for microscopes, as was
. first pointed out by Amici.

40. Direct refraction of « small pencil through «
spherical surface bounding two different medua.

Let O be the centre of the spherical surface separating
two media whose refractive indices are p and w'. We

% R

=8 . A\ ' 5 Q Q
{0 B &
r'..L -

shall suppose light to travel from left to right from the
first to tIE:; second medium. Let () be the focus aud‘ QROA
the axis of the incident pencil, and let RP be a ray in the
first medium, which, proceeding towards the focus @, 1s
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refracted into the second medium along the line PQ'.
Draw the normal to the surface at £ and let ¢, ¢’ be the
angles of incidence and refraction, respectively ; then

psin ¢ = u' sin ¢,
Let the angle A0OP be denoted by 6; then from the
triangles OP(Q and OPQ’, we obtain the relations

Bnp 99
sing - QP
sing’ 0@
. sind ~ QP
0 20
and therefore o Q—g = Q_’?’,

We shall suppose that the inclinations to the axis, of
the rays we are considering, are small ; then we can write
approximately QA4 for QP, and @'A for Q' P, so that all
rays in the plane through the axis, diverging from ), will
after refraction pass through the point ¢, determined by

the relation
0Q _,0Q
F' Q_.fl = K Q(j ................... (1)

The relation between the points @ and @' is reciprocal;
they are called conjugate foct.

Let AQ=a, AQ =2/, and AO=r, z, &' and r being
considered positive when they are measured from left to
right. The figure has been arranged so that z, 2’ and »
are all positive ; in the typical case, therefore, the light is
incident on a convex surface, and the first focus is virtual.
Then, in the figure, 0Q =z — r, and 0Q’' = 2’ — », and the
preceding relation may be written

Z' —r)

@=7)
@ = e a;r T

In

and therefore,

H. 0. 4
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- From this equation it appears that # and #/ will
increase together or decrease together, so that a pair of
conjugate foct always move in-the same direction.

41. We might have taken the centre O for origin.
Thus let 0Q=p, 0Q =p’, OA =7, all these distances
being positive when measured to the right. The figure
is drawn so as to make p, p’ and » positive. In the typical
case, therefore, light is incident on a concave surface, and
the first focus is virtual. Then, writing the relation (1) in

the form
Q4 _ 94
I OQ"F’ 0Q°
it becomes 2 el P;TT
e P P“; P
or Hinevel eyt itz |
R i
R
P
\\
O A Q’ Q

49. Tt is often more convenient to choose a different
convention with regard to sign. Suppose, as usual, that
light is travelling from left to right, and let Q4 =g,

Q A 0 Q'
(A = &', x being considered positive when @ lies in front
of A, and &' being positive when @ lies behind 4. Then
changing the sign of # the equation (2) becomes

f !
LB ol o
@ @ T _
The focal points are defined to be the points conjugate
to the points at infinity in the two media, and play an

important part in the theory of other conjugate points.
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First, let us suppose that &' is infinite, so that the rays
are parallel after refraction into the second medium; the
conjugate point &' is then determined by the equation

pr
x T [, say

Similarly, if the rays are parallel to the axis in the
first medium, they will, in the second medium, converge
to a point #”, such that

ety = o
S = 7 say

These points are the focal points of the surface, and

/. f " are called its principal focal lengths.

The relation between z and 2’ may now be written in
the form

The course of a ray of light is always reversible, so
that this formula includes the case in which rays are
mcident on a concave spherical surface.

The focal lengths are always both positive, or both
negative, and therefore the product f7” is always positive,
They are both positive if the medium in which lies the
centre of the bounding surface is more highly refractive
than the other, and both negative if this medium is less

refractive than the other. In all cases one of the principal
foci lies in each medium, and i =1t

43. The relation between the absciss® of a pair of
conjugate focl, when referred to the focal points as origins,
takes a very simple and convenient form.

For let A be the vertex of the spherical surface
separating the two media, F, ¥ the focal points of the
surface, ¢) the focus of the rays in the first medium, @ the
focus of the rays in the second medium.

Let QF =u, QF =u', u being considered positive when

Q F A F’ Q
4—2
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@ is in front of F and »’ being considered positive when
@ 1s behind #”. Then the relation between @, 2" may be
written in the form

(@siile =19 =0
that is, B e T (4).

44, The relative positions of conjugate foci may be
easily traced by means of the equation (4).

Since f and f” are of the same sign, it follows that u, «’
will have the same sign. Two cases will have to be con-
sidered. First, suppose that the medium which is bounded
by the convex surface, that is, the medium in which lies
the centre of the spherical surface, 1s the more highly
refractive, so that / and f” are both positive.

F TR

When Q is at infinity on the left, @ will be at F".
Now Q and @ always move in the same direction, so that
as @ moves from infinity, ) recedes beyond F', until @
reaches ¥, and then @ is at infinity on the right. As @
passes F, u becomes negative and is at first very small, so
that « is negative and at first very large; thus ¢ emerges
from infinity on the left and follows @ as it moves along.
When @ is at 4, @ coincides with it. When @ passes 4,
Q' follows it, but moves more slowly than @, and when @

reaches infinity on the right, @ comecides with F".

Qo long as Q lies in the first medium, the rays in the
first medil:'lgm fﬂ?m a pencil diverging from @; but when
passes beyond 4 into the second medium, the rays in the
first medium form a pencil which if produced would con-
verge to @, but they are intercepted by the refracting
surface and never actually pass through . In this case,
() is a virtnal focus. All these remarks apply also to
the point @'; it 1s a real focus only when it lies i the
second medium, and a virtual focus when it lies to the

left of A, in the first medium.
Next suppose that f and f" are both negative, then F
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lies to the right of 4, in the second medium ; and F' lies
to the left of 4, in the first medium.

e 7

If we suppose @ to begin at infinity on the right, and
to move backwards through all positions to infinity on the
left, the motion of ¢ may be described in nearly the same
words as before. ¢ will be a real focus only when it lies
to the left of A, and in other cases i1t will be a virtual
focus; similarly ' will be a real focus when 1t lies to the
right of 4, and in other cases a virtual focus.

45. A formula similar to (3), may be found for the
positions of a pair of conjugate foci, if we take as origins,
any fixed pair of conjugate foci. Let @, G be any given
pair of conjugate foci, whose distances from the focal
points, measured mwm‘ds are respectively g, ¢’, so that

99 =Jf".
Let the distances of @, @ from G, G' be respectively

a E & & 2 &

v, v, the signs being fixed by the same convention as
before. Then, with the previous notation,

w="y —g}

w=v—g
and the relation between the absciss® of conjugate foci is

=9 —g)=jf"=99;
which may be written in the form

¥

sl

— — =

() v

46. We shall next consider points not on the axis of
the surface,
Let the line OA4 turn about O through a small angle,

carrying the points Q, @, F, F', A a.]t}ng with it. The
new line OA will still be ncrrma.l to the surface, and @, Q'
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will still be conjugate foci. If OA be turned through all
positions making a small angle with its initial direction,
the points @, @, F, F' describe small elements of
spheres ; if we neglect the squares of small quantities as
before, these may be regarded as planes, cutting the axis
at right angles. The planes at @, @ perpendicular to the
axis may be called conjugate planes. Rays diverging from
a point on one of the planes, after refraction at the
spherical surface will converge to a point on the other
plane.

Corresponding to a small object in a plane perpendicular
to the axis there will be a similar image in the conjugate
plane, such that the lines joining the corresponding points
of the object and its image all pass through the centre of
the refracting surface.

The planes at F, F' perpendicular to the axis are
called focal planes. Rays diverging from any poimt on
the first focal plane will be parallel after refraction into
the second medium, and conversely, any system of parallel
rays in the first medium converge to a point on the second

focal plane.
We have already regarded the spherical surface as

approximately plane near A, and shall continue to do so.
We may call it the principal plane of the surface.

47. We can now give simple geometrical constructions
for determining the focus conjugate to a given point, and
for drawing the emergent ray when the incident ray 1s
given.

Let P be a point whose conjugate focus 1s required.
If we can trace any two rays through P they will meet 1n

F 4 F'x
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the required point. For onme of the rays choose PM,
parallel to the axis of the surface, meeting the principal
plane at 4 in M. Then MF' is the corresponding emer-
gent ray. Also, let the ray PF meet the principal plane
in M’; this ray will emerge parallel to the axis, so that if
we draw M’P’ parallel to the axis it will meet M in the
required point.

For either of these two rays we might have substituted
the ray PO, which passes into the second medium without
deviation.

48. Let P be a point, PQ any ray through it meeting
the first focal plane in @; the conjugate focus of P, and
the emergent ray may also be constructed in the following
way.

s
------ o
Ql
'\" b
P N k‘}, Q’
\ -'-"-ﬁ-r'-ul"\
G e
L
—1 0 :
et P
R

Draw the ray PO ; it will pass through into the second
medium without deviation, and the conjugate focus will
lie on this line. Again let ROQ’ be drawn through O,
parallel to the ray P@), meeting the second focal plane in
Q. Join 0@, and from @ draw QP parallel to 0Q.
This is the emergent ray corresponding to the incident
ray PQ), and will meet PO produced in the required point.
For the rays RO and PQ) are initially parallel, and there-
fore will meet on the second focal plane; and therefore
the ray PQ after refraction will pass through Q. Also
P() and QO are two rays proceeding from @, a point on a
focal plane, and therefore they will emerge parallel to
each other after refraction. But the ray QO passes
through into the second medium without deviation :
therefore the emergent ray QP is parallel to QO.
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49. The emergent ray may be also constructed as
follows :—

M
N

Let the incident ray meet the principal plane in M.
Draw FN parallel to the incident ray to meet the
principal plane in N; the ray FN will emerge along
NS parallel to the axis, meeting the focal plane at A"
in the point 8. Then since PM and FN are parallel
nitially, they will converge to a point on the second
focal plane, and therefore MS is the emergent ray.

These constructions will afterwards be generalised so
as to give the focus conjugate to a given point and the
emergent rays, after refraction through any number of
spherical surfaces, with their centres arranged along an

axis.

50. Let n, n’ be the linear magnitudes of the object
and its image, n and 7' being reckoned positive or
negative according as they are above or below the axis.

P M F &
o= ik Q

1:- F A n*
M P

Referring back to the geometrical construction (§ 47) for
finding the point P’ conjugate to a given pont L 1t
follows from the similar triangles PQF, M'AF that

B0 O e

. ",I‘:.I!
that is, with the same notation as before, :—i = — -}.,

1
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or B i f

and similarly,

51. Helmholtz has shown how to find an expression |
for the ratio of the linear magnitudes of the object and 1ts -
image in terms of the divergence of the rays before and
after refraction, which is independent of the distance and
focal lengths of the refracting surface.

‘Let PQ, P’ be the object and image, which are

similar and similarly placed, the centre of the sphere
being the centre of similitude.

Thus g= nl =000 008

But it follows immediately from the law of refraction,
as was shown in § 40, that

0Q _ ,0¢
i 75, ol (ol g4’
and therefore, if we denote Q4 by =, and @4 by
L4 b Ll
s A

this 1s a very useful formula.

But if a be the angle of divergence of any ray through

@, and a’ the angle of divergence of the corresponding ray
through ¢,

1Pl &) |
tang : tana’'==- : 5;
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and therefore,
pum tan a = u'n’ tan o/
which is Helmholtz’s formula.

The ratio ﬂ_f thg linear dimensions of the image to
those of the object is called the lateral magnification, or

simply the magnification, and will usually be denoted by 7.

Similarly, the ratio of the angle of divergence of the
final pencil to that of the original pencil 1s called the
angular magnification, and will usually be denoted by .
Thus n'/p=m, and since for the small angles a, o' the
tangent does not sensibly differ from the circular measure,

tan o
— v ; hence my="~ .

we may write —— 7

EXAMPLES.

1. A luminous point is placed within a reflecting circle; prove
that its distance from the centre is a harmonic mean between the
distances, from the centre, of the geometrical foci after reflexion
at the opposite portions of the surface.

2. Prove that the mercury in a n{]jndriml thermometer tube
appears completely to fill the external surface of the tube, if the
bore be Zths of the external diameter.

3. A pencil of rays is refracted directly through a hemisphere
of glass, show that the position of the geﬂmetriml focus will be
unaltered when the hemisphere is reversed, if

P (u1) pr—p (p=1) p*=0,
where p denotes the distance of the origin of light from the first
refracting surface in each case, and # the radius of the hemisphere.

4, A ray is refracted through a sphere of radius r, its shortest
distance from the centre of the sphere being »/n: show that if 7 be
large the total deviation of the ray will be 2 (u—1)/n.

5. A concave glass mirror bounded by two concentric spheres
is silvered at the back; show that the displacement of an image,
due to the thickness ¢ of the glass, is approximately

.‘132;1—1
ﬂﬁ ."-_
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towards the centre of curvature, where & is the distance of the
image from that point, and 7 18 the radius of curvature of the

irror.

6. Two small ares of a circle at the extremities of a diameter
are polished and a luminous point 1s placed in the diameter at a
distance « from the centre. Show that the distance v of the focus
from the centre after m reflexions is given by the equation

1 m (1, 2m

= Frod L

v G (u =g
the upper or lower sign being taken according as the first reflexion
takes place at the nearer or further arc.

MISCELLANEOUS EXAMPLES ON CHAPTER IIT.

1. A luminous point, placed inside an equilateral triangle
whose sides reflect light, is reflected in succession at the three sides
taken in a definite order; the image so formed is again reflected,
and so on indefinitely. Show that all the images so formed lie on
one of two straight lines.

2. Two concave mirrors face each other; 0, 0" are their centres,
and the distance 4 A’ between the mirrors is greater than the sum
of the radii. Prove that if @, ¢ be conjugate foci for each mirror,
Qg will be the diameter of a circle which cuts orthogonally the two
circles on A(), A'0)" as diameters.

3. If a pencil be reflected between two concave mirrors, radii p,
o, facing each other on the same axis at a distance a apart, show
that there are two positions of the geometrical focus such that after
any even number of reflexions the geometrical focus coincides with
its first position, unless either both p and o are greater than a, or
both p and o are less than @, and p+ o >a.

4. A pencil issuing from a point is incident upon a convex
SEherw_al refracting surface of index p; show that the distance of
the point from its conjugate focus will be a minimum, when the
distance of the point from the surface is to the radius of the surface
as 1 :14+4/u.

5. A ray of light, traversing a homogeneous medium is incident
upon a spherical cavity within it; supposing the limit of the
magnitude of the deviation of the ray, produced by its passage through
the cavity to be 8, show that the index of refraction of the medium
is equal to sec 4 4.

6. Rays converging to a point @ fall on a spherical surface
whose centre is C'; if, after one refraction, more than three rays in
ﬂ,ng plane through @' pass through the same point ¢ on the axis
@C, then will all the rays pass through the same point @',
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7. Parallel rays fall on a sphere, and emerge after one internal
reflexion ; show that rays which are reflected at the same point of
the surface are parallel after emergence; show also that, when the
refractive index is greater than 2, no two rays will be reflected at
the same point,

8. Find the geometrical focus after direct refraction through a
hollow spherical shell bounded by two concentric spherical surfaces
a.]r::ludl]ﬁlled with fluid of refractive index different from that of the
shell.

9. Two spherical surfaces 4, B have the same centre 0; P is
the geometrical focus of rays from a luminous point ¢ after reflexion
first at the surface 4 and then at the surface B, and R is the geo-
metrical focus after reflexion first at B and then at A ; show that
0P, 0¢), OR are in harmonic progression.

10. A hemisphere of glass has its spherical surface silvered ;
light is incident from a luminous point ¢, in the axis of figure pro-
duced, on the plane surface, show that if ¢ is the geometrical focus
of the emergent pencil, 4 the centre of the hemisphere, O its vertex
and u the refractive index for glass,

Aol o e
Adg A4Q 04°
11. A ball of glass contains a concentric spherical cavity; show
that, provided the radius of the cavity do not exceed the radius of
the ball divided by the index of refraction p of the glass, it will

appear to an eye at any distance from the ball to be p times greater
than it really is.

12. A sphere of a refracting substance whose index is /3 has a
concentric spherical nucleus which is a reflector, whose radius is
such that a ray which just enters the sphere grazes the surface of
the nucleus. Prove that, if a ray, which is incident at an angle 607,
return to the point of incidence after internal reflexions, the path
within the medium will be # of what it would have been if there

had been no nucleus.

13. Explain why, in looking down the axis of a smooth gun-
barrel with an eye close to one end, a series of dark rings, 1mages of
the other end of the barrel, are seen on the surface, at distances

from the eye equal to §, 1, 4... of the length of the barrel.

14. Two equal concave mirrors of radius » are placed exactly
opposite one another at a distance «, supposed greater than 2r, apart.
Rays emanating from a point on the line joining their centres are
reflected alternately at the mirrors. Show that after an infinite
number of reflexions the conjugate foci are distant ﬁhﬂf (@*— 2ar) from
the middle point of the line joining the centres of the mirrors.



CHAP. II1.] EXAMPLES. 61

15. A transparent sphere is silvered at the back; prove that
the distance between the images of a speck within it formed (1) by
one direct refraction, (2) by one direct reflexion and one direct
refraction is

duac(a—c)+(a+c—pe) (pe+a—3c),
where « is the radius of the sphere, and ¢ the distance of the speck
from the centre towards the silvered side.

16. A pencil diverges from a point 2 and passes directly through
a transparent sphere whose centre is 0. If ¢, be the focus when
it is not reflected inside the sphere, @, the focus when the pencil
has been reflected 2n times inside the sphere, show that 0¢,, 0@,
0Q, ... 0Q, form a series in harmonical progression, and that

G Ay T ¢
GQ‘II-‘I—I {]Qn_l-w'




CHAPTER 1V.

THEORY OF REFRACTION THROUGH LENSES.

52. A 1ENS 1s a portion of a refracting medium
bounded by two surfaces of revolution which have a
common axis, called the axis of the lens. In general,
the surfaces of revolution are spherical or plane. If these
surfaces do not meet, the lens 1s supposed to be bounded
by a cylinder having the same axis, in addition to the
surfaces of revolution.

The distance between the bounding surfaces, measured
along the axis, is called the thickness of the lems. The
thickness will generally be small in comparison with the
radii of curvature of the bounding surfaces.

Lenses are classified according to their forms. A lens
bounded by two convex surfaces 1s called a double-convex
lens.

A lens bounded by two concave surfaces is called a
double-concave lens.

A lens of which one face is convex and the other

concave 1s called convexo-concave or concavo-convex,
according as the light first falls on the convex or concave

surface, respectively.

The terms plano-convex, convexo-plane, plano-concave
and concavo-plane need no further explanation.

53. We shall now consider the refraction of light
through a single double-convex lens, the radii of whose
faces are r, v/, the light, as usual, travelling from left to
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right. The following abbreviations will be found to be
convenient: let

r e oA
#—lrﬁ ﬁ“ltf’
and let the thickness of the lens be pe, p being the
refractive index of the substance of which the lens 1s
made, when that of air is taken to be unity.

There exist two points on the axis of the lens, which
are most useful in the determination of the positions of
conjugate foci, and corresponding incident and emergent
rays. They are a pair of conjugate foci, such that any
incident ray passing through one of them, will emerge in
a parallel direction through the other. These points are
called the modal points, and also from another property
"lwhich will be pointed out later, the principal points of the
ens.

We proceed to find the position and properties of the
nodal points. Draw any two parallel radi 0Q, 0'Q" of
the spherical surfaces, and join Q@ meeting the axis in C.
Then from the similar triangles 0CQ, 0'CQ),

OC : 0C=r : 7,
and therefore C'1s a fixed point. Any ray of light which
in 1ts path through the substance of the lens passes
through C' will emerge parallel to its original direction,
because the tangent planes at @, Q" are parallel to each

other, and the lens will act on such a ray like a plate
with parallel faces. If therefore we take N, N’ the
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conjugate foci of C' with respect to the two surfaces, a
-ray of light proceeding in a direction towards N will after
the first refraction pass through C, and therefore after the
second refraction will pass through N’ and will emerge
parallel to the original direction; in other words N, N’
HE_E inhe nodal points. The point C is called the centre of
the lens.

The position of the nodal points can now be deter-
mined. The distance between the centres of the spherical
surfaces 1s easily seen to be given by the equation

00’ =7 +7' — e,

7 !
and therefore, 0C= R (r+ 2" — uc)

= 'u.
r4+7r""
G+—-_ #GT — #(:!:Z[.
Th'l.lE A T_{_?-f f'f'fl":a

and similarly A'C= ';-ET;" = f#i%“' .

Let & be the distance of N from A, 2" the distance of
N’ from A’, both distances being measured from the
surface of the lens, inwards. Then, by § 40, since N and

C are conjugate foc,

| O R

B AC RN oy

- R e e
that 1s, E——"G—f 7
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54. There will be two images of a given object,
formed by refraction at the two surfaces in sucecession, and
we shall use a symmetrical notation for their positions
along the axis.

Let 2, ' denote the distances of the object and its
first image, in front of, and behind the surface 4, respec-
tively; and let y, 3y denote the distances of the final
image and the first image behind, and in front, of the
second surface, respectively. By the theory of a single
refraction at a spherical surface (§ 42), we get the
equations

1 =

Sl
£ £ r
1 p_p-—1 VSt o e i B (1).
Yk dufn ="

and o +of=pe |

If planes be drawn perpendicular to the axis of the
system at the nodal points, these planes will be planes of
wnit magnification ; that is, any object lying in the first
plane, will have an image in the second plane, equal in all
respects to the object. This theorem may also be enun-
clated m a slightly different manner; the line joining
the ponts where the incident and emergent rays meet
the first and second planes, respectively, is parallel to
the axis of the system. The two planes are called the
principal planes, and the points where they meet the axis
(in  this case coinciding with the nodal points), the
principal points. j

To prove this theorem, let n, n,, 7 denote the linear

magnitudes of the object and its i ; :
Then, by § 51, ) 1ls 1mages, respectively.

+5=0

E:r
3

+E =0

so that 1 @y’
Y

o
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But by § 53 AC: A'C=n:7', and therefore at the
nodal points &'/y’ =r/r’; 1t easily follows from the equa-
tlﬂnsf(l), that each of these ratios is equal to #/y. Hence
n=n.

1;.55. If we eliminate &/, ¥’ from the equations (1), we
ge

ﬂ—-——:l'u—+u.1_'

AL AT

T R

that is = i + f’y;_
Gy )

By reduction, this equation becomes
ey (f+f' —)=fy(f =0 —fa(f-)=df-(.

By means of this equation the positions of the focal
points may be found; these are points such that rays
diverging from them are made parallel by refraction
through the lens; in other words, they are the points
conjugate to the points at infinity, in both directions.

If in equation (2) we divide by  and then make y n-
definitely large, we get the first focal point, #= g, where

I i
Similarly, the other focal point will be given by the
equation y = g', where
Gl
Frr =
The distance between the first focal point and the first
principal point 1s found to be equal to that between the
second principal point and the second focal point, and this
distance is called the focal length of the lens; 1t 1s con-
sidered to be positive if the first focal point is to the left
of the first principal point. If we denote this focal length
by ¢, we have
¢=g+h=y+hﬁ
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g o

which gives ¢=f+f'—ﬂ’
! 1§ gl i
"" g T W

The reciprocal of the focal length is called the power of
the lens.

Introducing these values g, g, ¢ into the equation (2),
it becomes, on dividing by f+ /' —¢,

zy — gy — g'v=ce,
or (2—g)(y—g)=g9 +cd
w o (CRES o= el
rtioy =

and therefore by reduction,

(@=@Ci=T) =
Let the distances of a pair of conjugate points measured
respectively in front of and behind the focal points, be

denoted by u, v; the values of u, v are then connected by
the simple formula

wy = ¢*.

56. Let the distances of a pair of conjugate points
measured from the prineipal points in accordance with the
same convention of sign as before be denoted by £, &';

then
H=E_¢J T’=EP_¢’:
E—¢)(E—9¢)=¢7,

which gives the relation

1l el

= + o=,

¢ ¢ 9

_87. The position of the point P’ conjugate to a given

point P may now be determined by a geometrical con-
struction. Let F, F' be the focal points, H, H’ the
principal points. If we can trace two rays emerging from

5—2

and therefore
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P after refraction by the lens, these will meet in the
required point P’. For one of these rays choose the ray

P R R, ]
r\\‘"‘-\ H 1N QI
Q =

\E ------ 78 ]

PR parallel to the axis, meeting the first principal plane
in R; then the corresponding emergent ray will pass
through R’, where RR’ is drawn parallel to the axis to
meet the second principal plane in B. But PR and QH
are two parallel incident rays, and therefore after refraction
they will meet in the focal point F”; hence R'F" 1s the
emergent ray. For the second ray choose the ray PF,
meeting the principal plane in S; then the emergent ray
will be parallel to the axis, through the pomt S°, the pro-
jection of S on the second principal plane. This determines
the position of F".

58. Let m, o’ represent the linear magnitudes of the
object PQ and its image P'Q’ as constructed by this
process, reckoned positive if above the axis, negative if
below. Then, by similar triangles,

PO :QF=SH : HF.

But PQ =17, QF =u, SH=PQ =—1v, and HF = ¢;
so that the relation becomes

A 2

ﬂr ¢!
e 7' v
similarly —=——,

9" ¢

59. Two special cases may be noticed.

First, suppose that the thickness of the lens 1is very
small compared with the radii of its faces ; such a lens will
be called a thin lens. In this case the points 4, 4 and ('
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coincide, and the nodal points also coincide with these
points. The equations then become

ey

5-_:+a:'_ 1 ]

gty pﬂlj,

—+ == /

Yol Yirloat
and o' +y =0.

The quantities «, %’ will disappear on addition, and we

get
| 1 ) s |
5*5’“““”{?*?}‘«#‘

As before, we have two focal points, each at a distance
¢ from the lens. If the distances of a pair of conjugate
points measured from these focal points be u, v, so that

U=2— q’:}
v=y—¢)’
then uy = @

60. Next, suppose that the lens consists of a perfect
sphere. In this case, we shall measure all distances from
the centre of the sphere.

Let #, # be the distances of the object and 1ts first
image, in front of, and behind, the centre, respectively, and
y, ¥y the distances of final and first image behind, and in
front of, the centre. Then from § 41, changing the sign of
p and r we get in the new notation

gl _p-1
o 7
Similarly, g oo 51' = l"": 1 ;

also &4y =0.
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P F o) F’ P’

Let OF = OF'=¢, so that F, F” are the focal points.
Then if P, P’ be a pair of conjugate points, and PF =,
P'F’ = v, the same relation holds between u, v as before,
namely,

3

uv = ¢@*,

61. We shall next find the relations between the
abscissee and magnitudes of an object and its image after
refraction at any number of spherical surfaces arranged
symmetrically along an axis. This will include as a
particular case the refraction by any number of lenses of
any thicknesses arranged at intervals along the axis.

We shall suppose that there are n refracting surfaces,
and that the absolute refracting indices of the several
media are g, p, Moee.... pn and that light travels from left
to right from the first medium to the last. Let

Tj TI: .?J.-'_F iiiiii Tﬂ_l

be the n radii of the surfaces, considered positive if the
line joining the vertex of any surface to its centre 1s 1n
the positive direction, as in § 40 ; and, for brevity, suppose
that

#_P1=kﬂ, I_-_"ﬂl_'.”'ﬂ_kl Mn— — Bn__ g,

= fti{escann —_— = i s

T 1 Tn—

Also, let the thicknesses of the media, measured along
the axis, be w,ty, poboee.e. Mol s ;

Finally, let the distance of the object from the first
surface be denoted by ww, the distance of the first 1mage
also measured from the first surface by m,, the distance
of the second image measured from the second surface by
iy, and so on, and the distance of the last 1mage measuyed
from the last surface, by w,v,; all these distances bt?mg
measured from left to right. We shall find the relations
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between these quantities, beginning at the end and
reckoning backwards.

The distances of the last two images reckoned from
the last surface are easily seen to be, respectively, uavn,
and p,_; (Vg — ta); and since these are conjugate focal
distances with respect to the last surface, we have by § 40,
formula (2)

Hn Hn—1 » Hn— Hn—
Maln  Mn— (ﬂﬂ-—l - t‘n——l) Tn— :
1 1
or == == lhn—1-

Un  Up—tn
This equation may be written in the form
1

Ve = bp— + i
-'}311—1 e
Tk

In exactly the same manner it may be proved that
1

Vs = bps + T
o+ ——

Vn—
and therefore

1 1 By ool
Una=tpg+ —— o ——— =,
T bns+ taey + fon—y + ¥a
Continuing this process backwards, we arrive at the
equation

h=t+—— e
1 1 kl + tﬂ + J"C-.a o it TP -+ 'Iﬂﬂ.—-l =+ vﬂ.

~ Also the distances ww, w,, being conjugate focal
distances with reference to the first surface, are (cf. § 40)
connected by the relation -

i e Gl el
LA o T
1 1l
v 2’

¥

or = [, +
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and therefore, finally
1 e gl
v T ht+hthtt...... Yl Vs

Let g/h, k/l, be the last two convergents of the con-
tinued fraction

s R + Fon—y’
so that, by the properties of such fractions, gl —hk=1;
then the value of v will be given by the equation

1 wvk+g

v vl4h’

It will be convenient to represent the distances of the
object and its final image from the first and final surfaces,
respectively, by £ £'; then &= uv, & = u'v,, where p' is
written instead of w, for the refractive index of the final
medium. The relation between £ and & 1s

w Eh+uy
E Ef£ +P.f }
or kEE + ' g — plE — up'h = 0.

62. The focal planes of the system are the planes
conjugate to the planes at infinity.

To find the first focal plane, we must make £ infinite,
then the rays will be parallel in the final medium. The

corresponding value of £ 1s
l
E= % = ", 8aY.

Similarly, if we make £ infinite, so that the rays are
parallel in the first medium, the value of & becomes

E=- % = ry,, SaY.
The relation between £ & may now be written

: ‘h
£ — ot — =147,
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: 'h rﬂg
or - E -w=" -
Ll e
: Mo b s
that 1s (E=m)E —n)=—"7

Let u, o denote the distances of the conjugate planes
from the focal planes, the same convention of sign being

observed asin § 55; thenu=q — & ' =€ — s Also let
f=—uplk, f'==p]k Then the relation between the

absciss® of conjugate points takes the form
wu' = ff’.

63. Leboio, Oasreres be the successive inclinations to
the axis of a ray in the same plane as the axis as 1t moves
onwards through the different media; and'let b.'b,, bi.2.-..
be the distances from the axis at which it meets the suc-
cessive spherical surfaces. Also let

ptana=0, ptana=4,....

0 Q (A A

In the figure, suppose that QA4 A, represents the axis
of the system, QP the incident ray, @, PP, the course of
the ray after one refraction, produced backwards to meet
the axis in @,. Then AQ=bcota=>bu/B. This relation
may be expressed in the form u/4Q=B/b. In exactly the
same manner it may be shown that u,/4Q, = B,/b.

But by § 40, formula (2), since @, @, are conjugate foci
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at . refraction at the spherical surface and AQ, AQ, are
both negative in the figure, we have

ol e M Thl

AQ " AQ, AR
and therefore —~%+%=:’cm
or B = B + kb.

Also, referring back to the figure, it is easy to see that

bl = b + .u’ltl tﬂ-n ﬂ.l ;
tlha-tr iE bl = -b -+ t]ﬁ].-

In exactly the same manner it may be proved that
Be= B + kb, }
b, = ‘-[‘1 I tﬁﬂ :

and so on.

64. By these equations all the quantities 3,, b,, 5.,
Diidin 6 may be expressed in terms of b and B; their values
become

Br= kb + B,
by=(kty +1) b + 8,8,
Ba= {ky (ot + 1) + Ko} b+ (Kt + 1) B, &e.
The coefficients of b and B in these equations are easily

seen to be, respectively, the numerators and denominators
of the successive convergents to the continued fraction

/et B 1 1 _L 1__ .i
g tl + !{:1 + tg"l“ kﬂ + ...... + kﬂ__l .

Denoting these convergents by pi/gi, p/gs...... the
equations may be written i the forms,
ﬁl =p1b + gl)Br
b‘l =}3‘2b 5 QzB;

b =Pzn—sb + ﬁ'm—gﬁ:
;8?1 = Pen—1 b+ {an— !3 )
there being n spherical surfaces.

SIS -
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We shall denote the last two cnnvqrgents by g/h, /L,
respectively, remarking that the quantities g, h, k, | are
connected by the relation gl —hk=1, by the theory of
continued fractions. Also, instead of the final values b_ﬂﬁl,
B, pn We shall write b', B, p'; then the last two equations
of the series become

bV =gb+hf }
B =kb+I8 )"

If we solve these equations, and express b, B8 n terms

of I/, B, we find by virtue of the relation gl — hie =1,

b= Ib’—h,@"}
B=—kb+gB [

65. We shall next find the relation between the
linear dimensions of a point and its final image.

Let #, 71, 7...- denote the linear magnitudes of the
object and its successive images; then by Helmholtz’
theorem

pn tan a = g7, tan o = pan, tan a, ...

B=mnp=..=18,
where " denotes the linear magnitude of the final 1mage.
The value of B8 has already been obtained in the form
B =kb+1B. Now it is easily seen from the figure of § 63
that AP = AQ tana, or b = — £ tan a= — £3/u, and there-

fore
, kB (ul
g =g,

But pl/k— &=y —E=wu, with the previous notation, and
f=—p/k; with these abbreviations, the preceding equa-
tion becomes

ﬁﬂ'

B

The relation between the linear magnitudes of the
object and 1mage 1s therefore :

o 0%

7

that 1s,

~ =
-

]
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and from this we deduce

s
T e

Either of these equations determines the magnification
of the system.

66. If we take u=—f and therefore u'=— f’, these
equations give 5 =7'; this shows that the planes u=— £,
w = — f’ are planes of unit magnification ; in other words,
any ray passing through the system meets these planes in
two points such that the line joining them is parallel to
the axis. They are called the principal planes, and the
points where they meet the axis, the principal points of
the system.

Let H, H' be the principal points, @, @ any pair of
conjugate foci. Let QH =z, Q'H' =4/, the distances being

1 I | 1

Q F H H! F/ Q

measured according to the same convention of sign as
before. Then the equation uu’= ff’ is equivalent to

(= B@g) =i

from which we deduce the equation

FE
DT

The lengths f, ' are called the principal jfocal lengths of
the system.

67. We can now give simple geometrical construc-
tions for the focus conjugate to a given point and for an
emergent ray when the incident ray is given.

Let F, F' be the principal foci, H, H’ the principal
points of the system.

Let P be a given point, it is required to find 1ts
conjugate focus. If we can trace the course of any two
rays from P, we shall be able to find P. ?[‘EL](E PF as one
ray; let PF meet the principal plane HS in S. Draw SS
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parallel to the axis to meet the other princiRaI plane in
S': then the emergent ray will pass through S’. Also the

F\ H’ F,\

S 8’ P

rays FH and FS, since they diverge from a point on a
focal plane, will emerge parallel to each other; if therefore
we draw S'P’ parallel to the axis, S'P’ will be the emer-
gent ray corresponding to PF, and will pass through the
required point. For the other ray, take PR, parallel to
the axis, meeting the first principal plane in R. Draw
RR’ parallel to the axis to meet the other principal plane
in R. Then R'F’ is the corresponding emergent ray ;
produce R'F" to meet S'P’ in P’, then P’ is the point
required.

The emergent ray may be constructed as follows:

Let QPR be the incident ray, meeting the first focal
plane in P, and the first principal plane in R. Draw RR’
parallel to the axis to meet the second principal plane in
R’; the emergent ray will pass through R. Again, draw
a parallel incident ray from F, meeting the first principal

Bl e G
|||||| T
5 S
Q F H H” E

plane in S. Draw SS'T parallel to the axis meeting the
second principal plane and the second focal plane in S', T
respectively ; S'T' is the emergent ray corresponding to FS.
But PR and FS are parallel, and therefore after refraction

they will converge to a point on the focal plane at A
Hence R'T is the emergent ray required.
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68. The best construction is effected by means of
two points, called nodal points. These points have their
abscisse such that wu=—f’, w'=—f. Let them be denoted
by N, N’; then NV, N’ are conjugate to each other. They
also have the property that an incident ray which passes
through N will emerge from N' in a parallel direction.

This may be shown by constructing the emergent ray
corresponding to an incident ray PN passing through the

— F H —F_,;“-.'N V" 7 F.r
e el R !
/

point V. Let the points R, T be constructed as in § 67,
then the emergent ray will be the line joining R’ and T.
But if N’ be the second nodal point F'N’'= FH and there-
fore the triangles TN'F', SFH are equal in all respects.
Again, H'N'= HN, and therefore the triangles R'N'H’,
RNH are equal in all respects. And therefore since FS,
PR are parallel, the lines N'T, N'R’ are m the same
straight line. This shows that the emergent ray corre-
sponding to PN passes through N’, and is parallel to the
incident ray.

If the initial and final media are the same we have
f=f', and therefore the nodal points comncide with the

principal ponts.

Q #
P{:‘; F’S‘ ?
T —F
-,

Let PQ be any incident ray through P. Let N, N be
the nodal points. Let P@ meet the first focal plane in Q).
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Draw N'Q parallel to PQ, meeting the second focal plane
in ; and draw QP parallel to @N. Then P’Q) is the
emergent ray. Join PNV and draw N'P parallel to 1t to
meet the ray @ P’ in P’; then P’ 1s the point conjugate to
P. For draw RN parallel to PQ, N'R’ parallel to Q’P
Then the rays PQ and RN are parallel, and therefore will
meet on the second focal plane, after refraction. But N'¢)/
corresponds to the ray RV, and therefore the emergent ray
passes through . Again PQ and QN are rays diverging
from a point on the f%rrit focal plane, and therefore they
will emerge parallel to each other. But @A will emerge
parallel to itself; hence the emergent ray Q'P’ is parallel
to QN. Finally, the ray PN will emerge from N’ n a
parallel direction, and therefore P’ is conjugate to P.

69. In all cases of refraction through lenses used in
air, the initial and final media are the same, and therefore
p=w, f=f"=— plk, and the relation between the abscisse
of conjugate points becomes

uw = f4,

The nodal points also coincide with the principal
points, and all the constructions depend in a simple manner
on the positions of four planes and the points where they
meet the axis, namely, the two focal planes and the two

focal points, and the two principal planes and the two
principal points.

70. The foregoing representation of the effect of a
system of lenses by means of cardinal points and principal
focal lengths fails altogether in one important case ; for if
k vanishes, the principal focal lengths and the absciss® of
the cardinal points all become infinite. Such a combina-

tion of lenses is called a telescope.
Referring back to § 61, the hypothesis that k =0, gives

us the relation g/ =1; and the relation between conjugate
abscisse becomes

w9 — plE — pp'h = 0.

If ¢, ¢’ represent the absciss@® of any other pair of conjugate
points

pge— ple’ — pp'h=0;
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and therefore by subtraction,

Wy (E—c) = pl(€ — ).
Hence the abscisse of conjugate points measured in the

same durection from any fived pair of conjugate points are
m a constant ratio.

It 1s, in general, possible to find a self-conjugate point
which may be called the centre of the telescope. For & &
are measured in the same direction from the first and last
refracting surfaces, respectively; and therefore if ¢ denote
the distance between these surfaces, £ and & will denote
the same point, if

E-F =t
We then have * : f
pg€—plE =pph)
E-g=¢ |’
and therefore = L {fL i) :
pwy — pl
Er= P:’f (J""‘""'FL T .gt) ;
pyg — pl

If now z, 4 denote the abscisse of conjugate points
referred to the centre of the telescope as origin and
measured in the same direction,

! !

i L Tl

T b b s
This ratio is called the elongation of the telescope.
There is no centre in the particular case in which
pg=pl.
But in this case the relation between the absciss@ of
conjugate points becomes

g (E—§&)=pp'h,
or E—F:%-

That is, the distance between an object and its image 1s
constant.
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The effect of the instrument is then to alter the
position of an object by a certain distance measured
along the axis, as in the case of refraction through
a plate of glass bounded by parallel planes.

Again, by § 64, we find

3’ . E!S:
that 1s, p' tan o’ =1 . p tan a
tana’ w ]
or — ==l
tan « 75

In other words, the ungular magnification of the instrument
18 the same for all rays.

Rays which are parallel in the first medium will also
be parallel when they emerge into the final medium.

Lastly, if 5, o' denote the linear magnitudes of the
object and its final image, we have in § 65, by Helmholtz’

theorem
B8 =B
H Wiy
ence Sl q;

and therefore the magnification of the instrument s the
same for all objects.

If the elongation, angular and lateral magnification be
denoted by e, y and m, respectively, we have

m
Sy

il

e = o : m’J
F.-

Also e= il :
) 4
If the initial and final media are of the same kind

il
=y
e=m?
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A telescope is completely determined when its centre
(or any pair of conjugate points) and the magnification
and elongation are given.

71. We shall next consider the combination of two
known lens-systems.

Let F, F' be the focal points, and £, * the principal focal
lengths of the first system; G', G the focal points, and

p : Z 3 G g a

¢, g the principal focal lengths of the second system. Let
P be any object, P, its image after refraction through the
first system, @ the image of P, after refraction through
the second system. Let u, u be the distances of By B
from the focal points F, F” respectively, the distances
being measured in the ordinary way, and also let o', v be
the distances of P,, @ from the focal points G', & respec-
tively, and let /"G =c, then

w v =c
Also ww' = Jf
w' =gg’

Eliminating «, v’, we get the equation
! !
v/ st I —e.
TR

The last equation may be written

(- ik ) (- Eﬂf) i ;gy’ |

C

Hence the focal points of the combination are determined
by the absciss®
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Let =, n,, o denote the linear magnitudes of the
images at P, P,, (), respectively ; then

D oass W
n

g
n, g

The principal points are points of unit magnification, and
therefore to find them we must make n=7". From this
we deduce the equation
4
i
w c
Hence, also ==
i e

Therefore the principal points are determined by the

equations
T 2 i 0,
C

A

|2 Q<

W=

99 gy g} J ‘
. v ¢

If ¢, ¢ be the principal focal lengths, we have
b= JIl ol +9)
c Al

that 1s, b=— .}% ]
and similarly ¢ = _f%g i'

The positions of the cardinal points of the system and

the principal focal lengths have now been found, and
therefore the solution 1s complete.

72. The combination becomes telescopic if F’ the
second focal point of the first system coincides with G’ the
first focal point of the second system. An incident system

6—2
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of parallel rays will then converge to a point on the
common focal plane, and therefore will emerge as a system
of parallel rays. In the previous investigation ¢ will
vanish and ¢, ¢' will be infinite, as will also the abscissa
of the cardinal points. The ratio of the focal lengths will
however remain finite, viz.,

e
i gfiing

The relation between the absciss® of conjugate points

becomes
u 2

The centre of the instrument is found by combining
this equation with the equation

u+v=-—>b,

where b is the distance between the first focal point of the
first system and the second focal point of the other
system. Therefore the centre of the telescope is deter-
mined by either of the equations

b’

U=

—ff"—gg! ?
S Tf’%’Q—,J
gl =99

If z, # be the distances of a pair of conjugate points
measured from the centre wn the same direction, then

since

N
TRLEL /i
we have %J = Eﬂ: ;
z ff
99

and therefore = E .
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- g S
Again, g
— ——EJ :
f.i'
therefore m = —%.

73. If one of the systems is a telescopic system the
method of procedure is somewhat different.

F v H, P W P 5

Let F, F' be the focal points, £, f’ the focal lengths of
the first system ; also let O be the centre, m the lateral
magnification, e the elongation of the telescopic system.
Then it is clear that F is also the first focal point of the
combined system. For parallel rays which emerge from
the telescopic system must have been parallel when they
have passed through the first system; hence they must
have proceeded from a point on the focal plane at F. If
OF” be taken equal to e. OF’, F” will be the second focal
point of the combined system; for rays initially parallel
to the axis will converge to F”, and therefore after emer-
gence through the telescope will meet in F”.

To find the principal points of the combimation” we
consider the magnitudes of the images formed by the two
systems. If , n,, o’ be the initial, intermediate and final
magnitudes of the images, we have

/A
n U
1 —m:
™

' ﬂﬂ_ 'T}'If

The planes of unit magnification are therefore found by
taking u = — mf.
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Measure FH backwards, equal to mf, and let H, be
the image of H in the first system, H' the image of H, in
the telescope.

Then H,F' =f£ =fr
woom
Also OH =e.OH,.
But Ofi=e. OH"
o H'F =e. HF'
_o
=

The principal focal lengths of the combination are there-
fore

F = fm
AN
m

The -focal points are F, F”, and the principal pomnts =0
H'; the solution is therefore complete.

74, Lastly, let us suppose that both systems are
telescopic.

0 G, C o

Let O, O" be the centres of the two telescopes and let
00'=b. Also let ¢, m/, y be the elongation, lateral
magnification and angular magnifications, respectively, of
the first system, and e”, m”, o similar quantities for the
second system.

The centre of the combined system may now be found.
et C be the centre, C, its conjugate point in the first
telescope ; then ¢, and C' must be conjugate in the second
telescope. Hence if OC=z, 0'C= b — « we must have

00 =g G0 }
{):0___3:#. “f" ’
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or 0C, =€z
ol =
e
But 0C + 0/¢ =0
i b - I
therefore dot= = b
b L 8 1
3 o

Next consider the lateral magnification of the combined
system. If », 5, 7' be the lateral magnitudes of an object,
its first and final images, we have

M —m,

m

¥
1?_ — '??1-”1
7

’

| B hereﬂ}re 13- = :};.-fm",

n

The magnification of the combined instrument is
m=mm’.

Exactly the same argument may be used to prove that
the angular magnification is

"}F = ")I"'}‘" r‘
Finally, the elongation is found from the equation

.
g=—

Hence g
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Theory of Equivalent Lenses.

75. A lens 1s said to be equivalent to any number
of lenses arranged at intervals along an axis when, if
placed in a proper position, it will produce the same
deviation in rays inclined at small angles to the axis of
the system, as would be produced by the system of lenses.

We shall first suppose the incident rays to be parallel
to the axis of the system, so that the position of the
equivalent lens 1s immaterial. :

The deviation produced by a thin lens may be found
by supposing the lens to act like a thin prism formed by
the tangent planes to the spherical surfaces at the points
of incidence and emergence of the ray. The deviation
will therefore be independent of the angle of incidence,
for all small angles of incidence. To find the deviation,
we suppose the incident ray to be parallel to the axis,
and then the emergent ray will proceed to the principal
focus of the lens. If y be the distance from the axis
at which the ray strikes the lens, and f the focal length of
the lens, the deviation is clearly @ = —y/f, the lens being
supposed collective. This expression will therefore re-
present the deviation caused by the lens in any incident

ray.

Now suppose that there are n thin lenses whose focal
lengths are, respectively, fi, fa... fn, arranged at intervals
@y, Ga, ... An—, along an axis. For brevity, let k=—1/f, for

all suffixes. Let any ray originally parallel to the axis

strike the lenses in succession at distances yi, ¥a-..¥a from
the axis, and let 9;, 8., ...0n be the total deviations of the

ray, after passing through the several lenses. Then, using
the value of the deviation just given, and expressing the
distances %, ¥s... in terms of the deviations, we obtain the

equa.ticaus

. i i e o
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al == k:yh

UYs = ﬂ:31+y1,
Bg = -kgyz"(‘ al:
3!; = af‘:az + y*.'ls

...............

Bﬂ, = knyn ke a‘.'t—l .

From these equations it is easy to see that o, is the
numerator of the last convergent of the continued fraction

s smloia 1

B -

T S LT L
If F, be the focal length of the equivalent lens,
9n = — pu/Fp = 41 Kn, say. Then K, 1s equal to the
numerator of the last convergent of the continued fraction

Ao s L 1
1+k+a,+ b+ oeees + kb
The values of the first few numerators are

1, &, afe+1, ﬂ1k1k2+kz+-‘{'71: ﬂflaﬁk1k=+ﬂﬂa(k1+ ke)‘f‘ﬂ'qk]‘FL
ayolofooles + oles (Joy + Foo) 4 anley (oo + Fos) + Koy + foo + Fs,

from which we deduce the values

l = 1 = l = 4
F,. £ f: LS
1 Jon Taai] ml(l 1) ag(l 1) 4y
A e e e R
Fzﬂfﬂﬁflﬁfﬂ fﬂflfﬂ flfﬂfs
These results might also have been obtained directly
from the equations.

76. If the incident pencil be of any form, the position
of the equivalent lens is not immaterial, and must be
found.

Let the incident ray make an angle @ with the axis;
then using the same notation as before, all the equations
remain the same except the first, which is

0=y +9=p, (ﬁ'l+§)
1
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and therefore the final value of 9, will be the same as
before, with k,+0/y, written for k. If the negative
reciprocal of the focal length of the equivalent lens be
denoted by K, since K involves k, only in the first degree,
the new value of K will be

H’=K+ a_ Kl:

T

where K, is the coefficient of &, in the expression for K :
so that

2= Ky, +0K,.

Let the distance of the equivalent lens behind the
first lens of the system be «; then the incident ray will
meet the lens at a distance from the axis equal to 1, + 0,
and therefore the inclination of the ray to the axis after
refraction through it will be

& = K (3, + ad) +0

Equating this value to the inclination 9,, we get
]. + .Krﬂ: = Kl!
so that m=%—{}f1—1).

This determines the position of the lens so that it
may be equivalent to the given system of lenses.

When there are two lenses, we have shown the value

of K to be
K = 'ﬂ:'].klkg + kg + kl »

and therefore
Kl - ﬂ.]kg + ]

Thus in this case

or finally s

|
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EXAMPLES.

1. Four convex lenses whose focal lengths are a, b, b, a, are
placed at intervals a+b, 2b (a+b)/(a-Db), a+b, on the same axis;
show that any emergent ray is in the same straight line with the
corresponding incident ray.

Let rays diverge from an object and (Fa.as through the lenses.
Let u, v be the distances of the object and its first image, in front
of and behind the first lens, respectively, and let o/, ¢, u", ¥,
u", »" denote similar quantities for the other lenses in succession.

Then 2 + e )
i {1 L
and therefore U= LA
w—
: ~ bu—at—ab
Next, wW=a+b—v= o
At the next lens we have
1
TR T A
2 s
from which we get u’:b—@ +ﬂib ) :
a
Also e
a—0b
_blale+ b2 4 bu (a—b)]
a® (a—b) i
At the next lens we have
1 1 1
T

g =2 (a+b)i+bu (@ —b)
3at4ab+u(a—b)
Also wW'=a+ bh—q"

_ 2a* (a+b)+au (a—b)

~ 3a’+ab+u(a-b)
Lastly, by refraction at the remaining lens

1 1 1
o e

i v a

and therefore
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and therefore
ﬂ,,,zﬂa (a+b)+u (a—b)

a(b—a) ’
so that u”':—[&+b+%~j+&+b+ﬂ].

This equation shows that the position of the final image coincides
with the position of the object, il

We shall next show that the final image has the same magni-
tude as the object.

Let @, #/, 2", 2", /" be the linear magnitudes of the object and
the images in succession. Then

2 g v

Pt
and therefore z = 1;1111:’:11;
Y U U
e x[_b(u—-u}]x a? (a—b) 3P +abtu(a—b)
w—a o b[3a?+ab+u(a—"b)] ab—a) ’
that is x" =z,

It follows by Helmholtz' theorem, or by elementary geometry,
that the divergence of the emergent pencil is the same as that of
the incident pencil, and therefore any ray passing through the lenses
emerges in the same straight line as before incidence.

2. If an eye be supposed to consist of a sphere of fluid (radius
r, refractive index 1}), in which is placed at a distance §r from the
centre a convex lens whose axis coincides with the diameter and
whose focal length and refractive index in air are, respectively,
and ¢; show that the distance from the centre of the sphere for

clear vision is §}#r.

3. From a cubic inch of glass, the inscribed sphere is removed,
a film of glass remaining at the points of contact. The cavity is
filled with water. A bright point is placed on the axis at a distance
of one inch from one face of the cube. Prove that the conjugate
focus is at the point of the cube nearest to the luminous point.

4, Prove that the magnifying power of a thin double-convex
lens, the radius of each surface being p, when the space between

the lens and an object at distance a is filled with fluid of index ',
is given by

2p—p—1

et &
T

1
m
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5. 1f f be the focal length of a double-convex lens, show that
the smallest distance between an object and its image is 4f.

6. Two thin lenses of equal numerical focal length f are placed
on the same axis at a distance @ apart, the one nearest the origin
of light being concave and the other convex; show that the least
distance between an object and its final image is a+ 4f%/a.

7. Two lenses of equal focal length f are placed so as to be on
a common axis at a distance 2¢ from one another, and midway
between them is placed a glass sphere of radius » and index u. A
thin pencil diverges from a point distant ¢ behind the first lens,
and after refraction through it, through the sphere and the second
lens, converges to a point at a distance ¢ behind the second lens;
prove that
pr _ ec+cf+fe
p—1 c+f

8. A pencil of rays is directly refracted through a series of
thin lenses separated by finite intervals a,, a,...a,_;, the axes
being coincident. Show that if the focal lengths of the lenses
(considered as concaves in the typical case) be 1/, 1/k, ... 1/&,, the
abscisse of a pair of conjugate points reckoned from the first and
final lens, respectively, are connected by the equation

Lo fol gl L ke
vkt ay_+ ke T+
9. If m, m/, m" be the magnifying powers of a combination of

any number of lenses on the same axis for objects at distances
w, #', ¥’ from the first lens, show that

u'_u” uﬂ'_u u_uf
- —ar “iTH.T =1}

T b

10. If 2 be the distance between two objects and 2’ the distance
between the corresponding images due to any system of lenses, and

if m be the magnification of the first image and n that of the

second, show that
x !
= =E
T B

whgt_‘e p and ' are the refracting indices of the initial and final
media.

11. Three lenses 4, B, C (of which 4 and ' are double-concave
and B is double-convex) are mounted on an axis in the order
named, so that the foci of 4 and (' coincide at the centre of B. An
object beyond C'is viewed through the system by an eye behind 4 ;
show that the distance through which it would have to be displaced
in order that, when viewed directly, it may have the same apparent
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magnitude as when viewed through the system is independent of
the position of both the eye and the object, if the focal lengths of
the lenses are connected by the relation

e g |
= e
i G

12. A thin lens has one face silvered so as to form a mirror.
If @ be the image of a point P, formed by the mirror (by two
refractions and one reflexion), show that ¢ will be the same as
if the lens were replaced by a spherical mirror whose radius £ is
given by the equation

0.

» and s being the radii of the surfaces of the lens.

13. Show that the image of an arc of a conic whose focus is at
one principal point of a thick lens, is an arc of a conic whose focus
is at the other.

14. A double-convex lens is formed by two equal paraboloidal
surfaces cut off by planes through the focus perpendicular to the
axis, Prove that for rays passing in the neighbourhood of the axis,
the focal length measured from the posterior surface of the lens is
2a/(u2—1), and the distance between a bright point and its image
is a minimum when it is 2a (ux+1)/(u—1), 4« being the latus
rectum of either of the generating parabolas, and p the refractive
index of the glass.

15. A system of 2n thin convex lenses of equal numerical focal
length, f, are placed with their axes in the same straight line, and
their centres at a distance 4f apart, except the two middle ones,
which are at a distance 8f apart. Show that the focal length of a
lens which must be placed midway between the two middle ones
in order that the image of a bright point at a distance 4f in front of
the first lens may be formed at an equal distance behind the last
lens is

2(n+1) ;
2n+1 "



CHAPTER V.
GENERAL THEOREMS. (CAUSTICS.

77. IF a ray of light pass from a point 4 to another
point B, through any number of media, undergoing any
number of rege:-:inns and refractions, then the actual
laws of reflexion and refraction are such as to make X (up)
a minimum, where p represents the length of the path of
the ray situated in the medium whose refractive index
is u. Conversely if we assume the path of light to be
such as to make Sup a minimum, we are led to the actual
laws of reflexion and refraction. The expression Zpup is
frequently called the reduced path.

We shall first prove this general theorem for a single
reflexion and a single refraction, and afterwards extend 1t
to any number of reflexions and refractions.

Let APB be the path of a ray of light which travels
in a homogeneous medium
from a point 4 to a point
B, undergoing one re-
flexion at a surface CD;
then the total path be-
tween A and B 1s a mini-
mum, that 18, AP + PB 1s
less along the actual path

than along any consecutive path as AQB.

For a variation of P perpendicular to the plane 4 PB,
this proposition is clearly true. Let AQB be a consecu-
tive path in the plane APB. From @ draw QM, QN
perpendicular to AP and PB. Then by the law of
reflexion the lines PM, PN are equally inclined to PQ.

Hence the triangles MPQ, NP(Q are equal in all respects,
and PM is equal to PN,
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Now AQ is > AM, and therefore AQ — AP is > PM.
Also BQ is > BN, and therefore BP — B() is < PN.

Hence AQ— AP is > BP — BQ.
Thus, AQ+ QB is > (AP + PB), which proves that the
total path is a minimum

A similar theorem holds if we take the path from
A to B, supposing the ray to suffer a refraction at a
surface C'D. Let u, u' be the refractive indices of the
two media, then pwAP+ pu'PB is a minimum for the

actual path.
B

Let the angles of incidence and refraction at P be
é, ¢'; then wsin ¢ =pu'sin¢d’. Let AQB be a con-
secutive path; it will be sufficient to take the case when
@ is in the plane A PB.
From @ draw QM, QN perpendicular to AP, PB.
Then the angles PQM, PQN are the angles ¢, ¢". Also
PM = PQ sin ¢ }
PN = P@sin ¢
therefore WM =y AN,
Now AQ is > AM, and therefore
uwAQ— pAP is > uPM.
Also B() is > BN, and therefore
W BP — u/BQ is < uw'PN.
Hence wAQ— pAP is > u'BP — p'BQ:
that 1s wAQ+ w'BQ is > pAP + u'BP.

[
&
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This shows that for the actual path, AP +u'PB 1s a
minimum.
~ The previous theorem is a particular case of this; we
have only to put u'=—p to deduce 1t from the more
general theorem.

Next, suppose that the ray of light in its passage from
A to B undergoes any number of refractions or retiexions.
Let p be the length of the path in any medium whose re-
fractive index is x. Then 1t has been shown that Zup 1s
a minimum for separate variations of the points of inci-
dence between consecutive media; and therefore by the
principle of superposition of small variations, 1t will be
a minimum when simultaneous variations are admitted.
The actual path, therefore, makes Zup a minimum be-
tween any two points.

78. Another important proposition, enunciated by
Malus, easily follows from the preceding.

Any system of rays originally normal to a surface, will
always retain the property of bewng mormal to a surface
after any number of reflexions or refractions.

Let ABCDE, A'B'C"D'E’... be a series of rays normal
to a surface at A, which under-
go any number of refractions
and reflexions. Measure off
along these rays distances to
S -, , such that Zup 1s
the same along each ray; then
we shall show that the rays are
finally normal to a surface KE'.
Join A’B and £'D. Then Zup
along ABCDE 1s the same as
along A’'B'C"’E’. But by what
has been shown above for any
ray and its consecutive 1t follows
that Zup along A’BCDE' is the
same as along A'B'C"D'E’, and

H. 0. T
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therefore the same as along ABCDE. Take away the
common parts; then if u, u' belong to the initial and
final media, there remains the equation, pd'B+ p'DE’
= uAB+ wDE. But, since AB is normal to the surface
AA’, A’'B=AB ultimately, and therefore, DE'= DE ;
that is, £’ is perpendicular to DE. The same may be
proved for every point £’ near K, and thus the surface
FEE’' near E is perpendicular to the ray DE, and by
similar reasoning to every other ray of the system.

79. A system of rays which can be cut at right
angles by a surface, we shall call an orthotomic system.

A system of rays diverging from a point, or such that
by any combination of mirrors or refracting surfaces they
can be made to meet in a point, is clearly orthotomic; for
a sphere whose centre is the point through which all the
rays pass, will cut them all at right angles.

If a system of rays diverging from a point converge
to another point after
anynumberof reflexions P
and refractions, the va-
lues of Zup taken from
one point to the other \
will be the same for all H s
rays. Thus, in order to
condense rays Issuing
from one point S, on a

second point H bymeans
of a single reflexion at a curved surface, we choose our

surface such that SP + PH may be the same for all paths,
and therefore the surface must be an ellipsoid of re-
volution whose foci are S and H.

If the rays are parallel, the point S will be at infinity,
and the surface is a paraboloid of revolution whose axis 1S
parallel to the common direction of the rays.

Next, let us find the form of the surface which will
refract to a point H all the rays proceeding from a
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point S. Let u, p' be the refractive indices of the

media; then if P be any point of the surface, the
surface must be such that

uSP + W HP = c,
where ¢ 1s a constant.

Hence the surface is formed by the revolution of a
Cartesian oval of which S and H are foci. The theory of
the Cartesian oval may be found in Williamson's Differential
Calculus, Chapter 20.

As a particular case suppose the rays parallel, so that
S is at infinity. Draw a plane MX perpendicular to the
rays, and let any ray be produced to meet this plane, in
M. Then
uSP + W' HP =c.
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But uSP + uPM is also constant. Choose the plane
MX so that this constant quantity may be equal to c;
then W' HP = uPM, and therefore the surface is formed by
the revolution of a conic whose focus 1s H and directrix
MX, about 1ts major axis.

80. When the orthotomiec surface 1s a surface of
revolution about an axis, all the rays intersect the axis,
and we may first consider the rays in any meridian plane

and afterwards suppose this plane system of rays to be
revolved about the axis.

The rays in any meridian plane are a serles of
normals to a curve. Consecutive rays will intersect each
other in points lying on a curve which is called the
evolute of the given curve, and each ray will touch this
evolute. The evolute which is touched by all the rays 1s
called a caustic curve; and the surface formed by its
revolution about the axis a caustic surface. A caustic
curve of such a symmetrical system as we are considering
always has a cusp on the axis,

When the system is revolved about the axis con-
secutive rays along the circle traced out by a point will
meet on the axis, and therefore the axis may be considered
as a second caustic surface. At points on a caustic
surface the rays are closer together than at other poimts,
and therefore if the pencil be exhibited on a screen,
points on the caustic surface will appear brighter than
the rest.

81. The character of a limited pencil of rays is shown
in the figure; BAB' is the orthogonal surface, ¥ is the
cusp of the caustic curve.

If the pencil be received on a screen perpendicular
to the axis, the nature of the caustic surface can be
shown by examining the bright patch of light on the
screen as the screen is moved from DD’ towards F. At
DD, there will be a circular patch of light with a brighter
ring round its outer edge, and as the screen 18 moved
along, this ring will gradually contract. As soon as C
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is reached, the other part of the caustic surface 1s shown,

B

B

and a bright spot is developed in the centre. When
the screen is at EE’ the circle of light reaches its mini-
mum : this circle is called the least circle of aberration.
When this position is passed, the outer boundary expands
again though the bright ring still contracts. Beyond F,
no part of the screen 1s specially illuminated.

If any ray BOE meet the axis in C, then FC is called
the longitudinal aberration of the ray.

82. The caustic by reflexion at a circle may be found
by elementary geometry in two cases, first, when the
incident rays are parallel, and secondly, when they diverge
from a point on the circumference of the circle.

When the incident rays are parallel, the caustic is an

epicycloid formed by the rolling of one circle upon another
of twice its radius.

For from the centre C of the reflecting circle, draw the
radius C4 parallel to the incident rays; then the caustic
is symmetrical with regard to the line CA. Let SP be
any one of the incident rays, reflected by the circle at
the point P in the direction PQ. Join CFP; then by the
law of reflexion, CP will bisect the angle SPQ. With
centre ' and a radius equal to half the radius of the
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given circle, describe the circle BR bisecting the radii
CA, CP in B, R, respectively.

On PR as diameter describe

another circle meeting the re-

flected ray in @, and join QR.

Since SP is parallel to UB, the

angle SPC is equal to the angle e s
PCOB; and therefore the angle

QPR is equal to the angle RCB. R
The angle QPR is subtended at
the circumference of the circle
by an arc R; and the angle 8
RCB 1s subtended at the centre

of the other circle by the arc

RB, and the radius of the

second circle 1s double the ra-

dius of the first, and therefore

the arc QR 1s equal to the

arc RB; and if the circle PQRE

were to roll along the circle RB,

the point ¢ would finally coin-

cide with B. Now as ) begins to move, the point of
contact R is for an instant fixed, so that the motion
of  is perpendicular to QR ; and therefore the reflected
ray PQ touches the curve described by ¢. This 1s true
whatever the position of the point P. The locus of ¢
is an epicycloid, and this is the caustic curve required.

83. If the incident rays diverge from a pownt wn the
circumference of the reflecting circle, the caustic curve s @
cardioid, or, in other words, the caustic may be described
as an epicycloid in which the rolling circle 1s equal to the

fixed circle.

Let O be the origin of the incident rays, OCA the
diameter of the reflecting circle ; then the caustic curve will
be symmetrical about the line OCA. Let OP be any
incident ray which is reflected at P by the circle in the
direction PQ. Join CP; then by the law of reflexion,
OP will bisect the angle OPQ. With centre C' and
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radius equal to one-third of the radius of the given circle,

describe a circle meeting CA and CP in B and R, re-
spectively, and on PR as diameter describe another
circle cutting the reflected ray in @; join QR. The
radii of the two smaller circles will be equal to each
other. Now, since the triangle CPO is isosceles, the
external angle PCB is double of the angle CPO, and
therefore double of the angle QPR. Hence the arcs RB,
QR subtend equal angles at the centres of their respective
circles, and therefore these arcs are equal. If the circle
PQR were to roll along the circle RB, the point @ would
finally come to B. As the circle PQR begins to roll, the
point of contact R is for a moment stationary, and there-
fore ) begins to move perpendicular to QR along PQ.
From this it follows that the reflected ray touches the
curve described by the point . This is true whatever

the position of the point P. The locus of @ is a cardioid,
and this is the caustic required.

~ 84. To find the caustic by refraction at a straght
line, for rays issuing from a pownt.

Let S be the bright point; draw SC perpendicular to
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the line, and produce it to H, so that CH =0CS. Let SQ
be any ray incident at @, and QR the corresponding re-

fracted ray. Describe a circle about the triangle SHQ,
and let QR be produced backwards to cut the circle in P;
then P(@) bisects the angle SPH. Let ¢ be the angle of
incidence and ¢’ the angle of refraction at ¢; then the
angle POS=¢’, and ¢ =2 HSQ =2 HPQ =2 SPO.

Hence SO : SP=sin¢ : sin ¢,
and therefore pS0 = w'SP.
But since the angle P is bisected,
HOwlHiP= S0 SE,
and therefore pHO'=p HP,
By addition, uSH = u' (SP + HP).

Thus the locus of P is an ellipse whose foci are S and
H and whose eccentricity is u//u; and P@ 1s normal to
the ellipse, and therefore the ellipse is an orthotomic
curve. The evolute of this ellipse is the caustic required.

If the second medium is more highly refractive than
the first, it may be shown in the same way that the
caustic is the evolute of a hyperbola whose foci are S

and H.
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85. To find the length of the arc of @ caustic.

The length of the arc of a caustic of any orthotomic
system of rays in one plane can always be found. For the
caustic is the evolute of the orthogonal curves.

Suppose a system of rays issuing from a point, or
normal to a given surface, t0 be reflected and refracted

P

Q

any number of times. For each ray, form the function
Sup, and let V =Zup. Let the final medium be of re-
fractive index u, and let V=7V, be the value of the
reduced path for an orthogonal curve in this medium,
say the curve PQ. Let AB be any arc of the caustic, and
let PA, QB be the rays touching at 4, B. Then the are
AB = (B — PA, by the properties of evolutes.

Also o=V, ++pld,
Vi=Vo+ #'QB s
and therefore by subtraction,
Ve— V.= u(arc AB).

86. We can now, by means of caustics, indicate more
accurately the manner and position in which an object
under water is seen by an eye outside.

Suppose for instance that the water had a horizontal
level bottom not very deep. Let P be a pomnt on the
bottom, let us trace the pencil of rays by which an eye
sees the point P. Draw the normal PM and consider rays
in the plane EPM. Construct the caustic in this plane
which 1s touched by refracted rays originally diverging
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from P. We must draw the two extreme tangents to

this caustic which will meet the eye, and then these lines
will bound the part of the pencil which traverses the
air; if we join the points where these tangents meet the
surface to P, the joining lines will bound the pencil as it
passes through the water. The two tangents to the
caustic meet at the point of contact of either of them,
very nearly. Thus to an eye outside the point P appears

to be at p.



CHAPTER VL

DISPERSION AND ACHROMATISM.

7. HiTHERTO we have considered light to be simple
or homogeneous. The light of the sun, however, 1s not
homogeneous but compound ; each ray of solar light 1s
composed of an infinite number of rays of homogeneous
light differing from each other in colour and refrangibility.
This fact was first established by Newton.

In Newton’s first experiments his room was darkened
and a beam of the sun’s light admitted through a small
circular hole in the shutter of one of the windows. This
beam of light made a small circular spot of white light
on the opposite wall. He then placed a triangular prism
of glass near the hole, with its edge downwards and per-
pendicular to the beam of sunlight, so that the rays
passed through the prism close to its edge. The Eatch of
light on the wall was no longer circular and white, but
elongated and coloured with vivid and intense colours.
The sides of the coloured image or spectrum were both
straight and perpendicular to the edge of the prism, and
the ends appeared semicircular. The breadth of the
spectrum was the same as that of the circular white spot,
while its length was about five times greater.

This elongation of the image can only be explained by
supposing that the rays of the beam of sunlight are re-
frangible in different degrees. The rays from the sun are
not quite parallel, for some might proceed from the upper
and others from the lower limb of the sun’s dise. But
when the prism is placed in its position of minimum
deviation, a small difference of incidence will produce no
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appreciable difference of deviation ; consequently the in-
clination of the emergent rays will be the same as those
of the incident rays; and therefore if the beam of light
were homogeneous it would cause a circular spot of white
light of the same dimensions as before, but in a displaced
position. :

This experiment further shows that those rays which
differ in refrangibility differ also in colour ; for the coloured
spectrum 1s red at its lower or least refracted end, and the
colour changes by imperceptible gradations through yellow,
green, blue, until at the upper or most refracted end 1t 1s
violet. Newton distinguished seven principal colours;
these arranged in order of their refrangibility are red,
orange, yellow, green, blue, indigo, violet. Of these the
orange and yellow are the most luminous, the red and
green next in order, and the indigo and violet weakest.

88. After trying several ways of explaining those
phenomena Newton was finally led to the following exper:-
mentum crucis, which is described almost in Newton's
own words. He took two boards, and placed one of them
close behind the prism at the window, so that the light
might pass through a small hole, made in 1t for the
purpose, and fall on the other board, which was placed at
about twelve feet distance, a small hole having first been
made in it also for some of that incident li%ht to pass
through. Then he placed another prism behind this
second board, so that the light passing through the two
boards might pass through that also, and be again re-
fracted before it reached the wall. This done, he took the
first prism and turned it slowly to and fro about its axis,
so as to make the several parts of the image cast on the
second board successively pass through the hole in i, and
observed to what places on the wall they were refracted by
the second prism. He saw that the light tending towards
the violet end of the spectrum was considerably more
refracted than the light tending towards the red end.
Hence he concluded that sunlight is not homogeneous,
but consists of rays of different colours, some of which
are more refrangible than others.

|
1
1
|
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89. In this form of the experiment the different
coloured images of the sun are of considerable size, and
are arranged with their centres along a straight line.
The coloured images will therefore overlap, and the
colours will not be thoroughly separated; the spectrum
is then said to be impure. We shall now show how a
pure spectrum may be obtained.

The sun is always moving relatively to the earth and
therefore the direction of his rays is continually changing.
This change of direction may be corrected by an instru-
ment called a heliostat, which consists of a mirror turned
by clockwork in such a way that the light 1s always
reflected in the same direction. The reflected rays of
the sun are allowed to fall on a convex lens of short focal
length, so as to make a very small image of the sun at
the focus of the lens; this image may easily be made so
small that it may be regarded as a point. A small pencil
may be selected from the rays passing through this point
by making them fall on a very nairow slit between two
carefully worked plates of metal. If a cylindrical lens
with its generating lines parallel to the slit be used, the
rays may be concentrated on the slit throughout its whole
length, and a very bright thin pencil can be obtaimed.
The pencil of light is allowed to fall on a prism near the
refracting edge, this edge being parallel to the slit. The
prism must be placed in the position of minimum devia-
tion for rays of mean refrangibility, and then 1t will be
nearly in a position of minimum deviation for all rays.

Let @) be the small focus or the section of the sht
through which the rays pass. Then after refraction at
the prism the red rays will diverge from a point », and
the violet rays from a point v, where Av=Ar=4Q. If
the colours be received on a screen, they will overlap,
and though by moving the screen farther away from the
edge of the prism, the colours become more and more
separated, yet they become fainter at the same time.
The pencil 18 therefore made to pass through an achro-
matic lens (the construction of which will be hereafter
described), whose centre is B, after which the red rays
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will converge to a focus 7/, and the violet rays to a focus

o', where rBr/, vBv' are straight lines. The colours are
now perfectly separated, but the spectrum v’ is very
small, so that it needs to be magnified before it can be
accurately measured. The spectrum is therefore viewed
through another lens or eye-piece (also corrected for chro-
matic dispersion). The two lenses constitute an ordinary
astronomical telescope. If therefore the rays from the
prism be received on a telescope, by focusing the telescope
we shall be able to see a pure spectrum,

If we wish to exhibit the spectrum on a screen, the
lens must be removed. In this case it is better to put
between Q and A a lens whose focus is at (. Then the
rays after passing this lens are parallel and the points
» and 7 are at an infinite distance; and by moving the
screen further from A we separate the colours more and
more without weakening their intensity.

Newton himself described fully how a pure spectrum
might be obtained by the use of a lens and a narrow slit

in front of the prism.

90. If a pure solar spectrum be examined carefully,
it is found that it is not a continuous coloured band, but
that there are at certain intervals abrupt deficiencies of
light, forming dark lines across the spectrum. These lines
are always seen irregularly disposed along the spectrum
whatever refracting substance may be used. When the
refracting substance is varied, the positions of the lines
change, but they and the coloured rays always appear 1n

i .
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the same order, so that any line can be recognised. As
these lines are sharp and definite and are always present,
they can be used as marks for determining refractive in-
dices: the refractive indices of the rays to which they
correspond can be determined for any substance with an
accuracy equal to that of astronomical measurements.
The positions of these lines, to the number of seven
hundred, have been carefully measured and mapped out
by Fraunhofer and others, and the refractive indices of the
corresponding rays accurately determined for a very large
number of substances. By using prisms of the same
substance but of different refracting angles, Fraunhofer
verified the law of refraction for the rays corresponding to
any one of the fixed lines, with extreme accuracy. These
dark lines are not characteristic of light in general, but
only of solar light ; for if the slit be illuminated by a gas-
flame, a perfectly continuous spectrum is observed.

The brightness of the solar spectrum is by no means
uniform ; it is brightest in the yellow and the neighbour-
ing colours, orange and light green, and falls off gradually
on both sides. It may be observed here, though this
scarcely belongs to the province of opties, that the solar
rays as separated into a spectrum differ from each other
also in heating and chemical effects. The heating effect
increases as we pass from the violet to the red rays,
and still continues to increase for a certain distance be-
yond the visible spectrum, at the red end. Siumilarly,
if the action of the different rays on a sheet of sensitive
paper be observed, the action is very feeble in the red,
strong in the blue and violet, and is sensible to a great
distance beyond the violet end of the spectrum.

91. There are three different kinds of spectra

depending upon the nature of the source of the light
employed.

1. The solar spectrum is a continuous spectrum, ex-
cept that it is interrupted by a definite system of dark

lines, The spectra of fixed stars also contain dark lines,
different for different stars,
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ii. The spectra afforded by incandescent solids and
liquids are continuous, containing light of all refrangi-
bilities, from the extreme red to a higher limit depending
on the temperature.

iii.  Flames not containing solid particles in suspen-
sion, but emitting the light of incandescent gases, give
discontinuous spectra, consisting of a definite number of
bright lines.

92. Modern experiments have proved that the missing
rays in the solar and similar spectra have been removed
by absorption. For according to the theory of exchanges
it is known that every substance which emits certain
kinds of rays to the exclusion of others, absorbs the same
kind as it emits; and when the temperatures are the
same in the two cases, the amount emitted and the amount
absorbed are equal. When an incandescent vapour
emitting only rays of certain definite refrangibilities 18
interposed between the observer and a very bright source
of light giving a continuous spectrum, the gas absorbs
from the incident light just those rays which itself emits,
the light emitted by the gas being substituted for the
light it absorbs. It depends on the relative brightness
of the two sources whether these particular rays be in
excess or defect. If the two sources be at all comparable
in brightness the rays will be greatly in excess, and will
appear as bright lines across the spectrum ; for these rays
constitute the whole light of the one, but only a very
amall fraction of the light from the other source. But if
the brilliancy of the gas be diminished, while that of the
source of the continuous spectrum be increased sufficiently,
the rays emitted by the gas become less intense than those
which have been absorbed, and so by contrast the corre-
sponding lines of the spectrum appear dark. The dark
lines in the solar spectrum would therefore be accnuntejd
for by supposing that the principal portion of the sun’s
light comes from an inner mass which gives a confinuous
spectrum, and that a stratum external to this contains
vapours which absorb particular rays and thus produce

dark lines.
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For further details connected with the subject of
Spectrum Analysis we refer to works dealing specially
with that subject.

93. When a ray of light from the sun falls on a
prism of glass, we have seen that it is separated into rays
of different colours; this fact i1s called dispersion. We
shall now seek a proper measure of the disperswe power of
a substance.

We must first select some ray of the spectrum as a
standard ray; we might with advantage choose the ray
corresponding to some well-defined dark line occurring
about the middle of the spectrum. Let w be the refractive
index of the standard ray.

The measure of the dispersive power of a substance
must be independent of the refracting angle of the prism
which is used in the experiment. Take a prism of small
refracting angle ¢, and let D be the deviation for the
standard ray ; then

'D=(-""“"'_1)f".!

when the light passes through the prism in a direction
nearly perpendicular to its faces. If w’, D’ correspond to
any other ray of the spectrum, we shall have

Dr s (,u.r = 1) tr;
and therefore by subtraction,
D= Dl = o)

To eliminate ¢, we divide this by the former result, so
that we get
DD _yi—p
T R 7
This is taken as the measure of the dispersive power
of the substance for the ray whose refractive index is u/,
and is often denoted by @ ; thus
!
e —— "u._:!f'
w=1
H, 0, 8
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94, We may next choose a standard substance.
Herschel proposed that water at its temperature of
maximum density should be used as a standard, so that
any ray might be identified by its refractive index referred
tio 'i:.ra,ter, or, as we might say, by its position on the water
scale, _

The dispersive power of any other substance can be
expressed as a function of that of the standard substance.
It is found by theory combined with Fraunhofers ex-
periments that the ratio of the dispersive powers 1s nearly
constant ; this constant ratio may be called the dispersive
power of the substance in terms of the standard, for all
rays. This ratio is not, however, quite constant, and this
fact is called the trrationality of dispersion. If two

risms be constructed, one of the standard substance and
the other of the substance under consideration, then 1f
the spectrum given by each be examined, the fixed lines
and coloured rays will occur in the same order in each,
but since the dispersions of corresponding rays by the two
substances are not proportional, the spectra will not be
geometrically similar. 1t the prisms be arranged side by
side so as to give spectra of equal lengths and so that
the extreme rays in each may correspond in position, the
intermediate rays will not exactly correspond 1n position.

95. If a ray of light be made to pass through two
prisms in succession, it is always possible to adjust their
refracting angles, so that the dispersion produced by the
first may be counteracted approximately by the second,
and consequently that the emergent ray may be without

colour.

This Newton conceived to be impossible, without at
the same time making the deviations of the two prisms
oounteract one another, so that the whole deviation of
the pencil would disappear. This made him despair of
improving refracting telescopes, and led him to turn
his attention to the application of mirrors to these 1n-

struments.
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Newton’s mistake was first discovered by a gentleman
named Chester Moor Hall, who made the first achro-
matic telescope. This discovery, however, was allowed
to fall into oblivion, until the experiment was agamn
tried by Dollond, an optician in London, who found that
the dispersion could be corrected without destroying the
deviation, and therefore that Newton’s conclusion was not
correct.

We have seen, however, that different coloured rays
are mnot dispersed in the same proportion by different
substances; or in other words, that the spectra formed
by prisms of different substances are not geometrically
similar. Hence, if the prisms be arranged so as to unite
two rays (for example, the extreme red and the extreme
violet rays) in the emergent beam, there will be still a
small dispersion of the other rays. Thus the beam in-
stead of emerging quite colourless, will form a second but
much smaller spectrum; this is called the secondary
Sspectrum.

Also, it will be found that by using three prisms of
three different materials, three rays of the emergent beam
(for example, the red, green and violet) may be united ;
but still, owing to the irrationality of dispersion, the other
rays will not be quite united, and there will be another
still smaller spectrum called a tertiary spectrum ; and so
on indefinitely. In theory, therefore, it is impossible to
attaln perfect achromatism, without the use of a very
large number of different media; yet in practice these
successive spectra rapidly grow fainter and become in-
sensible ; so much so, that it is seldom deemed necessary
to combine more than two rays. The two rays selected
will not be the extreme red and violet rays, because these
are comparatively faint; it is better to combine the two
rays whose brightness and difference of colour are greatest,

such as a ray from the yellow-orange and one from the
green-blue.

The first successful attempt to get rid of the secondary
Spectra was made by Blair; an account of his work was
published in the Phil. Trans. Edin, 1791. He found

8—2
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that in the spectrum of hydrochloric acid the more re-
frangible part of the spectrum, green to violet, was much
more contracted, and the less refrangible part of the
spectrum more dilated, than in most metallic solutions;
and by mixing the chlorides of antimony and of mercury
in suitable proportions with hydrochloric acid, or with
salammoniac, he obtained a fluid which, while having a
different absolute dispersion from crown-glass, gave a
spectrum geometrically similar to that of crown-glass.
When a combination of two lenses or two prisms was con-
structed out of this fluid medium and crown-glass, in such
a way that in the emergent beam of light two differently
coloured rays should be united, the emergent beam was
absolutely without colour. Blair's object-glasses were
considered as of singular merit at the time, but through
certain inconveniences attending lenses made of fluid
media they never came into use.

What Blair effected with fluid lenses, Professor Abbé
of Jena has now achieved by his discoveries of new
kinds of glass. In 1881, Professor Abbé, assisted by
Dr Schott, commenced the work of examining the optical
properties of all glasses, that 1s, of all known substances
which undergo vitreous fusion and solidify in non-crystal-
line transparent masses. The work was continued till the
end of 1883, and directed towards the solution of two
practical problems. The first of these was the production
of pairs of kinds of flint and crown-glass, such that the
dispersion in the various regions of the spectrum should
be, for each pair, as nearly as possible proportional. The
second problem was the production of a greater multi-
plicity in the gradations of optical glass, in respect of the
two chief optical constants, the mdex of refraction and
the mean dispersion. The first problem has been satis-
factorily solved, with the result that achromatic lenses of
a much more perfect kind than have ever before been
attainable are now being manufactured; and the second
has also been successfully carried out, and a whole series
of new glasses of graduated properties are at the service of

the optician.

|
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Moreover the same experiments have resulted in the
production of glasses which having the same refractive
index. offer considerable latitude in dispersive power, and
also of glasses having the same dispersive power, which
vary considerably in refractive index ; whereas formerly an
increase of refractive index was always accompanied by an
increase of dispersive power.

Achromatism of lenses,

96. By the proper combination of lenses the dis-
persion of differently coloured lights may approximately
be destroyed; for the dispersion produced by ome lens
may be approximately counteracted by that produced by a
second lens, so that the emergent rays may be without
colour.

We shall confine our attention to the approximate
theory of lenses, in which the thickness of the lens is
neglected and the principal points considered as coinciding
in one point called the centre of the lens. FKor the
accurate theory of lenses becomes in the general case
much complicated by the fact that the principal points of
the lenses, from which all distances are usually measured,
themselves vary in position according to the refractive
index of the particular ray we are considering.

In all cases we shall let p be the refractive index of
the standard ray, and w’ the refractive index of any other
ray. The focal lengths of the lenses will be supposed to

be expressed in terms of the refractive index of the
standard ray.

It will be useful to find the change in the focal length
of a lens, as the ray changes from the standard ray, to
any other. The value of the focal length of a double
convex lens, the radii of whose bounding surfaces are
7, 8, respectively, 1s given by the equation,

1
J—c“:(#—l) ('},‘Pl)

S
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where u is the refractive index of the substance for the
standard ray. Giving a small variation to p, so that it
becomes w’, this equation gives

=0 =D (5+3):

S
By subtraction, we get

_%—}=muqo@+§)

blesiiv
el
and therefore, if we denote the dispersive power of the

medium by =, the variation of the focal length is deter-
mined by the equation

1 1+o

Lsiial,

97. When an image is formed by a lens or system of
lenses which is not achromatic, the light being not homo-
geneous, it will be affected by dispersion in the lenses in
two particulars; first, the different coloured images will
be distributed in different positions along the axis of the
system, and secondly, the coloured images will have
different magnitudes. In certain cases both these defects
can be removed, in other cases only one of them can be
removed, and to choose which correction shall be made,
it will be necessary to consider the use to which the system
is to be applied, so as to remove the defect which is of
the most consequence.

For the object-glass of a telescope two lenses are used,
and are placed close together so as to act as one lens.
Then a point and its image always lie on the same line
through the centre of the lens, so that if the lenses be
corrected so that the differently coloured images all lie
in the same plane perpendicular to the axis, they will all
have the same magnitude. It will therefore be necessary
only to make the first correction, and then the other will

be satisfied.
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These object-glasses are usually made of a double
convex lens of crown-glass outside, combined with a double
concave lens of flint-glass, which has a higher dispersive
power than crown-glass: If 1s easy to see I a general
way how the correction may be effected. By the convex
lens the coloured images will be formed at different
distances along the axis, the violet image being the
nearest to the lens, and the red image the most remote
from it.. The effect of the concave lens on these images
will be to throw them farther away from the lens, and
the effect on the violet image will be stronger than that
on the red image. By a proper adjustment of the lenses,
the final violet image may be made to coincide with the
final red image, or any two other colours may be united
in the final image. If the lenses were of the same kind
of glass, in order that the dispersion produced by the one
should be neutralized by that produced by the other,
the lenses would have to be such that the deviation pro-
duced by the two lenses would also destroy each other,
and therefore the combination would not produce an
image at all. But it has been seen that for different
kinds of glass the dispersion is not proportional to the
deviation, but that flint-glass has a higher dispersive
power than crown-glass, so that it is possible to destroy
the dispersion without destroying the deviation.

98. We shall now investigate the condition that a
combination of two lenses made of different kinds of glass,

placed close together, may be achromatic for two given
colours.

We shall suppose that one of the colours is the
standard colour, and that the focal lengths of the two
lenses are f, f”, respectively. There will be two images;
the first being the image of the object formed by the
first lens, and the second being the image of this first
image formed by the second lens. Let @, &' be the
distances of the object and the first image in front
ﬂf, and behind, the centre of the first lens, %/, v the
distances of the first and second images in front of,
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q . ;
'ﬁl EI]L]:»ehlr.v:il, the centre of the second lens, respectively.

I

t“‘hlr—-t

-+

—+—,='}}.
Y Y

If we neglect the thicknesses and the distance between
the lenses, ' = —a’, and therefore

e et
Ziidaday d
The condition that the system should be achromatic

1s that y should be the same for the two colours; and
therefore, since # 1s independent of the colour,

1 1 14 14w
=i s 1= T
B Y ST i

and therefore, bjr subtraction,

— =
— 8

w w
—+ = =0.
Iy

This is the condition of achromatism for the com-
bination.

This condition is independent of # and w, so that the
combination will be achromatic for objects at all distances.
It is immaterial in what order the lenses are placed.

In the construction of microscopic object-glasses, achro-
matic couples of this kind are very generally used, each
consisting of a plano-concave lens of flint cemented to a
double convex of crown, the plane face being exposed to
the incident light.

09. TIf three thin lenses, formed of media of different
dispersive powers, be combined into a single lens, the
system may be made achromatic to a higher degree of
approximation; the coloured images formed by three
different kinds of light may be united. More generally,
if n lenses form a combination, whose thickness may be
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neglected, the system will unite the images formed by
rays whose refractive indices are u and w’, provided that

[ oT
E __v) = {}l
\/
This may be proved in the same way as before. The
equation of condition can be satisfied for n —1 systems of

values of u'— p, and therefore the imafes corresponding
to n lines of the spectrum may be united.

100. When the two lenses forming a combination are
separated by an interval, it is impossible simultaneously
to effect the two corrections for dispersion.

For let «, ' be the distances of the object and its first
image in front of, and behind, the first lens, 3, y the
distances of the first and final image in front of, and
behind, the second lens, respectively, and let #, 7,, n° be
the linear magnitudes of the object and its images. Then
the following ratios must hold :

i &

M TR

. S

Y
and therefore 0 fﬁ:

n xY

~If the coloured images corresponding to refractive
mdices u, p' be formed at the same distance and also
have the same magnitude, we must have # and y fixed
and also the ratio y’ : #'y. Hence the ratio 3 : 2’ is fixed.
But #'+ 4 =a, where a denotes the distance between
the lenses; so that it is necessary that 2/, ¥’ should both
be the same for the two colours. In other words, each
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lens must be achromatic of itself. This cannot be effected
unless each lens of the combination be itself an achroma-
tised couple of lenses 1n contact.

101. It 1s often r;ecesmry, however, to correct a
system of two lenses separated by an interval, for errors
due to dispersion, as far as possible; so that we must

choose which of the two corrections should be effected,
and which left.

It is then usual to make the coloured images have
the same magnitude ; for the eye is a better judge of the
magnitude of an object than of its distance.

Using the same notation as before, the condition is
that "I/”i-' should be the same for the two colours cor-
responding to u, p

But we have seen that

) J

Il
S S
S
I
——

or finally, ; I Jff

For the ray of refractive index u', this becomes
n @ (l+ =) (:::-{-m)(l+w’)+a.1:(1+»w)(1+w')'

e i 7 7
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Equating these expressions, and neglecting the product
ww’, we get !
: rw  (z4+a)w _ax(w + o)
ot i

This is therefore the condition for the partial achro-
matism of the two lenses. In general, it is not indepen-
dent of the position of the object.

102. If we consider the inclinations of rays to the axis
of the instrument, instead of the magnifying power, 1t
will be seen that we have ensured that two differently
coloured rays diverging from the object will emerge
parallel to each other.

For if a, « be the inclinations to the axis of the
original and final rays, cutting the axis at the points
determined by «, y, we may see directly from a figure,
or by Helmholtz' theorem relating to the magnifying
power, that

n tand @y
n  tana &'y’
so that if the condition previously found be satisfied, then
«' is the same for the two colours; and the final rays
emerge parallel to each other.

103. The most useful application of this condition is
to the achromatism of eye-pieces. The rays strike the
eye-piece excentrically diverging from the image formed
by the object-glass. The images formed by the lenses
of the eye-pieces are formed exactly as if the rays diverged
from a real object, except that the rays from any point of
the 1mage do not fill the whole of the lens.

It will be shown later that the axes of pencils passing
through the instrument pass through the centre of the
object-glass. The centre of the object-glass is usually
very distant as compared to the focal lengths of the lenses

of the eye-piece. If we make « very large in the previous
equation of condition, it becomes

a0

T o ﬂf(m*+1:.:r’)
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_This condition may be derived in a shorter manner for
this particular case by making the focal length of the
equivalent lens the same for two colours.

There 1s a special advantage in making the lenses of
tlhe same kind of glass, because then if we make two
coloured images coincide, all the coloured images will be
united. The condition for achromatism then becomes

v/l [
=

or in words, the distance between the lenses must be half the
sum of thewr focal lengths.

EXAMPLES.

1. Shew that at a single refraction at a plane surface the dis-
persion is proportional to the tangent of the angle of refraction.

9, The refractive index of a medium for the two rays at the
red and violet ends of the spectrum being 163 and 1'66 respec-
tively, calculate the dispersive power. Ans. £

3. Calculate the dispersive power of a medium for which the
refractive indices for the same two rays are 153 and 1°54 respec-
tively, and find the ratio between the focal lengths of two lenses
formed of the media in this and the last example, that the combi-

nation may be achromatic when the lenses are placed in contact.
Ans. v§r, 43 : 107.

4. Prove that if 7 be the focal length of a lens, @ its dispersive
power, » the distance from the centre of the lens of the point to
which a pencil of standard rays is made to converge, the distance
between the foci of the red and violet rays for the same incident ray

is approximately @o?/f.

5. The dispersive power of a medium is ‘036. The focal length
of a lens formed of it being 3 feet for standard rays, find the

distance between the extreme images of the sun forme by the lens,
Ans, 0°108 feet.
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6. If u, v be the indices of refraction for the red and violet
rays, respectively, for crown-glass, and y', ' be the indices for the
same rays for flint-glass; and if two thin lenses be constructed, one
double convex of crown-glass with each surface of radius 7, and one
double concave of flint-glass with its surfaces of radii r and s, and
they be placed in contact so that the light is incident on the surface
of radius s; then the combination will De achromatic if

r48:2=p—v:p =2

7. A small pencil of parallel rays of white light, after trans-
mission in a principal plane through a prism, is received on a screen
whose plane is perpendicular to the direction of the pencil ; prove
that the length of the spectrum will be proportional to

(}Lu_Pr} Eiﬂ i‘:—ﬂﬂﬂﬂﬂ COs (ﬂ+l—¢) COS ¢1;

where ¢ is the refracting angle, ¢, ¢’ the angles of incidence and
refraction at the first surface, and D the deviation of the mean ray.

8. If an achromatic eye-piece for an astronomical telescope be
composed of two convex lenses of different materials, prove that the
distance between them must be intermediate between /' and If/({ —f),
where f is the absolute focal length of the field-glass, 7' that of the
eye-glass, and ! the length of the telescope from object-glass to
field-glass.

9. Prove that a system of three thin convex lenses made of the
same material, placed so that the distance between the first and
second is @, and that between the second and third is b, is achro-
matic for a pencil coming from a point on the axis whose distance
from the first lens is

2abf, — af, f3— (a+b) f1.f2
3ab—2bf,— 2 (a+0b) fo— 2afs+ 1o fs+ i+ 11 1o

where f,, f;, f; are the focal lengths (taken positively) of the three
lenses, respectively.




CHAPTER VII.

THE EYE, AND VISION THROUGH LENSES.

104. THE eye is an optical instrument consisting es-
sentially of a series of refracting media bounded by curved
surfaces, and a delicate network of small nerve-fibres
forming part of the optic nerve; a pencil of light incident
upon the eye is refracted at the curved surfaces and
brought to a focus on the network of nerve-fibres, and the
impression is carried to the brain along the optic nerve.

=

|‘
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The human eye is nearly spherical in shape, except
front, where it bulges out a little more than elsewhere.
It is invested in a thick tough coat which, except in the
small protuberant front part, is opaque and white and 1s
called the sclerotic. This is partly exposed in the living
eye, and is in common language termed the white of the
eye. The more protuberant part of the ball is covered
with a thick, strong, transparent membrane called the

corneda.

105. The eyeball has two other linings ; immediately
within the sclerotic is a thin membrane called the choroid,
and within that there is another thin lining called the
retind.

The interior of the choroid coat is covered with black
pigment, which gives it a velvety appearance ; the function
of this is to absorb rays of light which have passed through
the retina and prevent them from being thrown back on
the retina, so as to interfere with the distinctness of the
images there formed. The anterior portion of the choroid,
separating from the sclerotie, is thickened and forms the
rvs, which is a contractile curtain perforated in the centre
by an aperture called the pupil. The outer edge of the iris
is fixed, but the inner edge may be contracted by a strong
muscular band running round it, and thus the size of the
pupil may be changed. The use of the iris is to regulate
the quantity of light allowed to fall on the sensitive part
of the eye. In strong lLghts the pupil contracts auto-
matically and in feeble lights 1t is enlarged. The anterior
surface of the iris is differently coloured in different per-
sons, varying through all shades of blue, brown, and grey.
The posterior surface is covered with black pigment, which
serves to absorb any light which may fall upon it, due to
internal reflexions or other causes.

Just before separating from the sclerotic, the choroid
splits into two layers; the anterior goes to form the iris,
while the posterior is gathered into a circular plaited
curtain which surrounds the outer edge of the lens (to be
presently described) like a plaited collar. These plaits or
folds, seventy to seventy-two in number, are called the
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ciliary processes. Beneath this dark plaited collar, and
therefore in contact with the sclerotie, is a muscular collar,
with radiating fibres, called the ciliary muscle.

The retina is a delicate semi-transparent membrane
resulting from the spreading out of the optic nerve, and is
composed of the terminal fibres of this nerve and nerve
cells ; it covers the whole of the interior of the ball as far
as the ciliary collar. Exactly in the centre of the retina
is a round yellowish elevated spot, about J;th of an inch
in diameter, having a minute indentation, called the fovea
centralis, at its summit. This is the point of distinct
vision and the fovea centralis is the most sensitive part of
the retina. About L;th of an inch on the immner side of
the yellow spot is the point at which the optic nerve
spreads out 1its fibres to form the retina; this 1s the only
spot on the retina which is not sensitive to light rays, and
is known as the blind spot.

106. Within the eye, a little behind the iris, is sus-
ended a soft transparent body, called the crystalline lens,
of the form of a double convex lens, whose anterior sur-
face is less curved than the posterior. The crystalline
lens is contained in a thin transparent capsule, and 1s kept
“in_its place by-the-ciliary processes. It 1s composed of
successive layers, whose refractive indices increase towards
the centre, its solid nucleus, which is of very small radius
of curvature, refracting light most powerfully.
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It is easy to see that the action of the lens is more |
powerful than if it were composed of homogeneous sub- |

stance having the same refractive index as the nucleus.

For it may be regarded as the combination of a double
convex lens ¢, with two other concave lenses a and b. |

These concave lenses will neutralise the effect of the lens

¢ to a certain extent; but not so much as if their refractive |

indices were as high as that of ¢. The focal length of the |

lens may be found by experiment, and its shape being

known, 1ts so-called total refractive index may be found;

that 1s, the refracting index which the lens would possess |

J

were it homogeneous. From what has been previously l
said, 1t follows that this total refractive index 1s greater

than that of the nucleus.
The increase of refracting power from the outer por-
tions to the inner portions of the lens serves partly to

correct the aberration, by increasing the convergence of |

the central rays more than that of the extreme rays of the
pencil.

107. The space between the cornea and the crystal-
line lens is filled with a transparent fluid resembling
water, and thence termed the aqueous humour. The space
between the crystalline lens and the retina is filled with
another transparent fluid, somewhat more viscous than the
former, and called the wvitreous humour. These two hu-
mours, like the crystalline lens, are contained in trans-
parent membranous capsules of great delicacy.

In their refractive indices the aqueous and vitreous
humours differ very little from water, while the total

refractive index of the crystalline lens is a little greater
than that of water.

. 108, To determine the manner in which a pencil of
light incident on the eye is refracted by 1t, we must know
the refractive indices of the different media of which the
€ye 1s composed, and the forms and positions of the
bounding surfaces.

The anterior surface of the cornea is very nearly that
of a segment of an ellipsoid of revolution, the axis of

H. O, 9
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revolution being the major axis. The form of the posterior
surface 1s mot very accurately known. But the two sur-
faces of the cornea are very nearly parallel, and as the
anterior surface is always moistened with water, whose re-
fractive index is the same as that of the aqueous humour,
the cornea acts like a plate of refracting medium, and
produces no deviation in an incident ray. The cornea
itself may therefore be entirely neglected, and we may for
optical purposes suppose the aqueous humour extended to
the anterior surface of the cornea.

The anterior surface of the crystalline lens is part of
the surface of an oblate spheroid, and the posterior is
supposed to be part of the surface of a paraboloid of
revolution.

109. There are therefore three surfaces at which
refraction takes place, the first surface of the cornea and
the two surfaces of the crystalline lens. The centres of
curvature of these surfaces are very nearly in a straight
line, called the optic axis. For rays whose deviations from
the axis are not large, the surfaces may be supposed to
coincide with the spheres of curvature at their respective
vertices. CGauss’ theory of refraction at any number of
spherical surfaces whose centres lie along an axis' 1s
therefore applicable to this case, and the positions of the
focal points, the principal points, and the nodal points
may be found by calculation, as soon as the radii of
curvature, the positions of the refracting surfaces and
the indices of refraction of the media are known. Listing
has civen the following numbers as representing very
ulnsj}* the constants of an average eye; in reckoning
refractive indices, the refracting index of the air is taken

to be unity.
(@) The radii of curvature of the bounding surfaces
have the following values :
1. The anterior surface of the cornea...... 8 mm.
9 The anterior surface of the lens......... 10 mm.
3. The posterior surface of the lens ...... 6 mm.
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(b) The distances between the refracting surfaces are :

| Dol g i i e e aitate Wity sl st il 4 mm.

From 2 to 3 (thickness of the lens)......... 4 mm.

From 3 to the retina............ i s e 13 mm.
(¢) The indices of refraction are: e

1

1. For the aqueous humour,......c.c.ooieeen. i
16

2 “Horthe Jens (botal) . ioii. . ot in Gt en s i1
10:

3. For the vitreous humour  ........ceesssscss #

From these data he calculates the positions of the
cardinal points according to Gauss’ theory, and finds that
the two principal points lie very close together, as do also
the two nodal points, so that without introducing much
error, we may regard them as coinciding in each case.
The single principal point lies 2:3448 mm. behind the
cornea, and the nodal point ‘4764 mm. in front of the
second surface of the lens. Such an eye is exactly
equivalent to a single refracting spherical surface, whose
vertex 1s at the principal point and centre at the nodal
point, the refractive index being 132 as before. A point and
its image on the retina will lie on a line passing through
the nodal point; and therefore if we wish to find in what
direction lies a point whose image is in a given position
on the retina, we have only to join the image to the nodal
point and produce the line outwards.

110. ~ When the eye is passive, it is clear that only the
- points which lie in a single surface will have 1mages falling
exactly on the retina. The form of this surface and its
position may be determined from the optical constants
of the eye. Any object lying on this surface will have an
lmage on the retina similar to the original figure, but
mverted, the lines joining corresponding points of the
object and image all passing through the nodal point,
But if a point does not lie on this surface, its image will

9—2
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be not on the retina, but in front of or behind it. In both
cases the retina cuts the pencil of refracted rays not in
a single point, but in a circle of diffused light. Hence it
follows that an immoveable eye can only see distinctly
objects lying in one surface, and if we consider only rays
of light making small angles with the axis of the eye,
this surface may be considered plane. All objects or
portions of objects not lying in this plane give indistinct
1mages, in which circles of diffusion correspond to luminous
points of the object.

Experience teaches us, however, that an eye is capable
of seeing distinctly at almost any distance; there must
therefore exist an arrangement for altering the eye, and
adapting it for seeing at different distances at will. The
changes which occur as the result of this arrangement
are included under the term accommodation. It 1s not
known with absolute certainty for what distance an eye 1s
adjusted when it is not actively accommodated, but it 1s
almost universally supposed that a normal eye when
passive is adjusted for objects at an infinite distance, so
that the second focal point of the eye at rest is on the
retina. It follows from this that accommodation only occurs
in one direction, the eye being actively accommodated for
near objects.

111. It has been found by experiment that accom-
modation is effected by change of form in the refracting
surfaces of the eye. When the eye 18 accommodated for
near objects, the anterior surface of the crystalline lens
becomes more strongly curved, and approaches nearer to
the cornea; this is especially the case with the part not
covered by the iris, which arches forwards through the

pupil.

112. It has been seen that when the eye is at rest In
any position and accommodated for an object, there 1s one
point, the fovea centralis, where the vision is distinct, bub
that the vision is distinct only for a very small area about

this spot. But the eye 1s usually jn very rapid mﬂ’[:i[}I],
and in an incredibly short space of time brings the various
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oints of an object into distinct view. We are thus
enabled to form a clear conception of a considerably
extended object or surface. This is aided also by the
duration of the impression produced by a light. It has
been found by experiment that this duration depends
on the character of the light. For strong lights Helmholtz
gives g4th of a second, and for weak lights +;th of a
second, as the duration of the impression. Lissajou and
others assign about g;th of a second as the lowest limit of
the duration. If a spot on the retina be stimulated by a
regular periodic light, whose period is sufficiently short,
there will arise a continuous impression, which 1n intensity
is equal to what would be produced were the whole in-
cident light of any period uniformly distributed over the
whole period.

113. The retine of both our eyes receive impressions
when we look at any external object and in certain
positions of our eyes we see two 1mages, arising from
the two retinz, while in other positions we see only one
image. To each point of one retina there is a correspond-
ing pownt on the other; and when the images of an
external point formed by the two eyes fall on corre-
sponding points of the two retine, the point is seen
single, but in other cases it is seen double. The points
on the retina of an eye may be referred to two meridians
formed on the retina by two planes through the axis
of the eye. When the eye is directed forwards in a
horizontal position, the points on the horizon have images
lying on a meridian, which we may call the retinal
horizon. Similarly certain lines appear vertical to an
eye; the retinal image of these vertical lines is a
meridian, which we may call the apparently vertical
meridian. By experiment, Helmholtz concludes that the
retinal horizon is actually horizontal for both eyes, but
that the apparently vertical meridians are not quite
perpendicular to the retinal horizon; they diverge out-
wards at their upper extremity. The inclination of each
of thqse meridians to the real vertical is the same, and
they include between them an angle varying from 2° 29’

e —
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to .2“' 33". Helmholtz also finds that in normal eyes, the
points of distinet vision, as well as the retinal horizons
and apparent verticals in the two eyes correspond; and
further that corresponding points are equally distant from

each retinal horizon and from each apparently vertical
meridian.

114. Our most accurate estimate of the distances of
visible objects depends upon our having two eyes. As we
fix our gaze successively upon points at different distances
we have to change the convergence of the axes of the two
eyes, and from the degree of convergence of these axes
when we look at any point we form an estimate of the
distance of the point. Distances can however be estimated
by a single eye, by observing the relative changes of
position of objects, when the observer’s position is changed.

Our idea of solidity also depends upon vision with two
eyes. The views presented to the two eyes are slightly
different, because the eyes have slightly different positions ;
and it is by the blending of the two impressions recelved
upon the two retine that we receive the idea of solidity.
This can be well shown by aid of the stereoscope.
This instrument was invented by Wheatstone for the
purpose of combining two different photographic pictures,
one of which is presented to each eye. These pictures are
not exactly alike, but are taken by a camera with two
lenses placed a small distance apart, so that they represent
two different views such as might be presented to two
eyes observing the scene. By means of mirrors or prisms
the pictures are seen superimposed, and the impression
produced on the mind by these superimposed views 1s
exactly the same as 1f we were looking at the real scene,
each object appearing in relief as it would in nature. For
a perfect stereoscopic representation, the points at an
‘nfinite distance must fall on corresponding points of the
two retine when the axes of the eyes are parallel. If the

ictures are brought nearer to each other in the same
plane than in the positions thus determimed the im-
pression produced 18 exactly that of a relief picture.



113—116.] SPECTACLES. 135

Spectacles and Reading Glasses.

115. The distinctness of objects as seen by the naked
eye depends on the accurate convergence of the rays of
different pencils to points on the retina. We have seen
that the eye is furmshed with a mechanism for adapting
itself for seeing distinctly objects at different distances.
A normal eye when not actively accommodated is adapted
for rays coming from a distant object, or for parallel rays ;
and it must be accommodated for seeing objects which
are near, the range of distinct vision extending from five
or six inches to infinity. Eyes for which the greatest
distance of distinet vision is finite are called short-sighted,
or myopic; these eyes can only bring divergent pencils to
a focus on the retina. On the other hand, eyes which can
bring to a focus on the retina not only parallel rays but
convergent pencils are called long-sighted or hypermetropic.
The defects in these eyes depend on the length of the
axes of the eyes; in a short-sighted eye, the axis is too
long, and in a long-sighted eye it is too short. In both
short-sighted and long-sighted eyes the accommodating
mechanism may be quite perfect. When this 1s the case,
the defects may be entirely remedied and the eyes made
normal by the use of spectacles.

116. Let the range of distinct vision by the naked
eye extend from points distant «, b from the eye. In a
normal eye, b will be infinite; in a short-sighted eye b
will be finite and positive, and in a long-sighted eye b
will be finite and negative. Suppose the eye to view an
object through a lens of focal length £, placed close to
the eye, f being positive for a collective lens, and negative
for a dispersive lens. Then if z, 2" be the distances from
the eye (or from the lens) of an object and its image,
respectively, measured in the same direction, outwards,

] e | N |
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The rays striking the eye will appear to diverge from the
1mage ; and therefore the rays may be brought to a focus
provided &’ lies between the limits @, b. If we substitute
for ' the values @, b in succession, the corresponding
values of # will be the limits of the range of distinct
vision through the spectacles.

When the accommodating mechanism 1s perfect, we
have only to choose f, so that the farther limit of distinet
vision is at an infinite distance. We must therefore make
« infinite when 2’ =0, and thus we find the focal length
of the spectacle glass, namely, f=—05b. The nearer limit
of the range of distinct vision becomes

o @Dl
iy
and therefore the range of distinct vision through the
spectacles will extend from ab/(b — @) to infinity.

In a short-sighted person b is finite and positive, and
therefore f is negative; he must therefore use dispersive
lenses, generally double concave lenses, x}rhnse iﬁ:fc:al length
is equal to the greatest distance of distinct vision by the
naked eye. Thus if the range of distinct vision extends
from 8 to 6 inches from the eye, the use of a concave lens
whose focal length 1s 6 inches, will cause th_le range of
distinct vision to extend from 6 inches to infinity.

On the other hand, in a long-sighted eye b is negative,
and therefore f is positive. For example, 1f the range of
distinet vision extend from 12 inches outwards through
infinity to — 12 inches, the spectacles chosen must _be
collective lenses of 12 inches focal length; substituting
these values in the general formula, we find that the

range is then from 6 inches to infinity.

Practically, these glasses may be chosen by making the
person look at a distant object ; then the weakest concave
lasses which will enable a short-sighted person to see this
object distinctly, and the strongest convex lasses which
will enable a long-sighted person to see 1t istinctly, are
the glasses suitable to the eyes.
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The limiting points of the range of distinct vision may
be measured by making the person look through suitably
chosen convex lenses, so that the points In question are
brought within 12 inches from the eye, and then their
distances can be measured on a divided scale. They are
generally not the same for both eyes, so that the two eyes
require different glasses. _

Short-sighted persons who have to do delicate work,
have sometimes to bring things close to the eyes; in this
case they should use rather weaker concave glasses, than
those prescribed above. For the same purpose achroma-
tised prismatic glasses, which are thicker towards the
sides next the nose, and thinner towards the sides next the
temples are used, because the objects can then be seen
with less convergence of the axes of the eyes.

117. As the age of a person advances, the eye

ually loses its power of accommodation; 1t 1s sup-
posed that the outer layers of the crystalline lens lose
their elasticity, so that the lens becomes less capable of
changing its form and curvature. This defect 1s known
as presbyopia. It is entirely different from the defect
described above, called long-sightedness; though aged
persons are sometimes said to be long-sighted. The
structure of an eye does not alter with age, so that a
person with normal eyes can still see distant objects
when he becomes old; but the range of accommodation
of the eye is then less than before, so that it cannot bring
to a focus on the retina pencils of rays i1ssuing from points
very near to 1t ;. in other words, the nearer limit of distinet
vision has receded from the eye. Presbyopic eyes there-
fore need convex glasses to enable them to see near
objects, as in reading or writing ; but they must be laid
aside to look across a room or at a distant view. Usually
the glasses are chosen so as to bring the nearer limit of
distinct vision to 10 or 12 inches from the eye. For very
aged persons, whose sight has lost its keenness, it 1s some-
times advisable to use spectacles which will bring this
nearer limit to within 8 or even 7 inches from the eye, so
that objects may be seen under a greater angle.

e T e i i - e
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From what has been said, it is evident that presbyopia
may exist along with the other defects previously men-
tioned. Both long-sighted eyes and short-sighted eyes
can be made normal by the use of spectacles, as we have
seen. When presbyopia sets in, these eyes will need two
pairs of spectacles, one for walking and another for read-
ing and writing.

118. A convex lens of considerable aperture and mag-
nifying power i1s often used as a reading glass, or for
viewing the details of small objects. Such a glass may
be used by both short and long-sighted people. For sup-
pose that the glass is placed, so that the object is in the
principal focus of the glass, then the rays emerging from
the lens are parallel. If the glass be now moved a Lttle
nearer to the object, the emergent rays will diverge, and
can be brought to a focus on the retina by a short-sighted
eye; if on the other hand the glass be moved a lttle
farther away from the object, the emergent rays will
converge and will be adapted for distinct vision by a long-
sighted eye.

119. On wision through any number of thin lenses.

Before entering upon the modern theory of vision
through any optical instrument it will be interesting to
ive an account of the method of treating the problem
of vision through thin lenses used by the earlier English
writers, Cotes and Smith, taken from Smith’s Opticks,
Cambridge, 1738, book ii. chapter v. The method 1s
founded upon a theorem of Cotes, giving the apparent
distance of an object seen by an eye 1n any position
through any number of lenses.

By apparent distance is meant the distance at which
the object would have to be placed so as to appear by
direct vision of the same apparent magnitude as through
the lenses. Thus, if » be the linear magnitude of the
object, and o the visual angle under which 1t 1s seen
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through the lenses, the apparent distance & will be deter-
mined by the relation

= tan o',

£

If a be the visual angle under which the object 1s seen
by the naked eye, and « be the distance of the object from
the eye, we have also

7 — tan a.

z
The ratio tan o’ : tan a is defined as the angular magnify-
ing power of the lens system.

Hence it follows at once that the angular magnifying
power s equal to the ratio of the true distance of an object
to its apparent distance when seen through the lenses.

120. Cotes’ Theorem.

Let an object PL be viewed by an eye at O through
~ any number of lenses placed at 4, B, (... K, whose focal
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lengths are a, b, ¢...k, and whose common axis is the line
OABC ... KP. In the standard case the lenses are sup-
posed to be concaves. Then the distance OP may be
considered as divided by each lens into two parts, as 04,
AP; OB, BP ...; and by each pair of lenses into three
parts, such as OA4, AB, BP...; and by each combination
of three lenses into four parts, as OA, A B, BC, CP... ; and
so on, as far as the number of lenses permits. All the
several products of such corresponding parts are to be
divided by the focal length, or product of focal lengths of
the lenses which are placed at the point or points of
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division. Then the sum of OP and these various quotients
will be the apparent distance of the object.

If OTI be the apparent distance, the statement for three
lenses 1s

ot = op 4 04 AP  OB.BP 0C.CP
(1] b c
+OA.AB.BP+ GB.BC.C‘P+ O_A.AC‘.G‘P
ab be 0
0OA.AB.BC.CP
+- 2
abe

and the law of formation is general. We shall represent

the apparent distance for any number of lenses, by the
symbol [OABC... KP].

Denote the distances OA, AB ... KP by a,, a;... ay,
supposing that there are n lenses, and let any ray Orst...L
be supposed to flow from O to the object and cut the
lenses at points whose distances from the axisare 7, ¥s...¥n,
and let 7,,, be the linear magnitude of the object.

Also let B3, B;...3. be the tangents of inclinations of
the ray to the axis, originally and after refraction at the
several lenses, and denote the reciprocals of the focal
lengths by k&, &,...%,. Then as in § 63 we have the follow-
ing equations :

Y =B ”

B =k, +8

Vs a8 + 1

B: =ky.+ B

Ys =B+ Yo > .................. (1)

------------------
------------------

iiiiiiiiiiiiiiiiii

18’?1 = lCplin = Bn—;
Yn1= a’-nﬁ'ﬂ o Yn )
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Also y. =B[0AB]
Ys =»S[OABO]

Ynna= ,B [Oﬁ.BU fiF XP]

Solving the equations (1) we find
Hg— :8 [H'n S thyteTe ;51{5{:[11}:
Ys =P {ay + a; + ay + (a1 + as)
+ ks (a0 + @) @ + Filos0 s,
and so on. These equations show that

[04B] =O0B +m—;&@,

QA A0 OB.BG (A TAB:BC
+ = :
a b ab
The general law of formation may be proved by in-
duction.

[04BC]=0C +

Eliminating 3, between the last two of equations (1),
we find

Ynta = anknyn 45 (yﬂ e ﬂ:nﬂn—l)-
Now the value of %, is a,—1Bu— + ¥u—, and therefore
the last member of the foregoing expression may be derived
from y, by writing a,_, +a, for a,_,. The effect of this

transformation on [0OABC ... HK] is to move the point
K to P. Thus we get
e

[0AB... HRP]=[04B... HK] = + [0AB... HP],

This equation proves that if the law of formation be true
for (n — 1) lenses, it will be true for n lenses.

~ 121, The form of the expression for the apparent
distance shows at once that

[0AB... HKP] = [PKH ... BAO].

Thus while the lenses are fixed, if the eye and object
be supposed to change places, the apparent distance, mag-
nitude and situation of the object will be the same as

e A — S—
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before. If therefore O, P be the optic centres of the eyes
of two persons looking at each other through any set of
lenses arranged along an axis between them, the pupils
will be seen as circles of equal apparent magnitude and

distance by the two observers, supposing their pupils to be
of equal size in reality.

e
-
-

Df

122. When an object PL is seen through any number
of lenses, the breadth of the principal pencil where it falls
on the eye at O, is to its breadth at the object-glass (that
is, the lens nearest to the object) as the apparent distance
of the object to its real distance from the object-glass.

For let a ray PtsrK flowing from P cut the glasses in
succession in Zsr ... and finally meet the plane of the pupil
in K. Then if PO’ be the apparent distance and the
rectangle OK K 'O’ be completed LK’ will be the direction
of OK as seen from P, so that PtK’ is a straight line.

Thus QK Ot= 0P 4CE,
or G} = O =N -RE
If the object be very remote, as is always the case

the use of telescopes, CP and OP may be taken to be the
same, and therefore

0t : OK=0P : OIl =y,
where « is the angular magnifying power.

The image of the surface of the object-glass as seen
through the instrument is called the eye-ring. Every
ray which passes through the instrument will emerge
within the eye-ring, at the image, namely, of the point at
which the ray strikes the object-glass.
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If the instrument be directed to an illuminated surf}a.ce,
or to the sky, each point of the eye-ring receives light
from all points of space whose rays can traverse the mstru-
ment, that is, from all points of space which can be seen
by help of the instrument. If the eye be placed so that
its centre is at, or close to, the centre of the eye-ring, 1t
will therefore embrace the entire field of the instrument.
The centre of the eye-ring is therefore the best position
for the eye, and 1s called the eye-pownt.

All the incident pencils have the object-glass as their
common base, and therefore all the emergent pencils have
the eye-ring as a common base. It follows from the pre-
ceding proposition that the angular magnifying power of
the instrument is equal to the ratio of the radius of the object-
glass, to that of its image as seen through the telescope.

This gives a practical way of measuring the magnify-
ing power of a telescope. The telescope i1s pointed to a
bright surface, and the diameter of the eye-ring is mea-
sured by a graduated scale and lens, forming a micrometer.
The diameter of the object-glass can also be measured,
and the ratio of the latter to the former gives the angular
magnifying power.

Sometimes it happens that the eye-point falls within
the telescope, that is, in front of the outer surface of the
eye-lens. The eye cannot then be placed at the eye-point,
but is placed as close to it as possible; it is therefore
placed close to the eye-glass. In estimating the field of
view the radius of the pupil must be used instead of the
radius of the eye-lens. Also the object-glass ought not to
be considered as the common base of the incident pencils
which go to form the picture on the retina, because parts
of the full pencils are stopped. The image of the pupil of
the eye as formed by the instrument, will then be the
common base of all the incident pencils; this image has
been called the entrance-pupil. The axes of all the in-
cident pencils which go to form the picture pass through
the centre of the entrance-pupil, and the field of view is

limited by the cone of rays issuing from this point and
filling the object-glass. A .
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123. Brightness of 1mages.

The magnitude of the pupil 1s subject to variation by
varying degrees of light; let ON be its semi-diameter
when the object PL is viewed by the naked eye from the
distance OP. If the breadth of the principal pencil at O
be not less than ON, the area of the pupil will be totally
illuminated by the pencil that flows from P. Let PtsrV
be a ray of that pencil cutting the object-glass in #; and
supposing the glasses to be removed, let an unrefracted
ray PmN cut the line Ct in m.

Then the quantity of refracted rays which fall upon
NO is to the quantity of unrefracted rays as the angle C'P¢
to the angle CPm ; or, in the ratio of the apparent magni-
tude of ON to the true. And therefore by turning the
figure round about the axis, the quantity of refracted rays
which fill the pupil is to the quantity of unrefracted rays

which would fill it as the apparent magnitude of any sur-
face at O seen from P, to the true; or as the apparent
magnitude of any surface at P seen from 0, to the true;
and consequently as the apparent magnitude of the least
surface or physical point P, to the true; that is as the
picture of the point P formed on the retina by those re-
fracted rays, to its picture formed by the unrefracted rays.
These pictures of the point £ are therefore equally bright
and cause the appearance of P to be equally bright in

both cases.

Next let the pupil be larger than the greatest area atb

0 illuminated by the pencil from P; and supposing a
smaller pupil equal to this area, we have shown that the
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pictures of P upon the retina made by refracted and un-
refracted rays would be equally bright. Consequently the
picture will be less bright than when the larger pupil is
filled by unrefracted rays in the proportion of the smaller
pupil to the larger. .

Thus 1t 1s proved that an object seen through lenses
may appear as bright as to the naked eye, but never
brighter, even though all the incident light be transmitted
through the lenses.

EXAMPLES.

1. A person who can see distinctly at a distance of three feet,
finds that with a pair of plano-convex spectacles he can see dis-
tinctly at a distance of one foot. Find the radius of the curved
surface, the refractive index of glass being #. Ans. 9 inches.

2. A wafer is viewed through a convex lens of 8 inches focal
length, placed half-way between it and the eye; find the diameter
of the lens when the whole is seen, the diameter of the wafer being
half an inch, and its distance from the eye 8 inches. Ans. ¥ inch.

3. Three-convex lenses of focal lengths f,, f;, f, are separated
by intervals @, b; find the magnifying power of the combination,
and prove that it is independent of the position of the object if

(fi—a) (fo—b)+fo(fi+fs—a—b)=0.

4. The light after passing through an optical instrument sym-
metrical about an axis is reflected by a plane mirror perpendicular
to its axis so as to pass through it again in the reverse direction ;
show that the compound instrument so formed is equivalent in
every respect, if spherical aberration be neglected, to a simple
spherical mirror, with its vertex in the position conjugate to the

plane mirror and its centre of curvature at the corresponding
prineipal focus,

-

5. If in any optical instrument formed of lenses and mirrors on
the same axis, y is the angular magnif ying power when the instru-
ment is adjusted for an eye which sees clearly with the incident
light parallel, and if the eye-glass (focal length #) is moved till the
instrument is in adjustment for an eye whose distance of distinct
vision 1s 8, show that the magnification is increased by yf/8.

6. A strermac?e 1s constructed of two glass prisms (n=4) with
their edges coincident, and placed so that the faces of eash ape
equally inclined to the plane on which the two pictures are placed,
and at a distance of 6 in. The eyes of an observer are 24 in. apart ;
find their distance from the prism when the axes of the pencils from
the middle points of the two pictures have minimum deviation and
cross at the point half-way ]l;-etween them, the points being 4 in.
apart. Show that the angles of the prisis must be nearly tan—14,

H. 0. 10
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CHAPTER VIIL
GENERAL THEORY OF OPTICAL INSTRUMENTS.

General properties of Optical Instruments.

" 124. THE space in the interior of an optical instrument
which is available for the transmission of rays is always
limited, either by the finite opening of the lenses, or by
the opening of the pupil of an observer’s eye, or by artifi-
cial diaphragms. These natural or artificial diaphragms
are always circular and have their centres on the axis of
the 1nstrument.

Suppose that D,DD, represents a diaphragm placed
anywhere in an optical instrument, and denote the systems
of lenses which lie in front of the diaphragm (that 1s on the
side nearest the object) by S, and that which lies behind
it by S”. Let the image of the diaphragm formed by the
lens-system S be 1,11, and that formed by '.f.he system
S’ E,EE, Then every ray which in the instrument
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passes within the aperture in the diaphragm D, DD,, must
have entered within the aperture /,//, and must emerge
within the aperture E,EFE,. The aperture /,11, 1S thus
the common base of all pencils incident on the instru-
ment which ultimately emerge from it, and E\EE, is
the common base of all the emergent pencils. From
analogy to the pupil of the eye, the aperture I,7/, has
been called by Professor Abbé, the incidence-pupil, and the
aperture £, KK, the emergence-pupil of the mstrument. It
1s clear that the latter is the image of the former as
formed by the complete instrument. Rays which pass
through the centre of the incidence-pupil will pass through
the centre of the diaphragm and through the centre of the
emergence-pupil, and are called principal rays.

125. An optical instrument generally possesses several
natural diaphragms, namely, the openings of its different
lenses and (when used as an aid to vision) the pupil of the
observer’s eye, besides artificial diaphragms. If images be
formed of all these diaphragms in the object-space by the
lenses which lie in front of them, and also in the image-
space by the lenses which lie behind them, the question
arises, which of all these images in the object-region is
the true incidence-pupil, and which image In the 1mage-
region 1s the true emergence-pupil ? In the object-region,
that diaphragm image which subtends the smallest angle
at the central point of the object is the true incidence-
pupil. The angle (2u) subtended by this mecldence-pupil
at the central point of the object is called the angular
aperture of the instrument. The image of the incidence-
pupi_%, formed in the image-region, is then the emergence-
pupil.

126. The angular field of view is the angle between
the incident portions of the extreme principal rays which
pass through the instrument. That diaphragm 1mage in
the object-region which subtends the smallest angle at the
centre of the incidence-pupil, will therefore determine the
angular field of view, and may be called the field of view
diaphragm. When the incidence-pupil and the field of

10—2
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view diaphragm are settled, the effective apertures of all
the other diaphragms are determined. If the apertures of
the diaphragms are properly graded, the diaphragm images
in the object-region should all fit into the full cone of
incident light.

The angular field of view is not the greatest field of
view if partial pencils are taken into account.

For let 1,11, be the incidence-pupil, D\.DD, the field of
view diaphragm, and let the edges of the latter be jomed
to the edges and centre of the incidence-pupil. Let the
three cones thus formed cut the plane of the object m
three circles whose radii are PQ, PR, PS. The full pencil
from any point of the object fills the cone whose vertex 1s
the point and whose base 1 the incidence-pupil, and thus
:t is clear that points in the ring QR will give 1mages
formed by partial pencils each greater than half the tull
pencils, and points in the outer ring RS will yield images
formed by less than half the full pencils, the other parts of
the pencils being stopped by the diaphragm D,DD,. No
point of the object outside the circle S will be able to
transmit rays through the mstrument at all. Thus the
angular field of view formed by principal rays is the angle
subtended at I by the circle PR, but the extreme field of
view is the angle subtended at / by the circle PS, and the
field of view for an image formed by full pencils only 1s
the angle subtended at 7 by the circle whose radius is P@.



126—128.] FIELD OF VIEW THROUGH A SINGLE LENS. 149

Field of view through a Single Lens.

127. The two natural diaphragms which linut the
pencils by which an object is seen through a single
lens are the aperture of the lens and the pupil of the
observer’s eye. In accordance with § 126 we must form
the images of these diaphragms by such lenses as lie in
front of them. We thus get two diaphragm images on the
side of the system in which the object lies, viz. the lens-
aperture, and the image of the eye-pupil formed by the
lens. Of these apertures, that which subtends the smallest
angle at the centre of the object must be taken as the
mcidence-pupil, and this aperture is to be regarded as the
common base of all full pencils proceeding from different
points of the object. Two cases will have to be considered,
first, that in which the 1image of the eye-pupil 1s the inei-
dence-pupil, and secondly, that in which the lens-aperture
1s the incidence-pupil.

128. First, then, suppose that the image of the eye-
pupil subtends at the centre of the object an angle smaller
than that subtended by the lens-aperture.

Let D,0D, be the lens-aperture, £, EK, the eye-pupil
and [,/1, the image of the eye-pupil formed by the lens;
let PQ be the plane of the object, and suppose that the
angle subtended at P by the aperture 7,1/, is less than
the angle subtended by the lens-aperture 1,0D,. Then

L,I1, is the incidence pupil, and the field of view is limited

by the lens-aperture. Join D, to the centre and edges of

the incidence-pupil, cutting the plane of the object in @,

T
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R and S; then the portion of the object within a circle
whose centre i1s P and radius P@) is seen by full pencils,
those points of the object lying on the ring between the
circles whose radii are P@Q, PR are seen by portions of
pencils in each case greater than half the full pencil, while
those points on the ring between the circles whose radii
are PR, PS are seen by portions of pencils in each case
less than half the full pencil.

The parts of the object within the radius P@ will thus
appear brightest, and the rings outside this circle will have
less and less brilliancy, until beyond the circle whose radius
is PS the light will be cut off altogether. The angular
fields of view corresponding to these rings are the angles
the rings subtend at Z, the centre of the incidence-pupil.
Their values can easily be found in terms of the apertures

and distances.

Let PQ, PR, PS be denoted by #,, n, 7,; also let the
radius of the incidence-pupil be p, and that of the lens, b.
Denote the distances 7P, PO by v and &,

Then by similar triangles,

m_ b
v v+ E
Weas mtp b+p
gain : T
T b i
and finally i : i T E
From these equations we derive the values
)
n.= v+ E:
bv — pé
?:'.1 = v ‘l"E )
_bv+pé
AT E

Hence if the tangents of the angular fields of vigw
corresponding to these regions be denoted by 0, 6,, ©,,
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we get
oy 1
@EEE)
_ bv—pé
' o(v+§)’
_ bv+pE
®2_ﬂ(ﬂ+f}'

The angular field of view, as determined by the principal
rays, has the first of these values. It is clear that

2@= @1 +®g-

129. Secondly, let the lens-aperture subtend a smaller
angle at P than the aperture I,17,, then D,0D, is the

true incidence-pupil, and the field of view will be limited
by the aperture I,71,.

-
—_—
i o
------
L

qqqqq
-

e
------------
-

We must now join I, to the edges and centre of D,0D,
by lines cutting the plane of the object in @, R and S.
Then the plane of the object is divided into rings of
different brightness as before. The previous investigation
holds, ceteris paribus, and the tangents of the angular
fields of view are easily seen to be

a1aT
'B‘(v;si’
_pE=bv
Ny Toww 51
_pE+by
S Ty Y

e N
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130. The field of view for any telescope as determined
by principal rays may easily be found in terms of the
notation previously used (§ 63) as soon as the incidence-
pupil and the emergence-pupil are known. The principal
rays pass through the centre of the incidence-pupil and
will meet the various refracting surfaces at different
distances from the axis, determining the effective apertures
of each. Let B correspond to the inclination of the
extreme principal rays, then taking the incidence-pupil as
the first surface, b vanishes and the effective apertures will
be determined by the equations.

BI=JB? EI']1=n‘6.1.!:1:
fge = 181 + klbl: ba — b1 Bt thap
ﬂs — ﬁ:a I lfﬂgbm bs — bﬂ =T .8333:

------------------------------

,8 ‘= rﬁ'u—l = -'?fn-1 b?l.-—-—l hi= bn—-—g + ,Bﬂ_l Dt
By these equations b, b,...b" are determined.

If we add the first set of equations, we arrive at the
result,

ﬁ! - B= -'?‘5151 = kﬂbz + oo + Eypabp.
But since the instrument is telescopic we have by § 70,
B =18, and therefore

(E = 1) ?3= ke, by + kb + ...+ ;ﬂﬂ,_lb"_l.

This shows that the field of view is continually increased
by adding more convew lenses ; for corresponding to both
surfaces of a convex lens k 1s positive.

If any lens have its aperture diminished, the values of
all the other apertures and of the field of view are
diminished in the same proportion. It is useless to
make the aperture of any of the lenses greater than its

effective aperture.

On magnifying power.

131. Before defining the magmfymg power of an
optical instrument the use to which the instrument 1s to
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be put should be considered. Optical nstruments are
generally of one or two kinds:—(1) those used for the
purpose of projecting an image on a screen, such as lenses
for photographic cameras or for magic lanterns, (2) those
used in conjunction with the eye, as an aid to vision.

In instruments used to project images on a screen, the
magnifying power 1s 4:111.'»1{51:1135l to be the ratio of the linear
dimensions of the image to those of the object. To
distinguish this definition from that which follows for
instruments used as an aid to vision, the magnifying
power in the present case may be called the objective
magnifying power.

The value of the objective magnifying power for any
optical instrument (except those using wide-angled pencils)
has already been found. If %, " be the linear dimensions
of the object and 1mage, respectively, and », «’ their
respective distances in front of, and behind the first and
second prinecipal foci, it has been shown that |

s 0!
el
Tty
AT o

/. /' being the principal focal lengths,

132.  We shall next consider the case of a telescope.
The characteristic property of a telescope is, as we have
already seen, that a series of incident parallel rays pro-
ceeding from a distant object shall emerge parallel to each
other. The proper measure of the magnifying power in
this case is obtained by comparing the linear dimensions
of the retinal images, formed in the one case when the
object is viewed directly by the naked eye, and in the
other when the object is viewed through the telescope. In
the case of a telescope both of these images will be small
and their linear dimensions will be proportional to the
tangents of the inclinations of the rays to the axis of the
mstrument. If a be the inclination of the incident rays,
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o' that of the emergent rays to the axis of the instrument,
the proper measure of the magnifying power will be

_ tan o
"= tana

It has already been shown that for a telescope this
ratio is constant for all rays, and that in the notation of
§ 70, supposing that the initial and final media are both
air,

=L

*I1} 1s also shown that if a telescope be used to see an
object not at an infinite distance, the objective magnifying
power 1s

1
M=

/
for all objects.

This last property gives a simple method of measuring
the magnifying power of a telescope. The telescope is
pointed to a bright surface, and the image of the object-
glass as seen through the instrument is measured by a
graduated scale and lens forming a micrometer. Then the
ratio of the diameter of the object-glass to the diameter of
its image 1s the angular magnifying power of the telescope.

133. Lastly, consider the optical mstruments, not
telescopic, which are used as aids to vision; this will
include the simple lens and the compound microscope.

To obtain a correct measure of the magnifying power
of an instrument, we must compare the 1nag11itudea_ of tl'.he
retinal images, first when the eye is used in combination
with the instrument, and secondly when the eye is used
alone. But before this comparison can be definite, we
must say where the object and the image formed by the
lens-system must be placed, in order that the retinal
images formed may be fit for the determination of the
magnifying power. To make this comparison correct,
the eye, and the combination of the eye and instrument,
must be compared as much as possible under analogous
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circumstances ; this may be realised by comparing them
while working as favourably as possible, that is, when they
give the largest possible images on the retina. For the eye
alone, the object must therefore be placed at 1::he nearest
point for distinct vision. But the smallest distance for
distinct vision is very different for different persons ;
whereas the magnifying power ought to give an idea of
the amplification of the instrument for the eve in general.
[t has therefore been agreed to place the object at a
distance conventionally fixed, a distance not too great for the
retinal 1mages to be near their greatest dimensions, and
which 1s large enough for the great majority of eyes to
remain accommodated for it during a long time. The
distance chosen is 10 inches, and is generally called the
“distance of distinct vision.” The phrase is not a happy
one, for at every distance at which an eye can accommodate
itself, it sees equally distinetly. The distance chosen for
the position of the image formed by the lens-system is the
same : for then the retinal images will be proportional to
the linear magnitudes of the object and image themselves.

Instead of the “ distance of distinet vision ” it would be
better to use the phrase “distance of projection of the
image.” For short-sighted people, if the object be placed
at this distance, the image would not be distinct ; in these
cases we must take the centres of the circles of indistinct-
ness mstead of the sharp image points which would be
formed on the retina of a normal-sighted person. For
brevity we shall use A, for this distance of projection of the
image.

134. Let F, F' be the first and second focal points of
the complete lens-system, and, as usual, let the light travel
from left to right. Let u, «’ be the distances of the object
and the final image, in front of, and behind the focal
points, respectively. In the figure u, w' are negative.
Also let @’ be the distance of the pupil of the eye behind
the posterior focal point, @ the distance of its image in
front of the first focal point.

Then wu’ =ff"
zx' = ff } '

R e e I
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Also let a, @ be the inclinations to the axis of one
incident ray and its corresponding emergent ray, and 7, 7’
the linear dimensions of the object and final image. Then
if the final image is formed at a distance A from the eye,

.

But since the image is formed at a distance A from the
eye, we have

' —u =N
or W =ax — A
Hence ,
A—2a
m = 7 =

—point practically coincides

ieroscope the eye .
s A - { of the instrument, so

with the posterior principal focus
that @' is very small.
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Hence for a microscope
L
T
With a hand-magnifier, however, the eye may change
its position to some extent, and the accurate formula 1s

A=2a
R

If the eye be placed close to the lens, we have &’ = — f
nearly, and consequently

m =

m =

m—£+1
S

135. It may be worth noticing that if the instrument
be arranged for a normal-sighted eye, so that the emergent

n

rays are parallel, the ratio tana’: < 1s independent of the
position of the eye altogether.
For tan o = —2—,.
&' —u
and Lswi,
1}'
Herca A tan a ¢ r_}:.-u, ,
n (e —u)
A 1

But in the case before us, ' is infinite.
Thus A tan a ¥ E,
0l
Professor Abbé proposes to make the measure of the
magnitying power for microscopes independent of the
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CHAPTER IX.
OpPTICAL INSTRUMENTS. -

136. WE have already treated the theory of vision
through a single lens and 1ts application to spectacles and
reading-glasses. The next optical instrument in the order
of simplicity is the simple microscope.

We have seen that when an object is placed at the
focus of a convex lens, the rays of the several pencils will
emerge parallel to each other, and therefore each pencil
will be brought to a focus on the retina without effort:
and n this position the angle under which it will appear
to the eye is the angle it would subtend at a distance
equal to the focal length of the lens. Consequently the
image will be distinct and magnified. A lens of high
power thus used is called a simple microscope. It has
been shown that in this case the magnifying power is
independent of the position of the eye, and equal to AJf.

The lens is usually made plano-convex, and is used
with its plane side towards the eye. When the eye 1s
placed near the lens, a field of view of about + of the focal
length may be obtained, practically flat, and tolerably free

from distortion. The chromatic defects are however very
considerable,

Single lenses answer very well so long as the focal
length 1s not smaller than one inch; but when higher

powers are required, combinations of more than one lens
are preferable.
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A form of simple magnifier, which possesses certain
advantages over a double convex lens, is that commonly
known as a “Coddington lens.” The lens is spherical,
but the rays are made to pass nearly through the centre
of the lens. The first idea of it 1s due to Wollaston,
who proposed to unite two hemispherical lenses by
their plane sides, with a stop interposed, the central
aperture of which should be equal to one-fifth of the focal
length. The same end was shown by Brewster to be
attained more satisfactorily by grinding a deep groove
round the equatorial part of a spherical E&ns, and filling 1t
with something opaque. The great advantage of this lens
is that the oblique pencils as well as the central pencils,
pass normally into the lens, so that they are but little
subject to defects of aberration.

The Stanhope lens consists of a cylinder of glass with
its ends ground into spherical convex surfaces of
unequal curvature ; the length of the cylinder is
so arranged that when the more convex end 1s
turned towards the eye, objects placed on the
other end shall be in the focus of the lens. This
furnishes an easy way of mounting light objects
for examination.

A modified form of the Stanhope lens, in which the
further surface is plane, has been used extensively in
France for the enlargement of minute pictures photo-
graphed on the plane surface; it is called a “Stanho-
scope.”

187. Wollaston was the first to use a combination of
two lenses instead of a single lens; this combination 1s
still known as Wollaston’s Doublet. It was suggested by
an inverted Huyghens’ eye-piece, to be described presently.
Tt consists of two plano-convex lenses whose focal lengths
are in the proportion of 1:3, the plane surfaces being
turned towards the object, and the lens of shorter focal
length being placed next the object. The distance between
the lenses can be adjusted to suit different eyes, but 1s
usnally & of the shorter focal length.
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Pritchard, who made doublets which magnified 200 to
300 diameters, performing excellently, made the distance
between the lenses equal to the difference of their focal
lengths, while the latter could vary in ratio from 1: 3 to 1:6.

A better doublet was invented by Chevalier, who placed
two plano-convex lenses of equal focal lengths but of dif-
ferent diameters, very close together, the larger being the
nearer to the object ; between them he fixed a diaphragm.
In this way he obtained more light and secured a greater
distance between the lens and the object.

138. Triplets have been constructed on the same
principles. The combination with sufficient care of three
plano-convex lenses gives even better results than doublets,
They can be made comparatively free from aberration both
spherical and chromatic.

Among compound lenses made by cementing together
lenses of different kinds of glass Steinheil’'s Aplanatic
Lens deserves special mention. This consists of a erown-
glass double convex lens enclosed between two equal menis-
cus lenses of flint-glass, as shown in the first figure. The
inner surfaces have about double the curvature of the
outer surfaces. This lens gives a beautiful, distinet and
flat image, possesses a wide field of view and permits a

considerable distance of object, The second figure repre-
sents a modern form of doublet made by Zeiss of Jena,
drawn four-times the natural size. It has a focal length

of 2mm. and magnifying power about 70 and field of view
1'2 mm,

. All the simple microscopes are however so much
nferior to the modern compound microscope that they are
only used for rough observations or for dissecting.

H. O, 11
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- 189. The refracting telescopes and the compound
microscope, in their simplest forms, consist of two lenses.
The lens placed nearer to the object receives rays directly
from the object and forms a real inverted image of the
object ; this lens is called the object-glass, or the objective.
The inverted image is viewed by the eye through the
other lens, which is called the eye-glass or eye-prece ; this
eye-glass alters the divergence of the small pencils which
form the first image, so that they can be brought to a
focus on the retina without effort, and increases the visual
angle under which the image is seen. In general, an eye
is accommodated for rays emerging parallel to each other;
the eye-glass is therefore placed so that the first image is
in the principal focus of this lens. In microscopes, how-
ever, where the magnifying power is very important, the
instrument is arranged so that the final image is at the

conventional distance A from the eye.

The Astronomical Telescope.

140. The common Astronomical telescope, the con-
struction of which was first explained by Kepler, consists
primarily of two convex lenses fixed in a tube. In
the figure, BAC is the lens which is mnearest to the
object, and it is therefore called the object-glass. This
lens forms an inverted image pg, of the object, corre-
sponding points of 1mage and object lymg on the same
line through 4, the centre of the object-glass. Bg, 4g,
(g are three rays diverging from any one point of the
object which, after refraction by the object-glass, are made
to meet in g, the corresponding point of the image. These
rays after crossing at g, fall upon the convex lens bac,
called the eye-glass, and after refraction they are in general
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made to emerge parallel to each other. This will be
effected by adjusting the position of the eye-glass, so that
the 1mage pg shall lie in its principal focus.

Let /. ' be the focal lengths of the object-glass and
eye-glass, respectively. Then the angle gdp is the angle
which the object subtends at the centre of the object-glass,
and this will not differ sensibly from that subtended at the
eye. By the naked eye, therefore, the object 1s seen under
an angle whose tangent i1s —g/f, where 5 is the linear
dimensions of the image. Also, the image pg will be seen
through the lens at an angle whose tangent is 5/f’,
wherever the eye be placed, supposing pg to be in the
principal focus of the eye-glass. The magnifying power is
therefore

!

T=—f“

141. In order to take in the whole extent of this field
the eye must be placed at the point in which the axes of
the extreme pencils, diverging from the centre of the
object-glass, meet the axis of the telescope on their final
eémergence. The place of the eye is therefore the focus

conjugate to the centre of the object-glass as seen through
the eye-glass. |

The image of the objective aperture formed by the
mstrument will be beyond the eye-piece, so that the eye
can always be placed at this image. This image is called
the eye-ring. The position and magnitude of the eye-ring
can easily be found. If # be the distance beyond the eye-
plece, we have

80 that =" (f+sf")

Let b, b be the semi-apertures of the objective and
the eye-lens respectively, then the semi-diameter of the

11—2
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eye-ring will be given by the usual equation

b
or e=—.
m

When the magnifying power of the instrument is large,
the diameter of the eye-ring is less than that of the pupil
of the eye, and therefore the eye can take in all the rays
which emerge within the eye-ring. Thus the eye-ring is
the emergence-pupil of the instrument and the objective
aperture the incidence-pupil.

In the construction of the instrument, the tube 1s
prolonged to the required distance and is there furnished

with an eye-stop, and in looking through the instrument
the eye is placed close to the end of the tube.

142. To find the field of view we must form the image
of the eye-lens due to the object-glass, as was explained 1n
the general theory of the field of view; let D, DD, be this
image, then 1if D, DD, have a greater diameter than the
object-glass (as will usually be the case), D,DD, is the
field-of-view diaphragm. If & be the distance of DyDD,
from the object-glass,

and therefore =

Also the semi-aperture of the field-of-view diaphragm 18
given by the equation

If now the edges of the field-of-view diaphragm be
joined to the edges and centre of the object-glass, and the
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lines produced backward to infinity to cut the object-plane,
the bounding rays of the three regions are parallel to D, B,
D, A and D,C. Pencils of parallel rays filling the object-

lass whose inclinations to the axis do not exceed that of
D\B pass through the instrument as full pencils; but if
the mclination is equal to that of D, 4,1t 1s clear that half
the pencil will be stopped by the field-of-view diaphragm,
and 1f the inclination increases up to that of the line .D,C
more and more of the pencil is stopped, until at last only
the extreme edge of the pencil is admitted. Denoting the
tangents of the inclinations of the bounding rays to the
axis by ©,, ®, 0,, respectively, we have

Of o
B il et 055 l)
SRS R
ff
by
and ® =_f,'T = i‘i )
EUHT) S h)
j.f
2 VUEr
and finally Gﬂ_f(f+f’)'
143. If b'/b=f"[f, that is, if the apertures of the

lenses are proportional to their focal lengths, ®, vanishes;
in this case the brightness of the field decreases from the
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centre to the circumference. If b’/b be less than /£, the
value of ©, becomes negative, and no part will be illumi-
nated by full pencils.

By the values previously obtained,
@1 + G}g —_— 2@.

The field is limited practically to the bright field ©,,
by means of a circular stop, which is placed at the principal
focus of the object-glass, whose radius is

SO =fD
S

This will exclude the images of all points formed by
partial pencils.

In an Astronomical telescope there is usually fixed a
network of fine wires, vertical and horizontal, the plane of
the wires being the focal plane of the object-glass. The
image of the object given by the object-glass will then lie
in the plane of the wires, and the image and the wires are
viewed together through the eye-lens. By the aid of
these wires the position of the image of any point can be
accurately measured.

Galileo’s Telescope.

144. This telescope, called after its inventor, Galileo,
was the first whose construction was explained on theo-
retical principles. It differs from the astronomical tele-
scope chiefly in the form of 1ts eye-glass, which is a double
concave lens, and is placed between the object-glass and
its principal focus. A pencil of light diverging from the
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object is brought to a focus by the object-glass ; but before
the rays reach this focus, some part of the pencil is caught
by the eye-glass. In the annexed figure, BAC is the
object-glass, bac the eye-glass, and pq is an inverted image
of the object formed by the object-glass, corresponding
points of the image and object lying on the same line
through A4, the centre of this lens. Bg, 4g, Dyq, are three
rays diverging from any point of the object, and after
refraction they are made to converge to the point g, the
corresponding point of the image. These rays fall upon
the eye-glass and after refraction they are, in general,
made to emerge parallel to each other. This will be
effected when the eye-glass is so adjusted that the image

g is in its principal focus. When directed towards
distant objects, pg 1s also in the principal focus of the
object-glass, so that the distance between the lenses is
then equal to the difference between the focal lengths of
the two glasses.

Let n be the linear magnitude of the image pg, and
f, f the numerical focal lengths of the object-glass and the
eye-glass, respectively. Then the angle under which the
object is seen by an eye placed at A i1s equal to the angle
gAp, and this will not differ sensibly from the angle under
which 1t will be seen by the eye in its proper position.
The tangent of the angle is —n/f. Also the image pg will
be seen through the lens under an angle whose tangent is
—n/f’. The magnifying power is therefore

]

Thus the magnifying power is the same as in an
astronomical telescope, the focal lengths of whose lenses
are the same as in this instrument. The latter has the
advantage of being shorter; for the distance between the
lenses in this adjustment is equal to the difference between
their focal lengths, whereas in the former it is equal to
their sum.

A more important advantage which this instrument
possesses is that through it objects are seen erect and not
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mverted, as in the Astronomical telescope. This is readily
seen by following the course of the axes of extreme pencils
as they diverge from the centre of the object-glass. When
they meet the eye-glass they are made to diverge still
more by it; and therefore the pencil flowing from the
uppermost part of the object will proceed to the lower
part of the retina, and vice versa ; and therefore the object
1s seen in the same position as by the naked eye. On this
account the instrument is convenient for viewing terrestrial
objects. The ordinary opera-glass consists of a pair of
Galileo’s telescopes placed with their axes parallel, and
arranged so that the distance between the lenses can be
altered so as to adopt the telescopes for seeing objects at
different distances.

145. The field of view in this instrument is very
limited. For the axes of the pencils flowing from the
several parts of the object, diverging from the centre of
the object-glass, will diverge still more after refraction by
the concave eye-glass, and therefore, for the most part,
they will fall outside the pupil of the eye and be lost.
The image of the objective opening lies within the instru-
ment, so that the eye cannot be placed at it. Ip order
that the eye may receive as many rays as possible, 1t must
be placed as near as possible to the Image of the objective
opening ; the eye is therefore placed close to the eye-lens.
The effective aperture of the eye-lens is theretfore reduced
to that of the pupil of the eye. Let E\ZE, be the eye-

pupil.

To find the field of view, we must form the image of
the eye-pupil by the lenses which are in front of it. Let
I,I1, denote this image. Then since the eye 15 close to
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the eye-lens, that lens will not affect the 1mage, so that
1,11, 1s the image of the pupil formed by the object-glass.

Let £ be the distance of this image from the object-
glass; then in the figure A7 represents £ Then

A el L
TP T
and therefore E='f(—‘f;f—} '

U

Also the semi-diameter of the image is given by the
equation
E _ 9

= ) ey ey
i e

where = is the radius of the eye-pupil. Usually this
semi-diameter is smaller than that of the object-glass, so
that 1,71, is the true incidence-pupil, and the object-glass
1s the field-of-view diaphragm. If the edges of the object-
glass be joined to the edges and centre of the incidence-
pupil, and the rays so formed be produced outwards to
infinity to cut the object-plane, the bounding rays of the
three regions of the field of view are parallel to BI,, BI,
BI,. If we denote the tangents of the inclinations of
these rays to the axis by ©,, ®, ©, we have

=T

®. = Ji- = of"' = wf
: f(:?j:f’) =7

o= —_E';"'_;"= Ealr:r*_ Fy 3
BT r =79
ff
and e, = Vil w‘{v !
Flr=)
[t might happen that the object-glass were of smaller

aperture than the image of the pupil. In that case the
object-glass BAC would be the incidence-pupil and 7,77,
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the field-of-view diaphragm. The three values of the field
of view could then be found exactly as before to be

Rl
==y

Tr
e
o= Z =l
=2
In this telescope the image formed by the object-glass

is virtual, and therefore no stop or network of fine wires for
measuring, can be used.

146. Kz, To find the magnifying power and the field of view in
Galileo’s telescope, when it is arranged for seeing distant objects,
the final image being at a distance A from the eye.

The distance of the eye-lens from the principal focus of the
object-glass will no longer be f'. Let the distance of the principal
focus in front of the eye-lens be denoted by u, and let » be the
distance of the final image beyond the eye-lens, then

v=—A\.
s 1
Also &+ == —F,
A
thus : U= ="

Let a be the angle subtended by the object at the centre of the
object-glass, and « the linear magnitude of the first image. Then

I.{-‘
tan a=-.
f

Also if o be the angle of vision, then

iH

tan a' = — i ;
where # is the magnitude of the final image.
fa
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hence = A
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[

In working out the field of view we have only to substitute ?x:f’
instead of /' in the formule previously obtained.

Thus the field of view as determined by axes of principal pencils
o by Al

TN =) =
supposing that the object-glass is the field of view diaphragm.

18 e

Object-glasses.

147. We shall next apply the preceding theoretical
considerations to the construction of good object-glasses.

One advantage of a telescope over the naked eye, in
viewing a distant object, is the quantity of light which
the instrument admits, The eye admits a small cone of
rays issuing from each point of the object, just sufficient
to fill the pupil; whereas a telescope admits a cone large
enough to fill the whole object-glass. Thus a telescope
enables us to see stars which are too faint to be perceived
by the naked eye. The larger the aperture of the object-
glass, the more light will be admitted. The first requisite
of an object-glass is therefore a wide aperture.

We have seen that the brightness of an image is equal
to that of the object; so that when the light from the
image completely fills the pupil, just as light from the
object does, they will appear of equal brightness. But
when the magnifying power of the instrument is large,
the emergent pencil never fills the pupil. When the
telescope 18 directed towards a bright surface the emergent
pencil fills the eye-ring. Let » be the radius of the eye-
ring, and p the radius of the pupil; then » is usually
smaller than p, and the apparent brightness will be less
than the brightness of the object in the proportion of the
areas of the eye-ring to that of the pupil. The bright-
ness 1s therefore given by the equation

I=1 G)

I g
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But if v be the magnifying power, y=b/r, where b is
the semi-aperture of the object-glass. Hence

it i (i)z.
o

Thus the brightness depends on the magmifying power
and on the aperture of the object-glass; and 1f thegmagni-
fying power be large, the aperture of the object-glass must

be large too, otherwise the brightness of the image will
be impaired.

Lz, In making with an astronomical telescope an observation
for which it is essential that the brightness of the image on the
retina should be at least a hundredth part of that of the object,
show that if the diameter of the object-glass be 25 inches and that
of the pupil  inch, the greatest magnifying power that can be used
is 1000. What is the highest magnifying power that can be used
without any diminution of brightness?

In Galileo’s telescope the eye is placed close to the
eye-lens, and the pupil is filled when points are seen by
full pencils, and therefore the brightness of the image 1S
very nearly equal to that of the object, and it does not
depend on the aperture of the object-glass. But in this
instrument the field of view depends on the aperture of
the object-glass. This aperture, however, cannot be made
very large, because the refraction through the lens 1s
excentrical, and if the aperture be large, the extreme
pencils will be refracted at such a distance from the axis
as to make the chromatic aberration considerable.

148. Object-glasses are usnally made of two lenses,
o convex lens of crown glass being combined with a
concave lens of flint glass. The pencils of light are
incident centrically on the first lens, and if there were
an interval between the lenses, the incidence on the second
lens would be excentrical ; this would be disadvantageous,
and the two lenses are placed close together.

We have therefore four quantities at our disposal,
namely, the radii of curvature of the four surfaces of the
two lenses.
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The focal lengths of the two lenses are immediately
determined by two essential conditions. These are, that
the combination must have a given focal length, and must
be achromatic. Let f, f* be the focal lengths of the lenses,
and F' the focal length of the combination. Then

Lol d
ot

Also the condition for achromatism is

E.}. o g ()
Jowet: Sy s
These two equations determine f and f', so that no

other condition can be satisfied which involves relations
between the focal lengths.

The radii of curvature of the surfaces are chosen so as

to eliminate as many as possible of the defects due to
aberration.

In practice the calculations of the curves required to
satisfy the conditions necessary to eliminate the effects of
spherical aberration are usually neglected, and the final
corrections are made by polishing. The curves are origin-
ally designed to give an approximate correction, and the
rest 18 done by figuring the surface. It is thus the excep-

tion rather than the rule for the final curves to be truly
spherical.

F{)I_' a most int:areating account of the methods of
preparing and testing object-glasses, see a lecture by

?érs é‘Iﬂward Grubb, F.R.S., printed in Nature, vol. XXX1V.,
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The diagram represents a new form of telescopic
objective constructed by Messrs Cooke and Sons of York
for a 12-in. refractor for Rio Janeiro, described in Kngin-
eering, 1894. It 1s made of some of the new varieties of
glass produced by Messrs Schott and Gen of Jena. The
first lens 1s convex and is made out of baryta light flint

lass having a refractive index 1'5637 for the D ray and a
gisperaive power 1/50'6. The second lens is bi-concave
and made of boro-silicate flint, whose refractive index 1s
1-54685 for the D ray and dispersive power 1/50-2. The
third lens is made of slight silicate crown glass, of refractive
index 1:5109, the dispersive power 1/604. A small space
is left between the second and third lenses, with the object
of making the correction for spherical aberration as com-
plete as possible ; and when the thickness of this space 1s
properly proportioned, there is an entire absence of spheri-
cal aberration for all colours of the spectrum.

FEye-pueces.

149. In the Astronomical telescope instead of a single
eye-glass it is usual to use a combination of two lenses
separated by an interval. The introduction of a third lens
between the object-glass and the eye-glass will mcrease
the field of view of the instrument. For this reason 1t 1s
usually called the field-glass.

The incidence of the pencils on the field-glass 1s not

centrical, so that no advantage is gained by placing it
close to the eye-glass. The two lenses of an eye-piece are

therefore separated by an interval.

We have therefore five quantities at our disposal,
namely, the four radii of eurvature of the four surfaces of
the lenses, and the distance between the lenses.

: o focal lengths of the two lenses, @ the
distglfé {etzeeetlhthem, the fgc:-c:r}l length of the equivalent
lens will be given by the equation

1 [ T

i
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The focal length /' of the combination will be a given
quantity, so this is to be considered as one relation

between the constants.

By far the most important defect of the image given
by a single lens is that due to chromatic aberration. For
a combination of two lenses separated by an interval, it is
not possible to remove entirely the defects of this chromatic
aberration. The defects of the image are two-fold, the
coloured images are not in the same plane perpendicular
to the axis of the telescope, and they are not of the same
magnitude., Either of these defects can be removed but
not both; and the first defect is of the less consequence
and 1s therefore neglected. It is best to make the lenses
of the same kind of glass, for then if the combination be
achromatic as regards two colours, it will be perfectly
achromatic, because there will be no irrationality of
dispersion.

It has been shown in § 103 that the condition for this
mnperfect achromatism for two lenses of the same kind of

glass is
g=5 (L F0 )

This is a second relation between the constants,

150.  The errors of spherical aberration in eye-pieces
are very complicated. Without entering into details con-
nected with these defects, it will be understood that the
errors will, in general, be reduced by diminishing the
aberrations of extreme pencils, and that if the forms of the
lenses be given, this effect will be produced by increasing
their number and dividing the refraction. The resulting
aberration, other things being equal, will be least when the

whole bending of the ray is equally divided among the
lenses.

The condition for equal refraction is easily obtained,
We shall confine our attention to two lenses, = Let a ray
originally parallel to the axis, meet the two lenses At
distances y, ¥’ from the axis. Then the deviations pro-
duced by the lenses are y/f, and y'[f’, so that we must
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have y/f = y/[f’. But if 6 be the inclination to the axis of
the ray between the lenses

y' =y —ab, and 5=E;

S

therefore f = (1_9);
ClEs ] 7

this gives i =f(1 _j—") ’
or finally, a=f—f"

This condition, expressed in words, is that the interval
between the lenses must be equal to the difference of their
focal lengths. This is the principle on which Huyghens’
eye-piece was constructed.

The preceding conditions only relate to the focal
lengths and positions of the lenses, and are independent of
their particular forms. The aberrations will depend largely
on their forms; but the different defects previously men-
tioned in general require different and sometimes opposite
forms for their correction. It is therefore necessary to
sacrifice the perfection of the instrument in one respect to
improve it in another which may be of more importance
for the particular object for which it is intended. The
theory of this part of the subject is however very trouble-
some, and it 1s but little attended to in practice. The
lenses employed are almost invariably plano-convex or
equi-convex lenses.

151. If we combine the condition of achromatism with
the condition for equal refraction at the two lenses, we get

the two equations
a=%(f+S ’)}
a=f—rf '
From these equations we deduce
=5 a =21
The eye-piece will therefore consist of two lenses, the
field-glass having & focal length equal to three times that
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of the eye-glass, and the distance between them equal to
twice the focal length of the eye-glass. This is the con-
struction of Huyghens' eye-piece, invented by him to
diminish the effects of aberration, by making the devia-
tions of the rays at the two lenses equal. It was afterwards
pointed out by Boscovich, that it also possessed the
advantage of being achromatic.

The eye-piece is usually made with plano-convex
lenses, the plane faces being next the eye. Rays pro-
ceeding from the object-glass would meet in ¢, gp being in
the principal focal plane of the object-glass; the rays are
caught by the field-glass before reaching ¢, and are
brought to a focus at ¢/, which is in the focus of the eye-
glass, so that the rays will emerge parallel to each other.

Let A, B be the centres of the lenses, AF the focal length
of the lens 4 ; then since AF=3f’, AB = 2f', the point &
1s also the principal focus of the lens B. Since q'p’ 18 in
the focal plane of the lens B, Bp'=14B. Also, since p, p’
are conjugate foci with respect to the lens 4

1 1 1

—_——

¥

and Ap'=jf"; therefore Ap=3f'=34B. Thus p is th
middle point of 4 F i 4 Tl

Thus the field-glass must be placed between the object-

glass and its principal focus, at a distance equal to half
1ts own focal length from the latter,

This eye-piece cannot be used in telescopes where
measurements by means of spider-lines or fine wires are to

H. 0. 12

-
e
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be made. For the principal focus of the object-glass is
virtual. The wires could not be placed at the image g¢p,
because there will be distortions in the image of the wires
due to the eye-glass, while the image of the object will be
distorted by excentrical refraction through both the field-
glass and the eye-glass; so that the wires and the image
will appear distorted in different degrees, and therefore
the position of a point in the field would be estimated
incorrectly by referring it to the wires. In all telescopes

aduated by wires, for measurement, the field-glass must
be beyond the principal focus of the object-glass ; then the
image and the wires if distorted at all are distorted
equally, and therefore no error will result in the mea-
surement.

It may easily be proved by 71 et seq. that the focal
length of the combination is §/, that the principal points
coincide with F, p’ in the preceding figure, and that the
principal foci ®, @’ are at a distance 3£’ in front of and
behind the second lens, respectively.

An improved Huyghens’ ocular devised by Mittenzwey
has the first lens of a convexo-concave form, instead of
convexo-plane. In all cases a diaphragm is placed midway
between the lenses.

Ez. If Huyghens' eye-piece be arranged so that an eye placed
close to the eye-lens may see an image at a distance A, show that

the eye-piece must be placed so that the principal focus of the object-
glass may lie between the lenses of the eye-piece at a distance from

the field-glass equal to 3f" (2f" +X)/(f"+2N).

1592. In the common astronomical eye-piece, known
as Ramsden’s eye-piece, the two lenses are of equal focal
length, and therefore the condition of achromatism requires
that the distance between them should be equal to the
focal length of either. But in this arrangement, the field-
glass being exactly in the focal plane of the eye-glass, any
dust which might happen to lie on 1t or any flaw in the
glass would be magnified by the eye-glass and confuse the
vicion. The distance between the lenses is therefore made
o little less than the focal length of either; and thus,
though the eye-piece is not achromatic, the departure
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from perfect achromatism will not be great. The lenses
are usually plano-convex lenses with their curved surfaces
turned towards each other, and the interval between them
two-thirds of the focal length of either.

Rays proceeding from the object-glass converge to a
focus at ¢ in the principal focal plane of the object-glass,
and after crossing at ¢ meet the field-glass. Their direction
18 then altered, so that they diverge from the point ¢', and
this point is made to lie in the focal plane of the eye-glass,
so that after refraction at the latter, the rays emerge
parallel to each other. Let A4, B be the centres of the
two lenses, and let A F =/, the focal length of either, then
AB=2%f. Also since ¢’p’ is in the principal focus of the
lens B, Bp'=f£, so that Ap'=4f. Also p and p are con-
Jugate foci with respect to the lens 4, and therefore

WL
AP APJ' f:‘
and Ap’=1f, therefore Ap=1f.

Thus the field-glass is placed beyond the focus of the

object-glass at a distance from it equal to one-fourth of its
own focal length.

The radii of the lenses are arranged so as to remedy as
many of the defects of aberration as possible, and the
indistinctness arising from this cause in this eye-piece is
much less than in any of the other ordinary constructions,

_The focal length of the combination is 1/ its principal
foci &, & are at g distance of 1/ from the lenses
measured outwards, and the principal points H, H' are

between the lenses, such that if O be the middle point of
AB,0H=0H'=1}f

12—2
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Achromatic symmetrical oculars are frequently made in
which each lens of the combination consists of a double
convex lens of crown glass, cemented to a meniscus of flint
glass, the flint glass being outside 1n each case.

Ex. Tf a Ramsden’s eye-piece be arranged so that an eye placed
close to the eye-lens may see an image at a distance A, show that
the principal focus of the object-glass must be at a distance

J(A=27)[(4A+1)
in front of the field-glass, f being the focal length of either lens of
the eye-piece.

Hence show that if A be less than 2f, the eye-piece cannot be
made use of for astronomical observations.

153. There is another eye-piece in common use,
known as the erecting eye-piece; it is used for terrestrial
objects. A terrestrial telescope differs from an astronomi-
cal telescope only in having an erecting eye-piece, instead
of an ordinary eye-piece. |

P % B G ] D
e % w
a

One form of erecting eye-piece is shown in the figure.
A and B are two convex lenses of equal focal length,
placed at any distance from each other, pqis the 1mage as
formed by the object-glass. The third and fourth lenses,
¢ and D, form an ordinary Huyghens' eye-piece. The
images are formed between the first and second lenses,
and between the third and fourth, and at the position of
each image is placed a circular diaphragm. The distances
between the four lenses are fixed ; they are usually fitted
“1to one tube, and adjustments for different distances are

effected by pushing 1n or drawing out this eye-tube.

This eye-piece will not be achromatic, because the focal
lengths of the two first lenses will not be the same for all
colours ; but occasionally each of the four lenses consists of

a cemented achromatic doublet.
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Besides these eye-pieces, there is another type fre-
quently employed, consisting of three cemented lenses. Of
these two may be mentioned. Steinheil’s Aplanatic micro-
meter oculars consist of a bi-convex lens of crown glass,
between two meniscus lenses of flint-glass, similar in form
to Steinheil’s aplanatic magnifiers, already described. The
ocular is free from distortion and is achromatic for central
as well as for extra-axial rays. The image is perfectly flat
and the first refracting surface is at a considerable distance
from the plane of the image, so that it is well adapted for
use with cross-line micrometers.

Schrider’s high power eye-piece consists of a double
convex lens of soft-crown glass, a concavo-plane lens of
dense flint and a plano-convex lens of soft-crown, cemented
together. The values of the radii of the spherical surfaces
are given as follows:—

= 80026
rs=36'536

Ts=17,
ry= 00

} soft-crown,

} dense flint,

5= 00
'Tﬂ — 80.026

This lens can be used up to an aperture equal to half
the focal length.

} soft-crown.

154. The position of a compound eye-piece when
arranged for distinct vision, and the magnifying power of
the instrument, may be found by considering tﬁe images
formed as the rays pass through the instrument.

We shall suppose the object to be very distant, and
that the instrument is arranged so that the rays of the
emergent pencils are parallel to each other, and therefore
the first image will be in the principal focus of the object-
glass, and the last image will be in the principal focus of
the eye-lens. Let #, ' be the distances of these images
n fF{}nt of, and behind, the field-lens, respectively, and let
1, 7 be the linear magnitudes of these images, and a, o
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the 1nitial and final inclinations of the axis of the extreme

pencil. Then, if £, f’, f” be the focal lengths of the three
lenses, and a, a’ the intervals between them,

a=a +f }
a'.l' — ml’ +f}'.f b
L il il
and - + = ?
The relation between the intervals a, a 1s therefore
1 1 1
+ =7 5= pre
afaSa

If we clear of fractions and add f” to each side of this
equation, it takes the form

(FHf =) (f +f" = d)=f".

To find the inclinations of the initial and final pencils,
the equations are

7
o=,
i
u'=_.;}T'r:
L
and also = =S

e Sl
&Y o 7 77 )
or . Y= E'F #
mf mi‘ arf L fﬂ" _ffl'
T B = =L
But T f.r f

and therefore
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This formula might have been found directly by sub-
stituting for the two lenses of the eye-piece the equivalent
lens, and then using the result already obtained for the
magnifying power of the astronomical telescope consisting
of two lenses.

In exactly the same way it may be shown that

b A 4

If we multiply these equations together we get the
relation between the intervals already mentioned.

The object will be inverted, as in the ordinary
astronomical telescope, unless @ be greater than f+ f;
that 1s, unless the distance between the first two lenses be
greater than the sum of their focal lengths.

If the focal lengths of the lenses be given, and also
the magnifying power, the intervals between the lenses
are determined; for, from the preceding values of «,
we get

i _)"‘:}t.IF 4 ! ff f:fH’Y
fr i w=pia L
155.  The field of view is determined in the same way
as 1n the ordinary astronomical telescope, supposing it to

be governed by the first two lenses. The aperture of the
third lens will then be chosen so as to allow of all the rays

to pass through. Thus suppose we consider the field of
view which is seen by full pencils only. The bright field
of view is determined by the equation

5 SV =b(a—f)
e 2

where b, b are the semi-diameters of the object-glass and
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field-lens, respectively, just as in the simple astronomical
telescope.

_ The full cone of rays between the first two lenses will
Just fill both lenses, crossing at an intermediate point O.
If after refraction at the field-lens the full cone of rays
Just fills the eye-lens, the cone of rays before refraction
must just fill the image of the eye-lens formed by the
field-lens. Let C’ be the position of the image of the lens
C, formed by the lens B.
Then, if BC" =z, we have

IR ol

B
Also, if n be the semi-diameter of the image, then by § 51

n x

Zanir
The condition that the cone between A and B shall
just fill this image 1s
b+n b +b
it -

that is, taking the numerical value of 7,
§+E_H+E

! 2

r  a @
ailod il b’ b +0b
or b{?—ﬂg}ﬁ'g—-—a
Hence, finally, : .
F=%+Fwﬁ+i—%.
a a o

In Galileo’s telescope the incidence on the eye-lens 1s
centrical ; the eye-lens used is therefore always a single
concave lens, or achromatised combination of two or three

lenses 1n contact.

i le an astrono-
156. E» Let 0, 4, B, C, D denote the lenses of an astror

mical telescope withaun’eracting eye-piece, taken 01‘{11;31* ]heg:;gmll%g
with the object-glass. The focal lengths are respectively Jb, Lg,
23, 2, 13 iughcs,ga,nd the distances 04, 4B, BC, 37%, 2}, 3 inches
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respectively. Find the position of the eye-lens when the instrument
is adapted for an eye whose distance of distinet vision is 8 inches,
and show that the magnifying power is then 404,
If u, v be the distances of the object and image, respectively, in
front of and behind a convex lens of focal length £, we have
g
w v f
As object consider the image formed in the principal focus of the
object-glass; then using similar notation for all the subsequent
lenses, with dashed letters, we find

u=4,
and therefore %+ =18
which gives p=—21p,
Hence w=§—v=10,
Taking the next lens, we get
1 2
1? + "[10'= E’ ]
therefore ¥ =30
and w'=3—v'=—1.
Similarly, considering the next lens in order
1
'i?" —3 ='& ]
and therefore pl=1
If @ denote the interval between the lenses ', D, we have
u.”'f — I:I- . ?.
The conditions of the question require that "= — 8.
1 -
Thus *é+a-__g=5-;
e G— ":‘1 = fﬁ‘r
and a=4%3%.

. To find the magnifying power, let the magnitudes of the images
in succession be », 2/, &, 2", 2V, Then if a be the angle subtended
by the object at the centre of the object-glass
et
=

36
Also the angle of vision is
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But by similar triangles

a v
ke e
T '
e e
‘r”l 'ﬂ”
T =4,
Ll I
20m et e
.T’" HJ'H i
Hence by multiplication
v
g
The magnifying power is
NP g.riT
L= i = ox
— 285,
that is y=40%.

Reflecting Telescopes.

157. If instead of a convex object-glass, a concave
mirror be used to receive the rays proceeding from an
object, an image of the object will be formed by the
mirror, which, if the aperture be sufficiently large, may be
viewed directly by means of an eye-piece placed in a suitable
position, as in the case of the telescopes previously de-
scribed. Such is the principle of Sir W. Herschel's

telescope, which is the simplest of the reflecting tele-
scopes.

In order that the head of the observer may intercept
as little light as possible, the axis of the mirror is slightly
inclined to the axis of the tube in which it is fixed, and
thus the image is thrown near the edge of the tube, where
it is viewed through an eye-lens, or eye-piece, the observer
having his back to the object and looking down into the
tube. The obliquity of the incident pencil to the axis of
the mirror will produce a shght distortion of the image,
but the errors due to this cause are scarcely appreciable in
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the very large instruments to which this construction 1s

alone applicable.

We shall suppose that the object is very distant, so
that the image formed by the mirror will be in the
principal focus of the mirror; and also that the instru-
ment 1s to be adapted to the use of eyes with normal
sight, so that the emergent rays must be parallel, and
therefore the eye-lens must be placed in such a position
that the first image may lie in its focal plane.

Now the angle which the object will subtend at the
centre of the mirror, and therefore at the eye, will be
equal to —»/F, where 7 is the linear magnitude of the
image, and F the focal length of the mirror. And the
angle under which the image will be seen by the eye will
be n/f, f being the focal length of the eye-lens. The
magnifying power is represented by the ratio of the
latter to the former, and therefore

F

v 73

This instrument therefore gives an inverted image.

But since the observer has turned round and is looking at

the image in front, the appearance of the object as seen is

a_sdzf 1t were 1nverted top and bottom, but not from side to
side.

P.

L

e e S

_ The arrangement of the mirror and eye-lens is shown
in the figure. BAC is the large spherical reflector, 40
being its axis, and 0 its centre; AP 1s the axis of the
tube and Aca_ the axis of the eye-lens, and these two lines
are equally inclined to A0, the axis of the mirror. Bg
Agq, Cq, are three rays which are brought to a focus at gb}:
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the large reflector; the rays afterwards meet the eye-lens
and finally emerge parallel to each other. The focus ¢ and
the corresponding point of the object lie in the same line
through O, the centre of the reflector.

158. The field of view in this telescope is determined
in exactly the same way as in the astronomical telescope.
The distance between the lens and the centre is F—f
nearly ; for AO=2F, and Ap = F and the inclination of
Ap to A0 is very small. If therefore a denote the semi-
aperture of the eye-lens, and ® half the field of view, as
determined by the axes of extreme pencils, then

a
@iegedat
P
The focal length of the eye-piece in these instruments
is very small in comparison with that of the mirror so that

the field of view 1s very nearly equal to the angle subtended
by the eye-lens at the vertew of the large reflector.

If we adopt the result previously obtained for the total
field of view, and the bright field of view, we have

@ = alf + Af
BAE 1)
where A4 denotes the semi-aperture of the object-mirror,
and ® half the extreme field. If we neglect f in com-
parison with ¥, and substitute « for F/f, this becomes
1 A
@i— =gt =—
F {a' 3 ".-'}
which, in instruments of large magnifying power, does not
differ widely from the results previously obtained for the
mean field.

Herschel’s great telescope was construeted in 1789 ; 1t
was 40 feet in length, and the great reflector was 50 inches
:n diameter. The quantity of light obtained by this 1n-
strument was so greab as to enable its inventor to use
eye-pieces of far shorter focal length than any pre:rmusly
nsed. Lord Rosse’s telescope has a speculum of 53 feet
focal length and 6 feet diameter.
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Newton's Telescope.

159. The principle of the front view, as previously
described, can only be used in instruments in which the
aperture is very considerable, and to instruments of mode-
rate aperture 1t is wholly inapplicable. In the telescope
invented and constructed by Newton, the rays reflected by
the object-reflector are received on a small plane mirror
placed between the object-mirror and its principal focus.
The plane of the mirror is inclined to the axis of the tele-
scope at an angle of 45° and the rays which tend to form
an image in the principal focus of the object-reflector are
reflected laterally and form an image near the side of the
tube, equal and similar to the former, and similarly placed
with regard to the plane mirror. This image, whose plane
1s parallel to the axis of the tube, 1s viewed through an
eye-piece placed at the side of the instrument. Instead of
a plane mirror, Newton used a rectangular isosceles prism
of glass, through the sides of which the rays enter and
emerge perpendicularly, being reflected totally at the
hypotenuse. The reflexion at the hypotenuse being total,
there 1s a much smaller loss of light in the reflexion than
in the reflexion at a metal speculum.

The arrangement of the mirrors and the eye-lens is
shown in the figure. BAC is the object-mirror, B’ 4’C’ the
plane mirror, and bac the eye-lens. ~Rays B(Q, AQ, C'Q are
reflected by the large mirror to a focus @, where PQ is the
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principal focal plane of the reflector. But before they
reach ) they are reflected by the small plane mirror and
meet in g ; after crossing at ¢ they strike the eye-lens and
emerge parallel to each other. The point ¢ and the
corresponding point of the object lie on a line through the
centre of the large reflector; also the image P() and the
second image gp are symmetrically placed with regard to
the mirror B’A’C’, and ¢p 1s equal in magnitude to QL.

If F, f denote the focal lengths of the object-mirror
and the eye-lens, and e, ¢ denote their distances from the
centre of the plane mirror, then in the figure,

A'P=F—e¢
A—JP = 6!‘ _f} ]
since the first image is in the principal focal plane of the
large mirror, and the last in that of the eye-lens. Hence,
since A'P = Ap, we get
e+ =F+f.
This is the condition of distinct vision with parallel
rays.
yThe magnifying power may be found just as in the
case of Herschel’s telescope ; the value of it is, as before,

F

=

160. The effect of the small mirror is simply to
change the direction of the emergent rays, so as to bring
them out at the side of the instrument; it does not _al_ter
the convergence or divergence of the rays. In determining
the field of view, we may therefore suppose the mirror
absent and the eye-lens arranged on the axis of the large
speculum. The determination of the field of view 1s then
exactly the same as in the gstmnmmcs_ﬂ telescope, and we
may adopt the results previously obtained. If A be the
semi-diameter of the large speculum, a that of the eye-
lens, the bright field of view as seen by full pencils,

il b
N oF — Af

_— ———

1
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If we neglect f in comparison with ¥ in the denomi-

nator, we get
825l
i a 7 5
as in Herschel’s telescope.
161. The cone of rays within the instrument which
contributes to fill the field of full pencils, will fill the large

speculum and the eye-lens (supposed transferred to the
axis of the instrument), crossing at a point O between the

B

C

mirror and lens. The position of 0 may easily be found,
E}r similar triangles. Thus, if 04 be denoted by ¢, we
ave

é_A +a
¢ Ep

and therefore c=‘ith _) i
A+a

: It will be observed that the value of ¢ does not differ
widely from that of the focal length F of the speculum,

The smaller mirror must be large enough to receive
the whole of this cone of rays, but it must not be made
larger than necessary, or otherwise the brightness of the
central part of the field will be impaired. The mirror
will therefore be a section of the full cone of rays con-
verging from the object-mirror to the vertex 0, made by a
plane at an angle of 45° to the axis ; it will therefore be in
the form of an ellipse.

Let the semi-vertical angle of the cone be 8, then

ta.n9=é.
c
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_Suppose a section of the cone by a plane through the
axis perpendicular to the plane mirror to be represented
in the figure, MN being the section of the plane mirror;
then MN will be the major axis of the ellipse. Denote the

two portions of MN, as divided in the centre 4’, by # and
#’. Then if A’0 be denoted by d,

A d sin 6 =d¢2tan9_Ad42
sn(45°—6) 1—tanf c—A4°
foyd d sin 0 =d.\f2tan ﬂ___ﬁd\fﬂ
sin(45°+6)  1+tané c+4°
and therefore if a, 8 denote the semi-axes of the ellipse,
~ Aecd a2
a=1},-(m+m)=cT_Ag.

Let y denote the breadth of the section perpendicular
to that represented in the figure, at A”; then by properties
of the ellipse,

B Y

CEE g
But y is the radius of the circular section of the cone
through the point A’, so that y= Adfc; and therefore
_Bﬂ' Gﬂ s Aﬂ
@ 20
If we give a its value, the corresponding value of 8
becomes

Ad
i
The aperture of the object-mirror will be small com-
ared with its focal length, and therefore A* may be
neglected in comparison with ¢z, The approximate values
of a and B will therefore be

Ad /2
a:,_.._... ’
(4]
Ad
B "l G_:

which are in the ratio of /2 to 1.
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Gregory’s Telescope.

162. The invention of the reflecting telescope is
generally ascribed to James Gregory, who described the
instrument now called by his name, in his Optica promota,
published in the year 1663.

Gregory’s telescope consists of two concave mirrors
placed along the same axis with their concavities facing
each other, and at an interval a little greater than the sum
of their focal lengths. In the vertex of the larger, or
object-mirror, is a circular aperture, to which is attached
the tube containing the eye-lens, When the axis is
directed to a distant object an image is formed at the
principal focus of the object-mirror. The rays diverging
from this image are incident upon the smaller mirror, and
by reflexion a second image is formed near the vertex of
the large mirror, and this image is viewed through the
eye-lens, placed at a distance from it equal to its own focal
length.

The arrangement of the mirrors and the lens is shown
in the figure, in which 4B is the object-mirror, 4’B’ the

smaller mirror, and ab the eye-glass. Rays proceeding

from a point of the object are reflected at the large mirror

and are brought to a focus in @, where P@ 1s in the

principal focal plane; also ) and the corresponding point

of the object lie on the same line through the centre of the

large mirror. After passing ), the rays diverge and are
He G 13
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incident on the small mirror, and are brought to a focus at
q; as before, the points @, g lie on the same line through
the centre of the small mirror. The eye-lens is placed 1n
such a position that ¢p is in its principal focal plane, and
therefore the rays of the pencil after passing through the
eye-lens emerge parallel to each other.

In the original description of the instrument the large
reflector was a paraboloid of revolution, and the smaller, a
prolate spheroid whose foci are at P and p, the positions
of the two images. With reflectors formed of these
surfaces, there would be no aberration for rays in the
centre of the field. It was for some time deemed hopeless
to prepare mirrors having these forms, and the instrument
was never constructed till after that of Newton.

Gregory's telescope is generally preferred to Newton's.
Its superiority seems to arise from the fact that the two
specula may be matched and their irregularities of form
made to counteract each other; whereas in Newton’s
telescope there is nothing to compensate any defect in the
form of the object-mirror, and experience shows that such
mirrors can seidom be made truly spherical.

163. Let F. F’ and £ be the focal lengths of the two
mirrors and the eye-lens, respectively; e and ¢ the dis-
tances of the object-mirror and the eye-lens from the
smaller mirror, and z, 2" the distances of the two 1mages
from the same mirror. Then when the instrument 1s
arranged for distant objects so as to suit normal eyes,

z=e¢ —F
sZash

But @, «/ are conjugate focal distances with respect to
the smaller, and therefore,

ol ol
TR
If we eliminate z, ', we get the equation
1 1 1
e
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This is the equation of condition for distinct vision in
Gregory’s telescope. The equation is similar to that pre-
viously obtammed for a refracting telescope with three
lenses.

The eye-glass is usually fixed in position and the
adjustment to distinct vision effected by moving the
smaller mirror by a fine screw.

164. Let o denote the distance between the principal
foci of the two mirrors, so that

e=F+F +a.

Let n, %" be the linear magnitudes of the first and
second images. Then the angle subtended by the object
to the eye 1s equal to — 7/F, and the angle under which
the last image is seen, is equal to #/f. The magnifying
power of the instrument is therefore

e
¥ = ) } :
But, by the theory of spherical mirrors (§ 37),
hyes 2
e
FF’
Hence oy = ftl .

An approximate value of ¢ in terms of the focal
lengths may be deduced from this formula. For the
second image is formed near the aperture of the large
mirror, so that in the figure #”p is very nearly equal
to PA, that’ 18 to . But F'P.F'p=F" and F"P —

e 2
hence a = 7 nearly, and y= g“f’ approximately.

165.  We shall next consider the field of view, confining
ourselves to the bright field, seen by full pencils. After
reflexion at the large speculum the full cone of rays will
fill the smaller speculum, crossing at the point O (see
figure on next page), between the two specula. If the

13—2
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focus F' coincide with the vertex O of this cone, the
rays after reflexion at the small mirror will proceed
parallel to the axis, and will fill an eye-lens of the

same diameter as the mirror. And this 1s the best
arrangement ; for the dimensions of the small mirror
should not be too large, or otherwise it will intercept a
considerable amount of the incidence pencil. On the
other hand if the ratio of the aperture to the focal length
be less than is indicated by the above conditions, the
pencil after reflexion at the smaller mirror would diverge,
and would need an eye-lens of greater magnitude than the
small mirror to receive all the rays; but this is impossible,
otherwise some of the incident light would fall directly on
the lens. Hence if A, A’ be the semi-diameters of the
two mirrors, and e the distance between them, we must

have
{' A+ A4

B & vy et er

The field of view may now be regarded as limited by
the large and small speculum. The method to be followed
‘s the same as that employed in the case of the former
telescopes. It will be found, however, that if the image of
the smaller speculum be formed by reflexion in the larger,
the image will have smaller linear dimensions than the
large speculum, so that this image must be regarded as the

entrance pupil.
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For let B” A” (" denote the image of B’ A’ (" formed
by the large speculum, A" its semi-diameter.
Then FA'=e-F,

and therefore FA" = L ;
e=F

The image will be inverted and its magnitude determined
by the equation

Al gl

gﬂ_ F )

s ks
so that Al=c 4 =

Now the two images PQ, pg in the figure of § 162 both
lie on the same side of F', and therefore in the figure of
this section # necessarily lies between £ and 4.

Hence A" is numerically less than 4’. 04/0A4’, and
therefore less than 4.

_ The value of the bright field will therefore be deter-
mined by the equation

@=aiid
AA.H
A'F
_A_E—F
= VE
F+3~F
- A (e —_"}3) - F4’
el
4 A+ 4
= Fr e ==
or finally, ) — % s %ri_: .

In other words, the bright field of view is measured
by the difference of the numerical measures of the aper-
tures of the specula.
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166. Another reflecting telescope was imvented some
years after Gregory’'s and Newton’s telescopes by a French-
man named Cassegrain, probably without any knowledge

of what had been done in England. Cassegrain’s telescope
only differs from Gregory’s in having its small mirror
convex instead of concave, and placed between the large
mirror and its principal focus. The arrangement of the
mirrors and images is shown in the figure.

The investigations to find the position of the mirrors
and lenses so as to admit of distinct vision, and the mag-
nifying power and the field of view in Gregory’s telescope
are all applicable to Cassegrain’s; we have only to change
the sign of F’, the focal length of the small mirror,

throughout.

The image will appear inverted, just as in the astro-
nomical telescope.

The great 48-inch reflecting telescope constructed by
Sir Howard Grubb for Melbourne University was of the
Cassegrain type.

167. FEx. The focal lengths of the larger and smaller mirrors of
a Gregorian telescope are 32 inches and 3 inches, and the distance
between their principal foci ¢ inch; it is fitted with a Huyghenian
eye-piece, the focal lengths of whose lenses are 3 and 1 inches.
Prove that when the instrument is adjusted for normal vision the
distance between the field-glass and the smaller mirror is 374 inches,
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and that the magnifying power is 256. If the instrument be ad-
justed for vision at a distance of 12 inches, by altering the position
of the smaller mirror, prove that the distance through which the
latter must be moved is ‘001 inch towards the large reflector.

Let e, ¢’ be the distances of the object-mirror and the field-lens,
respectively, from the small mirror, and 2, 2/ the distances of the
first two images from the same mirror. Then the second image
must lie between the lenses of the eye-piece at a distance from the
field-lens equal to § the distance between the lenses, in order that
the rays may emerge from the eye-lens parallel to each other. Hence

¥=e+3

Also the distance between the principal foci of the mirrors is } inch,
and therefore

z—F'=}

or x =37,
And since @, &' are conjugate focal distances,

SRS

O i
that is, ‘%_,+1%=§,
and therefore =y
Hence, finally ¢ =30-8=374

Let n, 9, n” be the linear magnitudes of the first three images.
Then the angle subtended by the object to the eye is —n/¥, and
that subtended by the final image is 5”/1. The magnifying power
of the instrument is therefore

”_Ef'
y==1=.
n
#
But we have M= ..i_:;,
n oL
'
and N
 fohe P
Hence =32 v
=t yd
=5 x 39 X {5 x 32;
that is, y = 256.

. Next, let the instrument be arranged for an eye seeing at a
distance of 12 inches, the adjustment %cing made by altering the
position of the small mirror. Since the position of the eye-piece is
unchanged, the value of ¢ — e is unchanged, and therefore

¢ —e=2}.
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Also e=r+ F=x+32,
Hence ¢’ =x+34f.

Let w, v represent the distances of the first and second images in
front of and behind the field-lens, respectively, and #/, v similar
quantities with reference to the eye-lens. Then we have

vV=—12;
and therefore 1% -=1,
or w =14,
Hence v=2 - =14,
1
Also S +i3=1,
and therefore u=—4$3=—168.
But r=é—u
=x+34}+ 168,
or ¥’ =x43593.
And since x, 2" are conjugate focal distances, this gives
1 1
x ] 43593 b

This is a quadratic to find #, and if we solve it we find
x=3'249, very nearly.
But the value of # in the previous arrangement of the instrument
was 3'25.

Hence the small mirror must be moved through a distance ‘001
inch nearer to the larger mirror.

The Compound Microscope.

168. In its simplest form the compound microscope,
like the astronomical telescope, consists of two lenses,
an object-glass or objective, as it is usually called, and an
eye-glass or eye-piece. The+ objective has a very short
focal length, and the object 1s placed at a d1stanc? frt_}m
it slightly greater than the focal length; Fhe objective
then forms a real inverted image of the object, which 1s

viewed through the eye-piece.
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The objective is usually made up of a system of lenses,
designed to diminish chromatic and spherical aberration.
Very generally, there are three doublets, each consisting
of a double-convex lens of crown-glass cemented to a
plano-concave lens of flint, arranged to be achromatic
for centrical pencils; these doublets are placed with their
plane faces towards the incident light, the lens of shortest
focal length being mnext the object, and their apertures
increasing from the first outwards. In this way the
apertures can be chosen that a pencil filling the first lens
will just fill the other lenses in succession, so that dia-
phragms are unnecessary ; this is a great advantage, be-
cause diaphragms will always introduce diffraction fringes
which interfere with the definition in the outer parts of
the field.

The magnifying power of the microscope has already
been investigated in §§ 133, 134.

Ez. The lenses of a common astronomical telescope whose
magnifying power is 16, and length from object-glass to eye-glass

inches, are arranged as a microscope to view an object placed
& inch from the object-glass; if the distance of vision be taken
to be 8 inches, show that the magnifying power will be 8.

EXAMPLES.

1. The object-glass of an astronomical telescope has a focal
length of 50 inches, and the focal length of each lens of the
Ramsden’s eye-piece is 2 inches; show that when adjusted for
normal vision the distance between the field-glass and the object-
glass is 50'5 inches, and that the magnifying power is 100/3.

Show that, in order to adjust the instrument for vision at a
distance of 10 inches, the eye-piece must be pushed inwards through
a distance v of an inch, and that then the magnifying power is in-
creased to 35.

2. The focal length of the object-glass of an astronomical tele-
scope is 40 inches, and the focal lengths of four convex lenses
forming an erecting eye-piece are, respectively, 2, }, &, 8 inches,
reckoning backwards from the object-glass. The intervals between
the first and second and between the second and third being one
inch and half-an-inch, respectively, show that when the instrument
18 1n adjustment for eyes which can see with parallel rays, the
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distance of the eye-lens from the object-glass is 41} inches, and the
magnifying power of the instrument 8.

3. The object-glass of an astronomical telescope has an aperture
of 1 foot and a magnifying power of 240. Show that if the aperture

of the pupil be } inch, the brightness of the image is to that of the
object as 1 : 25.

4. A Galileo’s telescope, the focal lengths of whose lenses are
6 inches and 1 inch has an objective aperture of 134 inches; find
the field of view as determined by the axes of the extreme pencils,
taking the aperture of the eye-pupil to be # inch. Show that if the
instrument be directed towards a graduated rod distant 160 yards,
the length of rod visible through the instrument is 10 yards. If the
instrument be arranged for vision at a distance of 10 inches, show
that the length of rod visible is increased to about 10-68 yards.

5. A Galileo’s telescope is adjusted so that a pencil from an
object 289 feet distant emerges as a pencil of parallel rays; the focal
length of the object-glass is one foot, and of the eye-glass one inch ;
show that if the axis be directed towards the sun, and a piece of

aper be held 23 inches from the eye-glass, an image of the sun will
Ee formed on the paper. The sun’s apparent diameter being
cot—1120, show that the diameter of the image is 24 inches and that
it is inverted.

6. If the focal length of the larger mirror of Newton’s telescope
be 20 feet, and its diameter 2 feet, find what portion of the incident
light is necessarily stopped by the smaller mirror.

7. The focal lengths of the large and small mirrors of a Gregorian
telescope are 18 and 1§ inches, respectively, and their distance from
each other is 19 inches; if the focal length of the eye-glass be §inch,
show that the magnifying power is 684.

8. Show that, if in Gregory's telescope the focal length of the
small mirror and of the eye-piece be each 2 inches, and the distance
between the foci of the large mirror and of the eye-piece be 32 inches,
and the telescope be adjusted so that rays from a distant point
emerge in a state of parallelism, then the alteration needed for a
person who can see best at a distance of 26 inches will be a motion
of the small mirror of approximately ‘0005 of an inch.

9. A Wollaston’s doublet is formed of two convex lenses of focal
lengths 7, and 3f, respectively, the distance between them being 27,
and is in adjustment for viewing a small flat 111111:{')»'&1*&3& object ;
show that if a plate of glass whose thickness 1s f/10 be laid on
the object, the instrument may be readjusted without altering the
position of the lower lens, by increasing the distance between the

lenses by 2 (u— 1) f](6p—1).
10. In an astronomical telescope, in which the focal lengths of
the object-glass and eye-glass are 7, " and their semi-diameters b, ¥,
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respectively, show that for a person who can see distinctly at a
distance @, the radius of the stop should be

@ (F0~FV)+IFY
frralf+f)

11. If the final image formed by the object-glass be at a distance
from the eye-piece equal to the least distance of distinet vision, show
that specks on the object-glass cannot be distinctly seen when the
eye is close to the eye-piece, and find how far off the eye must be in
order to see them distinctly.

12. Find the radius of the stop in an astronomical telescope for
an observer who sees objects clearly at a distance X ; show that the
stop may be greater than for a person seeing distinctly with parallel
rays by (b40) f2nf, if the square of f'/f be neglected, f and £/,
b, b’ being the focal lengths and the semi-apertures of the two lenses,
respectively.

13. In Huyghens’ eye-piece the focal length of the field-lens is
three times that of the eye-lens, and the distance between them is
twice the focal length of the eye-lens; show that if the lenses be
supposed thin, this combination, when focussed for normal vision,
will also be in focus (except for aberration) if it be inverted,
E:uvided the eye-lens be brought back into the same position as

fore.

14, Show that if # be the focal length of the object-glass of
an astronomical telescope fitted with a Ramsden’s eye-piece whose
equivalent focal length is f, and d the distance of distinct vision, the
magnifying power of the telescope when viewing a very distant
object is equal to the ratio # ( f+3d) : 3df.

156, If F be the focal length of the object-glass of an astrono-
mical telescope, which is fitted with a Ramsden’s eye-piece whose
field-glass is at a distance « from the object-glass, show that the mag-
nifying power of the telescope is

1

=

16. Show that in an astronomical telescope fitted with a
Ramsden’s eye-piece, whatever the distance of distinet vision be,
the eye must be placed in front of the eye-lens at a distance } 7
from i, in order to catch all the rays that fall on the field-glass
and that then the magnifying power is equal to 4F/f, F being
the focal length of the object-glass and f that of either lens of the
eye-piece.

Show that an observer whose distance of distinet vision is less

tl‘m,nt { ./ cannot make use of the telescope for astronomical measure-
ments.
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17. Show that the radius of the stop in an astronomical tele-
scope fitted with a Ramsden’s eye-piece, which will intercept all but
complete pencils, will be the smaller of two expressions §r and

(4Fr — fR)/(4F' + ),

where /' and R are, respectively, the focal length and radius of the

object-glass, and f and » similar quantities for either of the two equal
lenses which compose the eye-piece.

18. Show that, if the focussing of the compound microsco
were made by adjusting the eye-piece instead of the tube as a whuf;e,
the amount of a,d{' ustment would be increased in the ratio (D[f—1)?
to 1, approximately, where /) is the distance of the focal plane of the
eye-piece from the objective, and f is the numerical focal length of
the objective.

Show that if the outer surface of the objective, of radius of
curvature r, be distant x from an object on which it is focussed
in air, the magnification would be diminished

f1—(p—1)x/r}=" times,

by dipping the face of the objective in liquid of index g, in which
the object has been immersed.



CHAPTER X,

OPTICAL INSTRUMENTS AND EXPERIMENTS.

169. Ir light be admitted into a darkened room
through a very small aperture and be allowed to fall on a
screen, an inverted picture of external objects will be
formed upon the screen. A very nairow pencil of light
proceeds from each point of the objects through the aper-
ture and gives an image of the point on the screen. In
consequence of the narrow limits of the aperture the
image will of course be faint. If the opening be increased
so as to admit more light, each pencil will be a cone of
considerable breadth and will give a bright patch on the
screen of the same shape as the hole, and therefore the
image will become confused, and if the aperture be suffi-
ciently enlarged the picture disappears altogether and
becomes a bright patch. In order to produce a sharp
image with a moderately large aperture a lens must be
employed which must be arranged so as to give a real
image at the distance of the screen. Objects outside
having different distances from the lens will have Images
also at different distances. But if all the objects be at a
distance large compared with the focal length, the images
will all be very near to the principal focus of the lens.

This is the principle of the camera obscura. A box
from which external light is excluded takes the place of
the darkened room ; instead of the screen is used a sensi-
tive plate. An inverted image of external objects is thus
printed on the plate and may be preserved in the form of
a photograph.
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The requisites for a good photographic lens are :—

(1) It must be achromatic, and indeed the focus for
the chemical rays of the spectrum must be coincident
with the focus for the brightest optical rays, so that when
the lens is focussed so as to yield a sharp image to the
eye, 1t will also yield a sharp image formed by the chemi-
cally active rays ;

(2) It should admit the greatest possible quantity of
light, and therefore should be made of transparent glass
with as great an aperture as possible, and with not too
many lenses. Lenses admitting a large quantity of light
are called rapid lenses ;

(3) Under certain circumstances it should bring to a
focus without distortion objects lying within a wide angle
(up to 110°);

(4) Internal reflexions should be made harmless, as
far as possible;

(5) For many purposes the lens should possess con-
siderable depth of focus; that is, it should bring to a sharp
focus objects lying at different distances from the lens.

170. The original form of photographic lens was a
simple collective lens with a diaphragm in front. The
radii of curvature and the position of the diaphragm were
chosen so that the most important defects of the image
might be removed. The usual form was a meniscus, m‘th
its concave surface turned towards the object, the dia-
phragm being in front of the lens. The lens could not be
used with a greater aperture than about f/30.

The first great improvement was to use, instead of a
single lens, a cemented doublet consisting of a double
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concave lens of flint glass joined to a double convex lens
of crown ; this combination can be made achromatic and
free from spherical aberration near the axis. Such lenses
are frequently used now for landscapes and can be made
to work up to an aperture f/15 and a field of view of
nearly 90°.

171. In 1866 A. Steinheil invented the symmetrical
objective, consisting of two equal achromatised cemented
doublets like those described above, placed in a symme-
trical position with respect to the diaphragm. ~These
lenses are very largely used now under the name of rapid
rectilinear lenses.

Wide angled objectives of the same type are made by
bringing the two doublets very near together.

172. Of unsymmetrical objectives, one of the most
famous 1s the Petzval portrait objective.

"x

It consists of a cemented achromatic pair as the first
element, with a back pair, separated by a small interval.
The back pair may be moved nearer or further away from
the front pair by a rack and screw-head. It is clear that
for portrait lenses rapidity is a great advantage. At the
same time very accurate definition is not necessary except
In the centre of the picture ; it is regarded as an advantage
that there should be considerable diffusion or softness n
the details of the background.

173, Two new lenses are here represented. The first
is Dr Rudolf and Abbé’s anastigmat, made by Zeiss of
Jena. It consists of two elements, the first a cemented
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doublet and the other a cemented triplet, each approxi-
mately achromatic in itself. The peculiarity of its con-
struction 1s that in the first element the collective lens is

of smaller refractive index than the dispansive lens to
which it is cemented, while in the back element the
collective lenses are of greater refractive index than the
dispansive lens.

The other new lens, known as the Goertz lens, consists
of two symmetrical triplets. It is also claimed to be free
from astigmatism,

174. With all lenses there is in addition to the 1mage
formed by refraction, several other fainter images formed
partly by reflexion at one or other of the surfaces of the
lenses. These subsidiary images are sometimes near the
principal refractive images, and give rise to defects known
as flare-spots. It is very important to cause these false
images to fall at a considerable distance from the true
image ; then they will not seriously interfere with the
true image-or at most they will produce a general increase
of illumination of the latter, which will only diminish the

contrasts.
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175. In order to photograph the details of a distant
object with sufficient ma}gnifying power to make the
picture distinct, lenses of very long focal length are

required. If these were made of the ordinary type, a
camera with a very long extension and of considerable
bulk would be necessary. To obviate this difficulty a
so-called telephotic lens has recently been introduced.

The necessary length of focus is obtained by uniting an
ordinary photographic lens with a dispansive lens of focal
length shorter than that of the positive lens. The pencils
1ssuing from the ordinary lens and converging to a focus
are received by the negative lens, and the image is thrown
back, causing increased magnification, The negative lens
must of course be achromatic, and is made in the form of
a cemented doublet or triplet.

176. In the magic lantern and the solar macroscope,
a picture or an object is placed before a collective lens.
System at a distance from 1t a little greater than the focal
length of the system, and is then strongly illuminated by
an artificial light or the light of the sun thrown into the
axis of the tube by a system of reflectors. A real inverted
and magnified image is formed at a certain distance from
the lens-system, and may be seen depicted on a screen in
a darkened room. If the object and the screen be fixed,
the adjustment may be effected by moving the lens-system
backwards or forwards in a shding tube by means of a
screw. The adjustment will always be possible, provided
the distance of the screen from the object be greater than
four times the focal length of the lens-system. [Cf. § 184.]

H. O. 14
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- 177, The camera lucida, invented by Wollaston, 1s an
instrument of great use to the draughtsman, in preparing
an accurate drawing of a building or a landscape.

Its essential feature is a quadrilateral prism of glass,
represented in the adjoining figure. The angle 4 is a
right angle, and the opposite angle is 135°, while the
remaining angles B and D are equal ; it follows that the
angles B and D are each 674°. Rays of light which are
incident perpendicularly on the face AD and are reflected

successively at DC and CB, will emerge perpendicular to
the face AB.

Let PRSTU be such a ray, and let PQ be a small
object perpendicular to PR. Then an image gp will be
formed by refraction at the plane surface AD; the rays
diverging from gp will be reflected at the surface CD, and
made to proceed from an equal image ¢;p;, symmetrically
placed on the other side of CD; the rays diverging from

A u B
QI |_ _R C
‘P| | ()
-’ i,
Qe
\p./
q1
TP

¢, p, Will be again reflected at the surface CB and another
image ¢'p’ will be formed. Finally when the rays pro-
ceeding from ¢'p° are refracted again into the air, they
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will proceed from an image @Q'P’. Let PR the distance
of the object from the first surface be denoted by , and
UP’ the distance of the final image from the final surface
AB by 2, and let u, v, w, be the lengths of the three
portions of the path within the prism. Then pR = ua.
Also it is easy to see that Up' = uax+u+v+w, and
therefore

m’=m+u+vﬂ.
7

Hence the difference between the distances of the object
and final vmage from the vertical and horizontal sides of
the prism, respectively, is equal to the length of the path
wnthan the prism divided by its refractive indea.

The prism is mounted in a brass frame and attached
by its axis to the end of a brass stem, the lower extremity
of which may be clamped to a table; the length of the
stem may be varied at pleasure by means of a sliding
tube. The upper surface of the prism AB is furnished
with an eye-stop of small aperture, which is adjusted so
that the aperture is as nearly as possible bisected by the
edge B; by this means only a small part of the surface
AB 1s used, and the rest is covered. When the vertical
face of the prism is turned towards the object, the
observer looks downwards through the aperture and sees
at the same time the image of the object through the
uncovered portion of the prism, and the paper on which
15 18 thrown through the remaining portion of the aper-
ture. The image will be erect, because the rays from the

upper part of the object proceed towards the upper part
of the image,

Since the dimensions of the prism are very small in
comparison with the distance of the object, the distances
of the object and image will be nearly equal. 1If the
distance of the object from the prism be very different
from the distance of the latter from the table, the 1mage
and the paper cannot be seen together distinctly. This
may be remedied by a convex lens whose focal length is
equal to the greatest distance of the prism from the table.

14—2



212 HADLEY'S SEXTANT. [cHAP. X,

The lens is turned up horizontally under the prism, and
the paper being in the principal focus, its image is thrown
to an infinite distance and therefore made to coincide
with the image of a remote object formed by the prism.
The same correction may be made by placing a concave
lens of the same focal length vertically in front of the
vertical face of the prism. The rays proceeding from a
distant object are made to diverge from an image whose
distance is equal to the focal length; this image will
therefore coincide with the paper after passing through
the prism. The convex lens is to be used by normally
sighted persons, the concave by short-sighted persons.

~ For near objects the adjustment of the distances is
completed by varying the distance of the prism from the

paper.

178. Hadley's Sextant is an instrument for measuring
the angular distance between two distant points. It con-
gists of a framework in the form of a sector of a circle,
with a graduated arc, and two plane mirrors, whose planes
are perpendicular to the plane of the sector. One of the
mirrors A is moveable about an axis through the centre
of the arc, and carries a pointer whose vernier slides along
the graduated arc. The other mirror is fixed at F, and is
parallel to the mirror 4 when the pointer of the latter 1s
at E, the zero of the graduated scale; the lower part of
this mirror only is silvered, so that rays of light may be
transmitted directly through the upper part. The instru-
ment is fitted with a small telescope G whose axis is
directed towards the dividing line of the mirror F.

To measure the angular distance between any two
oints P, @, the instrument is bmught*intn the same
plane with them and the telescope @ 1s directed towards
one of them, @, which can be seen directly through the
unsilvered part of the mirror £ The mirror 4 is then
moved so that P, as seen through the telescope by a
pencil reflected 1n succession at the mirrors A and F,
appears to coincide with @. In _1;}115 arrangement the
angular distance between the points P and @ is the
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deviation of the axis of the pencil by the two reflexions;
and this is equal to twice the inclination of the mirrors.

The inclination of the mirrors may be read off the gradu-
ated scale. If the arc be graduated so that every half-
degree may be read as a degree, the reading will give the
angular distance between the two points without any
further calculation.

Determination of Refractive Indices.

179. The general method of measuring the refractive
index of a solid medium for any particular coloured ray
of light, is to observe the minimum deviation of a ray
of light of this colour, as it passes through a prism made
out of the substance. It has been already seen that,
when a ray of light passes through a prism with minimum
deviation, its path is symmetrical with respect to the
prism ; so that with the usual notation

¢ =1, [f{" = ")t'!:r
and therefore D+ .= 2¢}
t=2¢')°
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If p be the refractive index of the medium,
sin ¢ = p sin @/,
and therefore sin $(D +¢) = psin $ 4
As soon, therefore, as we have measured ¢, the re-

fracting angle of the prism, and D, the minimum devia-
tion, we can calculate .

180. The apparatus used consists essentially of a
horizontal graduated circle, with a horizontal telescope
which can be turned round about a vertical axis passing
through the centre of the graduated circle. The prism is
fixed with wax or cement to a levelling stand placed over
the centre of the graduated circle. The light is supplied
through a collimator, which consists of a fine vertical sht
placed in the focus of an achromatic object-glass, so that
the rays emerge from the collimator parallel to each other,
the collimator being fixed so that its axis passes through
the centre of the rim.

The refracting angle of the prism is first measured.
The prism is placed so that light from the collimator 1s

R

reflected at both faces of the prism. The image of the
olit as reflected at each face in succession is viewed by
means of the telescope, the telescope being moved round
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till the image falls on the cross-wires of the telescope.
The angle through which the telescope must be turned
from seeing the image reflected in one face, in order
to see the image reflected in the other face, 18 read off
the graduated circle. It may be shown that this angle
is equal to twice the refracting angle of the prism. For
let BAC be the refracting angle of the prism, and let
the incident ray be in the direction of PAX. Then, if
AQ be the ray reflected in the face AB, AQ and A X must
make equal angles with 4B, so that

/BAX =}7QAX.

Similarly, if AR be the direction of the ray reflected
in the face AC,

/CAX =3/RAX;
and therefore, by addition,
ZBAC=1/QAR.

181. The minimum deviation for a ray of definite
refrangibility, corresponding to any fixed line of the
spectrum, is next measured. The slit is first viewed
directly, the prism being turned so as not to obstruct
all the light, and the telescope is moved until the line
of the spectrum coincides with the cross-wires of the
telescope. The prism and telescope are then moved so
that an 1mage of the slit formed by light which has
passed through the prism is seen through the telescope ;
and the prism is turned so as to make the image move
nearer to the direction of direct light, the telescope
following the image so as always to keep it in view. At
length a position of the prism is obtained, such that if
the prism be turned either way the image recedes from
the direction of the direct light; this position of the
prism 1s therefore the position of minimum deviation.
The telescope is moved until the line of the spectrum
coincides again with the cross-wires of the telescope.
The angle through which the telescope has been turned
from the position of direct light is read off the graduated
circle, and this angle is the minimum deviation required.
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182, To measure the refractive index of a liquid,
16 1s enclosed in a hollow prism of glass, made by cement-
ing plates of glass together. The two sides of the plates
however are never accurately parallel, and from the
observed deviation it is necessary to subtract the small
deviation caused by the empty prism.

The refractive indices of gases in given conditions as
to temperature and pressure have been measured by a
similar process. They must be enclosed in a tube, the
ends of which are closed by two plates of glass placed
very obliquely with reference to the axis of the tube.

The experiments of Biot and Arago on the refractive
indices of gases showed that for gases the quantity u?— 1
is proportional to the density of the.gas, a law which had
been enunciated by Newton, who deduced it from his
theory of emission.

183. A more modern instrument for measuring the
refractive index of fluids is the Refractometer of Pro-
fessor Abbé. This consists essentially of two equal
rectangular prisms of equal angles made out of the
same quality of highly refracting flint glass. The dia-
gonal faces, which are placed in contact, leave space for
a thin plane layer of the fluid whose refractive index is
required. O is an objective in whose principal focus is

— |

an illuminated slit, admitting light. The rays, incident
on the prism, pass through it and emerge in a direction
parallel to that of incidence, so long as the angle of
incidence on the fluid layer is less than the critical
angle. The,compound prism is turned about so as to
increase the angle of incidence on the fluid; as soon as
the critical angle is reached, the light is totally reflected
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at the fluid and no longer emerges in the original direc-
tion, and to an eye near C, the light disappears. If we
then measure the angle of incidence of the light on the
first face of the prism, we have the means of expressing
the refractive index of the fluid in terms of that of the
prism.

Let 6 be the angle of incidence, as measured, & the
angle of emergence into the prism, a the angle CAB,
v the critical angle of the fluid, we have from the
triangle PAQ;

irt+y=a+imr4+ 8,
or y=a+ 6.

Also, if p be the refractive index of the glass and u’
that of the fluid,
sin @ = p sin €,
: '
sin fy = —,
n
These equations are sufficient to determine © [ .
. The same apparatus may be used to measure the
dispersive power of the fluid.

184.  To find the focal length of a thin convex lens.

This is usually measured by adjusting the lens and
an object, until the distance between the object and the
lmage is a minimum ; this distance is then four times the
facal_length. For, if u, » be the distances of the object
and image in front of, and behind, the lens, respectively,

1 e gl |

Wt s
while the distance between the object and the image is
given by the equation
U+v=a.
Combining these equations, we get
W = af,
and therefore (u —v)* =2 — daf.
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The quantity (v — v)* is always positive, and therefore
the least value of « is equal to 4f.

If the lens be concave, it is placed in contact with a
convex lens, so that the whole combination may be collec-
tive ; the focal length of the combination may be deter-
mined as before. If £, ' be the numerical focal lengths
of the concave and convex lenses, respectively, /' that of
the combination,

Tl gyl
F fl" f?

which determines f when f” is known.

Methods of Photometry.

185. It has been shown in § 5 that when an element of
a surface is illuminated by light proceeding from a source
of intensity I, at a distance 7, so that the axis of the pencil
makes an angle @ with the normal to the element of
surface, then the intensity of illumination is propor-

tional to
I cos @

.?12

It is found that the eye is of itself unable to estimate
the ratio of the intensities of two sources of light, but
that it is an accurate judge of the equality of illumination
of two illuminated surfaces when they are placed side by
side. All methods of photometry depend therefore on the
equalising of two illuminations.

In order to compare the intensities of two sources of
light, the two halves of a piece of thin porcelain are
illuminated by the two sources, respectively, in such a
way that either the light falls normally on the porcelain,
or the lights from the two sources make equal angles
with the plane of the porcelain. The distances of the
lights are then adjusted so that the two halves of the
porcelain are equally illuminated. Then the intensities
of the sources are in the inverse proportion of the squares
of their distances from the porcelain. This is the principle
both of Ritchie’s and of Foucault’s photometers.
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186. Ritchie’s photometer consists of a rectangular
box open at both ends. In the lid is a narrow strip of
porcelain or oiled paper. The instrument is placed be-
tween the two sources to be compared, and the light 1s
reflected up to the porcelain by two pieces of mirror
(which must be cut from the same piece of glass) placed

A /& B
at angles of 45° to the axis of the box. The box 1s then
moved from one source towards the other until the two

halves of the porcelain are equally illuminated, and the
distances of the lights measured.

187. In Foucault’s photometer the lights which are
to be compared act separately on two ditferent parts of
the same vertical plate of thin transparent porcelain, PQ.
RS is an opaque vertical screen which separates the two
illuminations from one another. If this screen be so
adjusted that the vertical planes 4Sm, BSn which limit
the regions illuminated separately by the two sources
A4, B, imtersect just in front of the lamina PQ, the dark
band mn can be made as narrow as we please. The

distances of A and B are then adjusted so that the two
portions of the lamina are equally 1lluminated.
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188. In Rumford’s photometer the intensities of the
two shadows on a screen of a vertical rod due to the two
lights are compared. The lights are arranged so that
the shadows fall close together, and the shadow formed
by one light is lighted by the light from the other source.
The distances being so adjusted that the shadows are of
equal intensity, the distances of the lights are measured,
and thus the intensities of the two sources can be com-
pared.

Bunsen invented a very simple photometer. If a
spot of grease be made on a sheet of paper, then if the
paper be equally illuminated on its two sides, the trans-
parent spot cannot be seen except by close inspection.
The sources of light are placed on opposite sides of the
paper and their distances are so adjusted that the grease
spot disappears; then the intensities of the sources are
inversely as the squares of their distances from the paper.
The adjustment should first be made from the side on
which one source lies, then the screen should be turned
round and the adjustment made from the side on which
lies the other source, the same side of the paper being
observed each time. The mean of these two positions
will give a fairly accurate result.

This is the photometer most usually employed to
compare the illuminating power of different lights, such
as gas and the electric light. A standard candle 1s a
sperm candle burning 120 grains of sperm per hour. In
stating the illuminating power of a particular gas-burner,
it is supposed that the burner is consuming 5 cubic feet
of gas per hour.

In all these comparisons the lights are supposed to
be of the same quality, otherwise the comparison fails.
A strict comparison of two compound lights of different
qualities could only be arrived at after comparing the
relative intensities of all the different coloured rays of
the spectra given by the two lights, and tabulating the

results.
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Methods of determining the Velocity of Light.

189. There are two methods of determining the
velocity of light by optical experiments, the one de-
vised by Fizeau and the other by Foucault. Fizeau’s
experiments were repeated in 1876 by M. Cornu, and
later a modification of Fizeau’s method has been used
by Dr Young and Professor Forbes in Scotland. The
velocity of light has also been determined by A. A. Michel-
son, of the United States navy, who followed Foucault’s
method.

190. In Fizeau’s experiments two astronomical tele-
scopes several miles apart are arranged so that their axes
are accurately parallel, the one telescope looking into
the other. In one of the telescopes a mirror is placed
at the focus of the object-glass, exactly perpendicular
to the axis of the instrument. The observer stands at

the other telescope; in this instrument a plate of glass,
inclined at an angle of 45° to the axis of the telescope,
18 placed between the eye-piece and the principal focus
of the object-glass. Light is admitted through the side
of the instrument and reflected down the tube by the
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plate-glass, the rays coming to a focus at the principal
focus of the object-glass, so that they may emerge from the
instrument in a direction parallel to 1ts axis. These rays
of light enter the object-glass of the distant telescope,
are reflected back in the same direction by its mirror,
and some of these rays after passing the object-glass will
pass through the inclined plate of glass and enter the
eye-piece and will be received by the eye in the usual
manner. A wheel with a large number of fine teeth is
rotated, so that the teeth pass in front of the focus of the
object-glass. We shall suppose that the breadth of the
teeth i1s equal to the interval between two consecutive
teeth. When the wheel rotates comparatively slowly,
but quickly enough for the intermittent light to make
a continuous impression on the eye, the eye will see an
image of the light; for the time taken to travel to the
distant telescope and back again is so small that light
which passes through the space between two teeth at
starting will have time to return through the same space
before the wheel has turned appreciably. But if the
speed of rotation be increased, it may happen that light
which passed through the space between two teeth, may
on its return be stopped by the next tooth, which has
moved forwards in the interval. In this case no light
will reach the eye. If the velocity of rotation be con-
tinuously increased, the image will reappear, ab first
faintly, then more brightly, and will again begin to dis-
appear, and so on. Let 2/ be the whole length of the
path of the light as it passes from the toothed wheel
back to the same point. Then if v be the velocity of
light, the time taken for the complete journey to and
fro will be 2{/v. Let m be the number of teeth in the
wheel, and n the number of revolutions of the wheel per
second ; then the time taken by one tooth to pass before
the principal focus will be 1/2mn seconds. If therefore
the number of revolutions per second be such as to pro-

duce the first eclipse,
A

——— =

»  2mn’
or v =4dmnl;
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and if n be such as to cause the p™ eclipse, it may easily
be seen that

The distance [ and the number of revolutions per
second are observed, and then v» is determined by these
formulee.

The 1mperfection of this method is that in actual ex-
periments a total eclipse of the reflected rays is hardly
ever reached ; there 1s usually only a very great falling off in
their intensity, and the exact moment which must be taken
to represent the moment of eclipse cannot be determined
with very great precision.

191. Messrs Young and Forbes used a telescope ar-
ranged with a rotating wheel, similar to the instrument
described, with two distant reflecting telescopes nearly in
the same line, but at different distances. The method of
observation was to arrange the speed of the toothed wheel
so that the brightness of the two images seen should be
equal ; 1t was found that this could be effected with
considerable precision.

The value obtained by these experiments is 301,382,000
metres per second. The value found by Cornu, using
Fizeau’s method, was 300,400,000 metres per second.

192.  We shall next give a short account of Foucault’s
experiments to determine the velocity of light.

_ A beam of sunlight was transmitted by means of a
mirror into a dark room through a small square hole in
the window-shutter, and after passing through a lens C
was allowed to fall on a small plane mirror mon which
was capable of rapid rotation about an axis through o per-
pendicular to the plane of the paper, At present we shall
confine ourselves to the consideration of the path of a
small pencil of the incident light which diverges from a
point P of the aperture. This pencil, after passing through
the lens, is made to converge to the point p; but before
the rays reach p they are intercepted by the plane mirror



224 VELOCITY OF LIGHT, [CHAP. X,

mon and are reflected to the point p’, where op =op'. At
P 1s placed a portion of a spherical mirror whose centre is
o and radius op, which reflects the pencil back again in
the same direction, and if the small plane mirror be at
rest the pencil will retrace its original course back to P.
Between P and the lens C is placed a sheet of plate glass,
inclined at an angle of 45° to the axis PC'; and part of
the returning pencil is reflected at this piece of glass and
1s brought to a focus at p”, where it is viewed through a
telescope. When the mirror mon 1s made to revolve slowly,
the light will be returned only when the mirror mon is in
a position to send light to the small mirror at p’, and
therefore the image p” will be intermittent; but if the

velocity of rotation be increased up to about 30 revolutions
per second, the impression produced in an observers eye
is continuous. So long as the mirror revolves with
moderate velocity, the time taken by the light to travel
from o to p' and back again is so short that the returning

encil reaches the mirror mon before it has appreciably
changed its position; but if the velocity of rotation be
greatly increased, until the mirror makes several hundred
rotations per second, the mirror will have turned through
a small angle during the time occupied by the reflected
light in passing from o to p’ and back again. The pencil
returning from p’ will be reflected by the mirror in 1ts
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new position, and after reflexion will appear to diverge
from a pomt ¢, where og = op, and after passing through
the lens will be made to converge to a point @ on the line
gC; the image by reflexion in the plate glass will there-
fore be at ¢” instead of p”, where p"¢” = PQ.

Across the aperture through which the light was ad-
mitted was stretched a fine wire, whose position is re-
presented by P, and the displacement of the 1mage of this

wire p°q” can be measured by the aid of the observing
telescope. Let the value of this displacement be 8.

193. Let n be the number of revolutions of the mirror
per second ; this can be determined by means of a siren.
Also let CP=a, Co =05, and let op' =». Then if » be the
velocity of light, the time occupied by the light in passing
from o to p’ and back again will be

2r
‘i" -

2

During this time the revolving mirror will have rotated
through an angle 27nt or 4arnr/v.

The points p, ¢, p’ lie on the circle whose centre is 0;
also the lines pp’, gp’ are respectively perpendicular to the
two positions of the mirror, and therefore the angle Ppqis
equal to the angle between the two positions of the mirror,
or to dmnr/v. It therefore follows that the are pg subtends
at the centre of the circle an angle 87nr/v; and therefore

Sarnr
Bl ==
Also, by similar triangles, PQ pg=a:(b+r),
Smnria
h = -
and therefore P 2B+1)"

_ This length P@, being equal to p”¢”, has been deter-
mined by observation to be 8, and therefore we get

b Smnria
S8 (b+r)
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an equation which expresses » in terms of quantities which
can be measured.

Foucault found the velocity of light by this method to
be 298,000,000 metres per second. The value obtained

by Michelson by a slight modification of the same method
was 299,940,000 metres per second.

The method employed by Foucault may be applied to
the determination of the velocity of light in other trans-
parent media, such as water. For this purpose a tube
filled with the water, with its ends closed by plate glass,
is placed between the revolving mirror and the small
spherical mirror, so that part of the double journey is
performed through water instead of air. Tt is found that
light travels slower in water than in air.



CHAPTER XI.

THE RAINBOW,

194. THE first satisfactory explanation of the rain-
bow was given by Antonius de Dominis, archbishop of
Spalatro, in a work De Radiis Visus et Lucis, published
in 1611. He shows that the inner bow is formed by two
refractions and one intermediate reflexion of the sun’s
light m drops of rain; and the outer bow by two re-
fractions and two intermediate reflexions. This explana-
tion was adopted by Descartes and was confirmed by
experiments made with glass globes filled with water,
and arranged so as to exhibit the colours of the two bows.
It remained for Newton to add to the theory an ex-
planation of the colours. The complete theory involves
considerations which belong to Physical Optics and was
developed by Sir G. Airy; we must confine ourselves to
the approximate theory.

195. When the parallel rays of the sun strike a drop
of water, part of the light will be scattered at the outer
surface of the drop and serve to render the drop visible,
and part will enter the drop by refraction; of those rays
which enter the drop part will be refracted out of the
drop at the incidence on the second surface of the drop,
and part will be reflected back into the drop, and so on,
for any number of incidences. Let us consider the rays
which are incident in a plane of symmetry and which
pass out of the drop by refraction after one internal re-
flexion; it is clear that they will not all emerge in the



228 THE RAINBOW., [CHAP. XI.

same direction, for the deviation will depend on the
angle of mecidence. Moreover, if the angle of incidence
increase uniformly the deviation will vary sometimes
rapidly, sometimes more slowly; and the more slowly
the deviation changes the less will be the divergence of
the emergent rays. If therefore the emergent rays be
received on a screen, the band will not be uniformly
bright, but will be brightest in those parts where the
divergence is least, that is, where the deviation changes
most slowly. Now the changes of the deviation are
slowest near a maximum or a minimum, and therefore
at the spot where the deviation is a minimum the band
will be much brighter than anywhere else. Within the
direction of minimum deviation there will be no light
transmitted.

If instead of a single drop, a shower of drops be illu-
minated by the rays of the sun, those drops whose po-
sitions are such that the rays emerge in the direction
of the eye with minimum deviation will appear more
brilliant than the others, and will be marked out against
the cloud as specially bright. This phenomenon 1s the
same in all planes which pass through the line joining
the sun and the observer’s eye, and therefore the assem-
blage of bright drops will form an arc of a circle whose
centre is on this line, and whose angular radius as seen
by the eye only depends on the refractive index of the
light. The refractive index is not the same for all the
rays of a solar beam, being greatest for the violet and
least for the red rays, and therefore the position of the
bright arc will not be the same for all the coloured
rays of the solar beam. There will therefore be a series
of coloured bands exhibiting the colours of the solar
spectrum. This is the principle of the explanation of the

raimmbow.

196. Let SP be a ray of light incident on the drop
of water at P, PQ the ray refracted into the drop; part
of the light will pass out by refraction at @ along the line
QQ’, while another part will be reflected at‘Q along the
line QR, where part will pass out by refraction and part
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be reflected, and so on. Let ¢ be the angle of incidence
at P, ¢’ the angle of refraction, so that sin ¢ = u sin ¢'.

T-

The deviation at P is therefore ¢ — ¢’. When the ray 1is
incident at @, the angle of incidence is ¢'; and therefore
for the part which passes out at @ a second deviation
equal to ¢ —¢’ in the same direction as before is pro-
duced. But for the part reflected at @, the deviation
18 7 — 24, and where the ray meets the surface again at
R the angle of incidence is again ¢’. If therefore the
ray undergoes 7 internal reflexions and then passes out
by refraction, the whole deviation will be '

D=2 (¢ —¢')+n (7w —2¢).

The most efficacious rays, as we have seen, are those
which make the deviation a maximum or minimum. To
find the angle of incidence for these rays, we may use
the method of Prof. P. G. Tait already mentioned in
§ 20. The value of the deviation may be written

D=wr—2{n+1)¢ — ),

and therefore if

w=(n+1)¢' — ¢,
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we require to find the value of ¢ which will make u a
maximum,

. Referring to the construction of § 20, we find that an
Increase in ¢ may be represented by an arc § (Qq + Pp)
and the corresponding increase of ¢’ by an arc § (Qg — Pp);
and therefore the increment of u would be represented by

an arc
§ {nQq — (n + 2) Pp}.

- Now when ¢ increases from zero this is at first posi-
tive. Forinitially Qg : Pp=0B: 04 =(u+1) : (u—1),
and therefore the increment of « will be positive if

n(w+1) be >(n+2)(u—1).
This reduces to the condition
(m+1)> p.

The value of n 1s unity at least, and the value of u
is 4, and therefore this condition is satisfied.

The increment of « will remain positive until a point
is reached at which

Qg — (n+2) Pp=0,

and after that will become negative. Thus the maxi-
mum value of » will be determined by the condition

n0Q = (n + 2) OP.
This may be written
(n+1)(0Q - 0P)= 0@ + OP.
Thus if M be the middle point of P,
(n+1) PM = OM.
Now PM=CPcos¢, OM=0Ccos ¢,

and therefore !
weos @ =(n+1)cos .

Besides this we have the equation of refraction,

psin ¢’ =sin ¢ ;
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squaring and adding both members of this equation, we
get ' i
p?=(n + 1)*cos® ¢ + sin® ¢,

w1
or cos ¢ = P

Since ¢ lies between 0 and §u, there is no ambiguity
in this value of ¢.

The value of u for water is about 4, and in order
that the value of ¢ may be real, the numerator must be
less than the denominator in the expression for cos ¢ :
and therefore (n 4 1)* must be >p2 or (n+1) must be
greater than 4. There is no superior limit to the value
of n, and, theoretically, bows may be formed after an
number of internal reflexions. The deviation will of
course be n different directions according as the incident

ray falls on the upper or lower half of the drop.

197.  We must next consider the order of the coloured
rays by examining the changes in the direction of the
most efficacious rays for different refractive indices,

This problem may be treated in the same way as before.
If the refractive index be slightly increased, the point O
recedes from the circle, since OC=uCA. If we consider
two consecutive chords O/PQ, O’pq, instead of OPQ, Opg,
the effect of the change from O to (0 is to increase the
arc Pp relatively to Qg ; for if Qg be supposed to be un-
changed, Pp will be increased. Thus the increment of w
instead of being zero as before, will be negative, and the
maximum value of % will be smaller than before. Hence
the effect of an increase in p 18 to increase the minimum
deviation also; that 18, the minimam deviation is greatest
for the violet rays and least for red rays.

198, It has been shown that in order to produce a
rainbow, at least one reflexion inside the drop is neces-
sary. At each subsequent reflexion part of the light will
be lost, and the corresponding rainbows will be fainter.
The rainbow produced by one internal reflexion is called
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the primary rainbow. The angle of incidence corre-
sponding to the most efficacious rays is given by the
formula,

w1

Cos ¢ =

and the deviation by the equation
D=2(¢—¢)+m— 29"

The refractive indices of water for red and violet rays,
respectively, are 108 and 122, TIf these values be substituted
for p in the preceding formula, we find by the aid of trigo-
nometrical tables the values of the deviations correspond-
1ng to these rays to be,

Dy =137° 58" 20”,
D= 139° 43" 20",

Let O be the eye of the spectator, and SOS" a line
drawn in the direction of the sun’s rays; then, if we make
the angle S'OR equal to the supplement of Dy, that is,
equal to 42° 1’ 40”, RO will be the direction in which the
most efficacious red rays will enter the eye. Similarly, if
an angle S’OV be constructed equal to the supplement of
Dy, that is, equal to 40° 16" 40", VO will be the direction
in which the most efficacious violet rays will enter the eye,
and the intermediate coloured rays will enter in directions
intermediate between RO and V0.

And, further, if the lines OR, OV revolve round the

line OS’ as an axis, it is clear that all the drops on tl_ne
conical surface generated by the revolution of RO will

R
v

’

s 0 S

transmit red rays copiously to the eye, and similarly for
the other colours. Thus to the eye there will appear a
series of coloured arches with the violet rays mnermost



198—199.] THE SECONDARY RAINBOW. 233

The effect of the rays which strike the eye with greater
deviation, will be to light up the cloud within the bow
with faint light, while no light will reach the eye from
drops lying outside the bow.

The separation of the colours is not perfect, but they
overlap each other, so that some of the colours can scarcely
be recognised. The reason of this, just as in Newton’s
experiment with the prism, is that the sun has an angular
diameter of 33’, and as each point of the sun sends out
rays we get a series of rainbows due to the different ele-
ments of the sun’s surface all superimposed and confused
together.

There is yet another set of rays which pass through
the drop with minimum deviation, those which strike the
drop on its lower side at the same angle of incidence as
before. These are directed after refraction away from the
earth, and are not seen by an observer on the earth;
though they give bows which have sometimes been ob-
served during balloon ascents, or on the summits of high
mountains which lie above the clouds. When the sun 1s
sufficiently near the horizon a complete circle may some-
times be seen In this manner.

199. When the rays undergo two internal reflexions
they form a rainbow called the secondary rambow. If we
make n= 2, and substitute the same values of u as before,
we find

Dy =230° 58' 50",
D,=234° 920/,

These deviations being greater than 1807 1t 1s easy to
see that the rays which reach the eye of an observer

stationed on the earth are incident on the lower half of
the drop.

~ Let SOS’ be a line drawn through the observer’s eye,
in the direction of the sun’s rays, and let angles S'OR,
S’OV be constructed, respectively equal to D —180°
Dy — 180°, that is, to 50° 58’ 50", and 54° 9" 20”. Then
RO, VO will be the directions of the most efficacious red

H. 0. 16
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and violet rays, respectively, and the phenomenon of
the secondary rainbow may be deduced by revolving the

r

S o] S

lines OR, OV about the line OS’ as before. The order of
the colours is inverted in this bow, the violet being outside
and the red inside. The rays which reach the eye with
ireater deviation serve to light up the cloud outside the

ow. The secondary bow will be less bright than the
primary bow, for two reasons; first, the light has under-
gone two internal reflexions and has thereby been weakened,
and secondly, there is a greater angular dispersion of the
rays in this rainbow than in the primary bow.

200. These two rainbows are the only ones which are
usually perceived, although the higher bows exist in theory.
The third and fourth bows could never be seen except
under special circumstances. For if we make n =3, we
find for red rays D = 318°24’=360° —41° 36". The direc-
tion of the rays will therefore pass behind the cloud, and
to an observer stationed there 1t would be lost in the much
brighter direct light from the sun.

If n=4, D=360"+44°13". The case of four internal
reflexions therefore - differs little from the last; the
efficacious rays will be incident on the upper half of
the drop and will fall behind the cloud as before.

For the fifth are, D = 363° + 126°, and the bow will
have an angular radius of 54° and may be seen outside
the secondary bow, especially in waterfalls where the drops
are near the eye. The higher bows have never been
seen except in laboratories under careful experimental

conditions.















