

Kompendium der topischen Gehirn-und Ruckenmarksdiagnostik.

Contributors

Bing, Robert.
University College, London. Library Services

Publication/Creation

Berlin and Vienna, 1911.

Persistent URL

<https://wellcomecollection.org/works/qjra9et7>

Provider

University College London

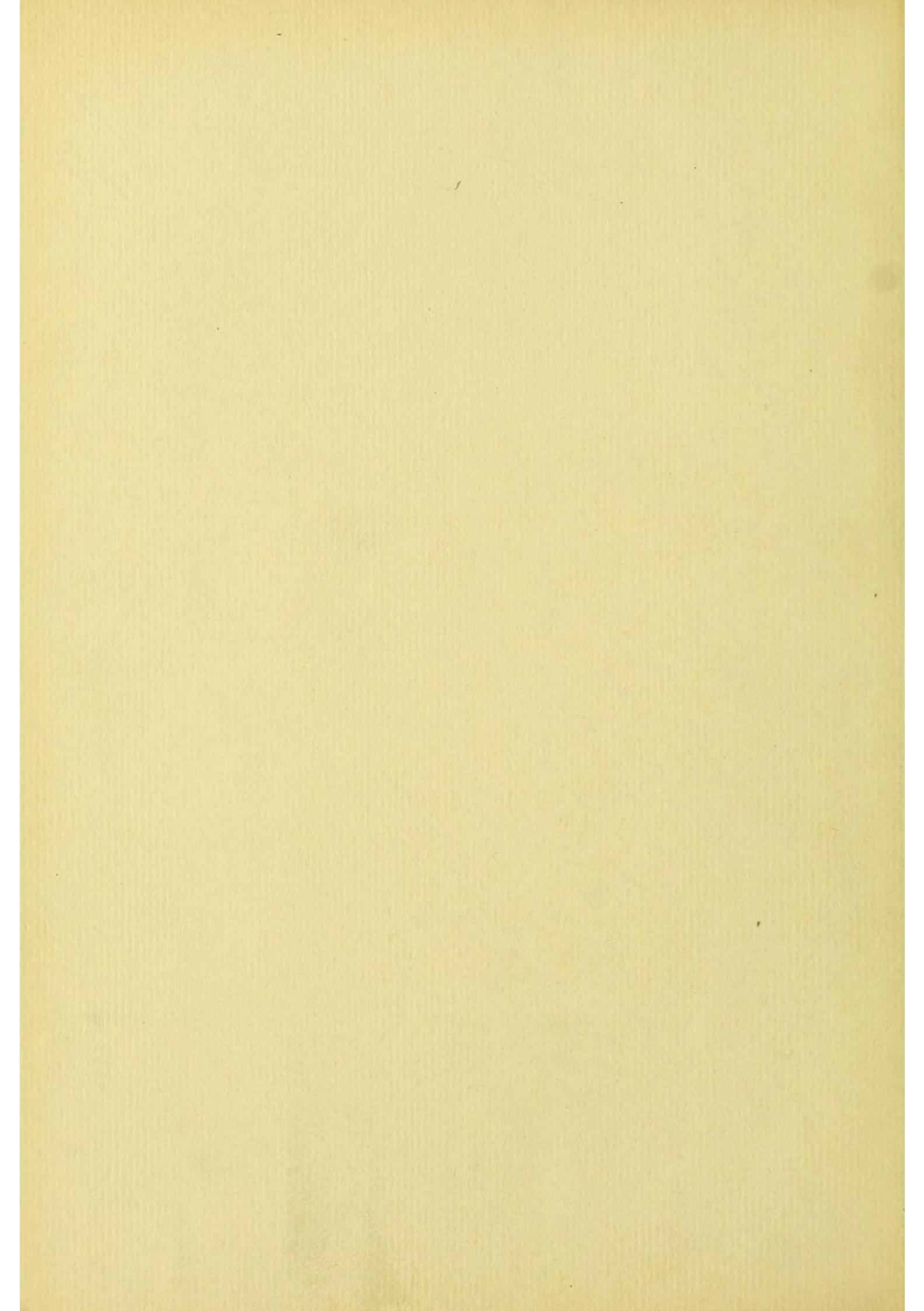
License and attribution

This material has been provided by This material has been provided by UCL Library Services. The original may be consulted at UCL (University College London) where the originals may be consulted.

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection
183 Euston Road
London NW1 2BE UK
T +44 (0)20 7611 8722
E library@wellcomecollection.org
<https://wellcomecollection.org>

Robert Bing


Kompendium der topischen
Gehirn- u. Rückenmarksdiagnostik

INSTITUTE OF NEUROLOGY
The
ROCKEFELLER
MEDICAL LIBRARY

57 JAN 1965

Not to be taken away

Presented by Dr. T. Pudon Martin.

KOMPENDIUM DER TOPISCHEN GEHIRN- UND RÜCKENMARKSDIAGNOSTIK.

KURZGEFASSTE ANLEITUNG ZUR KLINISCHEN LOKALISATION
DER ERKRANKUNGEN UND VERLETZUNGEN DER NERVENZENTREN.

von

ROBERT BING,

NERVENARZT,

PRIVATDOZENT FÜR NEUROLOGIE AN DER UNIVERSITÄT BASEL.

ZWEITE, VERMEHRTE UND VERBESSERTE AUFLAGE.

MIT 78 ABBILDUNGEN.

URBAN & SCHWARZENBERG

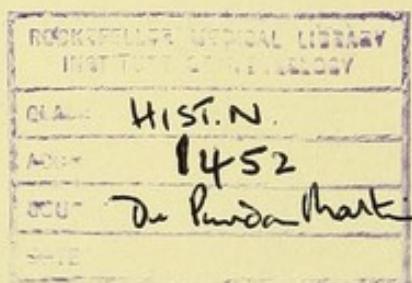
BERLIN

N., FRIEDRICHSTRASSE 105^b

WIEN

I., MAXIMILIANSTRASSE 4

1911.


ALLE RECHTE VORBEHALTEN.

Amerikanische Ausgabe für die Vereinigten Staaten bei Rebman Cy, New-York.

Englische Ausgabe für England und die Kolonien bei Rebman Ltd., London.

Spanische Ausgabe bei Saturnino Calleja, Madrid.

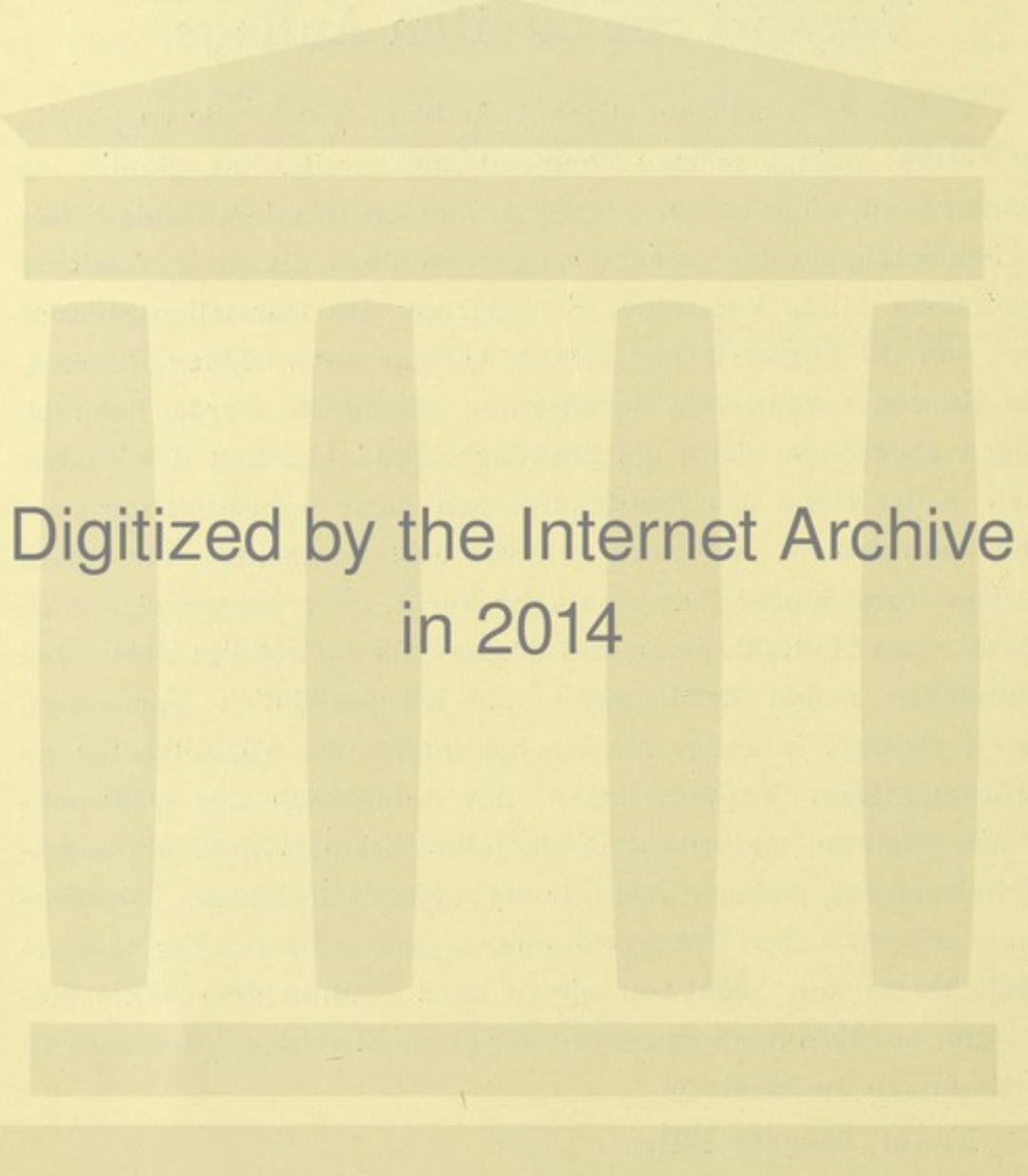
Vorwort zur ersten Auflage.

Im Verlaufe meiner im Wintersemester 1907/08 vor Ärzten gehaltenen topisch-diagnostischen Vorlesungen wurde ich wiederholt aus dem Kreise meiner Hörer um Angabe eines Buches ersucht, das in kompendiöser und dem Bedürfnisse des Nichtspezialisten angepaßter Form den von mir behandelten Stoff darstelle. Die Antwort mußte ich schuldig bleiben. Sehr gute lehrbuchartige Werke besitzen wir ja genug. Ein knappes, rein praktisches und didaktisches Vademecum fehlte aber bis jetzt meines Wissens und dürfte doch dem internen Mediziner wie dem Chirurgen, der vor der Aufgabe steht, einen pathologischen Prozeß innerhalb des Nervensystems zu lokalisieren, nicht unwillkommen sein. Von diesem Gesichtspunkte aus entstand dieser Leitfaden. Seine Hauptaufgabe ist, ein vielfach als sehr kompliziert verrufenes Gebiet möglichst einfach und übersichtlich darzustellen und im konkreten Falle auch dem Fernerstehenden ein rasch orientierender Berater zu sein. Für weitschweifige theoretische Ausführungen bietet er deshalb ebensowenig Raum, wie für die Diskussion kontroverser Tatsachen. Immerhin habe ich auf die wissenschaftliche Begründung der mitgeteilten klinischen Facta nirgends Verzicht geleistet. Im wesentlichen ist nur solches Material, das als fester Bestand unseres Wissens aufzufassen ist, dargestellt, andernfalls aber ausdrücklich auf die noch mangelhaft kontrollierte Natur des Vorgetragenen hingewiesen worden. Autorennamen sind nur dort angegeben, wo sie der neurologische Sprachgebrauch in eine

klinische oder anatomische Bezeichnung aufgenommen hat (z. B. Brown-Séquardscher Symptomenkomplex, Westphal-Edinger'scher Kern); zitiert habe ich nur in den wenigen Fällen, wo ich eine tabellarische oder graphische Zusammenstellung anderen Autoren direkt entlehnt. Die Abbildungen sind diejenigen, die sich mir bei Vorlesungen als Wandtaelfiguren bewährt haben; das mag ihren vielfach skizzenhaften Charakter entschuldigen, der andererseits die Anschaulichkeit und Prägnanz des Darzustellenden mehr fördert, als es weniger schematische Figuren tun würden.

Basel, Neujahr 1909.

Robert Bing.


Vorwort zur zweiten Auflage.

Für die überaus freundliche Aufnahme, welche die Fachkritik der ersten Auflage meines Kompendiums bereitet hat, glaubte ich meinen Dank nicht besser äußern zu können, als durch möglichste Berücksichtigung der Verbesserungsvorschläge, die mir zu Gesichte gekommen sind. Von einer Erweiterung des Darstellungsplanes über den im Vorworte zur ersten Auflage entworfenen Rahmen, wie sie von vereinzelten Rezessenten gewünscht wurde, habe ich jedoch abgesehen; denn die praktische Brauchbarkeit des Buches auch in der Hand des Nichtneurologen hätte unbedingt darunter leiden müssen. — Ist auch die seit dem Erscheinen der ersten Auflage verstrichene Zeit eine sehr kurze, so erwiesen sich doch relativ viele Modifikationen und Zusätze als notwendig; neben den zahlreichen neuen Erfahrungen, die ich persönlich gesammelt, waren mehrere wichtige Neuerscheinungen der Fachliteratur zu berücksichtigen. Veränderungen hat namentlich der Gehirnabschnitt erfahren (motorische Rindenlokalisation, Kleinhirnbrückenwinkeltumoren, Aphasie, Apraxie, Hypophysis, Epiphysis, Röntgendiagnostik etc.). Das Entgegenkommen meiner Herren Verleger ermöglichte es mir, nicht nur einige neue Figuren dem Texte beizufügen, sondern auch einen Teil der alten Klischees durch bessere Zeichnungen zu ersetzen.

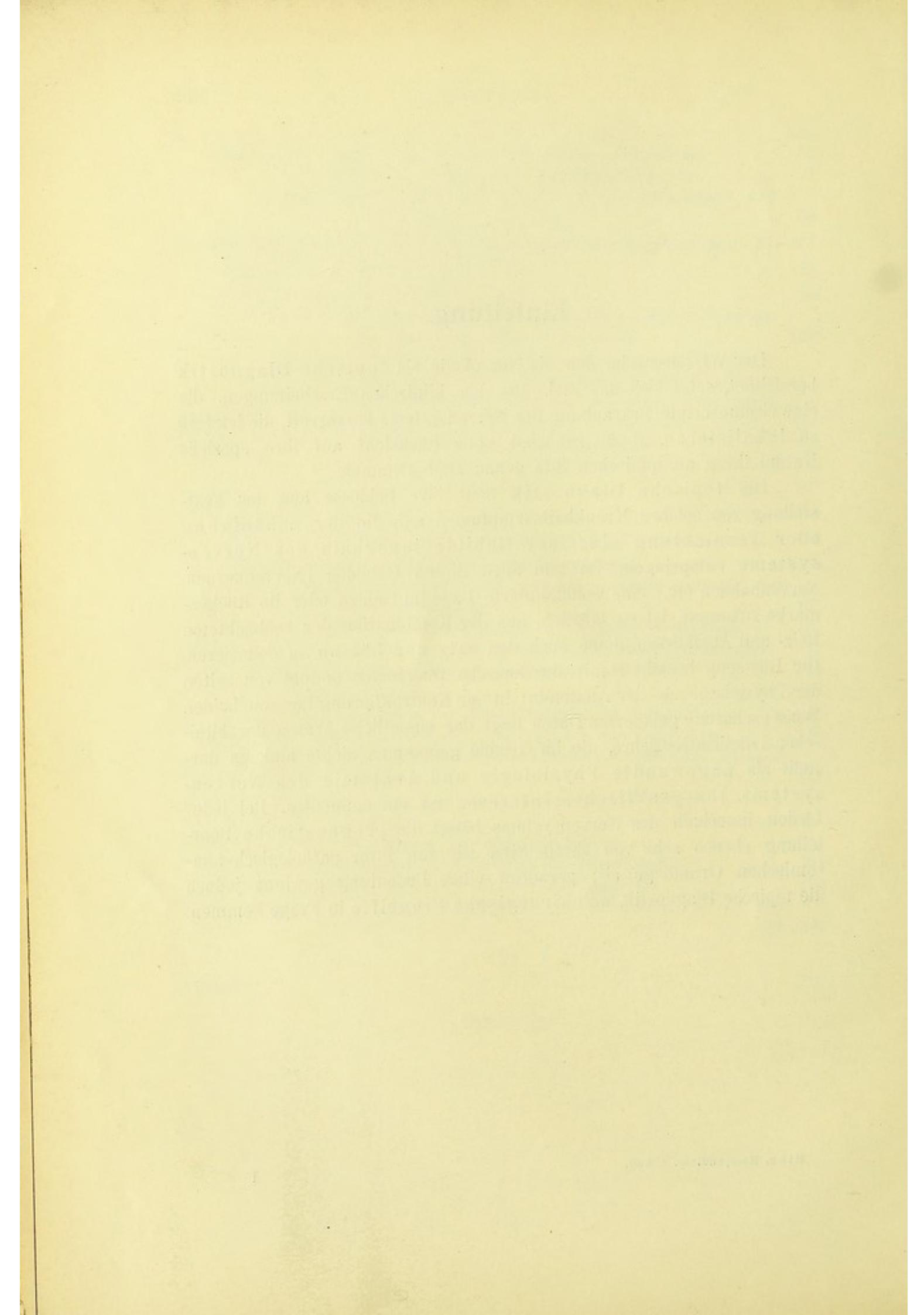
Basel, Neujahr 1911.

Robert Bing.

Digitized by the Internet Archive
in 2014

<https://archive.org/details/b21270624>

Inhaltsverzeichnis.


	Seite
Vorwort	III
Einleitung	2
Erster Hauptabschnitt: Topische Diagnostik der Rückenmarksläsionen	3—80
<i>A. Querschnittsdiagnostik</i>	3
<i>Kapitel I.</i> 1. Die Rückenmarksbahnen	4
2. Die Zellen und Zellgruppen des Rückenmarkes	14
" II. 1. Die Apparate der spinalen Sensibilität	15
2. Die Apparate der spinalen Motilität	18
3. Die Apparate der spinalen Trophicität	21
4. Die Apparate der spinalen Vasomotilität	22
Anhang (Schweißsekretion)	25
" III. 1. Lokalisorische Bedeutung der Motilitätsstörungen	25, 26
a) Charakteristika der Lähmung durch Seitenstrangaffektion .	26
b) Charakteristika der Lähmung durch Vorderhornaffektion .	28
c) Lähmungsscheinungen durch Kombination von Seitenstrang- und Vorderhornläsion	30
2. Lokalisorische Bedeutung der Sensibilitätsstörungen	31
3. Lokalisorische Bedeutung kombinierter Motilitäts- und Sensibilitätsstörungen	34
a) Die gleichzeitige Affektion von Hinter- und Seitensträngen .	34
b) Die Querschnittstrennung (transversale Erkrankung oder Verletzung des Rückenmarkes)	35
c) Die Halbseitenläsion	38
Anhang (Differentialdiagnose zwischen intra- und extramedullären Spinaltumoren)	42
<i>B. Höhendiagnostik</i>	43
<i>Kapitel I.</i> Anatomische und physiologische Grundlagen der Höhendiagnostik	43
" II. 1. Segmentdiagnose der motorischen Lähmungen (nebst Differentialdiagnose zwischen radikulärer und peripherer Lähmung) .	47
2. Segmentdiagnose der Sensibilitätsstörungen (nebst Differentialdiagnose zwischen radikulärer und peripherer Sensibilitätsstörung)	62
3. Segmentdiagnose der Reflexstörungen	62

	Seite
Kapitel III. 1. Kriteria der hochsitzenden Rückenmarksläsionen	66
2. Kriteria der tiefesitzenden Rückenmarksläsionen	71
Anhang (Topographische Beziehungen zwischen Rückenmark und Wirbelsäule)	80
Zweiter Hauptabschnitt: Topische Diagnostik der Hirnläsionen 81—201	
<i>A. Läsionen im Bereich des Hirnstammes</i>	81
Kapitel I. Der Aufbau des Hirnstammes	84
" II. 1. Allgemeine Regeln für die Lokalisation der Verletzungen und Erkrankungen des Hirnstammes	96
2. Lokalisorisch Wichtiges aus der Semiologie der Hirnstammnerven (mit spezieller Berücksichtigung der Differentialdiagnose zwischen peripheren und zentralen Störungen) 110	
a) Die caudale Nervengruppe	110
b) Die Nerven des Kleinhirnbrückenwinkels	119
c) Der Trigeminus	129
d) Die Augenmuskelnerven	137
<i>B. Läsionen des Kleinhirns</i>	145
<i>C. Läsionen des Großhirns, der Stammganglien, der Hypophyse</i>	158
Kapitel I. Anatomisch-physiologische Vorbemerkungen	158
" II. Topisch-diagnostische Bedeutung der cerebralen Motilitäts- und Sensibilitätsstörungen	167
a) Die corticalen Motilitäts- und Sensibilitätsstörungen	167
b) Die subcorticalen Motilitäts- und Sensibilitätsstörungen	173
" III. Topisch-diagnostische Bedeutung der Sehstörungen	179
1. Die Sehbahn	179
2. Lokalisation der Unterbrechungen der Sehbahn	181
" IV. Topisch-diagnostische Bedeutung der Sprachstörungen	185
" V. 1. Topisch-diagnostische Bedeutung einiger seltenerer cerebraler Symptome	191
a) Cerebrale Störungen des Gehörs und Geruchs	191
b) Apraxie	192
c) Intelligenz- und Charakterstörungen	194
2. Symptome durch Läsionen der Stammganglien	195
3. Symptome durch Läsionen der Hypophysis	196
Anhang (Cranio-cerebrale Topographie; Röntgenlokalisation der Hirntumoren)	198, 200
Register	202

Einleitung.

Der Wissenszweig, den die Neurologie als topische Diagnostik bezeichnet, setzt sich das Ziel, aus den klinischen Erscheinungen, die eine circumscripte Erkrankung des Nervensystems hervorruft, die letztere zu lokalisieren, d. h. (zunächst ohne Rücksicht auf ihre spezielle Natur) ihren anatomischen Sitz genau zu bestimmen.

Die topische Diagnostik baut ihre Schlüsse aus der Feststellung von solchen Krankheitssymptomen auf, die der Schädigung oder Vernichtung einzelner Gebilde innerhalb des Nervensystems entspringen. Da nun allen diesen Gebilden (Nervenkernen, Nervenbahnen etc.) eine wohldefinierte Lage im Gehirn oder im Rückenmark zukommt, ist es möglich, aus der Kombination der beobachteten Reiz- und Ausfallssymptome auch den Sitz der Läsion zu deduzieren. Ihr Rüstzeug bezieht somit die topische Diagnostik sowohl von seiten der Physiologie als der Anatomie; in der Konfrontierung der von beiden Wissenschaften gelieferten Daten liegt das eigentliche Wesen der klinischen Lokalisationslehre, die im Grunde genommen nichts anderes darstellt als angewandte Physiologie und Anatomie des Nervensystems. Ihr praktisches Interesse ist ein eminentes. Bei jeder Läsion innerhalb des Nervensystems hängt die prognostische Beurteilung ebenso sehr von ihrem Sitz wie von ihrer pathologisch-anatomischen Grundlage ab; geradezu vitale Bedeutung gewinnt jedoch die topische Diagnostik, wo chirurgische Eingriffe in Frage kommen.

Erster Hauptabschnitt.

Topische Diagnostik der Rückenmarksläsionen.

Die Lokalisation irgend eines Krankheitsherdes, irgend einer Verletzung im Rückenmark wird (entsprechend der strang- oder walzenförmigen Gestalt des Organs) zwei Hauptpunkte zu berücksichtigen haben. Denn erstens verlangen wir darüber Aufschluß, ob die Läsion zentral, ob sie peripher sitzt, ob vorn, ob hinten, rechts oder links, und in wie großem Bereiche sie die spinalen Leitungsbahnen unterbrochen, die medullären Zentren zugrunde gerichtet hat. Zweitens aber wollen wir wissen, an welchem Punkte seiner Längenausdehnung das Rückenmark vom pathologischen Prozesse oder vom Trauma getroffen worden ist. Demgemäß können wir eine „Querschnittsdiagnostik“ und eine „Höhendiagnostik“ der Rückenmarksaffektionen unterscheiden, mit deren Grundsätzen wir uns nun zu beschäftigen haben.

A. Querschnittsdiagnostik.

Wenn wir hier eine Übersicht der anatomischen Verhältnisse voranschicken müssen, so wird sich diese, da wir ja von rein klinisch-utilitaristischen Gesichtspunkten ausgehen, höchst einfach gestalten. Die Morphologie des Rückenmarkes und namentlich die morphologische Nomenklatur seiner Teile muß natürlich als bekannt vorausgesetzt werden.

Der groben Einteilung in weiße und graue Substanz entspricht bekanntlich die feinere in Faserbahnen und Ganglienzellkomplexe. Wir werden uns darum zunächst Lage und Verlauf der ersteren, Gruppierung und Verteilung der letzteren vergegenwärtigen (Kap. I). Schließen wir dann die Schilderung dessen an, was uns von der normalen Funktion dieser Elemente bekannt ist (Kap. II), so werden sich die topisch-diagnostischen Schlüsse aus deren gestörter und aufgehobener Funktion in zwangloser und leichtverständlicher Weise ableiten lassen (Kap. III).

KAPITEL I.

1. Die Rückenmarksbahnen.

Die deskriptive Anatomie teilt bekanntlich die Rückenmarksbahnen ein in lange und kurze. Vom klinischen Gesichtspunkte müssen wir ein anderes Einteilungsprinzip wählen und folgende beiden Rubriken auseinanderhalten:

a) Bahnen, deren Ursprungszellen außerhalb des Rückenmarkes liegen.

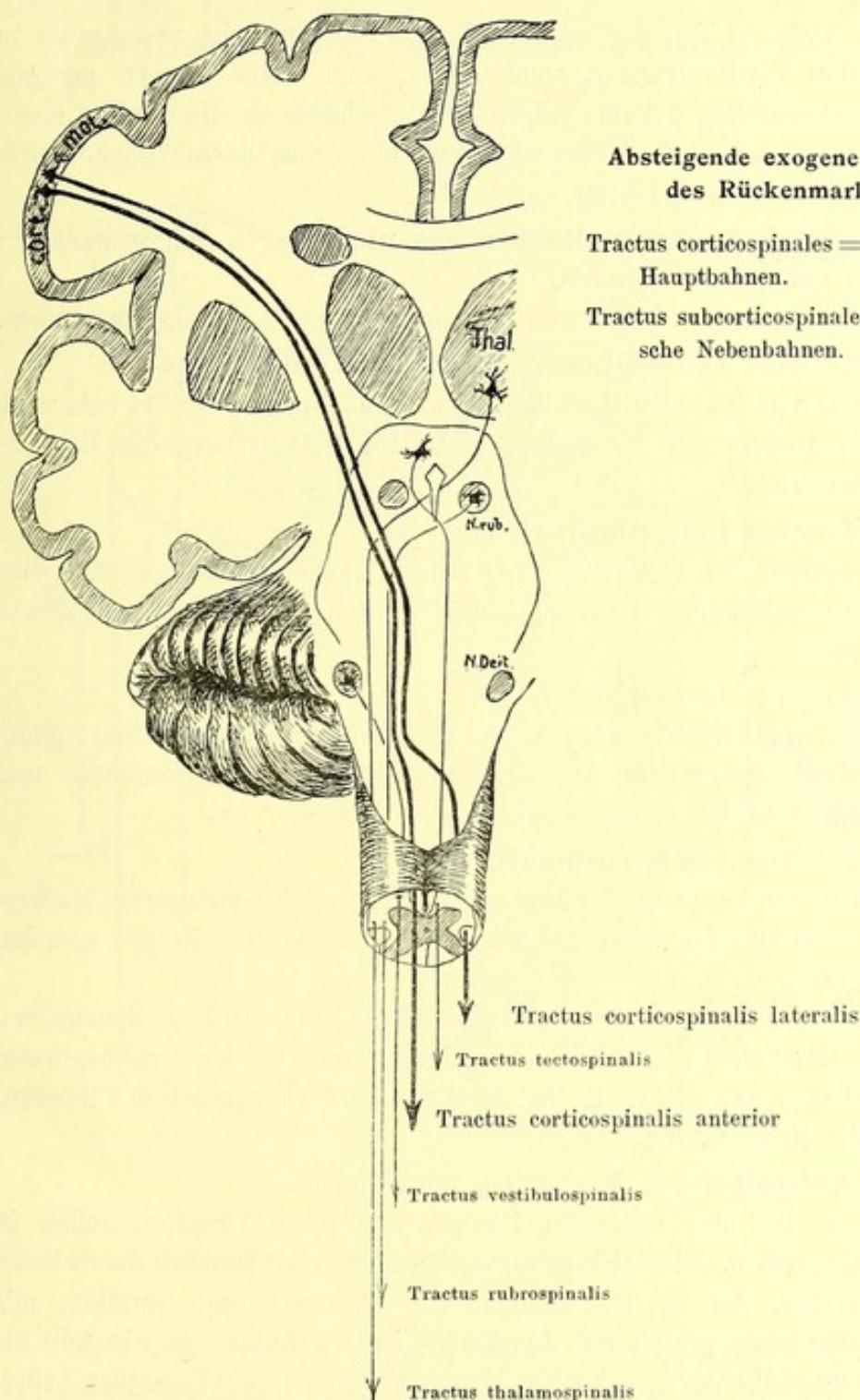
Diese Bahnen passieren also das Rückenmark bloß, ihren Ursprung nehmen sie anderswo, z. B. im Gehirn oder in den Spinalganglien. Sie werden somit nicht nur bei primären Erkrankungen der Medulla spinalis, sondern auch bei cerebralen oder ganglionären Läsionen zugrunde gehen können — entsprechend dem *Wallerischen Gesetze*: „Eine Nervenfaser kann ihre anatomische und physiologische Integrität nur dann bewahren, wenn sie mit ihrer lebensfähigen Ursprungszelle in unversehrter Verbindung steht.“ Diese Bahnen nennen wir *exogen*.

b) Bahnen, deren Ursprungszellen innerhalb des Rückenmarkes liegen.

Diese Bahnen in ihrer Gesamtausdehnung zum Untergange zu bringen, bedarf es einer Läsion, die im Rückenmark selbst, und zwar in dessen grauer Substanz (dem ausschließlichen Sitze der medullären Nervenzellen) ihren Sitz hat. Diese Bahnen heißen *endogen*.

A. Exogene Bahnen.

I. Absteigenden Verlaufes, zentrifugal (siehe Fig. 1).


1. Die absteigenden Bahnen aus der Großhirnrinde = Fasciculi corticospinales = Pyramidenbahnen.

Ihre Ursprungszellen (die Pyramidenzellen) liegen in der motorischen Zone des Cortex cerebri; die Bahn selbst konvergiert durch das Marklager des Parietalhirns zur inneren Kapsel, durchzieht deren hinteren Schenkel und verläuft weiter durch die ventralen Partien der Pedunculi und der Brücke zur Oblongata. Hier findet eine Trennung in zwei Faserkomplexe statt.

α) Die Pyramidenseitenstrangbahn = Fascic. corticospinalis lateralis.

Der größte Teil der corticospinalen Bahnen tritt in der „Pyramidenkreuzung“ auf die Gegenseite über und steigt in den Seiten-

Fig. 1.

**Absteigende exogene Bahnen
des Rückenmarkes.**

Tractus corticospinales = motorische
Hauptbahnen.

Tractus subcorticospinales = motori-
sche Nebenbahnen.

strängen des Rückenmarkes herunter, bis seine Neurone an Vorderhorn-
zellen ihre terminale Aufsplitterung finden.

β) Die Pyramidenvorderstrangbahn = Fascic. corticospinalis anterior.

Der kleinere Teil der corticospinalen Bahnen zieht ungekreuzt in den spinalen Vordersträngen caudalwärts, auch seine Fasern endigen um Vorderhornzellen herum, jedoch erst, nachdem sie die vordere Kommissur des Rückenmarkes überschritten, also eine nachträgliche, präterminale, Kreuzung erfahren.

2. Die absteigenden Bahnen aus niedrigeren Hirnzentren = Fasciculi subcorticospinales.

Unter letzterer Bezeichnung fasse ich folgende Faserzüge zusammen.

α) Tractus rubrospinalis = Monakowsches Bündel.

Entspringt im roten Kern der Hirnschenkelhaube, erfährt bald nach seinem Ursprunge eine Kreuzung, zieht im Seitenstrang des Rückenmarkes herunter.

β) Tractus thalamospinalis.

Entspringt im Thalamus, tritt in die Haube ein, schließt sich dort dem Tractus rubrospinalis an. Kreuzung und weiterer Verlauf mit diesem gemeinsam.

γ) Tractus tectospinalis.

Aus dem Mittelhirndach (Tectum opticum); kreuzt unter dem Aqueductus Sylvii; steigt nahe der Mittellinie durch die Brückenhaube und die Oblongata in die Rückenmarksstränge herab.

δ) Tractus vestibulospinalis.

Hat seinen Ursprung im Deitersschen Kern des verlängerten Markes, der zum Vestibularissystem gehört. zieht ungekreuzt in die spinalen Vorderstränge.

Es ist, obwohl anatomisch noch nicht im einzelnen konstatiert, doch mit ziemlicher Sicherheit anzunehmen, daß die subcorticospinalen Bahnen ebenso wie die corticospinalen um Vorderhornzellen des Rückenmarkes ihr Ende finden.

II. Aufsteigenden Verlaufes, zentripetal.

Dieser Teil der exogenen Bahnen hat seine Ursprungszellen in den Spinalganglien. Diese Ursprungszellen stehen bekanntlich durch ihren einen Fortsatz, der in den Bahnen der Nervenstämme verläuft, mit den verschiedenen peripheren Apparaten in Beziehung, die wir teils als freie Nervenendigungen, teils als Terminalkörperchen (Tastzellen, Endkolben, *Vater-Pacinische* Körperchen etc.) im Integument, den Schleimhäuten, dem Mesenterium, den Gelenkflächen etc. finden. Der andere, zentrale Fortsatz der Spinalganglienzellen tritt aber durch die hinteren

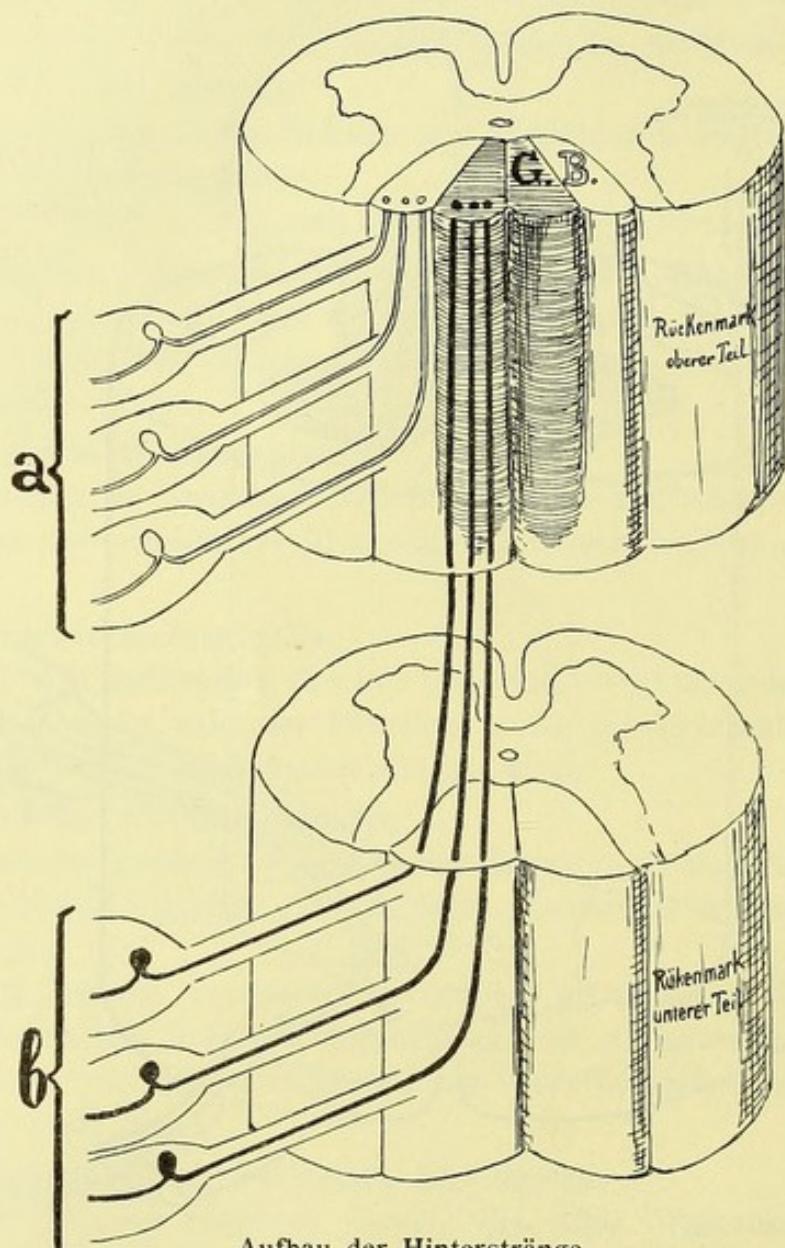
Wurzeln in das Rückenmark ein. Deshalb bezeichnen wir diese ganze Kategorie von Bahnen als

Das Hinterwurzelsystem = Fibrae radiculares posteriores.

Fig. 2.

Die verschiedenen Kategorien der Hinterwurzelfasern und ihre Fortsetzungen im Rückenmark.

Nach dem weiteren Verlaufe der betreffenden Neurone machen wir aber ferner folgende Unterabteilungen (siehe Fig. 2):


z) Kurze Hinterwurzelfasern (K).

Sie dringen direkt durch die Randzone des Hinterhorns in die graue Substanz ein und finden ihre terminale Aufsplitterung entweder

1. an Vorderhornzellen oder
2. an Hinterhornzellen

auf derselben Seite des Rückenmarks.

Fig. 3.

Aufbau der Hinterstränge.

G = Goll'scher Strang (Funiculus gracilis);

B = Burdach'scher Strang (Funiculus cuneatus);

a = lange Hinterwurzelfasern aus der oberen Körperhälfte;

b = lange Hinterwurzelfasern aus der unteren Körperhälfte.

3) Mittlere Hinterwurzelfasern (M).

Sie treten durch die „Wurzeleintrittszone“ zunächst in die Hinterstränge ein, von da in die Basis des gleichseitigen Hinterhorns und endigen in dessen *Clarkescher Säule*.

γ) Lange Hinterwurzelfasern (L).

Sie treten ebenfalls durch die Wurzeleintrittszone in die Hinterstränge ein, verlaufen aber in diesen gehirnwärts und endigen in bestimmten Kernen der Oblongata, den Hinterstrangskernen.

Folgende zwei anatomische Eigentümlichkeiten dieser Hinterstrangfasern haben auch pathologische Wichtigkeit.

1. Während die durch eine bestimmte Hinterwurzel eingetretenen langen Fasern in den Hintersträngen nach oben verlaufen, werden sie von den durch die Wurzeleintrittszone höherer Segmente eindringenden Fasern derselben Gattung immer mehr medianwärts gedrängt. Infolgedessen liegen z. B. auf einem Querschnitte des Halsmarkes die Fasern sakraler Provenienz am nächsten beim Septum, weiter nach außen reihen sich die lumbalen, dann die thorakalen an und endlich, den Hinterhörnern angeschlossen, die cervicalen Neurone.

Im Halsmarke ist aber auf diese Weise schon makroskopisch eine Trennung eingetreten zwischen den langen Hinterwurzelfasern aus der unteren Körperhälfte (d. h. vom vierten Thorakalsegmente abwärts), die im *Gollschen Strange* vereinigt sind, und denjenigen aus der oberen Körperhälfte (d. h. vom vierten Thorakalsegment aufwärts), die den *Burdachschen Strang* konstituieren. Fig. 3 veranschaulicht diese Verhältnisse.

2. Jede der langen Hinterwurzelfasern sendet, bevor sie in den Hintersträngen sich gehirnwärts wendet, eine Abzweigung, Kollaterale, in caudaler Richtung ein Stück weit herab, gleichfalls in den Hintersträngen (in Fig. 2 u. 3 ist, der Vereinfachung zuliebe, die Kollaterale weggelassen). Diese absteigenden Elemente des Hinterwurzelsystems liegen nun zu einem geschlossenen Bündel, dem sogenannten „*Schultzeschen Komma*“ (siehe unten, pag. 12), zusammen. Letzteres enthält also zum Beispiel in den obersten Lendensegmenten keine lumbalen Fasern, sondern solche, die in einem höheren Rückenmarksniveau eingetreten sind, d. h. im gewählten Falle thorakalen Segmenten angehören.

B. Endogene Bahnen.**I. Zentripetale Neurone zweiter Ordnung** (siehe Fig. 2).

Darunter verstehen wir solche Bahnen, welche, an diejenigen Elemente des Hinterwurzelsystems sich anschließend, die bereits im Rückenmarke endigen, die Weiterleitung der von jenen übermittelten Reize nach höheren Zentren besorgen.

Es sind:

1. Die spinocerebellaren Bahnen.

α) Die Kleinhirnseitenstrangbahn = *Tractus spinocerebellaris dorsalis*.

Die Fasern entspringen in den Zellen der *Clarkeschen Säule*, ziehen an der hinteren Peripherie des gleichseitigen Seitenstranges zur Oblongata, treten durch das *Corpus restiforme* ins Kleinhirn ein und endigen im Wurm. — Es sind Anschlußneurone an die oben erwähnten mittellangen Fasern des Hinterwurzelsystems.

β) Die Gowerssche Bahn = *Tractus spinocerebellaris ventralis*.

Ihre Ursprungszellen liegen in den seitlichen Bezirken der Vorderhornbasis. Sie entsenden ihre Achsencylinder teils gleichseitig, teils (nach Überschreiten der vorderen Commissur) gegenseitig an der vorderen Peripherie des Seitenstranges kranialwärts. Nachdem diese die Oblongata und die Brücke durchmessen, dringen sie durch den vorderen Kleinhirnarm in den *Vermis cerebelli* ein. — Es sind Anschlußneurone an kurze Fasern des Hinterwurzelsystems; sie sind in Fig. 2 nicht eingezeichnet worden.

2. Der *Tractus spino-thalamicus*.

Auch er entspringt aus Zellen, um welche kurze Hinterwurzelfasern ihr Ende gefunden haben — doch liegen diese Zellen im Hinterhorn und nicht, wie die Ursprungszellen der *Gowersschen Bahn*, weiter vorn. Auch er kreuzt ebenso wie ein Teil der letzteren die Mittellinie in der vorderen Commissur und steigt im Seitenstrange kranialwärts — doch geht er nicht ins Kleinhirn, sondern in den Thalamus opticus.

II. Sogenannte Intersegmentär- oder Assoziationsbahnen.

Auf- oder absteigenden Verlaufes, verbinden sie verschiedene Etagen, Segmenthöhen, der grauen Rückenmarkubstanz miteinander, gehören zu dessen Eigenapparat. Man nennt sie *Fibrae propriae*, könnte sie auch als *Fibrae spino-spinales* bezeichnen. Sie finden sich:

1. im **Vorderseitenstrang**, wo sie die sogenannten „Grundbündel“ konstituieren,

2. im **Hinterstrang**, erratisch über dessen ganzes Areal zerstreut, also den langen Hinterwurzelfasern beigemischt, besonders zahlreich aber an bestimmten Stellen, die deshalb als „*endogene Hinterstrangsfelder*“ bezeichnet werden. In unserem Schema (Fig. 4) ist an diesen Stellen die Lichtung der langen Hinterstrangfasern durch Punktierung angedeutet worden. Es sind: In der Nähe der Commissur das „*ventrale Hinterstrangsfeld*“ (*Zona cornu-commisuralis*), an der Rückenmarksperipherie und dem Septum das „*medio-peripherale Hinterstrangsfeld*“ (*Zona*

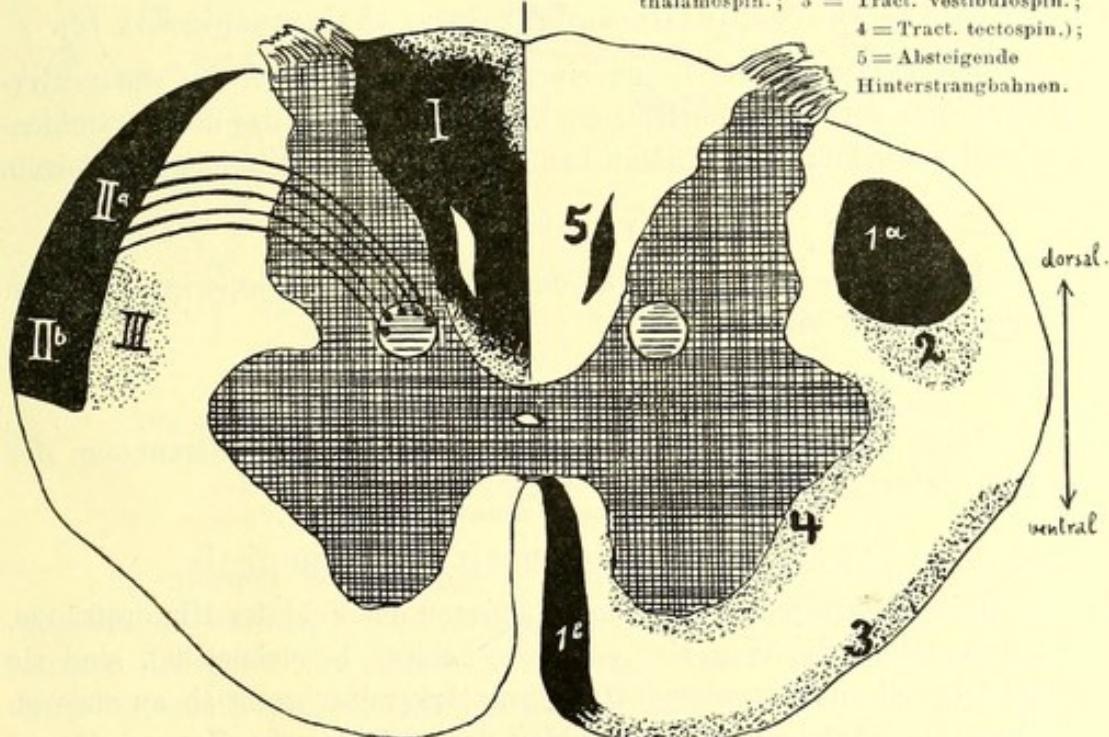
septo-marginalis). In ersterem liegen hauptsächlich aufsteigende, in letzterem hauptsächlich absteigende Intersegmentärfasern.

III. Wurzelfasern.

Aus Vorderhornzellen treten sie durch die Radices anteriores ins periphere Nervensystem über, um mit Muskeln oder Sympathicuselementen in Verbindung zu treten.

* * *

Bevor wir weitergehen, wollen wir die


Topographie der langen Rückenmarksbahnen,

wie sie sich auf dem Querschnittsbilde darbietet, im Zusammenhang besprechen. Es sei hierbei auf Fig. 4 verwiesen, in der sich links die auf-

Fig. 4.

Aufsteigende, zentripetale Bahnen.
 I = Lange Hinterwurzelfasern;
 II = Tractus spinocerebellaris (a = posterior, Kleinhirnseitenstrangbahn; b = anterior, Gowerssche Bahn);
 III = Tractus spino-thalamicus.

Absteigende, zentrifugale Bahnen.
 1 = Tractus corticospinalis, Pyramidenbahn, motorische Hauptbahn (a = Py-Seitenstrangbahn; b = Py-Vorderstrangbahn);
 2-5 = Weitere motorische Bahnen, subcorticospinale Bahnen (2 = Tract. rubrospin. und thalamospin.; 3 = Tract. vestibulospin.; 4 = Tract. tectospin.);
 5 = Absteigende Hinterstrangbahnen.

Topographie der langen Rückenmarksbahnen.

steigenden, rechts die absteigenden Fasern, die wir kennen gelernt haben, eingetragen finden.

Tractus corticospinalis lateralis (1 a).

Das Feld dieser Bahn, das „Pyramidenseitenstrangareal“, ist am größten im Halsmarke und nimmt caudalwärts beständig an Flächeninhalt ab. Dies kommt daher, daß „unterwegs“ in jedem Rückenmarkssegment ein Teil der Fasern ihr Ende findet, der Komplex sich also nach und nach erschöpft. Das Areal hat in dem oberen Teil die auf Fig. 4 eingetragene Form und Lage im hinteren Bezirke des Seitenstranges. Ungefähr vom dritten Lumbalsegmente an abwärts findet man es jedoch an der hinteren Seitenstrangsperipherie. Es nimmt also in diesen tiefen Niveaus das Gebiet ein, das weiter oben der Kleinhirnseitenstrangbahn zugehört. Letztere fehlt nämlich den caudalen Segmenten des Rückenmarkes.

Tractus corticospinalis anterior (1 b).

Das „Pyramidenvorderstrangareal“ liegt zu beiden Seiten der vorderen Medianfissur. Die Bahn erschöpft sich auf ihrem Wege nach unten so rasch, daß man sie auf Lumbal- und Sakralquerschnitten nicht mehr findet.

Tractus rubrospinalis und Tractus thalamospinalis (2).

Die beiden Trakte haben ein gemeinsames Areal, das die ventrolateralwärts gerichtete Fortsetzung desjenigen bildet, das der Pyramidenseitenstrangbahn zukommt. Man kann sie bis in das Lendenmark verfolgen.

Tractus vestibulospinalis (3).

Nimmt eine Zone ein, die an der Vorderseitenstrangperipherie einen schmalen Saum bildet.

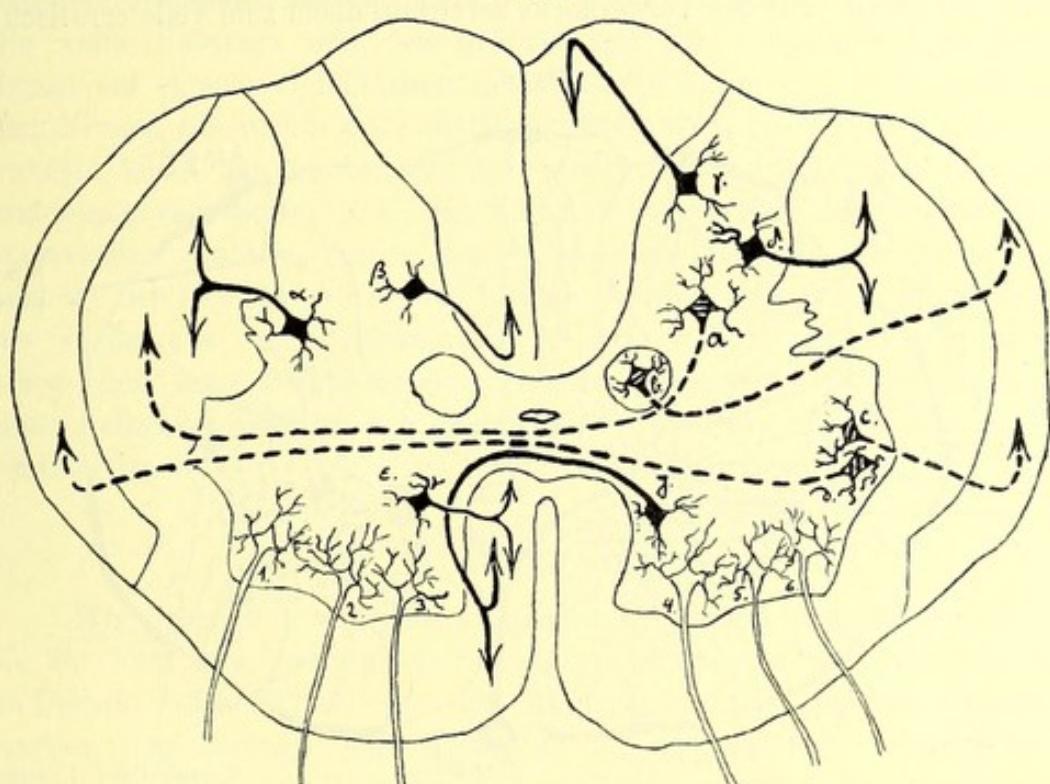
Tractus tectospinalis (4).

Seine Fasern sind im Vorderseitenstrang in der Grenzzone der grauen Substanz zu finden.

Tractus radiculares posteriores longi (I).

Bedecken in jedem Rückenmarksniveau das Feld der Hinterstränge. An den Stellen, die man als „endogene Felder“ bezeichnet hat, sind sie gelichtet, weil mit Intersegmentärfasern stärker durchsetzt als an anderen Partien. Die absteigenden Äste bilden das *Schultzesche Komma* (5).

Tractus spinocerebellares (II).


Ihr Areal umsäumt die hintere Hälfte des Seitenstranges. Die dorsale Hälfte des Areals gehört der Kleinhirnseitenstrangbahn, die ven-

trale der *Gowerschen* Bahn an. Tieferen Rückenmarksniveaus als das dritte Lumbalsegment weisen diese Bahnen noch nicht auf.

Tractus spinothalamicus (III).

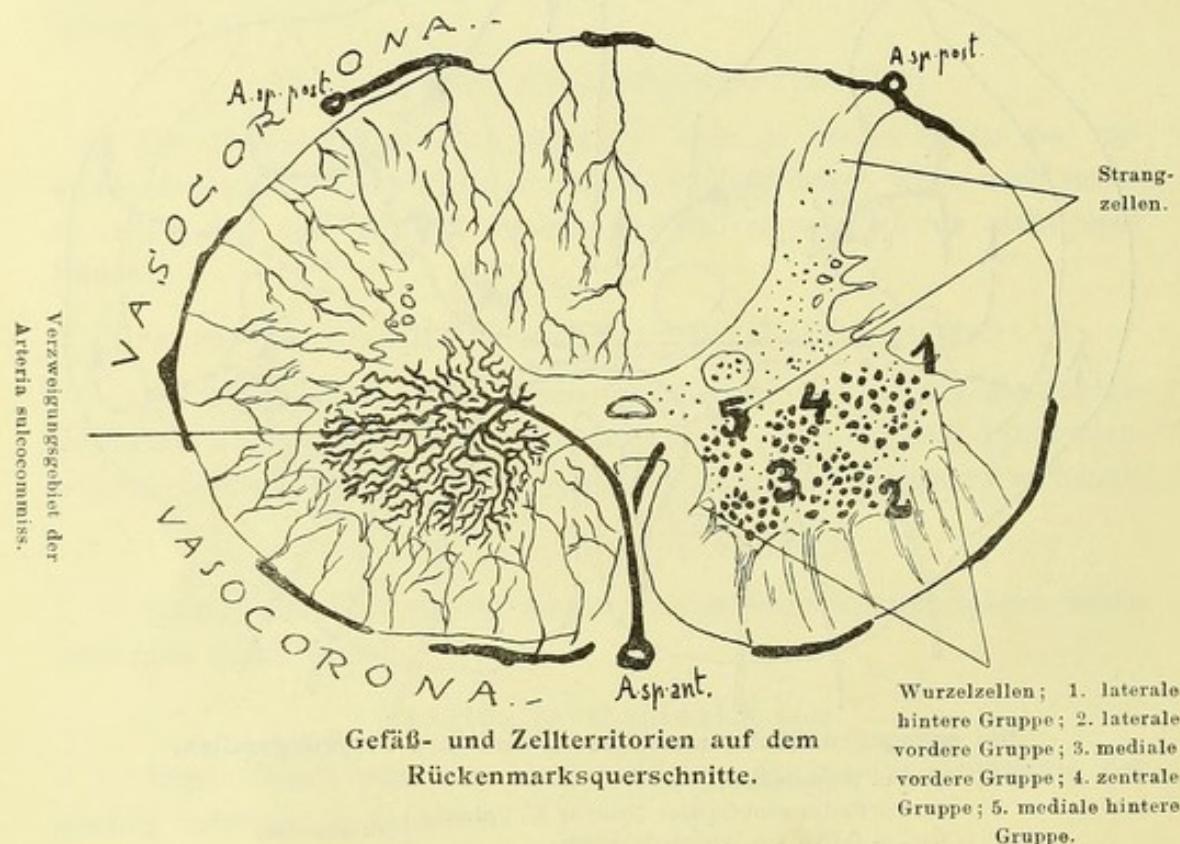
Diesem Faserzuge begegnen wir im Seitenstrange, gegenüber der Basis des Hinterhorns. Wo die *Gowersche* Bahn vorhanden, schließt er sich dicht medialwärts an sie an.

Fig. 5.

Die endogenen Rückenmarksfasern und ihre Ursprungszellen.

1—6 = Wurzelzellen.
 a—d = Zellen zentripetaler Neurone II. Ordnung | Strangzellen.
 a—ξ = Zellen von Assoziationsfasern

In unserem Schema Fig. 4 sind diejenigen Bahnen tiefschwarz eingetragen worden, die ein festgefügtes Faserbündel bilden. Mehr zerstreute Komplexe sind punktiert. Doch ist zu bemerken, daß auch innerhalb der relativ einheitlichen Faserareale noch andersartige, namentlich intersegmentäre Fasern mitlaufen, z. B. in dem Pyramidenareal die auf- und absteigenden „*Fibrae propriae endopyramidales*“. Auch greifen vielfach Areale ineinander über, so daß z. B. spinothalamische Fasern mit thalamospinalen untermischt sind. Kurz, im Rückenmark gibt es keine ganz homogen zusammengesetzten Faserstränge.


2. Die Zellen und Zellgruppen des Rückenmarkes.

Man unterscheidet Strangzellen und Wurzelzellen (siehe Fig. 5).

a) Strangzellen, Cellulae funiculares.

Aus ihnen nehmen die Bahnen ihren Ursprung, die wir auf pag. 9—10 unter den Rubriken „Zentripetale Neurone zweiter Ordnung“ und „Intersegmentärfasern“ durchgenommen haben. Sie liegen über das Hinterhorn und große Teile des Vorderhorns zerstreut, dabei zum Teile erratisch

Fig. 6.

(d. h. ohne besondere Gruppierung), zum Teile auch zu Komplexen vereinigt, deren wichtigster die *Clarkesche Säule* an der Basis des Hinterhorns ist.

b) Wurzelzellen, Cellulae radiculares.

Aus ihnen gehen die vorderen Wurzeln hervor. Sie liegen samt und sonders im Vorderhorn und sind durch relativ typische Gruppierungsverhältnisse ausgezeichnet. Man kann, namentlich im Lenden- und Halsmark, wo die Raumentfaltung in der grauen Substanz am beträchtlichsten, eine vordere und eine hintere laterale, eine vordere und

eine hintere mediale, endlich eine zentrale Gruppe unterscheiden (siehe Fig. 6). Wir kommen später auf diese Gruppen, in welchen uns Nervenkerne oder Nervenzentren entgegentreten, eingehender zurück. Am mächtigsten sind die lateralen Gruppen, aus denen das Hauptkontingent der vorderen Wurzeln hervorgeht.

Alle Vorderhornzellgruppen zeichnen sich durch ihre enorme Gefäßversorgung aus. Während aus der Vasocorona (dem arteriellen Gefäßkranze, der, das Gebiet der vorderen mit dem der hinteren Spinalarterien verbindend, die Rückenmarksperipherie umsäumt) radiäre Ästchen die weiße Substanz und den größten Teil der Hinterhörner speisen, dringt ein eigener Gefäßstamm ins Vorderhorn ein, und zwar, je nach dem Niveau, ins rechte oder ins linke. Diese Arteria sulco-commisuralis bildet nun im Innern des Vorderhorns ein äußerst reichliches und üppig verzweigtes Netz, das korhartig namentlich die Gruppe der Wurzelzellen umfließt. Nur in den periphersten Teiles des Vorderhorns, hart an den Grenzen der weißen Stränge, beteiligt sich auch das System der Vasocorona an der Ernährung der grauen Substanz. Wir werden sehen, daß diese Unterscheidung zweier getrennter Gefäßgebiete auf einem einzigen Rückenmarksquerschnitte klinisch von größter Bedeutung ist.

KAPITEL II.

Wir gehen nun zur physiologischen Würdigung der Gebilde über, die wir jetzt rein anatomisch betrachtet haben. Sie wird uns lehren, im Dienste welcher Funktionen die einzelnen Komponenten des Rückenmarkes, jene Stränge, jene Kerne, stehen und uns den umgekehrten Schluß gestatten, aus bestimmten physiopathologischen Erscheinungen auf Läsionen bestimmter Areale zu schließen.

Das Rückenmark hat eine vierfache physiologische (Bedeutung. Es vereinigt die Dignität eines sensiblen, eines motorischen, eines vasomotorischen und eines trophischen Organs.

Unter diesen vier Gesichtspunkten wollen wir nun seine Elemente gruppieren.

1. Die Apparate der spinalen Sensibilität.

Die Nachrichten, die unserem Bewußtsein oder auch unserem Unterbewußtsein von den Vorgängen im Bereiche unseres Rumpfes und unserer Gliedmaßen zukommen, schlagen den Weg durch die Spinalganglien und die hinteren Rückenmarkswurzeln ein. Die Körpersen-

sibilität im weitesten Sinne wird also nur bei Intaktheit des gesamten Hinterwurzelsystems und seiner Anschlußneurone normale Verhältnisse darbieten.

Nun ist aber die Körpersensibilität kein einheitlicher Begriff. Die Klinik geht in der Analyse jenes Begriffes nicht so weit wie die Physiologie, welche bekanntlich einen Drucksinn, einen Ortssinn, einen Kältesinn, einen Wärmesinn, einen Schmerzsinn, einen Bewegungssinn etc. etc. unterscheidet. Sie geht vielmehr bei ihren semiologischen Untersuchungen des körperlichen Empfindungsvermögens auf die Prüfung von vier Hauptqualitäten aus:

1. Die Tast- oder Berührungsempfindung.

Wir prüfen sie durch Berühren mit einem Wattebausch, einem Pinsel, dem Finger etc. Ihre Herabsetzung heißt **taktile Hypästhesie** ihre Aufhebung **taktile Anästhesie**.

2. Die Temperaturempfindung.

Zu deren Studium prüfen wir das Unterscheidungsvermögen des Exploranden für kalte und warme Gegenstände. Der Zustand mangelhafter oder fehlender Temperaturempfindung heißt **Thermohypästhesie** bzw. **Thermoanästhesie**.

3. Schmerzempfindung.

Nadelstiche, Kneifen von Hautfalten etc. geben uns über ihren Zustand Aufschluß. Herabsetzung = **Hypalgesie**, Aufhebung = **Analgesie**.

1. bis 3. fassen wir, da das Integument den Sitz der betreffenden Empfindungen darstellt, als „Oberflächensensibilität“ zusammen. — Bei pathologischer Steigerung der Empfindlichkeit auf Berührungs- und Temperaturreize, wobei jene Sinneseindrücke schmerzhafte Nuancierung erhalten, sprechen wir von **taktile** bzw. **thermischer Hyperästhesie**; erhöhte Schmerzempfindlichkeit heißt **Hyperalgesie**.

4. Die Tiefensensibilität.

Unter diesem Begriffe verstehen wir die Summe der zentripetalen Erregungen, die unseren nervösen Zentralorganen von den Muskeln, Sehnen, Knochen, Gelenken etc. zuströmen. Ein Teil derselben überschreitet im Gehirne die Schwelle des Bewußtseins und setzt uns in Kenntnis von der Lage unserer Gliedmaßen, der Winkelstellung unserer Gelenke etc. (Lagesinn), von der Ausgiebigkeit einer ausgeführten Be-

wegung (Bewegungssinn). Hierher gehört ferner das Vibrationsgefühl (Pallästhesie), das beim Aufsetzen einer schwingenden Stimmgabel auf oberflächlich liegende Skeletteile empfunden wird. Ein anderer Teil aber gelangt nicht ins Sensorium, sondern reguliert unterbewußt die motorischen Mechanismen, die bei allen komplizierten und kombinierten Bewegungen, namentlich beim Gehen und Stehen in Aktion treten. Er gewährleistet somit die Erhaltung des Gleichgewichts, den harmonischen Ablauf der Lokomotion, die synergische Aktion funktionell verwandter Muskelgruppen usw.

Mehr oder weniger ausgeprägte Ausfälle im Bereiche der Tiefensensibilität zeitigen deshalb die Symptomenbilder der Ataxie (Hypotaxie), Inkoordination, Asynergie etc. Da beim Erkennen eines Gegenstandes durch Abtasten bei geschlossenen Augen der Lage- und Bewegungssinn unserer Finger die wesentliche Rolle spielt, ist auch die Astereognosie* (die Unfähigkeit zur Formerkennung durch Palpieren) ein Ausdruck gestörter Tiefensensibilität. Der Mangel des Vibrationsgefühls heißt Pallanästhesie.

Die Fasern, die der Leitung dieser vier sensiblen Hauptqualitäten dienen, trennen sich nun nach ihrem Eintritt ins Rückenmark.

1. Die Tastempfindung wird sowohl von langen als von kurzen Fasern des Hinterwurzelsystems gehirnwärts geleitet (siehe hierzu und auch zum folgenden den Text pag. 7—10 und Abbildung 2), d. h. sowohl gleichzeitig — tautomer — als auch gekreuzt — heteromer — letzteres via Tractus spino-thalamicus.

2. Die Temperaturempfindung.

3. Die Schmerzempfindung benützen ausschließlich kurze Hinterwurzelfasern (die also in Hinterhormzellen endigen) und ferner deren Neurone zweiter Ordnung (die im kontralateralen Seitenstrang zum Thalamus emporsteigen).

4. Die Tiefensensibilität** schlägt eine doppelte Bahn ein: *a)* durch lange Hinterwurzelfasern und Hinterstränge zum Thalamus und Großhirn, *b)* durch mittlere Hinterwurzelfasern, *Clarkesche Säulen* und *Kleinhirnseitenstrangbahn* zum Kleinhirn. Beide Kategorien unge-

* Da das Wort „Agnosie“ im allgemeinen für den Verlust einer Wahrnehmung infolge psychischer Ausfälle gebraucht wird, sollte die Aufhebung der Formerkennung auf Grund von Störungen der Tiefensensibilität eigentlich statt mit „Astereognosie“, mit „Stereoaesthesia“ bezeichnet werden.

** Im peripheren Nervensystem verlaufen die Fasern der „Tiefensensibilität“ in den Muskelnerven, weshalb sie durch Läsionen der Hautnervenäste nicht beeinträchtigt wird.

kreuzt. Das cerebellipetale Kontingent dient der Leitung unterbewußter Perzeptionen (taktischer und koordinatorischer Natur), das cerebripetale erfüllt, neben dem gleichen Zwecke, auch die Aufgabe, die bewußten Empfindungen des Lage- und Bewegungssinnes dem Großhirne zu übermitteln.

2. Die Apparate der spinalen Motilität.

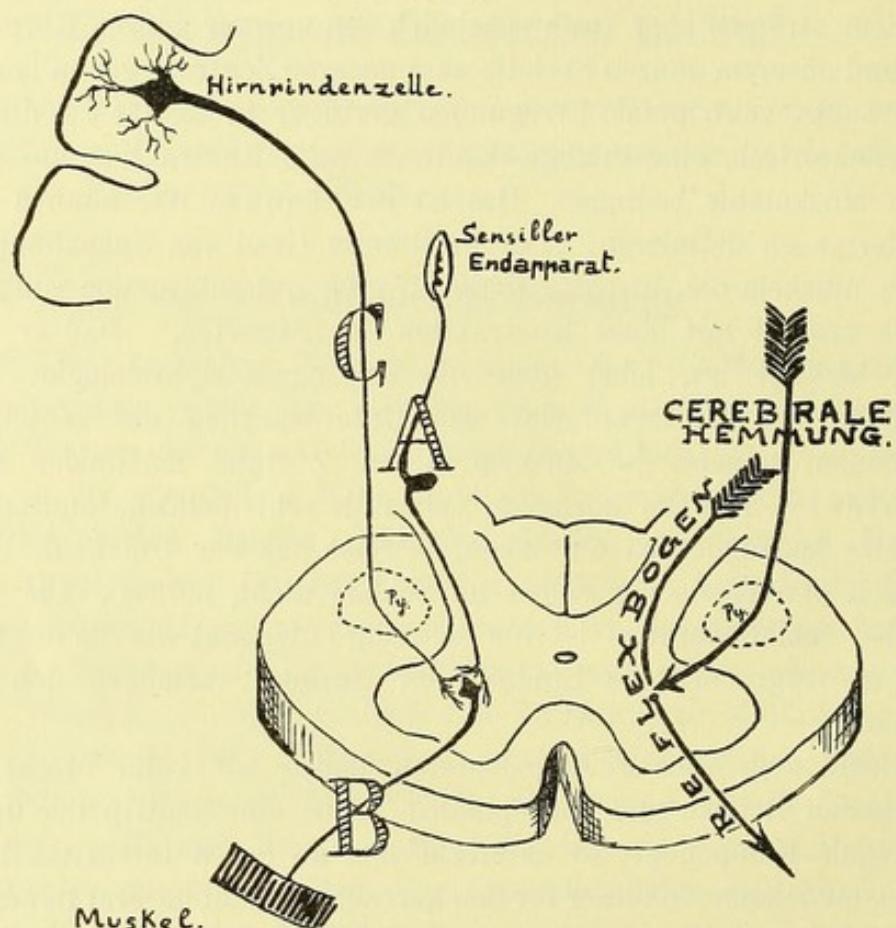
Unter Motilität im weitesten Sinne verstehen wir nicht nur die willkürlichen Bewegungerscheinungen, sondern auch die Phänomene des Tonus und der Reflexe.

a) Die willkürliche Bewegung.

Von den corticalen Bewegungszentren des Großhirns wird der psychomotorische Impuls den spinalen (d. h. in den Vorderhörnern gelegenen) Zentren der verschiedenen Muskeln und Muskelgruppen unseres Körpers in überwiegendem Maße durch die Pyramidenbahnen zugeführt. Die corticospinalen Bahnen sind deshalb als motorische Hauptbahnen anzusprechen. Immerhin werden sie in ihrer Aufgabe durch eine Reihe von motorischen Nebenbahnen unterstützt. Infolgedessen bedeutet der totale Untergang der Pyramidenbahnen noch keine absolute Lähmung — Paralyse —, sondern bloß eine beträchtliche Motilitätsverminderung — Parese. Jene Nebenbahnen sind eben in solchen Fällen imstande, bis zu einem gewissen Grade vikariierend für die Pyramiden einzuspringen. Es sind die Faserzüge, die wir als *Tractus subcortico-spinales* zusammenfaßten. Ihre Ausgangspunkte (der rote Haubenkern, der Sehhügel, das Mittelhirndach, der *Deiterssche Kern*) weisen Verbindungen mit der motorischen Großhirnrinde auf, so daß, dank der letzteren, auch bei Ausschaltung der Pyramidenbahnen ein Teil der psychomotorischen Impulse auf Umwegen, mittelbar, wenn man will, zu den Vorderhornzellgruppen des Rückenmarkes zu gelangen vermag.

In den Vorderhornzellgruppen liegen aber die Zentren für die gesamte Körpermuskulatur, so daß jeder einzelne Muskel von einem bestimmten Ganglienzellkomplexe des Rückenmarkes innerviert, durch ihn repräsentiert wird. Die genauen topographischen Gesetzmäßigkeiten, die in dieser Beziehung herrschen, werden uns bei Besprechung der Höhendiagnostik eingehend beschäftigen. Hier haben wir nur festzustellen, daß mit dem Untergange der motorischen Vorderhornzellen eine absolute Lähmung der von ihnen versorgten muskulären Gebilde sich einstellt.

b) Der Tonus und die Reflexe.


Ein mechanischer Reiz (Beklopfen, Bestreichen), der auf bestimmte Teile unseres Körpers (gewisse Sehnen, Knochen, Hautpartien) einwirkt, löst unter normalen Verhältnissen ebenso bestimmte motorische Phänomene (Kontraktion einzelner Muskeln) aus: wir sprechen von Reflexen. Außerdem strömen aber (wahrscheinlich von unserer ganzen Körperoberfläche und unserem ganzen Skelette aus) unseren Zentralorganen beständig unterbewußte, zentripetale Erregungen geringer Intensität zu, die, ebenfalls reflektorisch, eine mäßige, kontinuierliche Kontraktion unserer gesamten Muskulatur bedingen. Das ist der Tonus. Wir können diesen folgendermaßen definieren: „Der bestimmte Grad von Anspannung, der unseren Muskeln die Anschlagsfähigkeit gibt, auf anlangende willkürliche Impulse prompt mit einer Kontraktion zu antworten.“ Daß er reflektorisch bedingt ist, lehrt aber die Experimentalphysiologie: Durchschneidung der Hinterwurzeln, also Unterdrückung der zentripetalen Rezeptionen, versetzt die Muskeln in den Zustand maximaler Schlaffheit (Atonie). Daß im normalen Leben die zentripetalen, tonusauslösenden Reize kontinuierlich einwirken, beweist uns der Umstand, daß bei Gesunden der Tonus nie, selbst im Schlaf nicht, aufhört. Die Muskulatur des Schlummernden ist nie so völlig entspannt wie die der Leiche; und erst vorgeschrittene Stadien der Narkose vermögen den Tonus zu lösen.

Nach dem soeben Angedeuteten haben wir beim Mechanismus der spinalen Reflexe und des spinalen Tonus eine zentripetale und eine zentrifugale Komponente zu unterscheiden, an deren Integrität das normale Zustandekommen dieser für den korrekten Ablauf unserer Bewegungen fundamental wichtigen Erscheinungen gebunden ist (vgl. zum folgenden Fig. 7).

Der „zentripetale Schenkel des Reflex- (und Tonus-) bogens“ liegt natürlich in den Hinterwurzeln, den einzigen Gebilden, auf denen zentripetale Bahnen ins Rückenmark eintreten; der „zentrifugale Schenkel“ ist ebenso selbstverständlich durch das Vorderwurzelsystem — d. h. die peripherischen motorischen Neurone — gegeben. Die Verbindung wird dadurch hergestellt, daß einzelne Hinterwurzelfasern, wie wir auf pag. 8 betonten, sich um Vorderhornzellen aufsplittern. Diese „Reflexkollateralen“ gehören zu den kurzen Fasern des Hinterwurzelsystems. Neben dieser einfachsten Verbindungsweise, wobei der gesamte Reflexbogen im gleichen Rückenmarksniveau liegt, gibt es auch kompliziertere Modalitäten, bei denen noch Schalt-

neurone zwischen zentripetalem und zentrifugalem Schenkel liegen, wobei der Reiz einer Hinterwurzel auf eine Vorderwurzel höheren Niveaus oder auf mehrere Vorderwurzeln, vielleicht auch auf Umwegen auf die korrespondierende Vorderwurzel übertragen werden kann etc. Doch

Fig. 7.

Schematische Darstellung der spinalen Reflexmechanismen.

Läsion von Neuron A	Hypo- oder Areflexie und
" " "	B } Hypo- oder Atonie.
" " "	C = Hyperreflexie und Hypertonie.

sei hier auf diese prinzipiell irrelevanten Verhältnisse nicht näher eingegangen.

Nun wissen wir aber, daß sich um die gleichen motorischen Vorderhornzellen, an denen die Reflexkollateralen des Hinterwurzelsystems ihr Ende finden, auch corticospinale Fasern aufsplittern. Haben diese auch eine Rolle beim Zustandekommen von Tonus und Reflexen? Ja. Sie dienen als Regulator, indem sie hemmend wirken, die reflektorischen Ausschläge und den Grad des Tonus nie über ein bestimmtes,

zweckdienliches Maß heraufgehen lassen. Ohne diese hemmende Wirkung der Pyramiden würden Tonus und Reflexe nicht so konstante Verhältnisse darbieten, wie es tatsächlich der Fall ist. Sind aber die Pyramiden zerstört, so sehen wir den Tonus in einer Weise zunehmen, die bewegungshindernd wirkt, wir sehen die Reflexe z. B. durch die bloße Erschütterung des Körpers bei der Lokomotion in einer ebenfalls schwer störenden Weise ausgelöst werden etc.

Es ergibt sich also in bezug auf den Tonus und die Reflexe folgende einfache Regel, die sich auch auf unserem Schema (Fig. 7) veranschaulicht findet.

Läsion des Hinterwurzelsystems: Hypotonie und Hyporeflexie bzw. Atonie und Areflexie.

Läsion des Vorderwurzelsystems: Hypotonie und Hyporeflexie bzw. Atonie und Areflexie.

Läsion des Pyramidensystems: Hypertonie und Hyperreflexie.

3. Die Apparate der spinalen Trophicität.

Der Umstand, daß jede Nervenzelle das trophische Zentrum für die von ihr ausgehenden Nervenfasern darstellt — wir erinnern an das bereits pag. 4 erwähnte *Waller'sche Gesetz* — bringt es mit sich, daß die Wurzelzellen des Rückenmarkes die Ernährung desjenigen Teiles des peripheren Nervensystems besorgen, der aus ihnen seinen Ursprung nimmt, d. h. der motorischen Körpervenen. (Ganz analog ist natürlich die Integrität der sensiblen Körpervenen von derjenigen der Spinalganglien abhängig.) — Der trophische Einfluß der Vorderhornzellen überschreitet aber noch die Grenze des peripheren motorischen Neurons. Unterstehen ihm doch auch die motorischen Endapparate, die Muskeln. Wo Vorderhornzellen zugrunde gehen, verfallen die von ihnen innervierten Muskeln einer Atrophie, die man zum Unterschiede von der bloßen Inaktivitätsatrophie als die degenerative bezeichnet. Pathologisch-anatomisch ist sie durch den rapiden Schwund der contractilen Elemente und ihren Ersatz durch wucherndes Fett- und Bindegewebe charakterisiert; klinisch durch die Entartungsreaktion (EAR).

Wo diese zur vollständigen Entwicklung kommt — also bei komplettem degenerativem Muskelschwund — erlischt bekanntlich zunächst (binnen etwa 14 Tagen) die galvanische und faradische Erregbarkeit vom Nerven aus. Zugleich verschwindet auch bei direkter Reizung des betreffenden Muskels die faradische Erregbarkeit, während im Gegenteil bei direkter galvanischer Reizung eine Steigerung der Excitabilität zu

konstatieren ist. Außerdem ist die galvanische Zuckung, statt prompt und blitzartig, träge und „wurmförmig“, und die Zuckungsformel in der Weise verändert, daß die Anodenschließungszuckung bei gleicher oder geringerer Stromstärke auftritt als die Kathodenschließungszuckung. Nach ca. 2 Monaten beginnt aber auch die direkte galvanische Erregbarkeit zu sinken und ist nach einigen weiteren Monaten erloschen. Über die partiellen und modifizierten Formen der EAR siehe die Lehrbücher der Elektrodiagnostik.

Außerdem üben die Vorderhornzellen auch auf das Skelett einen trophischen Einfluß aus. Wo sie bei wachsenden Individuen zugrunde gehen, wird dadurch eine mehr oder weniger starke Beschränkung des ferneren Knochenwachstums im Bereiche der betroffenen Muskulatur bedingt. Auch abnorme Brüchigkeit der Knochen kann unter gleichen Umständen resultieren.

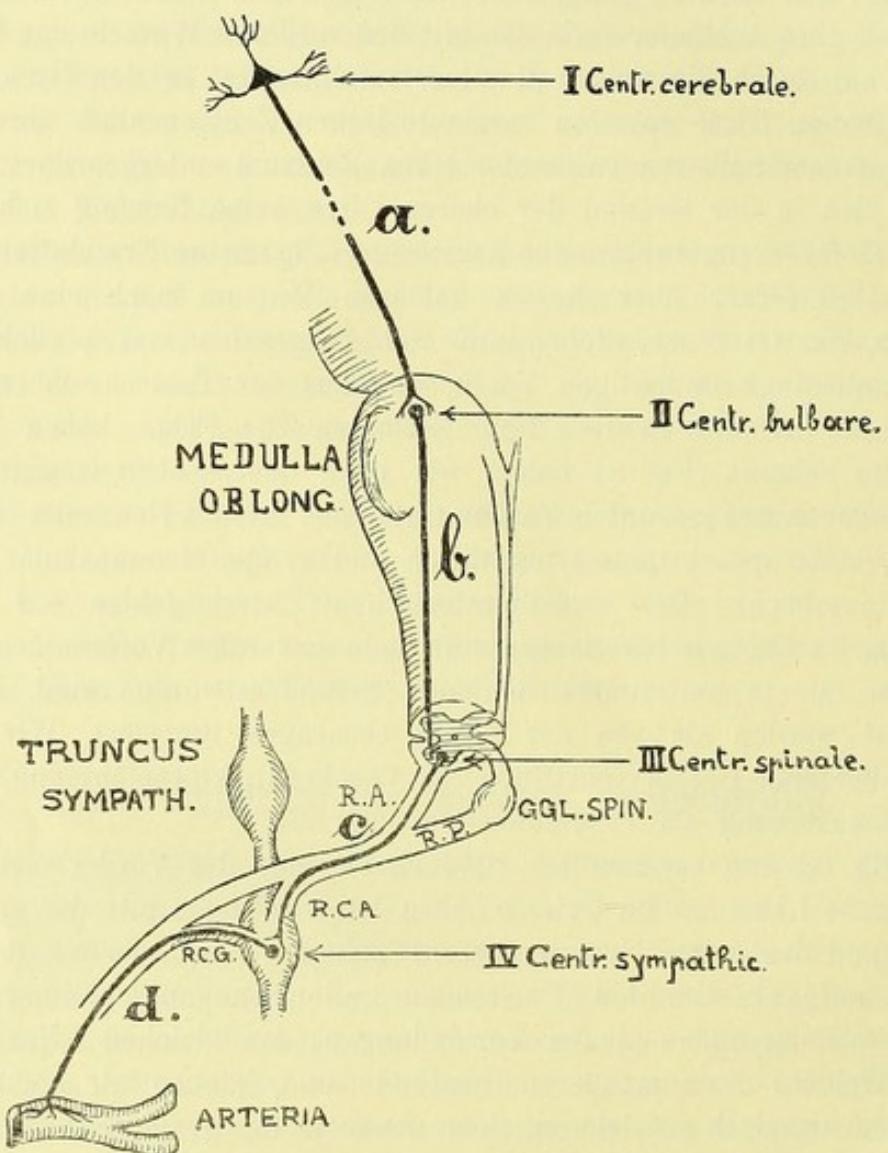
Es scheint, daß der trophische Einfluß der Vorderhornzellen bis zu einem gewissen Grade reflektorisch von Elementen des Hinterwurzelsystems aus angeregt wird. Denn auch nach dem Untergang der hinteren Wurzeln können (freilich erst nach längerer Zeit) trophische Störungen der Muskulatur und des Skeletts sich einstellen.

4. Die Apparate der spinalen Vasomotilität.

Die Vasomotilität steht bekanntlich unter dem direkten Einflusse des sympathischen Nervensystems. Und zwar lehrt uns die Experimentalphysiologie, daß die gefäßverengernden Nervenfasern („Vasconstrictoren“) aus dem sogenannten „lateralen“ Gangliensystem, dem sympathischen Grenzstrange, hervorgehen, dagegen die gefäßerweiternden („Vasodilatatoren“) aus dem sogenannten „kollateralen“ Gangliensystem — d. h. aus den sonstigen, in die Bahnen der sympathischen Nerven eingeschalteten Zellkomplexen. Experimentell ist freilich die Existenz gefäßerweiternder Fasern nur für einzelne Nervenstämme an Rumpf und Extremitäten nachgewiesen, z. B. für die Nervi erigentes und den Ischiadicus. Gefäßverengernde Fasern lassen sich dagegen ganz allgemein als Bestandteil der gemischten Rückenmarksnerven nachweisen. Wir wissen genau, wie sie in letztere hineingelangen: es geschieht auf dem Wege der grauen Rami communicantes, die aus den einzelnen Knoten des Grenzstrangs den korrespondierenden somatischen Nerven sich zugesellen.

Die sympathischen Ganglienzellen des Grenzstrangs, als deren Achsenzylinder die Vasokonstriktoren aufzufassen sind, stellen aber

selbst Anschlußneurone an die zentrifugalen Ausläufer von Rückenmarkszellen dar. Letztere, die spinalen Zentren der Gefäßverengerung, liegen in den Vorderhörnern (und zwar vorwiegend in deren zentraler Zellgruppe). Ihre Ausläufer verlassen mit den vorderen Wurzeln das Rückenmark, um durch die weißen Rami communicantes in den Grenzstrang überzutreten. Diese spinalen vasomotorischen Zentren sind aber selbst wieder einem bulbären vasomotorischen Zentrum untergeordnet (es befindet sich in der Gegend der oberen Olive, seine Reizung zieht allgemeine Gefäßverengerung, seine Zerstörung allgemeine Erschlaffung nach sich). Daß ferner über diesem bulbären Zentrum noch eine höchste Instanz, das Großhirn, stehen muß, geht (abgesehen von spärlichen und nicht unbedingt eindeutigen Versuchen) aus der Tatsache hervor, daß psychische Affekte Erröten und Erblassen zur Folge haben können.


Im Schema (Fig. 8) haben wir nach dem soeben Gesagten den Mechanismus der gesamten Vasomotilität mit ihren 4 Neuronen (cerebro-bulbär, bulbo-spinal, spino-sympathisch und sympathico-muskulär) darzustellen versucht. Die vasodilatatorischen Fasern fehlen auf diesem Schema, da sie, wie bereits erwähnt, kein generelles Vorkommen haben, sondern nur in bestimmten Regionen gefunden worden sind. Und in der Tat werden sie von der Klinik sozusagen ignoriert. Wir fassen ganz allgemein Gefäßerschlaffung als Vasokonstriktorenlähmung, Gefäßzusammenziehung als Vasomotorenreizung auf.

Es ist nun verständlich, daß Zerstörung des Vorderhorns vasomotorische Lähmung im Gefolge haben wird, falls sie mit der zentralen Zellgruppe das dritte Neuron unseres Schemas ausgeschaltet hat; daß ferner unter bestimmten Umständen Seitenstrangausschaltung (durch Unterbrechung bulbo-spinaler Verbindungen) den gleichen Effekt haben wird. Welches diese genaueren Umstände sind, können wir nicht pathologisch-anatomisch präzisieren, denn genauere topographische Daten über die in Betracht kommenden Bahnen des Seitenstranges besitzen wir nicht.

Die spinale Vasomotorenlähmung (sei sie nun durch Zerstörung vasomotorischer Vorderhornzentren, sei sie durch Unterbrechung vasomotorischer Seitenstrangneurone entstanden) bekommen wir nicht häufig — nämlich nur in ihren frischesten Stadien — unter dem Bilde zu sehen, das auch dem Physiologen entgegentritt, wenn er beim Tiere die Zerstörung vasoconstrictorischer Elemente vorgenommen hat: Rötung und Hitze der Haut. Geläufiger ist uns ein scheinbar entgegengesetztes Zustandsbild, das sich an jenes anschließen kann, zuweilen auch sich entwickelt, ohne daß jenes deutlich zu konstatieren gewesen wäre. Dann sind nämlich in den vom betreffenden Rückenmarksabschnitte inner-

vierten Körperteilen die Integumente cyanotisch und kalt. Man er-

Fig. 8.

Schema zum Mechanismus der Vasomotilität.

- a = Cerebrobulbäre Gefäßbahnen
- b = Bulbospinale Gefäßbahnen
- c = Spinosympathische Gefäßbahnen
- d = Sympathicomuskuläre Gefäßbahnen
- I—IV = Zentren erster bis vierter Ordnung
- RA = Radix anterior
- RP = Radix posterior
- RCA = Ramus communicans albus
- RCG = Ramus communicans griseus.

klärt hier die Cyanose durch die chronische Hemmung der Capillarzirkulation infolge der Aufhebung des Gefäßtonus, die Kälte aber (es

kann sich um ein Minus von bis zu 10° handeln!) durch die Ernährungsstörung der Haut infolge jener Cyanose.

Anhang.

Der Mechanismus der Schweißsekretion ist ein dem Mechanismus der Vasomotilität sehr ähnlicher. Auch hier cerebrale, bulbäre, spinale, sympathische Zentren. Das Schema Fig. 8 könnte sich auch auf die Schweißinnervation beziehen, wenn wir uns statt des Blutgefäßes eine Schweißdrüse eingezeichnet denken. Die spinalen Schweißzentren, die uns vorläufig ausschließlich interessieren, scheinen, wie die spinalen Gefäßzentren, durch das ganze Rückenmark zerstreut zu liegen und ihre Zellen in den Vorderhörnern neben den motorischen Ganglienzellen zu haben. Ihre Zerstörung hat Verminderung oder Mangel der Schweißsekretion in den korrespondierenden Körperteilen zur Folge, Hyphidrosis oder Anidrosis. Man würde gewiß häufiger auf diese Erscheinungen stoßen, als es der Fall ist, wenn man (durch schweißtreibende Prozeduren) systematisch bei Rückenmarkskranken auf Schweißanomalien fahndete.

KAPITEL III.

Nachdem wir die verschiedenen Neuronsysteme des Rückenmarkes sowohl in anatomischer als in physiologischer Beziehung haben Revue passieren lassen, sollen uns nun klinische Symptome und Symptomenkomplexe die Beantwortung der Frage ermöglichen, welche von jenen Neuronsystemen durch einen pathologischen Prozeß zerstört oder beeinträchtigt worden sind, d. h. auf welche Partie des Rückenmarksquerschnittes sich dieser letztere erstreckt.

Rückenmarkskrankheiten und -verletzungen geben sich im allgemeinen kund entweder:

- a) durch Störungen der Motilität — oder
- b) durch Störungen der Sensibilität — oder
- c) durch kombinierte Störungen der Motilität und Sensibilität.

Motilitäts- und Sensibilitätsverhältnisse sind die eigentlichen diagnostischen Leitsterne in der Semiotik der Myelopathien; an praktischer Bedeutung treten die Phänomene trophischer und vasomotorischer Natur so weit hinter jenen zurück, daß sie erst in zweiter Linie und nur in speziellen Fällen für die topisch-diagnostische Orientierung herangezogen werden. — Die Einteilung der folgenden Ausführungen ist deshalb eine von vornherein gegebene.

1. Lokalisatorische Bedeutung der Motilitätsstörungen.

Lähmung im weitesten Sinne (also Paralyse oder Parese) kommt, wie wir sahen, sowohl auf Grund einer Leitungsunterbrechung in den corticospinalen Neuronen, als auch infolge einer solchen in den spino-muskulären Zustände.

Erstere verlaufen, wie ein Blick auf Fig. 4 lehrt, in weitaus überwiegender Mehrzahl in den Seitensträngen, letztere haben ausschließlich in den Vorderhörnern und Vorderwurzeln ihren Sitz. Wo uns also bei Rückenmarksaffektionen Paralyse und Parese entgegentritt, stehen wir deshalb in erster Linie vor der Alternative: Seitenstrangaffektion oder Vorderhorn-Vorderwurzelaffektion. In einigen Fällen wird sich dann freilich auch die Notwendigkeit ergeben, die Eventualität einer Kombination jener beiden Zustände zu erwägen.

a) Charakteristika der Lähmung durch Seitenstrangaffektion.

(Speziell: Läsion des Pyramidenseitenstrangareals.)

α) Diese Lähmung ist in erster Linie nicht vollständig, keine Paralyse, sondern Parese. Denn es bleiben ja die Pyramidenvorderstrangbahn und überdies, als indirekte Zuführung cerebraler Impulse, subcorticospinale Bahnen dem Organismus für die Innervation der motorischen Vorderhornzentren zur Verfügung. Wo es sich um bloße Affizierung des Pyramidenseitenstrangareals handelt, kommt die ganze auf pag. 6 aufgezählte subcorticospinale Faserkategorie in Betracht; wo aber der ganze Seitenstrang zugrunde gegangen, können die Pyramidenvorderstränge immerhin von einem Teile der tecto- und vestibulospinalen Fasern unterstützt werden.

β) Die Parese betrifft ungefähr gleichmäßig alle Muskeln der betroffenen Extremität. Im gleichen Querschnitte des Pyramidenseitenstrangareals liegen eben corticospinale Fasern eng aneinandergeschlossen, deren Endaufsplitterung sich über weite Strecken der motorischen Kernsäulen in den Vorderhörnern verteilt.

γ) In den paretischen Muskeln macht sich Rigidität, spastische Starre bemerkbar; eine Folge des Wegfalls der tonusvermindernden corticalen Hemmungen, die, wie auf pag. 21 ausgeführt wurde, durch die Pyramidenbahnen kontinuierlich den Vorderhornzellen zuströmen. Durch Palpation, Widerstandsprüfung bei passiven Bewegungen etc., überzeugt man sich unschwer von dieser Hypertonie. Auch die direkte mechanische Erregbarkeit der paretischen Muskulatur nimmt durch die Hypertonie zu.

δ) Die Sehnen- und Knochenreflexe im Bereiche der paretischen Muskeln sind gesteigert, was in analoger Weise zu erklären ist wie der Spannungszustand. Vgl. Fig. 7 u. pag. 21. — Mit der Reflexsteigerung kann an den betreffenden musculo-tendinösen Apparaten auch das Phänomen zur Anschauung gebracht werden, das unter dem Namen „Clonus“ bekannt ist. Dabei kommt es durch plötzliche passive Streckung der Sehne in deren Muskeln zu einer raschen Aufeinanderfolge von Kontraktionen. Weitaus am häufigsten ist der Fuß- (=Achillessehnen-) Clonus, nicht selten der Patellarclonus, selten dagegen Handgelenk-, Finger- und Ellbogenclonus auszulösen. — Das Verhalten der Hautreflexe ist viel weniger konstant als dasjenige der Sehnenreflexe. Man wird sich nur in einem Teile der Fälle, bei denen infolge Pyramidenläsion die corticospinale Hemmung wegfiel, von ihrer Steigerung überzeugen können. Daß sie etwa einmal auch im Gegensatze zu den gesteigerten Sehnenreflexen fehlen können, sei hier bloß kurz erwähnt; im Abschnitt Höhendiagnostik wird auf diese Eigentümlichkeit näher einzugehen sich Gelegenheit bieten. — Läßt sich somit der Grad der reflektorischen Beantwortung von Hautreizen zur Feststellung einer Seitenstrangläsion viel weniger diagnostisch verwerten, als es bei den Sehnenphänomenen der Fall ist, so geben uns dafür einige bei Unterbrechung der Pyramidenbahnen sich einstellende pathologische Hautreflexe nach dieser Richtung hin äußerst wertvolle Fingerzeige. In erster Linie das *Babinski*-sche Phänomen, bei dem die Fußsohlenreizung eine ziemlich langsame tonische Hyperextension der Großzehe, zuweilen unter gleichzeitiger Plantarflexion der anderen Zehen hervorruft. In zweiter Linie der *Oppenheim*sche Reflex, bei welchem dieselbe Erscheinung durch starkes Streichen über die Haut an der medialen Fläche des Unterschenkels zu erzielen ist. Ein pathologischer Sehnenreflex ist das *Mendel-Bechterew*sche Phänomen („Fußrückenreflex“): bei Läsion der Pyramidenbahn kann Beklopfen der lateralen Teile des Fußrückens (Metacarpale IV und V) eine Plantarflexion der Zehen hervorrufen; normalerweise erfolgt entweder kein Reflex oder eine Dorsalflexion. Daß die „pathologischen“ Reflexe in normaler Breite auch beim Kinde in den ersten Lebensmonaten vorkommen, beruht höchstwahrscheinlich darauf, daß die Pyramiden erst im Verlauf der ersten postembryonalen Periode durch Umkleidung der Achsenzylinder mit Markscheiden funktionell vollwertig werden. Eine befriedigende physiopathologische Erklärung dieser Phänomene steht noch aus. Wir können uns höchstens vorstellen, daß der reflektorische Reiz, wenn er nicht von oben her (d. h. aus dem Cerebrum) geziigelt wird, in Bahnen einbricht, die ihm sonst verschlossen sind.

ε) Dasselbe kann für den willkürlichen Impuls der Fall sein, der eine bestimmte Bewegung der paretischen Muskulatur intendiert, so daß es dann zu unbeabsichtigten „Mitbewegungen“ kommt. Wenn z. B. das Bein nicht an den Körper herangezogen werden kann, ohne daß gleichzeitig eine starke Dorsalflexion des Fußes auftritt, so spricht man vom Tibialisphänomen oder vom *Strümpellschen* Zeichen; zwangsweise Hyperextension des Hallux unter gleichen Bedingungen stellt das Zehensphänomen dar; an der Hand kommt das Radialisphänomen vor (zwangsmäßige Dorsalflexion der Hand bei Volarflexion der Finger), ferner das Pronationsphänomen (zwangsweise Pronation bei Vorderarmbeugung) usw.

ζ) Eine Atrophie der befallenen Muskeln fehlt — abgesehen von der spät und nie sehr intensiv sich einstellenden „Inaktivitätsatrophie“. Denn die Muskeln bleiben ja trotz Pyramidenunterbrechung mit ihrem trophischen Zentrum, den Vorderhornzellen, in unbeeinträchtigter Verbindung. Aus denselben Gründen behält, mit der anatomischen Integrität seiner Textur, der Muskel seine elektrische Erregbarkeit bei.

η) Das pag. 24 erwähnte Bild der chronischen Vasomotorenlähmung (Kälte und Cyanose) kann in den von corticospinaler Lähmung betroffenen Extremitäten auftreten. Es dürften dann die im Seitenstrang verlaufenden vasomotorischen Neurone zweiter Ordnung (Fig. 8) unterbrochen sein. Doch ist dies nicht regelmäßig der Fall, auch pflegen die vasomotorischen Phänomene nicht sehr hochgradig entwickelt zu sein.

Das Gesamtbild der Lähmung durch Seitenstrangaffektion bzw. durch Ausschaltung der corticospinalen Bahnen bezeichnet man als den **spastischen Symptomenkomplex**.

b) Charakteristika der Lähmung durch Vorderhornaffektion.

α) Die Paralyse der befallenen Muskeln ist im ersten Stadium eine vollständige. Vermag doch für lädierte motorische Neurone zweiter Ordnung kein anderes Gebilde vikariierend in die Lücke zu treten. Es kann freilich nach und nach zu einer gewissen funktionellen Restitution kommen (nämlich wenn ein Teil der ursprünglich nur geschädigten motorischen Zellen sich zu erholen vermag); doch ist diese Restitution stets nur eine unvollständige und eine sehr langsame.

β) Daß alle Muskeln einer Extremität infolge einer Vorderhornerkrankung gelähmt werden, ist selten. Die topographischen Verhältnisse bringen das mit sich. Wir sahen bereits oben, daß schon auf dem Querschnittsbilde die Kerne für die einzelnen Muskeln

getrennt liegen, d. h. über ein Gebiet zerstreut, das viel weniger Chancen darbietet, gleichzeitig durch eine und dieselbe Läsion vernichtet zu werden, als das enggeschlossene, ein kleines Areal einnehmende Pyramidenbündel. Unsere höhendiagnostischen Betrachtungen werden uns aber ferner zeigen, daß auf dem Längsschnitte des Vorderhorns dieselbe Eigentümlichkeit noch viel exquisiter zutage tritt, so daß die Kerne für verschiedene Muskeln derselben Gliedmaße zentimeterweit auseinanderliegen. So extensive Krankheitsherde zeitigt aber die Medullarpathologie nur selten.

γ) Die durch funktionellen Wegfall des spinomuskulären Neurons gelähmte Muskulatur ist atonisch (Unterbrechung des Tonusreflexbogens in seinem zentrifugalen Schenkel). Widerstandslosigkeit gegen passive Bewegungen, schlotternde, der muskulären Stütze beraubte Gelenke. Möglichkeit abnormer Hyperextensionen, „schlangenmenschenartiger Stellungen“ — kurz die Erscheinung der „Membres de polichinelle“, der Hampelmanngliedmaßen, geben uns von dieser Atonie Kunde. Mit der absoluten Atonie geht die Aufhebung der direkten mechanischen Erregbarkeit einher.

δ) Die Reflexe verschwinden (Unterbrechung des zentrifugalen Schenkels des Reflexbogens).

ε) Das Phänomen der Mitbewegungen fehlt.

ζ) Äußerst rasch zieht Läsion der Vorderhornzentren die hochgradige Atrophie der von ihnen trophisch abhängigen Muskulatur nach sich. Diese „degenerative Atrophie“ geht mit EAR einher.

η) Die vasomotorischen Störungen treten viel schwerer und regelmäßiger in die Erscheinung als bei corticospinalen Lähmungen. Hier fallen die wichtigen spinalen Vasoconstrictionszentren besonders leicht in den Bereich der Läsion. Außer hochgradiger Cyanose und Kühle des Integuments kann das Sinken des Blutdrucks (als Zeichen der Erschlaffung der arteriellen Stämme) konstatiert werden.

Daß die Vorderhörner, deren Lage im Vergleiche zu den Pyramidenbahnen ja als eine sehr geschützte zu bezeichnen ist, und die außerdem der letzteren auf dem Querschnittsareale nicht allzu ferne liegen, so oft der Sitz pathologischer Prozesse sind, welche jene verschonen und somit das reine Bild der Lähmung vom peripheren (= spinomuskulären) Typus hervorrufen, dies ist auf die pag. 15 betonten Vascularisationsverhältnisse zu beziehen. Durch ihre autonome Gefäßversorgung sind nämlich die Cornua anteriora nosologisch vom größten Teile des Rückenmarksquerschnittes relativ unabhängig, aber auch durch die Uppigkeit jener Vascularisation gewissermaßen prädis-

poniert für embolisch auf dem Blutwege anlangende Noxen und für peripheriitisch sich entwickelnde Prozesse (z. B. Poliomyelitis anterior). Die reiche Anastomosierung des Gefäßnetzes der Arteria sulco-commisuralis läßt dagegen das Vorderhorn gewöhnlich der ischämischen Erweichung entgehen, welche (bei angiosklerotischen,luetisch-endarteritischen Prozessen zum Beispiel) für die spärlicher arterialisierten Seitenstränge rasch verderblich wird. — Auch bei den Systemdegenerationen sehen wir oft dieses isolierte Befallenwerden entweder des zentralen oder des peripheren motorischen Neurons (spastische Spinalparalyse, spinale Muskelatrophie); freilich können (wie die amyotrophische Lateralsklerose lehrt) auch beide gleichzeitig befallen werden, selbstverständlich kommen solche simultane Läsionen im Bereiche von Protoneuron und Deuteroneuron überdies aus den verschiedensten Ursachen noch sonst gelegentlich zur Beobachtung. Darum wenden wir uns nun zu den

c) Lähmungserscheinungen durch Kombination von Seitenstrang- und Vorderhornläsion.

Daß dieser kombinierte Lähmungstypus in der Größe des gelähmten Gebietes sich dem corticospinalen Typus anschließt, ist leicht verständlich; ebenso natürlich aber, daß sonst im großen ganzen die Kriterien der spino-muskulären Lähmung das klinische Bild zu beherrschen pflegen: Die Lähmung der meisten betroffenen Muskeln ist eine totale und es tritt in ihnen degenerative Atrophie und EAR ein. Bis zu dem Zeitpunkte aber, wo die Atrophie zum Untergange des Muskels geführt, die EAR der totalen Reaktionslosigkeit Platz gemacht hat, können auch in solchen Muskeln hyperreflektorisch-hypertonische Phänomene die hinter der Vorderhornentartung versteckte Seitenstrangentartung verraten. In solchen relativ frühen Stadien sind nämlich die Reflexe gesteigert und ebenso ist es die direkte mechanische Erregbarkeit. Ferner können — wo es sich um Fußlähmungen handelt — die Hyperextensionsphänomene — die Zeichen von *Babinski* und *Oppenheim* — eine Zeitlang bestehen, ebenso der *Mendel-Bechterewsche „Fußrückenreflex“*.

Bevor wir uns den sensiblen Symptomen zuwenden, noch ein Wort über gewisse motorische Reizsymptome (Hyperkinesien), die uns Kunde geben können von krankhaften Zuständen, welche entweder in den corticospinalen oder aber in den spinomuskulären Neuronenkomplexen noch nicht zu vollständiger Zerstörung, dafür aber zu abnormen dynamischen Erscheinungen geführt haben:

1. Die sogenannte *Brown-Séguardsche Spinalepse* (kein häufiges Phänomen) ist das motorische Reizsymptom der Seitenstrangläsion. Es ist ein spontaner, anfallsweise auftretender Klonus der paretischen Extremitäten, ein mehr oder minder heftiges Schütteln derselben durch alternierende Kontraktion ihrer Extensoren und Flexoren.

2. Die bekannte Erscheinung des fibrillären Zitterns (die auch auf funktionell-neurotischer Basis vorkommen und sogar unter normalen Verhältnissen — z. B. durch Abkühlung — provoziert werden kann) ist als motorisches Reizsymptom der Vorderhornläsionen ein uns oft begegner Befund.

Spinale Lähmungen		
a) Seitenstrangtypus	b) Vorderhorntypus	c) Kombinierter Typ.
Parese	Vorwiegend Paralyse	Vorwiegend Paralyse
Verteilung diffus	Verteilung individuell	Verteilung diffus
Hypertonie	Atonie	Andeutungen von Hypertonie, später Atonie
Hyperreflexie	Areflexie	Hyperreflexie, später d. Areflexie weichend
Oft Mitbewegungen	Keine Mitbewegungen	Keine Mitbewegungen
Am Fuß: Hyperextensionsphänomene u. „Fußrückenreflex“	Keine Hyperextensionsphänomene; kein „Fußrückenreflex“	Event. Hyperextensionsphänomene u. „Fußrückenreflex“, später schwindend
Keine degen. Muskelatrophie	Degen. Muskelatrophie	Degen. Muskelatrophie
Keine EAR	EAR	EAR

2. Lokalisatorische Bedeutung der Sensibilitätsstörungen.

Man betrachte unsere Fig. 2 und vergegenwärtige sich das, was wir bei unseren physiologischen Vorbemerkungen auf pag. 17 von der Dignität der einzelnen sensiblen Trakte zu sagen wußten. Daß nämlich die Tastempfindungen sowohl die Bahnen *L* als die Bahnen *K2* zum Großhirn einschlagen, daß für die Leitung des Schmerzsinns und Temperatursinns ausschließlich letztere in Betracht kommen, daß endlich die Tiefensensibilität teils via *L* großhirn-, teils via *M* kleinhirnwärts unserem Bewußtsein bzw. Unterbewußtsein übermittelt wird.

So bedarf es keiner weiteren Erörterungen zur Kommentierung folgender Sätze:

1. Eine Läsion der Hinterwurzeln hebt in deren Ausgangsgebiet alle Empfindungsqualitäten auf. Sie kann sie natürlich auch, wo es sich nicht um vollständige Zerstörung handelt, lediglich herabsetzen. Empfindungsstörungen der Integumente für Berührung, Schmerz und Temperatur kombinieren sich mit den ataktischen, astereognostischen etc. Äußerungen der beeinträchtigten Tiefensensibilität. Ein besonders feines Reagens auf Läsionen der centripetalen Bahnen stellt das Vibrationsgefühl dar; es kann herabgesetzt oder sogar aufgehoben sein, wenn alle anderen Hinterwurzelsymptome vermißt werden, z. B. in Fällen von neuraler progressiver Muskelatrophie.

2. Zerstörungen der grauen Substanz unterbrechen die Schmerz- und Temperaturbahnen, die sie ja samt und sonders durchziehen. Auch Läsionen, die in den Seitensträngen die Tractus spino-thalamici unterbrechen, können Thermanästhesie und Analgesie (eventuell Thermo-hypästhesie und Hypalgesie) zur Folge haben. Ob bei beiden erwähnten Zuständen die Tastempfindung, welche, wie wir sahen, partiell dieselben Wege benutzt, leidet oder nicht, hängt von individuellen Faktoren ab, d. h. davon, wie stark die Kompensationsfähigkeit der Hinterstränge beim betreffenden Menschen ist. Gewöhnlich bleibt sie intakt. Diesen Zustand, bei dem Schmerz- und Temperaturempfindung verschwunden, die anderen Sensibilitätsqualitäten aber unbeeinträchtigt geblieben sind, bezeichnet man als die dissozierte Anästhesie. Sie ist, wo typisch und hochgradig entwickelt, pathognomonisch für die zentralen Affektionen des Rückenmarks (Hämatomyelie, zentrale Gliose, Syringomyelie, gewisse intramedulläre Tumoren etc.).

3. Wenn aber die Tastempfindung vollständig aufgehoben ist, müssen, abgesehen vom schon behandelten Falle der Wurzelläsion, sowohl ihre Bahnen durch die Hinterstränge als auch durch die Seitenstränge zerstört sein. Bei bloßer Hinterstrangzerstörung verschwindet die Tastempfindlichkeit nicht vollständig, wird aber herabgesetzt. Betrifft im oberen Teile des Rückenmarkes die Läsion bloß die *Gollschen Stränge*, so erstreckt sich diese Beeinträchtigung der Tastempfindung bloß auf die untere Körperhälfte (vgl. Fig. 3 und pag. 9).

4. Ataxie weist (abgesehen von den durch Anästhesie oder Hypästhesie für alle Qualitäten genügend gekennzeichneten Wurzelläsionen) entweder auf Alterationen der Hinterstränge oder auf solche der peripheren Seitenstrangbezirke, wo die spinocerebellaren Trakte liegen. Klinische Merkmale gestatten uns nun in der Regel die Unterscheidung der

Hinterstrangsataxie und der cerebellaren Ataxie. Hier eine Schilderung dieser beiden Zustände zu geben, würde zu weit führen; in jedem Lehrbuch finden sie sich ausführlich beschrieben. Namentlich ist die Hinterstrangsataxie (die Ataxie der Tabes dorsalis, die ja von ihr ihren französischen Namen „Ataxie locomotrice“ trägt) jedem Mediziner ein geläufiges klinisches Bild. Wir heben nur die differentiellen physiopathologischen Kriterien hervor. Bei der cerebellaren Ataxie vollziehen sich die Einzelbewegungen der Extremitätenteile ziemlich gut, jedenfalls viel präziser als bei der Hinterstrangsataxie, dagegen ist das Zusammenarbeiten, die Synergie, dieser Einzelbewegungen unterbrochen, die Gemeinschaftsbewegungen weisen die intensivsten Störungen auf. Solche Gemeinschaftsbewegungen spielen nun namentlich bei den lokomotorischen und statischen Aufgaben unseres Organismus eine bedeutende Rolle, deshalb der breitspurige Zickzackgang der Cerebellarataktischen, die groben Schwankungen seines aufrecht gehaltenen Rumpfes etc. (Daß kombinierter Untergang der Hinterstränge und spinocerebellaren Bahnen eine besonders schwere Ataxie gemischten Charakters hervorruft, wissen wir aus dem Studium der *Friedreichschen Krankheit*.)

Sensible Reizsymptome.

Krankheitsprozesse, die auf das System der hinteren Wurzeln bei ihrem Eintritte ins Rückenmark oder im weiteren zentripetalen Verlaufe einwirken, können, bevor sie zum Untergange jener Teile geführt haben, zu lebhaften Schmerzerscheinungen Anlaß geben. Es ist für diese Schmerzerscheinungen charakteristisch, daß sie nicht ins Rückenmark, sondern in die Peripherie projiziert werden, also in die Regionen des Integuments (eventuell auch der Muskulatur und des Periosts), in denen die sensiblen Endorgane der „gereizten“ Trakte sich befinden. Am genauesten vermögen die Patienten den Verlauf dieser (reißenden und schneidenden) Schmerzphänomene dann anzugeben, wenn nur einzelne Wurzeln oder Wurzelpaare betroffen sind, wie zum Beispiel bei circumskripten Neubildungen oder tuberkulösen Herden der Wirbelsäule, bei der Pachymeningitis cervicalis hypertrophica etc. (Pseudoneuralgien, „Wurzelschmerzen“ sensu strictiori). Auch die lancinierenden Schmerzen der Tabes dorsalis gehören wohl hierher. Bei hämorrhagischen oder traumatischen Herden im Innern des Rückenmarkes wird der topographische Verlauf der schmerhaften Irradiation weniger charakteristisch geschildert. Der Schmerz betrifft dann meist in unscharfer Lokalisation größere Bezirke des Körpers, da eben im Rückenmark eng beieinander liegende

Fortsetzungen sehr zahlreicher Wurzelpaare gleichzeitig gereizt werden. Sehr selten können Wurzelschmerzen im Gebiete des Integumentes projiziert werden, die bei objektiver Sensibilitätsprüfung sich als anästhetisch erweisen. Dies zum Beispiel bei frischen Wurzeldurchtrennungen, wo die Leitung von der Peripherie zu den Zentren unterbrochen ist, vom zentralen Stumpfe der zerrissenen Radices posteriores aber Reizerscheinungen noch eine Zeitlang (bis zum Einsetzen der *Wallerischen Degeneration*) zur Perzeption gelangen können (*Anaesthesia dolorosa*). Auch bei frischer Läsion der sensiblen Trakte innerhalb des Rückenmarkes kommt dies vor.

Ebenfalls als sensible Reizerscheinungen, jedoch als das Korrelat geringerer anatomischer Beeinträchtigung der betreffenden Fasern sind die Parästhesien und Hyperästhesien aufzufassen. Bei ersteren handelt es sich bekanntlich um spontan auftretende Sensationen abnormen Charakters (Ameisenlaufen, Prickeln, Brennen etc.); bei letzteren rufen applizierte Reize exzessive subjektive Reaktion hervor, so kann z. B. bloße Berührung als Schmerz empfunden werden.

Wo Wurzelschmerzen mit Herpes zoster einhergehen, darf man den Sitz der Läsion in das Spinalganglion verlegen. Die physiopathologische Grundlage jener Bläscheneruption ist uns unklar; beim betreffenden Mechanismus dürften aber Verbindungen mit dem Sympathicus in Frage kommen.

3. Lokalisatorische Bedeutung kombinierter Motilitäts- und Sensibilitätsstörungen.

Die wichtigsten Typen für eine solche Kombination, die uns in der Pathologie des Rückenmarkes entgegentreten, sind:

1. Die gleichzeitige Affektion der Hinter- und Seitenstränge.
2. Die transversalen Erkrankungen oder Verletzungen des Rückenmarkes (total oder partiell).
3. Die sogenannte Halbseitenläsion des Rückenmarkes.

a) Die gleichzeitige Affektion von Hinter- und Seitensträngen.

Die Bedingungen für diese Erscheinung sind nicht allzu selten gegeben. So können in erster Linie echte systematische Degenerationen sowohl die Hinterstränge als auch die Pyramiden- und Kleinhirnseitenstrangbahnen betreffen, wobei man bekanntlich von kombinierten Systemerkrankungen spricht. Zweitens kann eine chronische Meningitis, namentlich diejenige, die sich aufluetischer Basis entwickelt, sich durch eine Myelitis komplizieren, welche die Tendenz hat, vorwiegend in die Hinter-

stränge und Hinterseitenstränge von der Peripherie aus zerstörend einzudringen. Drittens pflegen in den gleichen Bezirken nicht selten Gefäßerkrankungen syphilitisch-endarteriitischer oder aber angiosklerotischer Natur zu einer ischämischen Gewebsnekrose zu führen, welche, keilförmig von der Peripherie eindringend — eine Folge der Anordnung der Vasocorona-Äste, siehe Fig. 6 — ebenfalls vorzüglich die Hinterstränge, die Kleinhirn- und Pyramidenseitenstrangbahnen dem Untergange weicht.

Es kombiniert sich also anatomisch ein Ausfall zentripetaler Systeme mit einem solchen des wichtigsten zentrifugalen Faserkomplexes. Es ist darum verständlich, daß klinisch die Kombination ataktischer und hypästhetischer Phänomene mit Muskelparese in den Vordergrund treten wird. Nun hat aber, wie wir bereits erfahren haben, der zentripetale Ausfall Hypotonie und Hyporeflexie zur Folge, die Ausschaltung der corticospinalen Hemmung dagegen Hypertonie und Hyperreflexie. Es machen sich also bei kombinierter Läsion in dieser Hinsicht Einflüsse von diametral entgegengesetzter Tendenz geltend. Hier kommt es nun auf die größere oder geringere Intensität des Prozesses in den verschiedenen betroffenen Partien an.

Überwiegt die Pyramidenaffektion, so bekommen wir den Symptomenkomplex der

spastisch-ataktischen Paraplegie mit Sensibilitätsstörungen.

Tritt dagegen die Pyramidenaffektion vor derjenigen der sensiblen Bahnen zurück, so werden wir das zustande kommende klinische Bild folgendermaßen bezeichnen müssen:

Ataxie und Areflexie mit motorischer Schwäche.

In den Fällen der letzteren Art können die pathologischen Reflexe, welche für die Pyramidenaffektion pathognomonisch sind (*Babinskis, Oppenheim's und Mendel-Bechterew's Phänomen*), in deutlichster Weise vorhanden sein (etwa einmal auch die Mitbewegungsphänomene) und so die neben der Hinterstrangserkrankung einhergehende Seitenstrangserkrankung in geradezu beweisender Weise uns dartun.

b) Die Querschnittstrennung (transversale Erkrankung oder Verletzung des Rückenmarkes).

Die Querschnittstrennung, wie sie am häufigsten durch Wirbelfrakturen und Luxationen, *Pott'sche Krankheit usw.*, viel seltener durch eine „Querschnittsmyelitis“ zustande kommt, macht, wenn sie vollständig ist, der Diagnose keinerlei Schwierigkeiten. Ist doch in diesem

Falle eine simultane, vollkommene Aufhebung der Sensibilität und Motilität das Resultat. Erstere erstreckt sich auf alle Empfindungsqualitäten (da ja die gesamte zentripetale Leitung aufgehoben), letztere wird eine absolute sein, keine Parese, sondern Paralyse, weil nicht nur eine Unterbrechung der Pyramidenbahnen besteht, sondern überhaupt aller und jeder Verbindungen zwischen den Organen des Willens und den spinalen Zentren der Bewegung.

Es versteht sich von selbst, daß die Sensibilität in denjenigen Regionen des Integuments verschwunden sein wird, deren Nerven in die Rückenmarkspartie unterhalb der Läsionsstelle und in letztere selbst einmünden. Ebenso, daß die Paralyse alle diejenigen Muskeln betrifft, die von den Vorderhornzellen des zerstörten Niveaus und des ganzen caudal davon gelegenen Rückenmarksteiles innerviert werden. Genaue Daten über diese topographische Verteilung wird uns das Studium der Höhendiagnostik ergeben. Hier sei nur ganz allgemein vorausgeschickt, daß sich bei einer totalen Querschnittsaffektion im oberen Cervicalmarke Paralyse und Anästhesie kongruent auf alle vier Extremitäten und den Rumpf erstrecken werden (tetraplegischer Typus), bei einer Durchtrennung im Thorakalmarke auf den unteren Teil des Rumpfes und die Beine, bei einer solchen des Lendenmarks nur auf die Beine (paraplegischer Typus) etc.

Was nun den Charakter der Lähmung anbetrifft, so sollte nach dem, was wir pag. 26—27 erörtert haben, eine spastische Lähmung zu erwarten sein. Sind doch unterhalb des durchtrennten Niveaus die Reflexbogen intakt, durch die Läsion aber von hemmenden corticospinalen Einflüssen befreit. Man begegnet aber bei vollständiger Querdurchtrennung in den oberen Rückenmarkspartien fast ausnahmslos, jedenfalls in den frischen Stadien, einer absoluten Atonie und Areflexie in den gelähmten Bezirken. Man hat dies als Shockwirkung zu erklären versucht, doch kann dies nicht zutreffen, weil erstens einmal in vielen Fällen Atonie und Areflexie dauernd fortbestehen, zweitens aber auch in nicht traumatischen Fällen (Myelitis transversa) sich vorfinden können. Auf die verschiedenen Theorien, die zur Erklärung dieses Paradoxons herangezogen worden sind, hier im Detail einzugehen, verzichten wir. Strikt beweisen läßt sich keine von ihnen. Am besten halten der Diskussion stand: 1. diejenige, nach der bei durchtrennten Pyramiden die intakten anderen absteigenden exogenen Bahnen zum Zustandekommen nicht nur des spastischen Zustandes, sondern des Tonus und der Reflexe überhaupt notwendig sind — und 2. diejenige, welche die bei totalen hohen Querschnittsaffektionen eintretenden Störungen der Lymph- und Blutzir-

kulation für eine schwere funktionelle Schädigung der tiefer gelegenen Hinterwurzeln und Vorderhornzentren verantwortlich macht. Persönlich neige ich letzterer Annahme zu.

Bei transversalen Läsionen des Rückenmarkes ist, neben der Skelettmuskulatur, stets auch diejenige von Blase und Mastdarm gestört. Wir haben über diese bzw. über die Sphinctereninnervation noch nicht gesprochen und versparen dieses Thema auf den höhendiagnostischen Teil, wo es sich bei der Behandlung der Sakralmarkaffektionen am ungezwungensten einreihet. Hier sei bloß erwähnt, daß bei jeder Quer-durchtrennung des Rückenmarkes — wo sie auch ihren Sitz haben möge — Blase und Mastdarm dem Willen entzogen sind. Es stellt sich Retentio alvi ein; bei der Blase tritt gewöhnlich zwar zunächst die Harnverhaltung in den Vordergrund, wenn aber die Blasenfüllung einen gewissen Grad erreicht hat, kann es reflektorisch zu unwillkürlicher Entleerung des Urins kommen (Incontinentia intermittens). Näheres siehe weiter unten.

Wir erfuhren oben (pag. 23), daß vasomotorische Fasern im Seitenstrange ihren Weg nehmen. Das erklärt uns die Gefäßerweiterung, also Vasomotorenlähmung, der man in frischen Fällen von totaler Querschnittstrennung im Lähmungsgebiete begegnet. Später kann sich der pag. 24 geschilderte Zustand chronischer Vasomotorenerschlaffung (Kälte und Cyanose) anschließen. Auch die starke Füllung der Corpora cavernosa penis, die in solchen Fällen besteht, beruht auf vasomotorischen Störungen, ebenso die ausgesprochene Tendenz zu rasch und schwer sich ausbreitenden Decubitalgeschwüren.

Prognostisch von besonderer Wichtigkeit ist es nun, die partielle Querschnittsläsion von der totalen transversalen Kontinuitäts-trennung zu differenzieren.

Hierfür gelten folgende Kriterien:

1. Bei der unvollständigen Querschnittsläsion ist in der Regel die Lähmung nicht symmetrisch wie bei der vollständigen, und hat ferner, gegenüber der absoluten Unheilbarkeit der letzteren, die Tendenz, in den ersten Wochen sich teilweise zurückzubilden. Auch fehlt gewöhnlich die Kongruenz zwischen motorischen und sensiblen Ausfallserscheinungen, indem die motorischen Störungen in größerem Bereiche sich vorfinden.

2. Vasomotorische und Sphincterenstörungen sind nur in leichterem Grade zu konstatieren.

3. Auch bei hohem Sitz der Läsion sind die Patellarreflexe nie dauernd erloschen und in der Regel gesteigert. Häufig konstatiert man einen Unterschied zwischen rechts und links.

Distal von der Läsion machen sich Reizsymptome sensibler Natur, zuweilen auch solche motorischer Natur geltend (Schmerzen, Anaesthesia dolorosa, Parästhesien, Hyperästhesien (cf. pag. 33—34), Epilepsia spinalis (cf. pag. 31). Bei totaler Querschnittsläsion fehlen dagegen Reizsymptome ausnahmslos. Als Reizsymptom ist auch der starke Priapismus aufzufassen, der von der bloßen Plethora der Schwellkörper zu unterscheiden ist, die man bei totaler Querdurchtrennung findet. Auch auf diese Dinge kommen wir später unter „Höhendiagnostik“ eingehender zurück.

c) Die Halbseitenläsion.

Die Erscheinungen, welche auf einer nur halbseitigen Querdurchtrennung des Rückenmarkes (durch Trauma — namentlich Stichverletzung oder Krankheitsprozeß) in die Erscheinung treten, werden (nach dem Autor, der die Folgen der Hemisektion, wenn auch nicht zuerst, so doch am gründlichsten studiert hat) als der *Brown-Séguard'sche Symptomenkomplex* bezeichnet.

Es handelt sich dabei im wesentlichen um folgende Erscheinungen, die in den distal von der Läsionsstelle gelegenen Körperteilen sich einstellen:

α) Auf der Seite der Läsion.

1. Motorische Lähmung.
2. Vasomotorische Lähmung.
3. Störung der Tiefensensibilität.
4. Hyperästhesie für Berührungsreize.

β) Auf der gekreuzten Seite.

5. Störung der Oberflächensensibilität, namentlich für Schmerz- und Temperaturreize.

Durchgehen wir nun die einzelnen Punkte des Syndroms behufs physiopathologischer Erklärung.

1. Gleichseitige motorische Lähmung.

Sie betrifft die aus den caudal von der Läsionsstelle gelegenen Vorderhornzellen innervierten Bezirke. Ihr Zustandekommen macht dem Verständnis keinerlei Schwierigkeiten. Das Gros der zentralen motorischen Bahnen, vor allem die Pyramidenseitenstrangbahn, übermittelt den gleichseitigen spinalen Zentren die Impulse zur willkürlichen Kontraktion. Die Lähmung hat natürlich corticospinalen, d. h. spastischen Charakter. In den vereinzelten Fällen, wo unmittelbar nach der Hemisektion die Reflexe abgeschwächt waren oder fehlten, war dies nur eine

vorübergehende Erscheinung, entweder auf Shock beruhend oder im Sinne des pag. 36 und 37 Ausgeföhrten zu erklären. *Babinskischer, Oppenheimscher oder Mendel-Bechterew'scher Reflex* werden gewöhnlich nachzuweisen sein.

2. Gleichseitige Vasomotorenlähmung.

Die Haut ist in den frischen Stadien gerötet und heißer als auf der anderen Seite. Später verschwindet diese Störung oder es tritt ein chronischer Zustand von Cyanose und Kälte an ihre Stelle. Physiopathologische Erklärung: Unterbrechung der gleichseitigen vasokonstriktorischen Fasern des Seitenstranges (vgl. pag. 23).

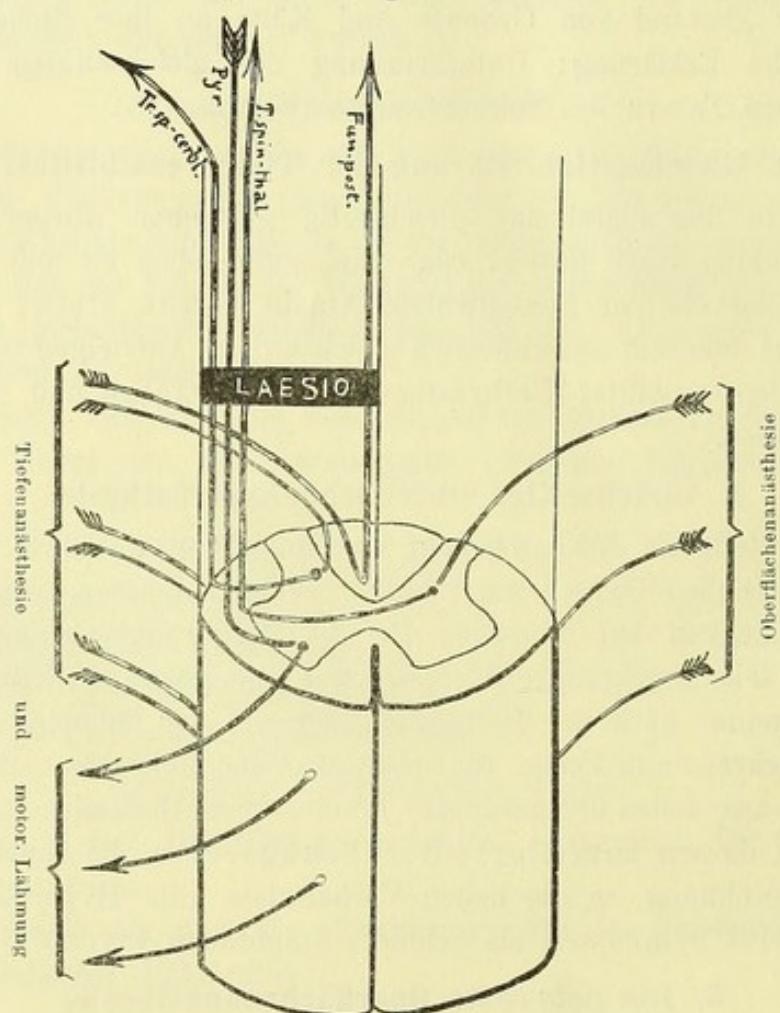
3. Gleichseitige Störung der Tiefensensibilität.

Daß in den distal und gleichseitig gelegenen Körperteilen die Lageempfindung stark gestört oder ganz aufgehoben ist und bei eventueller Wiederkehr der Beweglichkeit Ataxie eintritt, erklärt sich ohne weiteres aus dem fast ausschließlich gleichseitigen Aufsteigen der Bahnen für die Tiefensensibilität (Bathyästhesie): Hinterstränge und spino-cerebellare Bahnen.

4. Gleichseitige Oberflächenhyperästhesie.

Hier steht die Erklärung auf viel unsichereren Füßen und man hat zu zahlreichen Hypothesen Zuflucht nehmen müssen. Am meisten Wahrscheinlichkeit hat folgende: Da die Berührungsempfindung normalerweise teils ungekreuzt (Hinterstränge), teils gekreuzt (Seitenstränge) verläuft, kommt nach der Halbseitenläsion auf der lädierten Seite nur noch die gekreuzte in Frage. Sie erhält also eine Mehrarbeit, die Hinterhornzellen, aus denen der gekreuzte Tractus spino-thalamicus entspringt, übermitteln diesem summierte Berührungsreize, die zunächst, d. h. bis zur Gewöhnung an die neuen Verhältnisse (die Hyperästhesie ist ein passageres Symptom!) als Schmerz empfunden werden.

5. Die gekreuzte Oberflächenanästhesie.

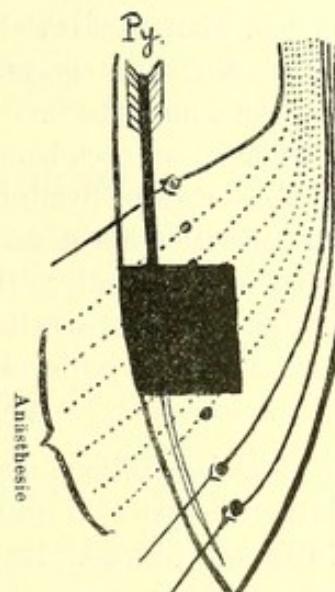

Sie betrifft stets Schmerz- und Temperaturempfindung, was bei deren ausschließlich gekreuzter Leitung leicht verständlich ist. In typischen Fällen ist auch die Berührungsempfindung, jedoch weniger intensiv, alteriert. Auch das erklärt sich aus den anatomisch-physiologischen Bedingungen. Die Tasteindrücke werden teils gekreuzt (wie Seitenstränge), teils ungekreuzt (wie Hinterstränge) gehirnwärts geleitet. — Zuweilen läßt sich aber keine taktile Anästhesie bzw. Hypästhesie nachweisen. Wir müssen annehmen, daß bei solchen Individuen die gleichseitigen Fasern in den Hintersträngen die Fähigkeit haben, außerordentlich rasch

und vollständig die Funktion ihrer untergegangenen Mitarbeiter im gekreuzten Seitenstränge zu übernehmen.

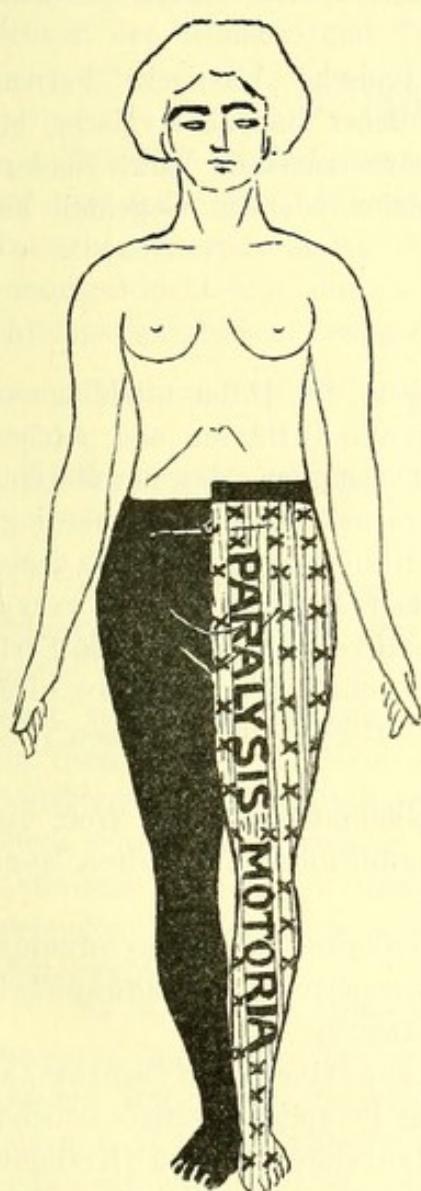
Fig. 9 soll schematisch die wichtigsten Punkte des *Brown-Séquard*-schen Syndroms anatomisch-physiologisch zusammenfassen.

In den meisten Fällen sitzt die Halbseitenläsion im Dorsalmark, wobei man von Hemiparaplegie spricht. Auf einen solchen Fall bezieht

Fig. 9.


Brown-Séquards Symptomenkomplex.

sich die Abbildung 10. Zur schmalen anästhetischen Zone, die in dieser Figur oberhalb des motorisch gelähmten Gebietes zu sehen ist, sei bemerkt, daß sie auf den Wegfall der in das zerstörte Rückenmarksgebiet eintretenden Hinterwurzeln derselben Seite bezogen werden muß.


Sitzt die Affektion im Halsmark, so spricht man von einer „Hemiplegia spinalis“. Mutatis mutandis besteht dabei die gleiche

Verteilung der motorischen und sensiblen Störungen. — Für Halbseitenläsionen im unteren Lendenmarke und im Sakralmark trifft dies jedoch

Fig. 11.

Schema zur Erklärung der ausgedehnten gleichseitigen Anästhesie bei tiefen sitzenden Halbseitenläsionen.

Sensibilitätsstörungen

■ = Oberflächenanästhesie

■■■ = Tiefenanästhesie

■■■■■ = Oberflächenhyperästhesie

Brown-Séquards Symptomenkomplex bei linksseitiger Halbseitenläsion des Rückenmarkes.

nicht zu. Hier sind die einzelnen Segmente so nahe aneinander gedrängt, daß eine Läsion gewöhnlich nur wenig sensiblen Bahnen gestattet, „unter ihr hindurch“ auf die andere Seite zu gelangen. Die Oberflächen-

anästhesie wird deshalb größtenteils auch auf der lädierten und motorisch gelähmten Seite zu finden sein (siehe Fig. 11). — In sehr seltenen Fällen kann es, statt zu einer halbseitigen Zerstörung, zu einer halbseitigen Reizung des Rückenmarkes durch einen pathologischen Prozeß kommen. Man beobachtet dann auf der Seite der Läsion Krampferscheinungen, auf der gegenüberliegenden Seite Schmerzphänome („Spasmodynias cruciata“).

Zum Schluß sei noch bemerkt, daß typische „klassische“ Formen des *Brown-Séguardschen* Syndroms viel seltener sind als atypische, bei denen die Hemisektion nicht in voller Schärfe zustande kam, sondern entweder eine unvollständige Halbseitenläsion oder im Gegenteil ein Übergreifen auf die andere Seite besteht.

ANHANG.

Große Schwierigkeiten macht zuweilen die Differentialdiagnose zwischen intravertebralen Tumoren intramedullären und solchen extramedullären Sitzes. Es gibt kein Symptom, das für die eine dieser Eventualitäten pathognomonisch wäre und die andere unbedingt ausschließe. Immerhin sprechen im allgemeinen folgende Kriterien gegen die Annahme eines intramedullären Tumors und für diejenige eines extramedullären — bei welch letzterem die operative Prognose mit den Fortschritten der Nervenchirurgie bekanntlich eine immer bessere wird:

1. Langsame Entwicklung der motorischen und sensiblen Ausfallserscheinungen.
2. Tendenz der Motilitäts- und Sensibilitätsstörungen, trotz zunehmender Intensität, hinsichtlich ihrer Ausdehnung nach oben lange stationär zu bleiben.
3. Langes Bestehen eines *Brown-Séguardschen* Syndroms.
4. Ein den Ausfallssymptomen vorausgehendes pseudoneuragisches Prodromalstadium (Wurzelschmerzen).*
5. Beträchtliche Intensität des spastischen Symptomenkomplexes, auch nach dem Eintritt volliger Paraplegie weiterbestehend.
6. Vorhandensein motorischer Reizerscheinungen (Krämpfe, Spinalepilepsie).
7. Fehlen oder nur spärliches Vorhandensein von degenerativ-atrophischen Lähmungen.**

* Extramedulläre Geschwülste sitzen meistens an der dorsolateralen Rückenmarksperipherie.

** Dabei ist oft ein auffallendes Mißverhältnis zwischen der Muskelatrophie und den nur geringfügigen Veränderungen der elektrischen Erregbarkeit zu konstatieren.

8. Druckempfindlichkeit der Wirbelsäule.

Andrerseits fällt eine typische und hochgradige dissoziierte Anästhesie für die Annahme einer intramedullären Geschwulst stark in die Wagschale (s. S. 32), während ein bloßes Prävalieren der Schmerz- und Temperatursinnstörung gegenüber den anderen sensiblen Ausfällen auch bei extramedullären Tumoren nicht selten ist (größere Empfindlichkeit der Schmerz- und Temperaturfasern gegen Druck).

B. Höhendiagnostik.

Welches die Aufgaben der Höhendiagnostik sind, wurde bereits auf pag. 3 definiert. Hier sollen aber der Darstellung des eigentlichen Tatsachenmaterials einige Vorbemerkungen allgemeiner Natur vorausgeschickt sein, die uns dessen einheitliche Zusammenfassung und physiopathologisches Verständnis bedeutend erleichtern werden.

KAPITEL I.

Anatomische und physiologische Grundlagen der Höhendiagnostik.

Wie bekanntlich der ganze Körper des Embryos aus einzelnen hintereinander gereihten Teilstücken, Somiten, entsteht, so auch das später zum Rückenmarkwerdende Nervenrohr, so auch das Integument, so auch die Muskulatur. In jedem Somit ist deshalb ein Neurotom, ein Dermatotom, ein Myotom enthalten, die wieder zueinander innige Beziehungen haben. Denn jedes embryonale Rückenmarkssegment gibt durch sein Vorderwurzelpaar den korrespondierenden Muskelsegmenten motorische Fasern ab, und ebenso empfängt es aus dem korrespondierenden Hautsegmente die zentripetal einwachsenden Fasern seiner Hinterwurzeln.

Im entwickelten Organismus verwischen sich in den meisten Organ-systemen die Zeichen der segmentalen Anlage. Dies gilt auch für den größten Teil unserer Muskulatur. Aus vier hintereinanderliegenden Myotomen A, B, C, D können beispielsweise drei Muskeln I, II, III folgendermaßen zusammenwachsen, daß Muskel I aus Teilen von A, B, C u. D besteht, Muskel II aus Teilen von B u. C, Muskel III aus Teilen von B, C u. D. Oder, an einem Einzelfalle erläutert: Der Musc. biceps femoris ist aus Elementen der beiden letzten Lendenmyotome und der beiden ersten Sakralmyotome zusammengewachsen; ebenso der Glutaeus maximus. Semitendinosus und Semimembranosus dagegen nur aus Teilen von L₄, L₅ und S₁; der Tibialis anticus nur aus solchen von L₄ und L₅. Infolge-

dessen werden auch im erwachsenen Organismus der Biceps femoris und der Glutaeus maximus ihre motorischen Nervenfasern aus den Vorderwurzeln der Rückenmarkssegmente L_4-S_2 empfangen, während die „radikuläre Innervation“ von Semitendinosus und Semimembranosus = L_4-S_1 ist, vom Tibialis anticus = L_4-L_5 . Nun findet aber die „periphere Innervation“ der angeführten Muskeln folgendermaßen statt, daß Biceps femoris, Semitendinosus, Semimembranosus und Tibialis anticus vom Nervus ischiadicus (bzw. dessen Ast N. peroneus profundus) — der Glutaeus maximus dagegen vom Nervus glutaeus inferior versorgt wird. Sowohl der Ischiadicus wie der N. glutaeus inferior führen also

Fig. 12.

Radikuläre und periphere Muskelinnervation.

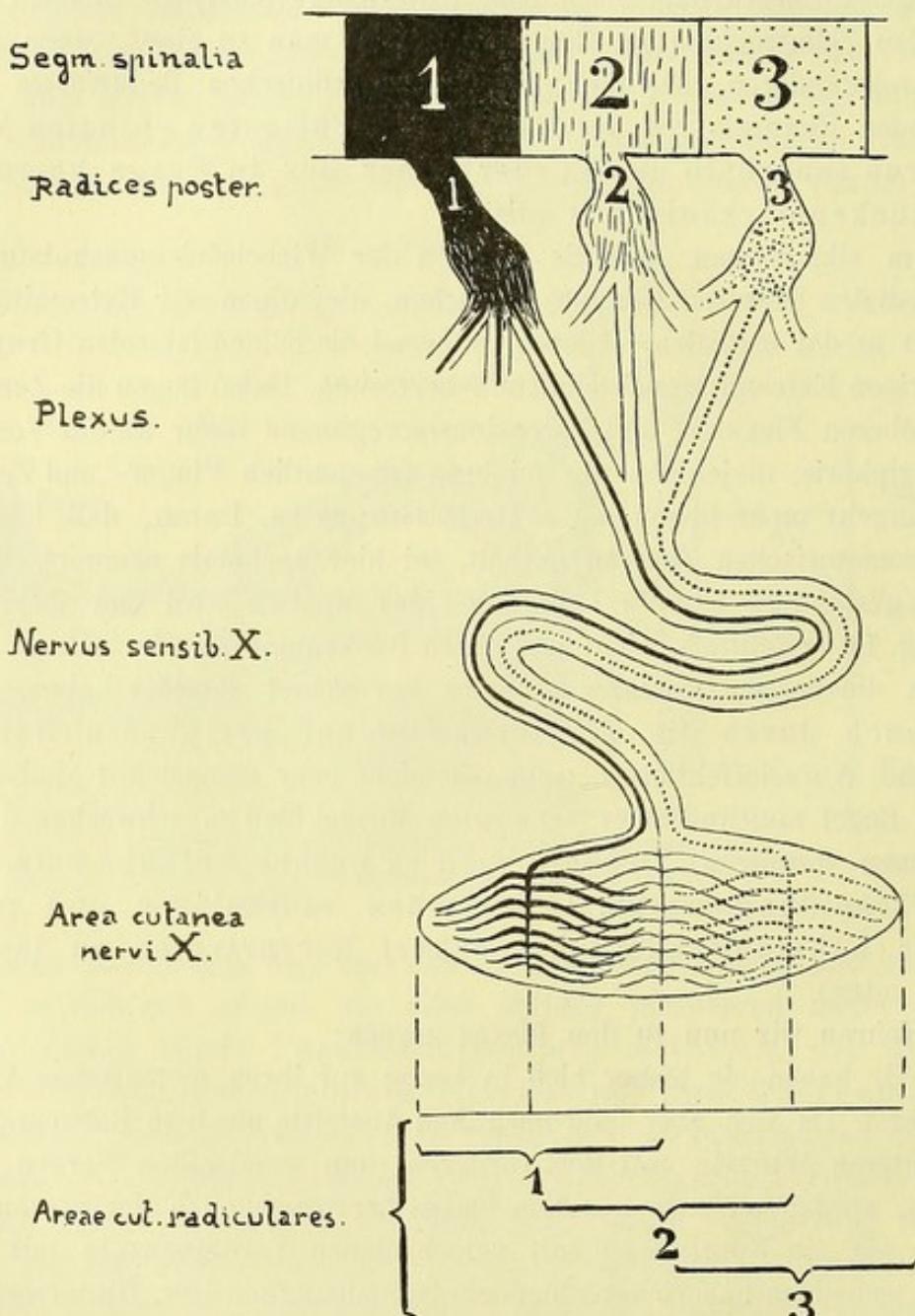
Muskel A aus den Rückenmarkssegmenten 1 und 2,
 " B " " " " 1, 2 und 3.

motorische Fasern aus den spinalen Wurzelpaaren L_4-S_2 und analog verhält es sich mit so gut wie allen übrigen peripheren motorischen Nerven. Jeder führt Fasernkontingente mit sich, die durch Vorderwurzeln verschiedenen Niveaus aus dem Rückenmark austreten; andererseits verteilt sich die Gesamtmasse einer bestimmten Vorderwurzel auf verschiedene periphere Nervenstämmen. Diese im einzelnen oft recht komplizierte Umlagerung findet in den sogenannten Plexus statt, deren Einzelheiten aus jedem anatomischen Lehrbuche zu ersehen sind. Hier sei nur eine grobschematische Darstellung des Prinzips der radikulären und peripheren motorischen Innervation gegeben (Fig. 12).

Aus diesem Schema ist auch ersichtlich, wie die Zentren für die einzelnen Muskeln auf dem Längsschnitte der grauen Substanz des

Rückenmarkes sich als neben- und untereinander liegende Kernsäulen darstellen. Diese Säulen sind es, die auf dem Querschnittsbilde als die Zellgruppen imponieren, die wir bereits oben (pag. 14 u. 15) kennen gelernt haben. Durch das Studium der nach Amputationen, nach experimentellen Nervenzerstörungen oder nach dem Untergange einzelner Muskeln auftretenden Zellatrophien im Rückenmark ist man zu einer, wenn auch nicht vollständigen, so doch für unsere klinischen Bedürfnisse hinreichenden Kenntnis von der Lage der wichtigsten spinalen Muskelkerne innerhalb des Vorderhorns des in Frage kommenden Rückenmarksniveaus gelangt.

Im allgemeinen sind die Zentren der Wirbelsäulenmuskulatur in der medialen hinteren Gruppe zu suchen, diejenigen der Extremitätenwurzeln in der medialen vorderen, während die beiden lateralen Gruppen die übrigen Extremitätenabschnitte beherrschen. Dabei liegen die Zentren der größeren Flexions- und Extensionsbewegungen mehr an der Vorderhornperipherie, diejenigen der feineren (namentlich Finger- und Zehbewegungen) mehr gegen die zentrale Gruppe zu. Daran, daß letztere die vasomotorischen Zentren enthält, sei hier nochmals erinnert.


Vollständige schlaffe Lähmung eines Muskels wird nun aber, wie aus Fig. 12 ersichtlich, nicht nur durch Rückenmarksherde bedingt sein können, die dessen gesamtes spinale Kerngebiet zerstört haben, sondern auch durch die Zerstörung seiner peripheren Nerven (während Wurzelaffektionen, wenn sie nicht sehr ausgedehnt sind, den in der Regel multiradikulär versorgten Muskel bloß zu schwächen, nicht zu lähmen vermögen). Deshalb wird es unsere Aufgabe sein, die Unterscheidungsmerkmale zwischen radikulärer und peripherer Lähmung möglichst scharf hervortreten zu lassen (siehe unten).

Kehren wir nun zu den Plexus zurück:

Wir haben sie bisher bloß in bezug auf ihren motorischen Anteil betrachtet. Da sich aber bald nach dem Austritte aus dem Rückenmark die hinteren Wurzeln mit den vorderen zum gemischten Nerven vereinigen, werden auch die aus dem Plexus hervorgehenden Nervenstämme, ebenso wie sie Kontingente aus verschiedenen Vorderwurzeln mit sich führen, sensiblen Fasern verschiedener Spinalganglien bzw. Hinterwurzeln zur Bahn dienen. Ein einzelnes Spinalganglion sendet ferner, ebenso wie ein einzelnes Vorderhornzentrum seine Fasern in verschiedene periphere Nerven hinein. Nun kommt aber ein großer Unterschied: Während nämlich der Muskel als eine funktionelle Einheit in Aktion tritt, somit nicht etwa ein bestimmter Teil desselben gelähmt sein wird,

wenn einzelne der ihm zugeteilten Vorderwurzeln zugrunde gehen, stoßen wir bei der Hautinnervation auf andere Verhältnisse.

Fig. 13.

Radikuläre und peripherie Hautinnervation.
Man beachte die Überlagerung der benachbarten Wurzelfelder.

Unbekümmert um die oft komplizierten Wege, welche sie mit dem peripheren Nervenstamme eingeschlagen haben, lagern sich an der

äußersten Peripherie die sensiblen Fasern immer so, daß der einer bestimmten Rückenmarkswurzel entstammende Komplex ein zusammenhängendes Gebiet versorgt. Dieses Gebiet heißt „radikuläre Zone“, „Wurzelfeld“. In ihm kommen also die ursprünglich in einer Hinterwurzel vereinten sensiblen Fasern wieder zusammen, auch wenn sie durch verschiedene periphere Nerven zur Hautoberfläche gezogen sind. Nach dem eben Gesagten sollte somit die Zerstörung einer einzigen Hinterwurzel eine scharf begrenzte Anästhesie der Haut hervorrufen. Tatsächlich ist dies nicht der Fall, da die einzelnen Wurzelfelder einander gleichsam dachziegelartig überdecken, so daß jede Stelle der Haut von zwei hinteren Wurzeln innerviert ist. Erst bei Zerstörung zweier benachbarter Hinterwurzeln (oder Spinalganglien) tritt eine „radikuläre Anästhesie“ auf. Wird aber ein peripherer Nerv durchtrennt, so ergibt sich eine Aufhebung der Hautsensibilität von ganz anderer Topographie, vom sogenannten „peripheren Typus“, d. h. die Anästhesie findet sich im gesamten Ausbreitungsbezirke des lädierten Nervenstammes, setzt sich gleichsam mosaikartig aus Teilen der verschiedenen im Nervenstamm vertretenen Wurzelfelder zusammen. Es versteht sich deshalb von selbst, daß die radikuläre Hautinnervation viel einfachere Verhältnisse darbieten muß als die periphere.

Auch hier soll ein Schema das Ausgeführte veranschaulichen (Fig. 13).

KAPITEL II.

1. Segmentdiagnose der motorischen Lähmung (nebst Differentialdiagnose zwischen radikulärer und peripherer Lähmung).

Nach den Vorbemerkungen im vorhergehenden Kapitel bedürfen die folgenden Tabellen, in denen wir nach der neuesten Zusammenstellung *E. Villigers* die radikuläre Innervation der Muskulatur mitteilen, keines weiteren Kommentars.

Es ist aus diesen Tabellen ohne weiteres abzulesen, welche Muskellähmungen bei einem Krankheitsherde zu erwarten sind, der die Vorderhörner bzw. Vorderwurzeln bestimmter Rückenmarkssegmente zerstört hat.

Zur Unterscheidung dieser „radikulären Lähmungen“ von solchen peripheren Ursprungs (die also nicht durch den Untergang motorischer Wurzeln, sondern durch denjenigen peripherer Nervenstämme und Nervenäste zustande kommen) ist es notwendig, auch die Verhältnisse

Segmentinnervation der Rumpfmuskeln

Cervicalsegmente					Thoracalsegmente					Lumbalsegmente					Sacralsegmente					Coc.				
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5

Lange tiefe Rückenmuskeln

Levato. tiefe Nackenm.	Hipotenius	Horvat. post. sup.	Serrat. post. inf.	Levator u. Sph. ani. Darmm. M. coccyg.
Trapezius		Latissim.		
	Levato. sup.			

Longus capitis	Longus coll.
	Scaleni

Pectoral. maj.
Scalen.
Horvat. ant.

Rectus abdominis
Obliqu. ext. abdom.

Quadratus lumbi.
Levator u. Sph. ani. Darmm. M. coccyg.

Diaphragma
Intercostalmuskulatur

Segmentinnervation der Armmuskeln					
	Cervicalsegmente				Thoracalsegm.
	5	6	7	8	1
Schulter	Supraspinat.				
	Teres min.				
	Deltoideus				
	Infraspinatus				
	Subscapularis				
	Teres major				
Oberarm	Biceps				
	Brachialis				
	Coracobrachialis				
	Triceps brach.				
Vorderarm	Anconaeus				
	Supinator long.				
	Supinator brevis				
	Extensor carpi radial.				
	Pronator teres				
	Flexor carpi radial.				
	Flexor pollie. long.				
	Abduct. poll. long.				
	Extens. poll. brev.				
	Extens. poll. long.				
	Extens. digit. comm.				
	Extens. indicis prop.				
Hand	Extens. carpi uln.				
	Extens. dig. V prop.				
	Flex. digitor. sublimis				
	Flex. digitor. profund.				
	Pronator quadrat.				
	Flexor carpi uln.				
	Palmaris long.				
	Abduct. poll. brev.				
	Flex. poll. brev.				
	Opponens poll.				
	Flexor digit. V				
	Opponens dig. V				
	Adduct. poll.				
	Palmaris brev.				
	Abductor dig. V				
	Lumbrales				
	Interossei				

Segmentinnervation der Beinmuskeln								
	Th ₁₂	L ₁	L ₂	L ₃	L ₄	L ₅	S ₁	S ₂
Hüfte				Ileopsoas				
					Tensor fasciae			
					Glutaeus medius			
					Glutaeus minim.			
					Quadratus femoris			
					Gemellus inferior			
					Gemellus super.			
					Glutaeus maxim.			
					Obturator intern.			
					Piriformis			
Oberschenkel				Sartorius				
				Pectineus				
				Adduct. long.				
				Quadriceps				
				Gracilis				
				Adductor brevis				
				Obturator ext.				
				Adduct. magn.				
				Adduct. minim.				
				Articularis gen.				
				Semitendinosus				
				Semimembranosus				
				Biceps femoris				
Unterschenkel				Tibialis ant.				
				Extensor halluc. long.				
				Popliteus				
				Plantaris				
				Extensor digit. long.				
				Soleus				
				Gastrocnemius				
				Peroneus longus				
				Peroneus brevis				
				Tibialis postic.				
				Flexor dig. long.				
				Flexor halluc. long.				
Fuß				Extensor halluc. brev.				
				Extensor digit. brevis				
				Flex. dig. brev.				
				Abduct. hall.				
				Flex. halluc. brev.				
				Lumbricales				
				Abduct. hall.				
				Abduct. dig. V				
				Flexor dig. V br.				
				Opponens dig. V				
				Quadrat. plant.				
				Interossei				

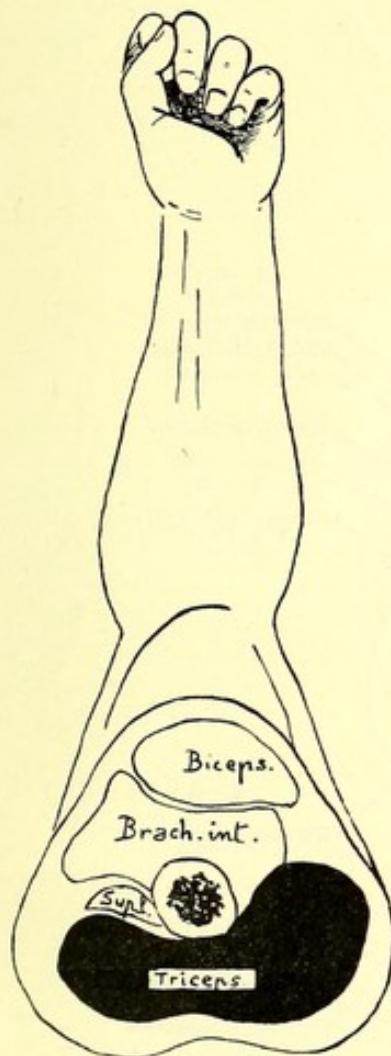
der peripheren Innervation im Auge zu behalten, wie wir sie in den folgenden Tabellen zusammengestellt haben. In deren erster Kolonne findet sich die Bezeichnung der einzelnen peripheren Nerven, in der zweiten diejenige der von ihnen versorgten Muskeln, in der dritten führen wir die durch die letzteren vermittelten Bewegungen an. Die Ausführbarkeit bzw. Unmöglichkeit solcher Bewegungen zeigt uns eben die Funktionstüchtigkeit bzw. Lähmung der betreffenden Muskeln an. Die Prüfung hat sich natürlich sowohl auf willkürliche als auf elektrisch ausgelöste Muskelkontraktionen zu erstrecken. Zu letzterem Zwecke ist die Kenntnis der elektrischen Reizpunkte notwendig, für welche auf die Werke bzw. Lehrbuch-Kapitel über Elektrodiagnostik verwiesen sei.

A. Plexus cervicalis (C ₁ —C ₄)		
Nervi cervicales	Musculi profundi colli	Beugung, Streckung, Wendung des Halses.
	Mm. scaleni	Hebung der Rippen (Inspiration).
N. phrenicus	Diaphragma	
	Inspiration.	
B. Plexus brachialis (C ₅ —Th ₂)		
N. thoracic. ant.	M. pect. maj. et min.	Adduction und Senkung des Armes nach vorn.
N. thoracic. long.	M. serrat. ant. maj.	Fixation der Scapula beim Heben des Armes.
N. dorsalis scap.	M. levator scapul. Mm. rhomboidei.	Hebung der Scapula.
N. suprascap.	M. supraspinatus	Hebung der Scapula nach innen.
N. subscapul.	M. infraspinatus M. latissimus dors. M. teres major	Hebung und Außenrotation des Armes.
N. axillaris s. circumflexus.	M. subscapularis M. deltoideus M. teres minor	Außenrotation des Armes. Innenrotation und Adduction des Armes nach hinten. Innenrotation des Armes. Hebung des Armes bis zur Horizontalen. Außenrotation des Armes.

N. musculocut.	M. biceps brach.	Beugung und Supination des Vorderarmes.
	M. coracobrachialis	Hebung und Adduction des Vorderarmes.
N. medianus	M. brachialis int.	Beugung des Vorderarmes.
	M. flexor carpi rad.	Beugung und Radialflexion der Hand.
	M. palm. long.	Beugung der Hand.
	M. flex. digit. sublim.	Beugung der Mittelphalangen der Finger II—V.
	M. flex. poll. long.	Beugung der Endphalange des Daumens.
	M. flex. digit. prof. (radiale Hälfte).	Beugung der Endphalangen der Finger II und III.
	M. pronator teres	Pronation.
	M. abduct. poll. brev.	Abduction des Metacarpus I.
	M. flex. poll. brev.	Beugung der Grundphalange des Daumens.
	M. opponens poll.	Opposition des Metacarpus I.
N. ulnaris	M. flexor carpi uln.	Beugung und Ulnarflexion der Hand.
	M. flex. digit. prof. (ulnare Hälfte)	Beugung der Endphalangen der Finger IV und V.
	M. adductor poll.	Adduction des Metacarpus I.
	Mm. hypotenaris	Abduktion, Opposition, Beugung des Kleinfingers.
	Mm. lumbricales	Beugung der Grundphalangen, Streckung der übrigen.
	Mm. interossei	Dasselbe; außerdem Spreizung und Schließung der Finger.
	M. triceps brach.	Streckung des Vorderarmes.
Nervus radialis	M. supin. longus	Beugung* des Vorderarmes.
	M. extensor carpi rad.	Extension und Radialflexion der Hand.
	M. extensor digit. comm.	Streckung der Grundphalangen der Finger II—V.

* Die Bezeichnung „Supinator longus“ ist insofern als inkorrekt zu bezeichnen, als, wie aus elektrischen Reizversuchen hervorgeht, dem Muskel keine Supinations-, sondern sogar eine leichte Pronationswirkung zukommt. Vorzuziehen wäre deshalb die den Anatomen geläufige, bei den Klinikern jedoch ungebräuchliche Bezeichnung „Brachioradialis“.

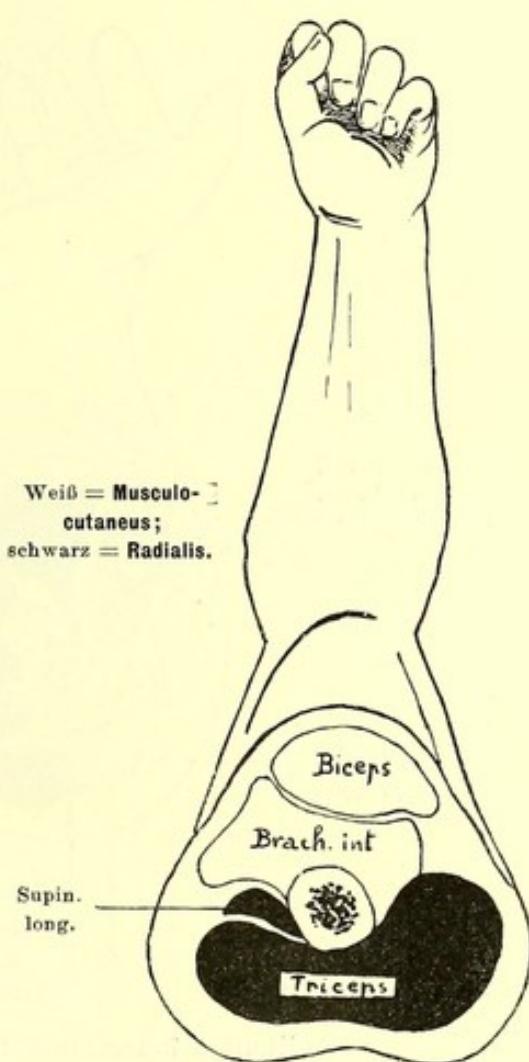
Nervus radialis	M. extensor digit. V. prop.	Streckung der Grundphalange des Kleinfingers.
	M. extensor carpi uln.	Extension und Ulnarflexion der Hand.
	M. supinator brevis	Supination des Vorderarmes.
	M. abduct. poll. longus	Abduction des Metacarpus I.
	M. extensor poll. brevis	Streckung der Grundphalange des Daumens.
	M. extensor poll. longus	Abduction des Metacarpus I und Streckung der Endphalange des Daumens.
	M. extensor indic. prop.	Streckung der Grundphalange des Zeigefingers.
C. Nervi thoracales	Mm. thoracis et abdominis	Hebung der Rippen, Expiration, Bauchpresse etc.
D. Plexus lumbalis. (Th ₁₂ —L ₄)		
Nerv. cruralis	M. ileo-psoas	Beugung der Hüfte.
	M. sartorius	Innenrotation des Unterschenkels.
Nerv. obturatorius	M. quadriceps	Streckung des Unterschenkels
	M. pectineus	Adduktion des Oberschenkels.
	M. adductor longus	
	M. adductor brevis	
	M. adductor magnus	
	M. gracilis	
	M. obturator extern.	Adduktion und Außenrotation des Oberschenkels.
E. Plexus sacralis (L ₅ —S ₅)		
N. glutaeus sup.	M. glutaeus med.	Abduction und Innenrotation des Oberschenkels.
	M. glutaeus min.	
	M. tens. fasciae latae.	Beugung des Oberschenkels.
	M. pyriformis	Außenrotation des Oberschenkels.
N. glutaeus inf.	M. glutaeus max.	Streckung des Oberschenkels.


N. ischiadicus	M. obturator int.	Außenrotation des Oberschenkels.
	Mm. gemelli	
	M. quadratus fem.	
	M. biceps femoris	Beugung des Unterschenkels.
	M. semitendinosus	
	M. semimembranosus	
a) N. peroneus.		
z) prof.	M. tibialis ant.	Dorsalflexion und Supination des Fußes.
	M. extens. digit. long.	Streckung der Zehen.
	M. extens. hall. long.	Streckung der Großzehe.
	M. extens. digit. brev.	Streckung der Zehen.
	M. extens. hall. brev.	Streckung der Großzehe.
β) superf.		
b) N. tibialis	Mm. peronei	Dorsalflexion und Pronation des Fußes.
	M. gastrocnemius	Plantarflexion des Fußes.
	M. soleus	
	M. tibialis post.	Adduction des Fußes.
	M. flex. digit. long.	Beugung der Endphalangen II—V.
	M. flex. halluc. long.	Beugung der Endphalange I.
	M. flex. digit. brev.	Beugung der Mittelphalangen II—V.
	M. flex. halluc. brev.	Beugung der Mittelphalange I.
	Musculi plantares pedis reliqui	Spreizung, Schließung und Grundphalangenbeugung der Zehen.
N. pudendus	Mm. perinei et sphincteres	Verschluß der Beckenorgane, Mitwirkung beim Sexualakt.

Es ist nun folgendes klar: Ist eine Gruppe von Muskeln gleichzeitig gelähmt, die von demselben peripheren Nerven versorgt wird, so haben wir eine periphere Lähmung anzunehmen; handelt es sich aber um eine Muskelgruppe gleicher radikulärer Innervation, so deutet dies auf den spinalen Sitz der Läsion.

In den Abbildungen 14—21 haben wir die wichtigsten Muskeln unserer Extremitäten auf einem idealen Querschnitte des Oberschenkels,

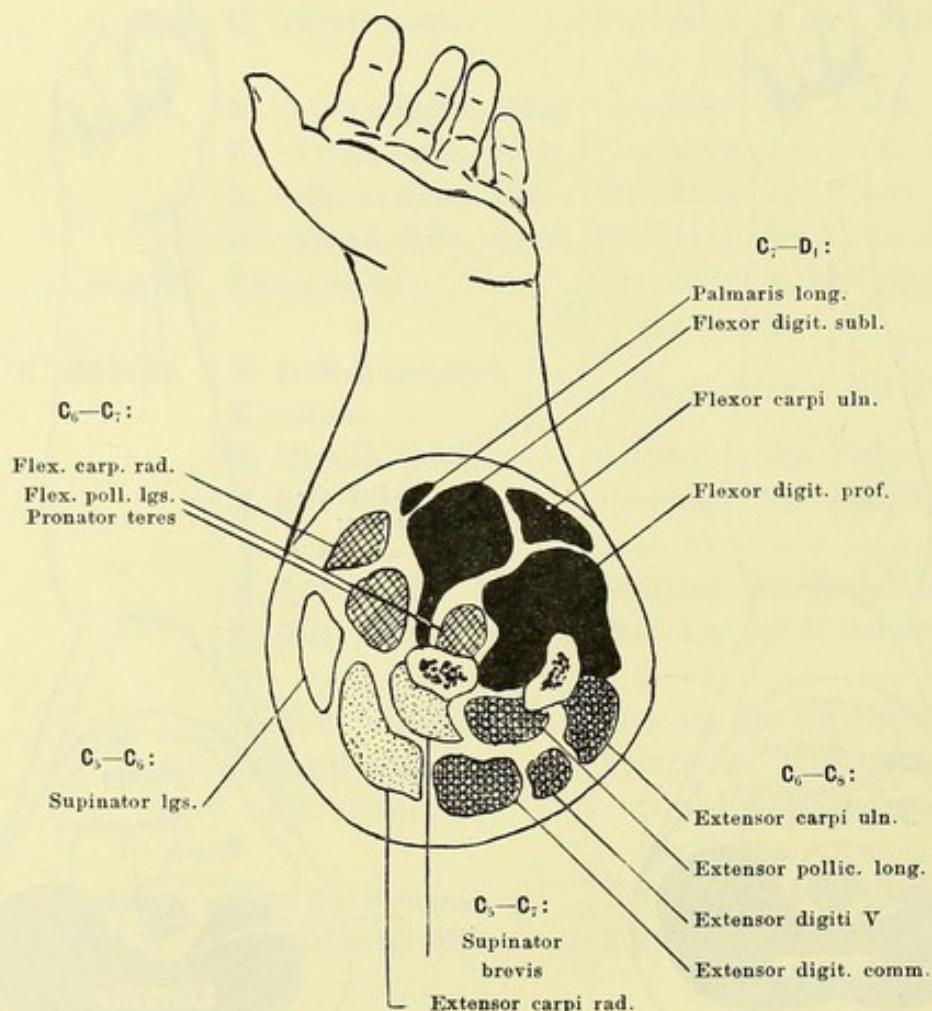
Unterschenkels, Oberarmes, Unterarmes eingetragen und durch verschiedene Schraffierung etc. die einzelnen Muskelgruppen markiert, wie sie sich einerseits aus der radikulären, andererseits aus der peripheren Innervation ergeben.


Fig. 14.

Radikuläre Innervation der
Oberarmmuskeln.

Weiß = C_5-C_6 ; schwarz = C_6-C_8 .

Fig. 15.

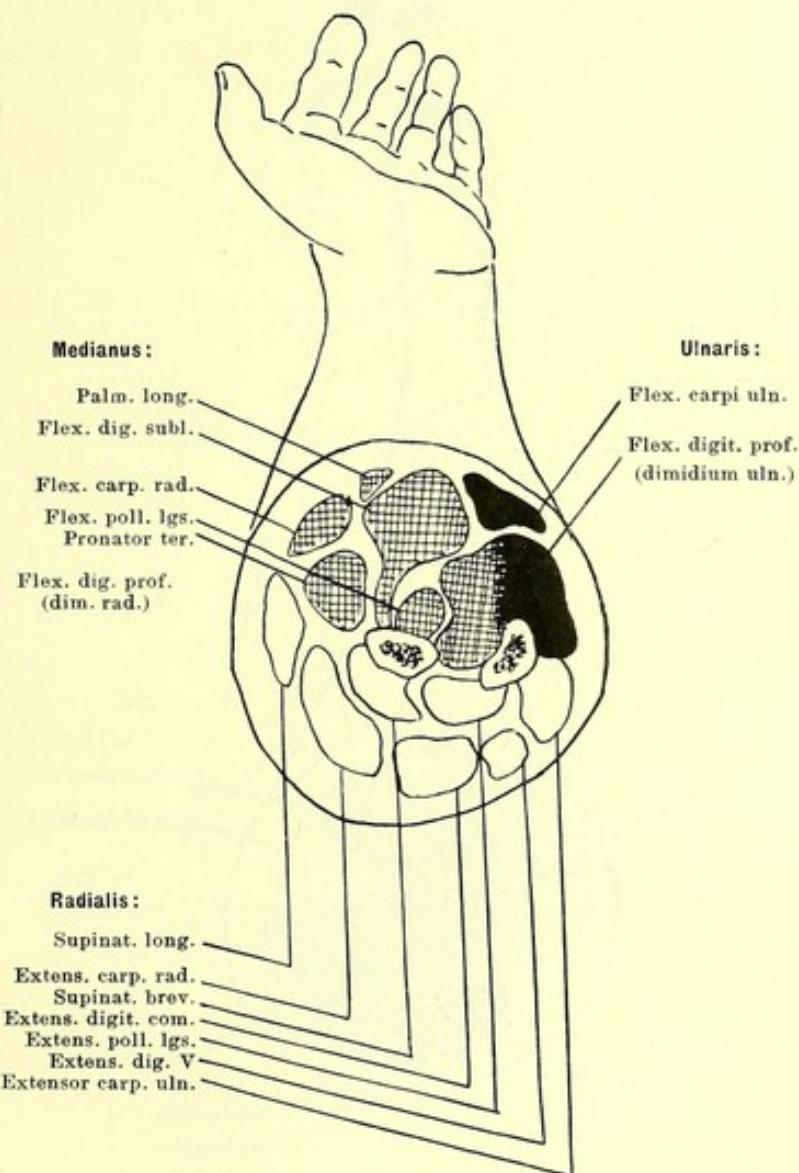


Periphere Innervation der Oberarm-
muskeln.

Als spezielle Beispiele führen wir noch an: Bei einer Radialis-lähmung sind am Vorderarm die Handgelenk- und Fingerstrekker gemeinschaftlich mit dem Supinator longus betroffen, dagegen beim so genannten „Vorderarmtypus der spinalen Lähmung“ sind Strecker

und Beuger des Handgelenks und der Finger gemeinschaftlich gelähmt, während in der Regel gerade der Supinator longus, weil dessen radikuläre Innervation bis ins 5. Cervicalsegment des Rückenmarkes herau-reicht, verschont bleibt. Ferner kommt die isolierte Deltoideus- und Teres minor-Lähmung als Ausdruck einer peripheren Nervenerkrankung

Fig. 16.

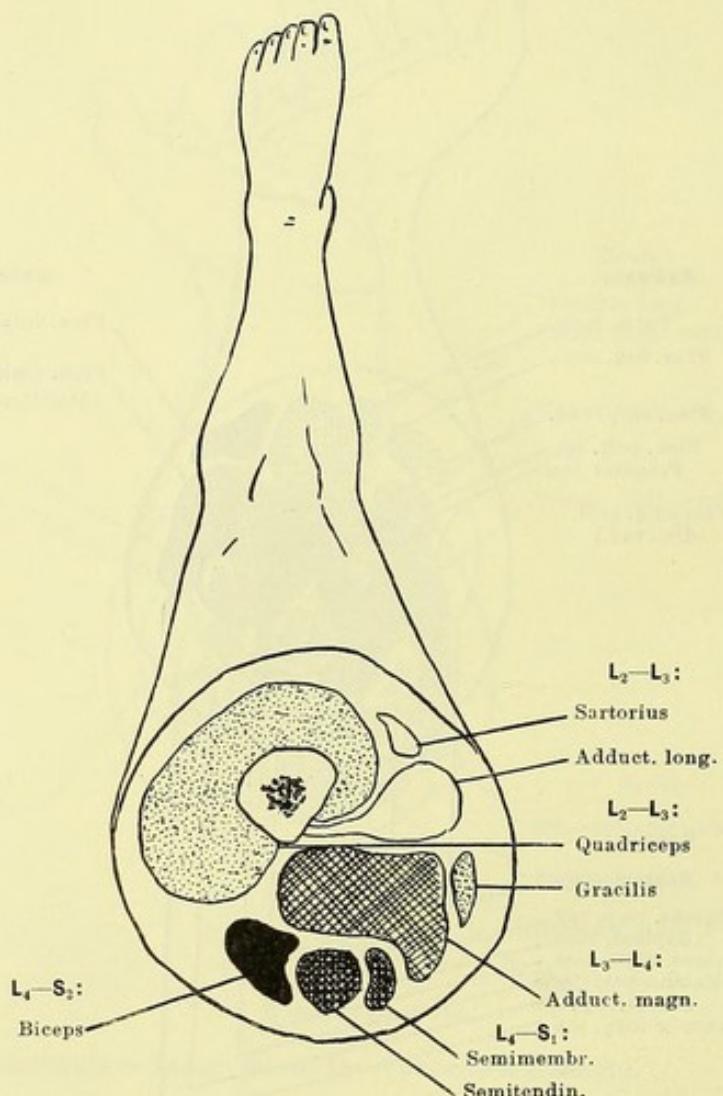


Radikuläre Innervation der Vorderarmmuskeln.

oder -Verletzung (derjenigen des infolge seines Verlaufes um den Humerus schädigenden Einflüssen besonders zugänglichen Nervus circumflexus) relativ häufig zur Beobachtung. Es kann sich dabei sogar um ausschließliche Lähmung des Deltoideus handeln, da der Teres minor auch aus dem N. suprascapularis Fasern erhält. Niemals entsteht diese zirkumskripte Paralyse jedoch durch spinale Affektionen, wo (man spricht

vom „Oberarmtypus“) auch die Schulterblattmuskeln, der Biceps und der Supinator longus mitbetroffen sind. Dieser Oberarmtypus kann, außer durch einen in C₅ und C₆ sitzenden spinalen bzw. radikulären

Fig. 17.

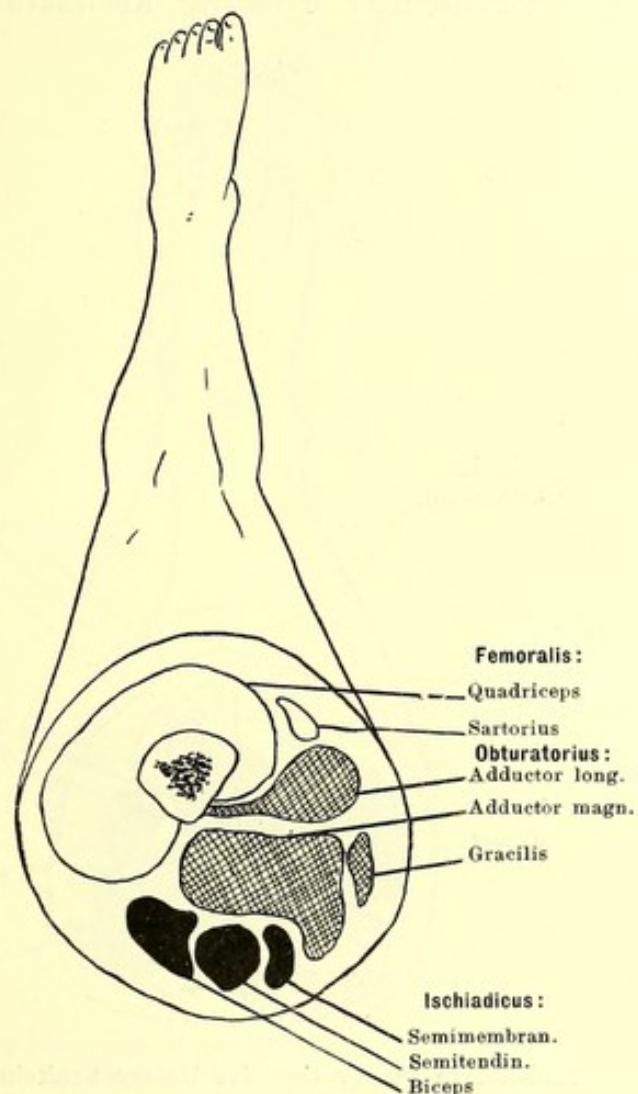


Peripherie Innervation der Vorderarmmuskeln.

Herd, auch durch die Läsion des primären Plexusstammes realisiert werden, der (sehr oberflächlich gelegen und leicht Traumen ausgesetzt) aus der Vereinigung jener beiden Wurzeln entsteht. Man spricht dann von der „*Duchenne-Erbischen Plexuslähmung*“.

Analog den soeben namhaft gemachten Typen redet man bei den spinalen Lähmungen — je nach dem vorwiegend betroffenen Extremitätenabschnitt — von einem Hand-, Oberschenkel-, Unterschenkel- und Fußtypus.

Fig. 18.

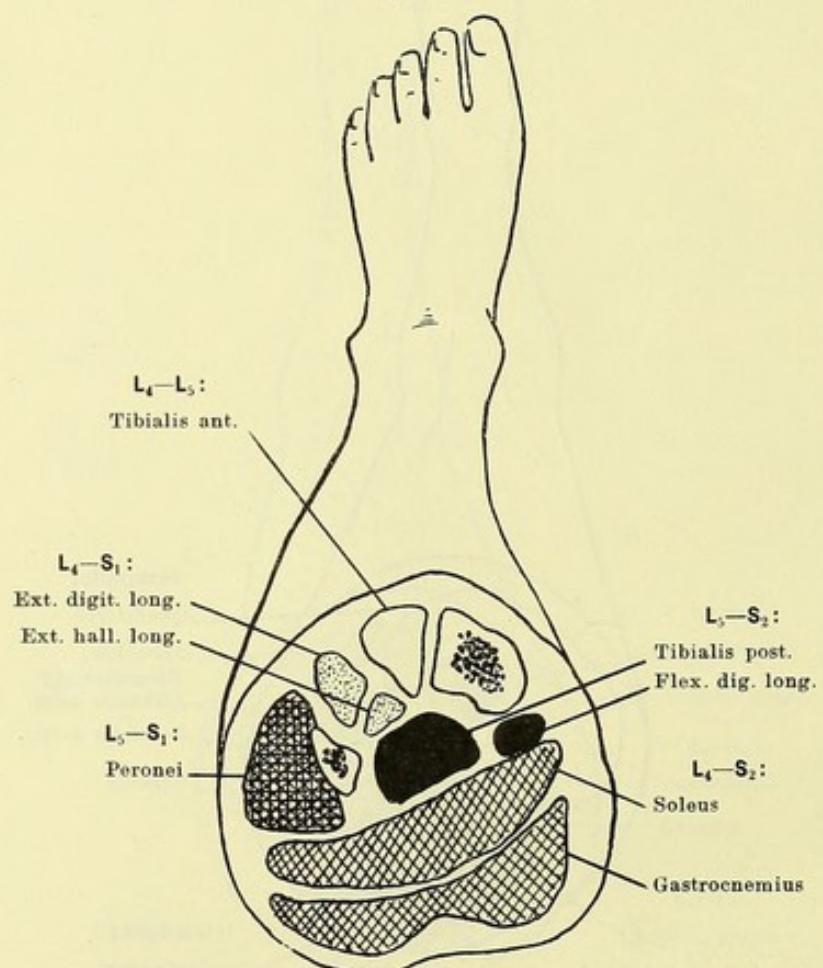


Radikuläre Innervation der Oberschenkelmuskulatur.

Wo es sich nicht nur um eine Zerstörung der spinalen Muskelzentren (also der Vorderhörner), sondern um eine solche der corticospinalen Neurone an einer bestimmten Stelle des Rückenmarkes handelt, werden (wie schon oben pag. 26 ausgeführt) natürlich nicht nur die

vom betreffenden Nerven aus radikulär versorgten Muskeln gelähmt sein, sondern auch alle diejenigen, zu denen die Vorderwurzeln der distal von der Läsion gelegenen Rückenmarkspartie gelangen. Aus den Tabellen auf pag. 48—50 läßt sich für jede supponierte Querschnittsläsion

Fig. 19.

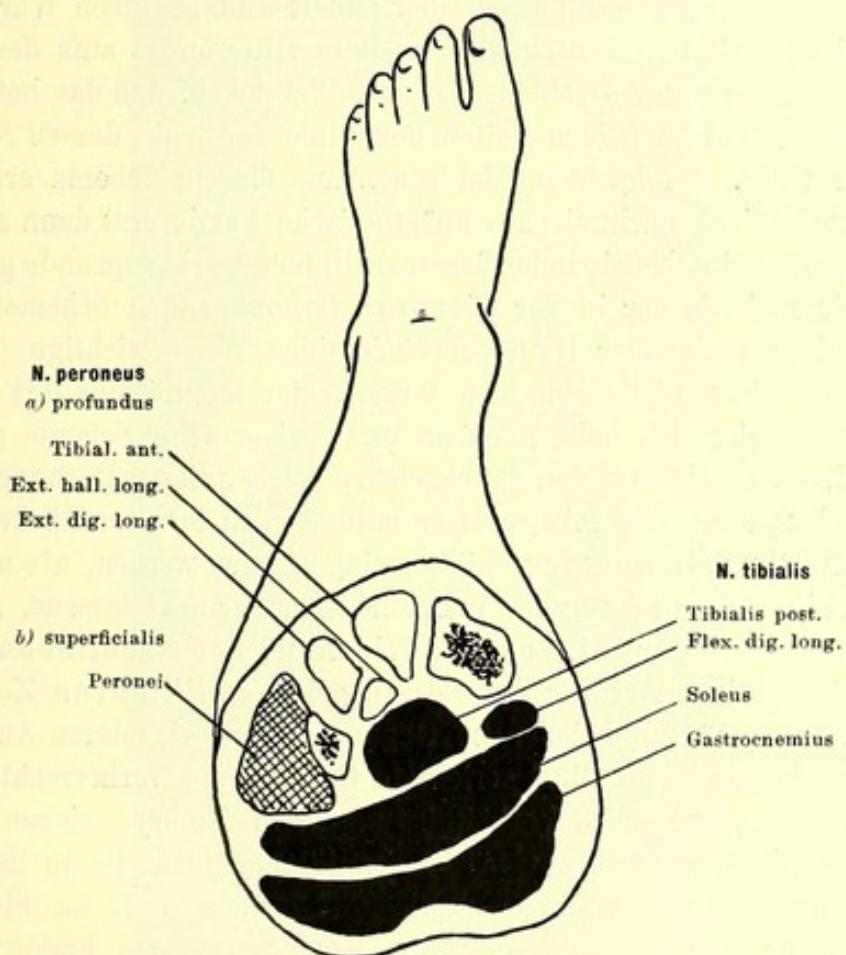

Periphere Innervation der Oberschenkel-muskulatur.

der Komplex der (rechts von der betreffenden Segmentkolonne und innerhalb derselben verzeichneten) Muskeln ablesen, die dabei der Lähmung verfallen müssen. Beim klassischen Falle der Rückenmarksverletzung durch Luxation oder Fraktur der Wirbelsäule, eventuell auch

durch Pottsche Spondylitis kommen freilich außer jener Lähmung noch Reizzustände der unmittelbar oberhalb der Läsion gelegenen Partie für den klinischen Aspekt in Betracht.

So kann es zu irritativer Hyperfunktion bestimmter spinaler Zentren, zur Kontraktur der von ihnen versorgten Muskeln und zu äußerst charakteristischen Zwangshaltungen der Extremitäten kommen. (Bei gleichzeitiger irritativer Kontraktur von Antagonisten

Fig. 20.


Radikuläre Innervation der Unterschenkelmuskeln.

prävalieren die von Haus aus kräftigeren Muskeln.) Einige Beispiele mögen dies illustrieren:

Bei Querschnittsläsionen im obersten Thorakalsegmente kann man bei sonst freier Beweglichkeit der Arme die Hand in Krallenstellung kontrakturiert finden. Dies beruht auf einer Reizung der vorwiegend vom untersten Cervicalmark aus innervierten Fingerbeuger. Bei Zerstörung des siebenten Cervicalsegments wird in der Regel der Vorder-

arm zwangsläufig in halber Beugung gehalten; es sind eben die unmittelbar oberhalb der Läsion gelegenen Biceps- und Brachialiszentren gereizt. Bei einer Läsion in C_6 erklärt sich die oft zu konstatierte forcierte Abduktion und Außenrotation der Arme aus dem Reizzustand der unmittelbar oberhalb gelegenen Vorderhornkerne für Supraspinatus, Teres minor, Deltoides und Infraspinatus etc. Eine besondere typische

Fig. 21.

Periphere Innervation der Unterschenkelmuskeln.

Erscheinung ist ferner die Flexionskontraktur der Hüfte (Reizzustand in den Ileopsoaszentren) bei Zerstörung des unteren Lumbalmarks.

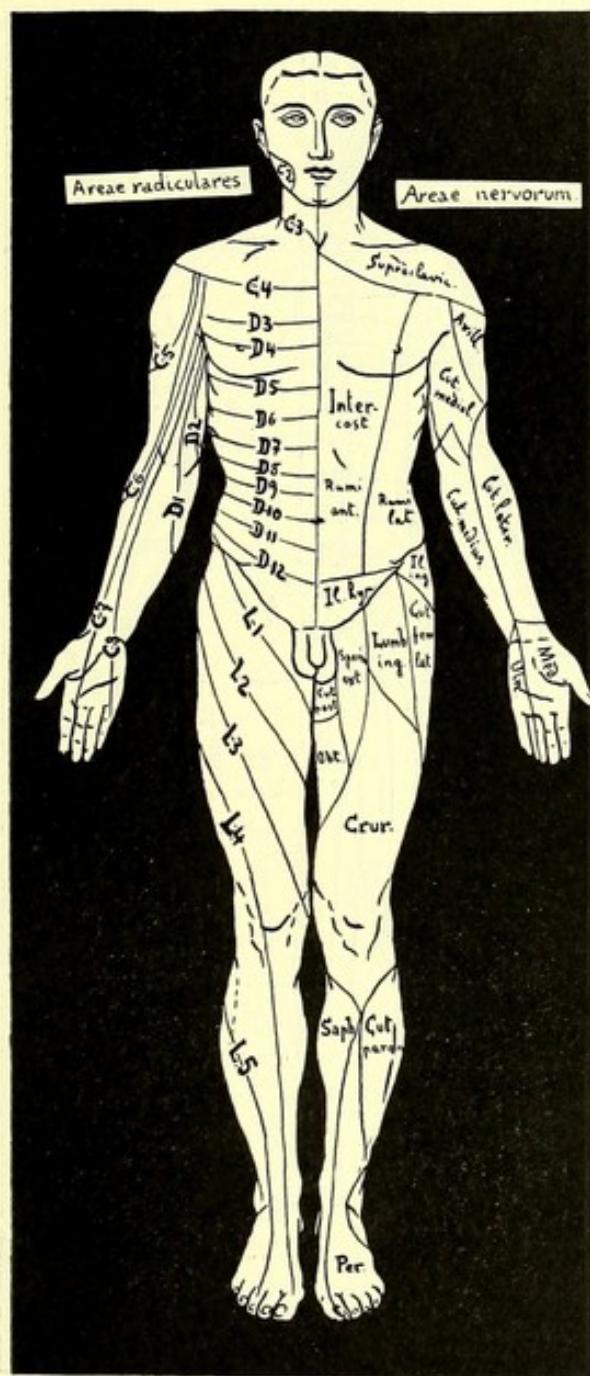
Daß bei unvollständiger Querschnittsläsion des Cervicalmarkes die Paraplegie der Arme diejenige der Beine an Intensität zuweilen übertrifft, wird dadurch erklärt, daß im Seitenstrange die Pyramidenfasern für die oberen Extremitäten exzentrischer, d. h. exponierter, liegen sollen, als diejenigen für die unteren.

2. Segmentdiagnose der Sensibilitätsstörungen (nebst Differentialdiagnose zwischen radikulärer und peripherer Sensibilitätsstörung).

Noch viel prägnanter als in bezug auf die Motilität gestalten sich bei den Sensibilitätsstörungen die Unterschiede zwischen denjenigen peripherer und denjenigen spinaler bzw. radikulärer Ätiologie. Die Abbildungen 22 und 23, bei denen auf der einen Seite die Hautareale der einzelnen Nervenstämme, auf der anderen die sensiblen Wurzelfelder eingezeichnet sind, veranschaulichen diese Differenzen aufs deutlichste. Die Darstellung der Wurzelfelder ist so zu verstehen, daß das betreffende radikuläre Areal zu beiden Seiten der Linie liegt, die dessen Segmentnummer trägt. Infolgedessen ist schon aus diesem Schema ersichtlich, daß eine klinisch nachweisbare anästhetische Partie erst dann auftreten wird, wenn zwei nebeneinander liegende Hinterwurzeln zugrunde gegangen sind. Die meisten der in der Literatur vorkommenden Schemen für die Segmentinnervation der Haut berücksichtigen diese wichtige Tatsache nicht und zeichnen die einzelnen Wurzelfelder bandförmig mit scharfer Begrenzung ein. Ich habe mich an das *Edingersche Schema* gehalten, das weitaus am besten den tatsächlichen Verhältnissen Rechnung trägt.

Bei operativen Eingriffen muß auf den Sitz der Rückenmarksaffektion stets ein Segment höher eingegangen werden, als man, die gegenseitige Überdeckung der Wurzelfelder außer acht lassend, aus der oberen Grenze der total anästhetischen Partie schließen würde.

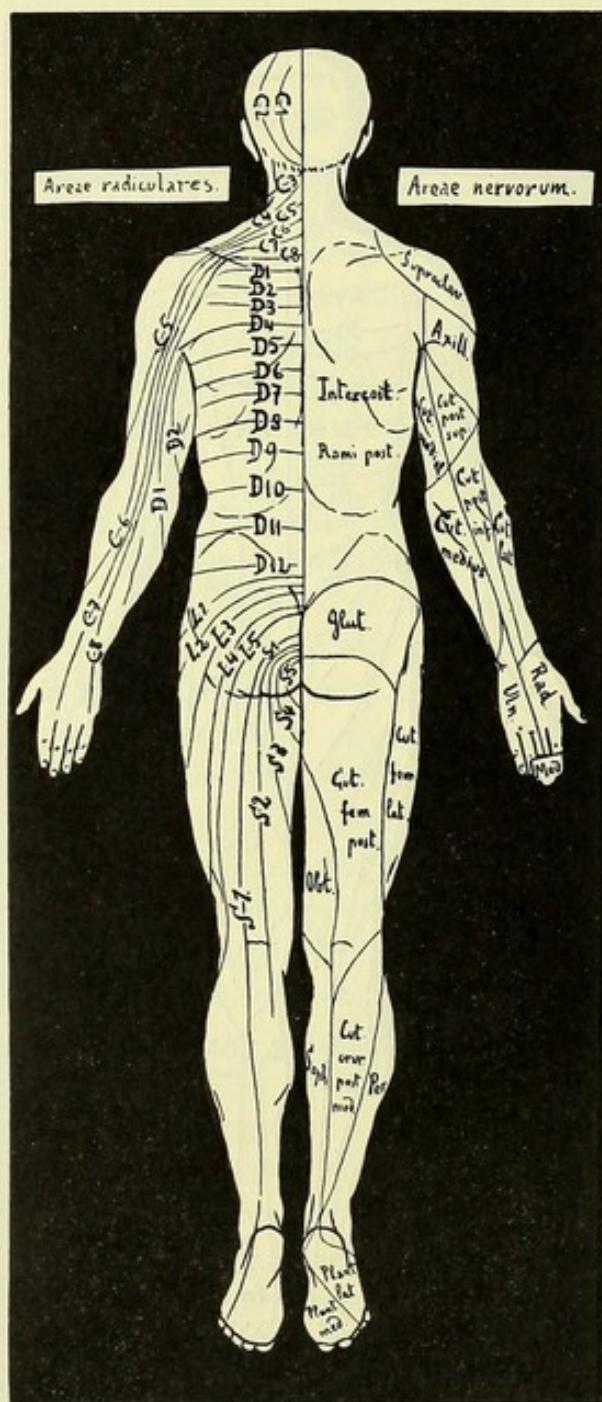
Die spezielle Art der Anordnung der radikulären Zonen an den Extremitäten, bei der im Gegensatze zur zirkulären Anordnung am Rumpfe eine longitudinal gerichtete Orientierung vorherrscht, erklärt sich aus ontogenetischen Verhältnissen. Beim Embryo ziehen die aus dem Rumpfe hervorspringenden Extremitätenanlagen die in ihrem Befruchtungsbereiche liegenden Dermatotome gleichsam mit sich und, da die Gliedmaßen mehr oder weniger senkrecht zur Rumpfachse hervorwachsen, muß in ihrem Bereich das Prinzip der zirkulären demjenigen der longitudinalen Anordnung weichen.


Hier sei noch erwähnt, daß bei Läsionen der Spinalganglien häufig im radikulären Felde der betreffenden Hinterwurzeln der als Herpes zoster bekannte Bläschenausschlag auftritt. Eine befriedigende Erklärung für dieses Phänomen steht noch aus (cf. oben pag. 34).

3. Segmentdiagnose der Reflexstörungen.

Nach den Lähmungen und den Sensibilitätsstörungen spielen auch die Reflexstörungen für die Höhenlokalisierung im Rückenmark eine

wichtige Rolle. In demjenigen Niveau, wo der Reflexbogen unterbrochen ist, tritt Areflexie auf. Durch die Konfrontierung der klinischen und


Fig. 22.

der pathologisch-anatomischen Beobachtungen sind wir aber über die Niveaus, in denen die einzelnen Reflexbogen liegen, recht gut unterrichtet.

Die folgende Tabelle soll das Fazit unserer Kenntnisse in dieser Beziehung wiedergeben. Die wichtigsten Reflexe sind typographisch her-

Fig. 23.

vorgehoben, ferner ist die Scheidung zwischen Haut- und Sehnenreflexen überall durchgeführt. Alle Reflexe nachweisen zu können, wird man nur

bei ganz jugendlichen Individuen erwarten dürfen. Nach der Pubertät pflegt sich nämlich die große Mehrzahl der in unserer Tabelle verzeichneten Reflexe auch beim vollkommen Gesunden nicht auslösen zu lassen.

	Sehnen- und Knochen-reflexe	Haut-reflexe	A u s - l ö s u n g	E f f e k t	Lo- kali- sation
1.	—	Scapularreflex	Reizung der Haut über der Scapula	Kontraktion der Schulterblatt-muskeln	C ₅ –D ₁
2.	Biceps-reflex	—	Schlag auf Biceps-sehne	Beugung des Vorderarmes	C ₅ –C ₆
3.	Triceps-reflex	—	Schlag auf Triceps-sehne	Streckung des Vorderarmes	C ₆ –C ₇
4.	Scapulohumeralreflex	—	Schlag auf den inneren unteren Scapulawinkel	Adduktion des Oberarmes	C ₆ –C ₇
5.	Radius-reflex	—	Schlag auf den Proc. styloideus radii	Supinationsbewe- gung	C ₇ –C ₈
6.	—	Palmarreflex	Reizung der Vola	Beugung der Finger	C ₈ –D ₁
7.	—	Epigastrischer Reflex	Streichen von der Mamilla abwärts	Einziehen des Epigastr.	D ₇ –D ₉
8.	—	Oberer Abdominalreflex	Bestreichen der Haut des Oberbauches	Einziehen des Bauches	D ₈ –D ₉
9.	—	Mittl. Abdominalreflex	Bestreichen der Bauchhaut in den mittleren und unteren Partien	Einziehen des Bauches	D ₁₀ –D ₁₂
10.	—	Unter. Abdominalreflex	Bestreichen der Adduktorengegend des Oberschenkels	Heraufziehen des Hodens	L ₁ –L ₂
11.	—	Cremaster-reflex	Schlag auf Quadriceps-sehne	Streckung des Unterschenkels	L ₂ –L ₄
12.	Patellar-reflex	—	Bestreichen der Nates	Kontraktion der Glutäen	L ₄ –L ₅
13.	—	Glutäalreflex	Schlag auf die Achilles-sehne	Beugung des Fußes	S ₁ –S ₂
14.	Achilles-reflex	—	Bestreichen der Fußsohle	Flexion der Zehen	S ₁ –S ₂
15.	—	Plantar-reflex	Stechen des Dammes	Kontraktion des Sphincter ani ex-ternus	S ₅
16.	—	Analreflex			

Konstant ist unter normalen Verhältnissen der Patellarreflex, fast ebenso konstant der Achillesreflex. Viel weniger konstant sind die Hautreflexe, von denen sich jedoch Cremaster-, Abdominal- und Plantarreflex bei der starken Mehrzahl der Gesunden finden. Die topisch-diagnostische Brauchbarkeit der Hautreflexe wird aber noch dadurch bedeutend herabgesetzt, daß sie auch bei Läsionen, die weit oberhalb des Niveaus liegen, das man ganz allgemein für ihre Reflexbogen angibt, verschwinden können (sogar bei cerebralen Läsionen!). Man nimmt darum gewöhnlich an, daß hier der Reflexmechanismus ein viel komplizierterer ist als bei den Sehnenreflexen. Die zentripetalen Fasern des Abdominalreflexes z. B. treten zwar sicher durch hintere Wurzeln des unteren Dorsalmarkes ein und seine zentrifugalen Fasern durch vordere Wurzeln derselben Rückenmarksparte aus. Aber bei den meisten Menschen dürfte sich der Reizvorgang hier nicht durch direkte Reflexbogen übertragen (wie auf Fig. 7 eingezeichnet), sondern durch Vermittlung von Schaltneuronen (vgl. pag. 19 u. 20), die vorerst weit frontalwärts und dann wieder caudalwärts verlaufen. So wäre es erklärlich, warum nicht nur eine Läsion im eigentlichen Niveau des Hautreflexes, sondern auch eine solche in viel höher gelegenen unter Umständen letzteren aufheben kann. Nähere Vermutungen über diesen jedenfalls komplizierten Mechanismus können wir nicht aussprechen; es ist ein Punkt, der noch dringend der Aufklärung bedarf.

KAPITEL III.

Es bleibt uns noch übrig, bevor wir die topisch-diagnostische Be- trachtung des Rückenmarkes abschließen, einige spezielle Sympto- menkomplexe im Zusammenhange zu besprechen, durch welche die Läsionen des Halsmarkes und obersten Brustmarkes einerseits, andererseits des Conus terminalis (samt Cauda equina), also des proximalen und des distalen Abschnittes der Medulla, ein durchaus eigen- artiges und infolgedessen lokalisatorisch wichtiges Gepräge erhalten.

1. Kriteria der hochsitzenden Rückenmarkläsionen.

a) Die oculo-pupillären Symptome.*

Das Zustandekommen der hierher gehörenden Phänomene bei den Cervical- und oberen Dorsalmarkläsionen wird uns verständlich, wenn wir

* Die Verbindung dieser oculo-pupillären Symptome mit den auf S. 70—71 angeführten vasomotorisch-sekretorischen wird als „Hornerscher Symptomenkomplex“ bezeichnet (cf. Fig. 24).

uns die einschlägigen anatomischen und physiologischen Verhältnisse vergegenwärtigen (hierzu Fig. 24).

Der obere Teil des Sympathicusgrenzstranges ist bekanntlich durch die drei sympathischen Halsganglien (Ganglion cervicale superius, medium und inferius) repräsentiert. In dem letzteren liegen motorische Zellen, deren kranialwärts gerichtete Achsenzylinder folgende Muskeln innervieren:

1. Den Dilatator pupillae;
2. den glatten (unwillkürlichen) Anteil des Musculus levator palpebrae superioris (Musculus tarsalis superior);
3. den ebenfalls glatten (unwillkürlichen) Musculus orbitalis.

Dieser (als Rest einer stark entwickelten Muskelschichte, die bei denjenigen Säugetieren sich findet, deren Augenhöhle breit mit der Schläfengrube kommuniziert) überbrückt die untere Orbitalpalte und hindert so den Inhalt der Orbita am Zurücksinken.

Diese drei motorischen Faserkategorien stehen nun unter dem innervatorischen Einflusse einer im Seitenhorn des letzten Cervical- und ersten Dorsalsegmentes gelegenen Kerngruppe, Centrum cilio-spinale genannt. Die Verbindung findet durch die achte Cervicalwurzel, die erste und zweite Dorsalwurzel und deren Rami communicantes statt.

Das Centrum cilio-spinale selbst steht (wahrscheinlich via Seitenstrang) unter dem Einflusse eines bulbären Zentrums, über dessen genauere anatomische Verhältnisse wir freilich nichts sicheres wissen. Daß dieses Zentrum aber (wenigstens was seine pupillenerweiternden Neurone anbelangt) seinerseits unter dem Einflusse der Großhirnrinde steht, geht sowohl aus experimentellen Beobachtungen hervor, als auch aus der Erfahrung von der Pupillenerweiterung, die bei Schreck, Schmerz, Orgasmus etc. auftritt, ja wir kennen selbst eine ideomotorische Mydriasis, die durch die bloße intensive Vorstellung der Dunkelheit hervorgebracht werden kann. Wie man sieht, besteht zwischen dem sympathischen oculopupillären Mechanismus und dem pag. 22—23 betrachteten Mechanismus der Vasomotilität prinzipielle Übereinstimmung. Hier wie dort Zentren erster bis vierter Ordnung, mit cerebrobulbären, bulbospinalen, spinosympathischen und sympathicomuskulären Etappen.

Die Ausschaltung der sympathischen oculopupillären Innervation gibt sich, wie nach dem Ausgeführten leicht erklärllich, kund:

1. durch eine paralytische Miosis (spinale Miosis), bei der also die durch Lähmung der pupillenerweiternden Fasern verengte Pupille sich bei Beschattung des Auges nicht mehr erweitert. Die bei einseitiger Störung zustande kommende Anisokorie (Pupillenungleichheit)

wird infolgedessen im Dunkeln viel deutlicher hervortreten als bei heller Beleuchtung, wo beiderseits der antagonistische, vom Oculomotorius versorgte Sphincter pupillae in Aktion tritt.

2. durch eine Verengerung der Lidspalte, bedingt durch die Lähmung des glatten Levatoranteils (Musculus tarsalis sup.),

3. zuweilen durch ein Zurücksinken des Bulbus in die Orbita = Enophthalmus. Durch dieses Symptom kann die Lähmung des Orbitalmuskels zum klinischen Ausdruck gelangen.

Daß diese Symptome unter verschiedenen Bedingungen zu stehen kommen können, ist klar. Nämlich :

a) durch Störungen im Bereiche des Halssympathicus ;
b) durch Herde im Bereiche des Centrum cilio-spinale (unterstes Cervical- und oberstes Dorsalmark);

c) durch Läsionen der untersten cervicalen und der beiden obersten thorakalen Vorderwurzeln und ihrer Rami communicantes. (Deshalb kann auch das sympathische oculo-pupilläre Ausfallssyndrom ein Begleiter der sogenannten „unteren Plexuslähmung“ = „Klumpkesche Lähmung“ sein. Dieser letzteren liegt (infolge von Geschwülsten,luetischer Meningitis, Verletzungen etc.) eine Läsion der 8. Cervical- und 1. Thorakalwurzel zugrunde und ihre motorischen Ausfälle betreffen namentlich die kleinen Handmuskeln und die Flexoren des Vorderarmes. Die oculo-pupillären Phänomene gesellen sich nun denjenigen Fällen hinzu, wo die Wurzeln vor Abgang der Rami communicantes geschädigt worden sind ;

d) durch Läsionen des übrigen Cervicalmarkes, vorausgesetzt, daß dabei die bulbospinalen Verbindungsfasern (siehe Fig. 24) durchtrennt werden.

Reizung des Centrum cilio-spinale kommt selten vor (bei unterhalb jenes Zentrums gelegenen Läsionen des Thorakalmarkes). Sie ist durch krampfhafte Mydriasis (= Dilatatorcontractur) und Exophthalmus gekennzeichnet.

b) Die respiratorischen Störungen.

Sie sind vornehmlich das Attribut der im Bereiche der Phrenicuszentren gelegenen pathologischen Prozesse (C₃—C₅). Zerstörung jener Zentren bedingt Diaphragmalähmung — ein bei vollständiger Entwicklung stets zum Tode führendes Symptom. Ist das Zwerchfellzentrum durch benachbarte Läsionen in einen Reizzustand versetzt, so wird sich dieser durch Singultus, Husten, Dyspnoe, Erbrechen kundgeben. Bei höher sitzenden Läsionen kommen ebenfalls Respirationsstörungen vor,

und zwar meist schwere, mit einer Fortdauer des Lebens unvereinbare;

Fig. 24.

Schema zur Erläuterung des Horner'schen Symptomenkomplexes bei hochsitzenden Rückenmarksläsionen.

hier handelt es sich um ein Fernsymptom, d. h. um die Beeinträchtigung der benachbarten Respirationszentren des verlängerten Markes.

c) Die Pulsanomalien.

Für Läsionen des oberen Cervicalmarkes ist eine, wenn auch oft nur transitorische Pulsverlangsamung charakteristisch. Auch sie ist auf die Nachbarschaft der Medulla oblongata zurückzuführen bzw. als Reizzustand des dort gelegenen Vaguszentrums aufzufassen. Seltener ist permanente Bradykardie nebst gelegentlichen allgemeinen Krampfanfällen als Symptom der oberen Halsmarkläsion konstatiert worden. Diese Beobachtungen bedürfen zwar der Nachprüfung und Aufklärung, namentlich in bezug auf das Verhältnis zur *Adams-Stokeschen* Krankheit; doch scheint für die „neurogene“ Form der permanenten Bradykardie gegenüber der „kardiogenen“ das Fehlen einer Dissociation von Vorhof- und Ventrikelrhythmus charakteristisch zu sein.

d) Die vasomotorisch-sekretorischen Störungen (vgl. Fig. 24).

Sehr häufig ist bei Halsmarkverletzungen ein gewaltiger Temperaturanstieg konstatiert worden ($43-44^{\circ}\text{C}$!). In seltenen Fällen (gewöhnlich solchen, die auch Pulsverlangsamung zeigen) fand man aber auch im Gegenteil eine Hypothermie ($32-30^{\circ}\text{C}$). Unsere bisherigen Kenntnisse erlauben uns kaum, diese Kenntnisse anders aufzufassen, als im Sinne einer schweren Beeinträchtigung komplizierter, in der benachbarten Medulla oblongata gelegener Apparate, die im Dienste der Wärmeregulation stehen. Zur Annahme spezieller spinaler Temperaturzentren sind wir jedenfalls nach dem heutigen Stande unseres physiologischen Wissens nicht berechtigt.

Anders verhält es sich in bezug auf die vasomotorische Innervation des Gesichts, die bei Halsmarkläsionen oft in typischer Weise gestört gefunden wird und deren Zentren wir analog denjenigen der besprochenen oculopupillären Zentren lokalisieren können. Es handelt sich nämlich auch hier um Mechanismen, deren niedrigste (peripherste) Zentren im Halssympathicus liegen und in unmittelbarer Abhängigkeit von Kerngruppen des Cervicalmarks sich befinden. Diese Kerngruppen scheinen im gleichen Niveau zu liegen wie das Centrum cilio-spinale, doch sind sie nicht im Seitenhorne, sondern wahrscheinlich im zentralen Zellkomplexe des Vorderhorns zu suchen. Die Verbindung zwischen dem spinalen und dem sympathischen Centrum erfolgt auch hier auf den Bahnen der Vorderwurzeln von C_8 , D_1 und D_2 und ihrer weißen Rami communicantes.

In naher topographischer Beziehung zu den vasomotorischen Fasern scheinen auch secretorische Neurone für die Schweißdrüsen der Gesichtshaut zu verlaufen. Deshalb findet man in den eben namhaft ge-

machten Fällen, wo paralytische Miosis, Enophthalmus und Lidspaltenverengerung eintritt, manchmal außerdem nicht nur Vasomotorenlähmung des Gesichts (d. h. in den frischen Fällen Hitze und Rötung, später Cyanose und Kälte, siehe oben pag. 23—25), sondern auch Anidrosis derselben Partien („Hornerscher Symptomenkomplex“). Doch dürfen in bezug auf diese Schweißanomalien unsere Kenntnisse von der genauen Grundlage des Syndroms nicht als ganz gesichert bezeichnet werden, um so mehr, als in seltenen Fällen statt der im allgemeinen zu erwartenden Anidrosis eine Hyperidrosis konstatiert worden ist. Diese Tatsache macht es mir wahrscheinlich, daß das spinale Zentrum der facialen Schweißsekretion zwar sehr nahe vom Centrum cilio-spinale und vom spinalen Zentrum der Gefäßinnervation des Gesichtes liegt, doch immerhin so weit davon entfernt, daß es durch eine jene Kerngruppe zerstörende Läsion zuweilen nicht mitzerstört, sondern bloß gereizt wird.

e) Das spezielle Verhalten der Reflexe.

Bei hohen (also das Cervical- und obere Thorakalmark betreffenden) totalen Querschnittsaffektionen sind, wie wir schon pag. 36—37 anführten, die Reflexe im Bereich der gelähmten Körperteile so gut wie immer total erloschen. Dort haben wir auch einige Erklärungsversuche dieses paradoxen Phänomens kurz berücksichtigt.

Daß bei paralytischer Miosis der (inkonstante) Ciliospinalreflex gleichfalls fehlt, ist selbstverständlich. Es besteht in einer Erweiterung der Pupille auf gleichseitiger Reizung der Nackenhaut hin.

* * *

Eine starke Beschränkung erfährt das eben Vorgetragene dadurch, daß die Läsionen im Bereich der vier obersten Halsmarksegmente meist sofortigen Tod im Gefolge haben (Atemlähmung, starke Beeinträchtigung der lebenswichtigen Zentren des Bulbus), so daß nur in einer relativ kleinen Zahl der Fälle die hier geschilderten Symptome überhaupt zur Entwicklung kommen können.

2. Kriteria der tiefssitzenden Rückenmarkläsionen.

Da für die Läsionen des untersten Rückenmarksabschnittes, des sogenannten *Conus terminalis*, die charakteristischesten klinischen Symptome aus der Störung der in ihnen enthaltenen nervösen Apparate für die Blasen-, die Mastdarm- und die Sexualfunktion resultieren, so haben wir auf diesen Teil unserer Ausführungen die zusammenhängende Darstellung jener Mechanismen verspart.

a) Die Innervation der Blase.

Die spinalen Zentren für Blasenschluß und Blasenentleerung (also für den Musc. sphincter vesicae und den Musc. detrusor urinae) liegen in der grauen Substanz des dritten und vierten, vielleicht auch noch des fünften Sakralsegmentes. Die motorischen Fasern, die aus diesen Zentren hervorgehen, ziehen durch den Nervus pudendus und durch den Plexus hypogastricus inferior der Blase zu. Im letzterwähnten Geflechte findet noch die Einschaltung von Zellkomplexen statt, die, zum kollateralen Gangliensysteme gehörig (vgl. pag. 22), die peripheren oder sympathischen Zentren der Blasenfunktion repräsentieren.

Wie die spinalen Zentren über den sympathischen stehen, so sind sie ihrerseits dem Einflusse cerebraler Zentren unterworfen. Die Impulse aus diesen Zentren, die teils subcorticalen (Corpus striatum, Thalamus opticus), teils corticalen Sitzes sind, erreichen das Sakralmark wahrscheinlich auf dem Wege der Vorderseitenstränge. (Neuerdings treten auch einzelne Forscher für solche Bahnen im Gebiete der Hinterstränge ein, doch ist deren Existenz noch nicht allgemein angenommen.) Wir sind zur Annahme berechtigt, daß der vom Gehirne kommende Impuls auf den Sphincter und den Detrusor in antagonistischer Weise wirkt, d. h. ersteren zum Erschlaffen, während er letzteren zur Kontraktion bringt.

Aber nicht nur zentrifugale Reize strömen dem sakralen Blasenzentrum zu; auch zentripetale erhält es, und zwar aus der Schleimhaut der Blase selbst. Diese Fasern, die mit den Hinterwurzeln des zweiten bis vierten Sakralsegmentes ins Rückenmark eintreten, stellen den zuführenden Schenkel eines Reflexbogens dar, demzufolge bei einem gewissen Füllungsgrade der Blase reflektorisch die Entleerung (= Sphincterrelaxation + Detrusorkontraktion) ohne Zutun, ja eventuell trotz entgegengesetzter Aktion der bewußten Impulse zustande kommt. Sensible Fasern im engeren Sinne kommen neben diesen reflektorisch-zentripetalen der Blasenwand auch zu. Sie steigen gehirnwärts auf und übermitteln uns das Gefühl des Harndranges.

b) Die Innervation des Mastdarmes.

Hier liegen die Verhältnisse durchaus analog; sind aber etwas einfacher:

Auch hier ein Zentrum in $S_3-S_4(-S_5)$, auch hier efferente Fasern auf der Bahn des Nervus pudendus und des Plexus hypogastricus inferior, in welch letzteren noch sympathische Ganglien eingeschaltet sind;

auch hier zentripetale Fasern, die teils dem Zentrum Reflexe übertragen, teils, gehirnwärts steigend, den Stuhldrang übermitteln; auch hier endlich absteigende Bahnen in Vorderseiten(oder Hinter-?)strang als Überbringer der willkürlichen Impulse aus dem Gehirn.

Die Vereinfachung ist dadurch gegeben: 1. daß letztere wohl nur corticalen Ursprungs sind, zur Annahme bestimmter subcorticaler Defäkationszentren sind wir nicht berechtigt; 2. daß es sich insofern um weniger komplizierte Innervationsverhältnisse handelt, als bloß die Sphincterenaktion (Zusammenziehung oder Erschlaffung) in Betracht kommt, keine gleichzeitige Beeinflussung des Detrusors in entgegengesetztem Sinne. Die Funktion eines Detrusors übernimmt hier die willkürlich und durch Vermittlung höherer spinaler Niveaus in Aktion gesetzte Bauchpresse.

c) Die Innervation der männlichen Genitalfunktionen.

Die Potentia coëundi wird bekanntlich gesichert 1. durch die Erektion, 2. durch die Ejakulation.

Bei der Erektion spielen zwei Faktoren mit: *a)* Die vermehrte Füllung der Corpora cavernosa; sie kommt durch Nachlassen des vasmotorischen Tonus in den betreffenden Arterien zustande, wodurch ein größeres Blutvolumen dem Penis zugeführt wird und in ihm weilt. — *b)* Dieser Volumvermehrung gesellt sich eine Konsistenzvermehrung zu, infolge der Behinderung des venösen Abflusses; sie ergibt sich aus der tonischen Anspannung des Musculus transversus perinei und der Musculi bulbo- und ischiocavernosi.

Bei der Ejakulation handelt es sich um die klonischen Spasmen der beiden letztgenannten Muskeln, die dann einsetzen, wenn durch die reflektorische Peristaltik der Ampulla vasorum deferentium, der Samenblasen und der Ductus ejaculatorii das Sperma in die Pars membranacea urethrae gelangt ist.

Das Nachlassen des Gefäßtonus bei der Erektion kommt teils durch die Hemmung vasoconstrictorischer Zentren, teils durch die Reizung vasodilatatorischer Zentren zustande. Diese Zentren sind teils spinale — in S_1 bis S_3 — teils sympathische Zellkomplexe des Plexus hypogastricus inferior. Die vasodilatatorischen Fasern sind als Nervi erigentes von physiologischer Seite genau studiert worden. Die in Rede stehenden Rückenmarkszentren stehen via Seitenstrang des Rückenmarks mit dem Vasomotorenzentrum der Medulla oblongata und weiterhin mit demjenigen des Gehirns in Verbindung.

Für die Stase und Versteifung bedingende tonische Wirkung der Musculi transversus perinei, bulbo- und ischio-cavernosus liegen die

Zentren in der grauen Substanz des dritten und vierten Sakralsegments; ebenfalls natürlich für ihre klonische Aktion beim Ejakulationsakt. Das supranucleäre Neuron verläuft wahrscheinlich in den Seitensträngen des Rückenmarks.

Darauf, daß für die normale Funktion des männlichen Sexualapparates sowohl die zentrifugalen, die psychische Reize übermittelnden Bahnen in Betracht kommen, als auch die zentripetalen Fasern aus den genitalen Integumenten, welche dem Akte den Charakter des Reflexvorganges verleihen, braucht hier nur kurz hingewiesen zu werden.

* * *

Es ergibt sich aus diesen anatomisch-physiologischen Vorbemerkungen, daß Störungen der Blasen-, Mastdarm- und Potenzinnervation nicht auf Läsionen der terminalen Abschnitte des Rückenmarkes beschränkt sind, sondern auch (durch Unterbrechung der supranucleären Bahnen) bei Rückenmarksverletzungen oder -erkrankungen in irgend einem Niveau vorkommen können. Wir haben deshalb diese Störungen schon oben (pag. 37) namhaft machen müssen.

Jetzt wollen wir aber die differentiellen diagnostischen Merkmale betonen, welche die recto-vesico-genitalen Störungen bei sakralem (nucleärem) Sitze vor denjenigen bei höherem (supranucleärem) Sitze der spinalen Läsion auszeichnen.

1. Blasenstörungen.

A. Läsion oberhalb des Centrum vesico-spinale.

Wegfall der cerebralen Kontrolle, der willkürlichen Beherrschung der Blase, der Sensation des Harndranges. Für die Blasenentleerung kommen nur noch die reflektorischen Vorgänge in Betracht. In der Regel stellt sich deshalb ein die

Aktive = intermittierende Inkontinenz = Automatik der
Blase = „Incontinence à jet“.

Dabei erfolgt, sobald die Füllung der Blase einen gewissen Grad erreicht hat, reflektorisch und unwillkürlich, durch die Spannung der Blasenwand ausgelöst, eine Entleerung der Blase im Strahl.

Ausnahmsweise, nämlich bei manchen Fällen von totaler Querschnittsläsion, ist auch diese reflektorische Blasenentleerung aufgehoben. Die Erklärungsversuche für diese Erscheinungen sind dieselben, wie wir sie schon früher für das analoge Verhalten der Sehnenreflexe bei ge-

wissen hohen Querschnittsdurchtrennungen namhaft gemacht haben. Man vergleiche deshalb das pag. 36—37 Ausgeführte. In solchen Fällen konstatiert man:

Harnverhaltung = Retentio urinae.

Sie kann, wo nicht durch Katheterisieren Abhilfe geschaffen wird, zum Platzen der überfüllten Blase führen.

B. Läsion im Bereich des Centrum vesico-spinale (S_3-S_4).

Dauernde Erschlaffung von Sphincter und Detrusor. Sie führt zu folgenden Krankheitsbildern:

Passive = permanente Inkontinenz = „Incontinence vraie“.

Dabei findet ein beständiges Abträufeln des Harnes statt. — Hat aber der Blasenhals, wie nicht selten, einen beträchtlichen Grad von Elastizität, so vermag er, rein physikalisch als Verschluß wirkend, dem Druck des auf ihm lastenden Urins eine Zeitlang standzuhalten. So kommt es zur

Ischuria paradoxa = „Incontinence par regorgement“.

Erst wenn die Füllung der Blase einen gewissen Grad erreicht hat, erfolgt ein tropfenweiser Urinabgang.

In seltenen Fällen ist die Elastizität des Sphincter außerordentlich groß; sie führt dann, statt zu Inkontinenzerscheinungen, im Gegenteil zur

Harnverhaltung, Retentio urinae.

Siehe oben.

2. Mastdarmstörungen.

A. Läsion oberhalb des Centrum ano-spinale.

Wegfall der willkürlichen Beherrschung des Sphincter ani; Wegfall des Stuhldranggefühls. Dabei bleibt die reflektorische Kontraktion des Afterschließers erhalten, ja es kommt meistens zu einem Sphincterenkrampf, der beim Einführen des Fingers deutlich sich fühlbar macht und einen sicheren Beweis für den supranucleären Sitz der Läsion darstellt. Bei totalen Querschnittstrennungen fehlt freilich die reflektorische Kontraktion zuweilen.

Das klinische Bild ist dasjenige der

Retentio alvi, Stuhlverhaltung.

B. Läsion im Bereich des Centrum ano-spinale (S_3-S_4).

Dauernde Lähmung des Sphincters.

Incontinentia alvi.

Je nach dem Grade der physikalischen Elastizität des Afterschließers ist sie eine vollständige oder eine unvollständige, wobei harte Kotmassen noch zurückgehalten werden können.

3. Sexuelle Störungen.

A. Läsion oberhalb des Centrum genito-spinale.

Hier tritt die Vasokonstriktorenlähmung, die zur Füllung der *Corpora cavernosa*, zur Volumenzunahme des Penis führt, in den Vordergrund. Eigentlichen Priapismus (d. h. regelrechte, vollständige, dauernde Erektion) beobachtet man dagegen nur zuweilen — und zwar niemals bei totalen Querschnittsläsionen. In solchen Fällen ist ein (der Spastizität der Skelettmuskeln analoger) tonischer Reizzustand der *Musculi transversus perinei*, *bulbo-* und *ischio-cavernosus* anzunehmen. — Zuweilen macht sich auch eine Hyperreflexie auf dem Gebiete des Ejakulationsapparates geltend, so daß die unbeträchtlichsten Reize wo nicht Ejakulation, so doch klonische Zuckungen der in Betracht kommenden Muskeln hervorrufen.

B. Läsion im Bereiche des Centrum genito-spinale (S_1-S_4).

Sie bedingt eine Ausschaltung des gesamten Erektions- und Ejakulationsmechanismus. Es resultiert:

Totale Impotenz.

Seltener ist die

Dissozierte Potenzstörung.

Bei sehr zirkumskripten Läsionen (kleinen Blutungen, sklerotischen Herden etc.) kann es zur Aufhebung der Ejakulation und des Orgasmus bei erhaltener Erektionsfähigkeit kommen. Die bisher bei solchen Fällen erhobenen anatomischen Befunde machen es wahrscheinlich, daß das Erektionszentrum etwas höher liegt als das Ejakulationszentrum (ersteres wohl S_1-S_3 , letzteres S_3-S_4).

Sonstige Besonderheiten der Conus terminalis-Läsionen.

Klinisch fassen wir als Conus terminalis die drei letzten Sakralsegmente und das Coccygealsegment des Rückenmarkes zusammen. Die reinen Conusläsionen, die nicht gerade häufig sind (siehe unten), sind durch eine äußerst charakteristische Symptomatologie ausgezeichnet.

a) Passive Inkontinenz, eventuell Ischuria paradoxa, eventuell Retentio urinae.

b) Incontinentia alvi.

c) Impotenz, eventuell dissozierte Potenzstörung.

Diesen drei Punkten, die soeben eingehend besprochen worden sind, gesellt sich zu:

d) Perianogenitale Anästhesie.

Sie bedeckt in Form eines Reithosenbesatzes die Segmentareale von S_3 , S_4 und S_5 , wie auf der linken Seite von Fig. 23 zu sehen.

Und als weiteres Charakteristikum ist zu erwähnen:

e) Das Fehlen jeglicher motorischer Ausfallssymptome und Reflexstörungen an den Beinen.

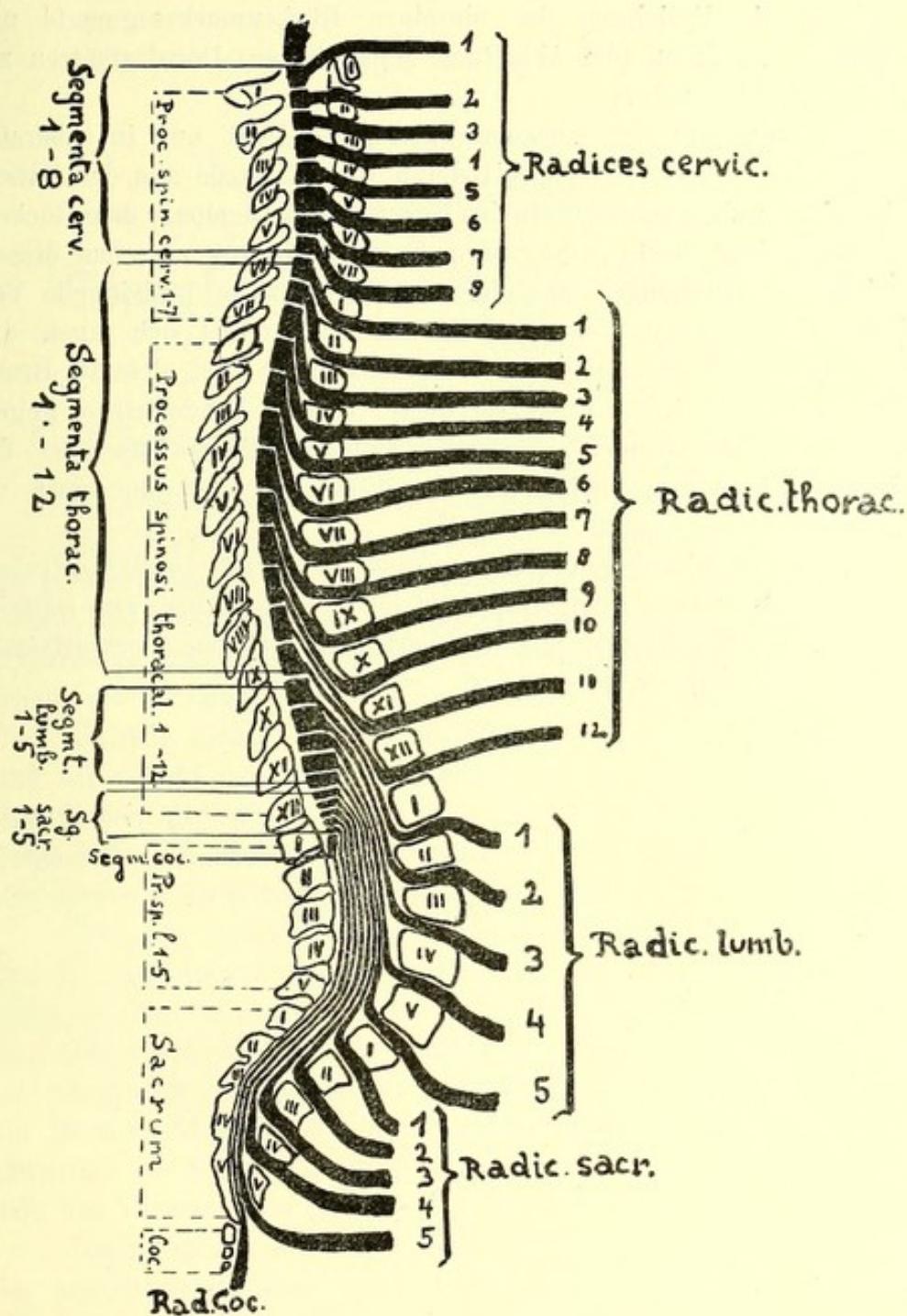
Denn die Segmentinnervation der unteren Extremitäten reicht selbst für die kleinen Fußmuskeln nicht tiefer herunter als S_2 ; daselbe gilt vom Achillessehnenreflex.

* * *

Das reine Conus-Syndrom ist also nicht zu erkennen. Es findet sich aber nur unter eng umschriebenen Bedingungen (intramedulläre Hämorrhagien, kleinste gliotische Herde, Tumormetastasen etc.). Wo der Conus durch einen extramedullären Krankheits- oder Verletzungsvorgang geschädigt oder vernichtet wird, kann es zu diesem reinen Symptomenkomplex deshalb fast nie kommen, weil von den Wurzelpaaren des dritten Lendensegmentes an die Bildung der Cauda equina einsetzt, in welche somit der ganze Conus medullaris eingeschlossen liegt. Nur ausnahmsweise kann es deshalb (z. B. bei einer Wirbelsäulenfraktur oder Luxation) zu einer isolierten Conusläsion kommen, nämlich in Fällen, wo die Stränge der Cauda equina dem Hindernis ohne wesentliche Schädigung auszuweichen vermochten und nur der Markkegel trotz seiner zentralen Lage litt. Andrerseits sind auch schon Fälle beobachtet, wo bei Caudaläsionen durch Frakturen der unteren Lendenwirbel oder des Sacrums nur die zentral gelegenen Wurzeln litten und, da diese aus den unteren Sakralsegmenten stammen, der Conussymptomenkomplex zustande kam.

Überhaupt ist die eigentümliche — durch die Wachstumsverschiebungen zwischen Continens (Wirbelkanal) und Contentum (Rückenmark) bedingte — Anordnung der terminalen Spinalwurzeln zur Cauda (vgl. Fig. 25) die Ursache mancher diagnostischer Schwierigkeiten. Da in der Cauda equina alle sakralen und coccygealen nebst den drei letzten lumbalen Wurzeln nach dem Aufhören des Rückenmarkes (in der Höhe des ersten

Lumbalwirbels) noch bis zu ihrem Austritte durch die korrespondierenden Wirbellöcher gemeinsam nach abwärts ziehen, ist es verständlich, daß eine Zertrümmerung der Cauda equina, etwa an der Grenze des dritten und vierten Lendenwirbels, Symptome verursacht, die klinisch kaum von denjenigen unterschieden werden können, die eine Zertrümmerung des Endabschnittes des Rückenmarkes (z. B. durch Fraktur des ersten Lendenwirbels) nach sich ziehen wird.


Nun ist freilich bei traumatischen Zerstörungen durch die Prüfung auf Druckempfindlichkeit, sicht- und palpierbare Deformität etc. der Weg zu korrekter Höhendiagnostik (die ja hier eminent praktisch-chirurgische Wichtigkeit hat) meist gewiesen. Anders bei Krankheitsprozessen, wie Tumoren, Tuberkulomen, Syphilomen.

In diesem Falle wird man sich mit den im folgenden tabellarisch zusammengestellten differentialdiagnostischen Kriterien behelfen, aber auch so auf manche Fehldiagnose gefaßt machen müssen.

L ä s i o n e n	
des unteren Rückenmarkteiles	der Cauda equina
1. Zuweilen (bei zentralen Herden) dissoziierte Empfindungsstörung (Störung des Temperatur- und Schmerzsinnes bei erhaltener taktiler Sensibilität, siehe pag. 32)	Stets Sensibilitätsstörung für alle Qualitäten (siehe pag. 32, „hintere Wurzeln“)
2. Spontane Schmerzen selten und meist gering	Spontane Schmerzen (Pseudoneuralgien, Anaesthesia dolorosa, Wurzelschmerzen, siehe pag. 33, 34), namentlich am Damm, über dem Kreuzbein, in der Blase meist äußerst heftig. Gehen bei Kompressionserkrankungen den Ausfallserscheinungen voraus
3. Fibrilläres Zittern in den gelähmten Muskeln nur selten	Fibrilläres Zittern in den gelähmten Muskeln (namentlich Peroneusgebiet) häufig
4. Fast stets symmetrische Verteilung der Symptome (Kleinheit des Gebietes)	Häufig asymmetrische Verteilung der Symptome
5. Größere Tendenz zu Decubitus sacralis	Etwas geringere Tendenz zu Decubitus sacralis

Über die Eigentümlichkeiten der Halbseitenläsion im Bereiche des unteren Rückenmarkteiles siehe oben pag. 41—42.

Fig. 25.

Topographische Korrelationen zwischen den Rückenmarkssegmenten und den Wirbelkörpern, Dornfortsätzen und Wurzelaustritten.

ANHANG.

Über die Beziehung der einzelnen Rückenmarkssegmente und Wurzelpaare zu deren (der Abtastung zugänglichen) Dornfortsätzen soll Fig. 25 Aufschluß geben.

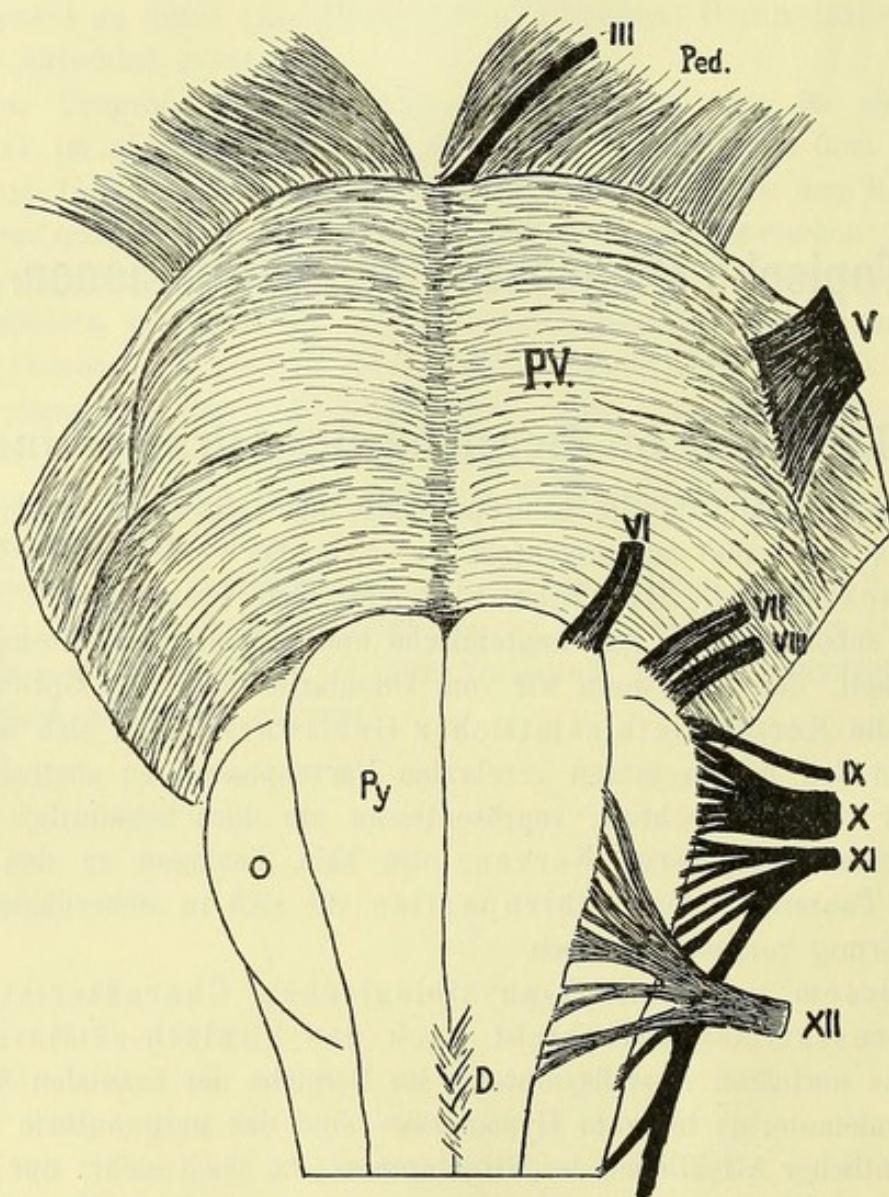
Der Ursprung der Rückenmarkswurzeln liegt nur im obersten Halsmark im gleichen Niveau mit deren Austrittsstelle aus dem Rückgratkanal. Je weiter caudalwärts das betreffende Wurzelpaar dem Rückenmark entspringt, desto größer wird die Verschiebung zwischen diesem Austritte und demjenigen aus dem *Canalis spinalis*. Individuelle Verschiedenheiten kommen vor, aber im allgemeinen läßt sich sagen, daß dem 7. Halswirbel gegenüber das 1. Dorsalsegment liegt, dem 10. Brustwirbel gegenüber das 1. Lumbalsegment, dem 1. Lendenwirbel gegenüber das 1. Sakralsegment. Vom 2. Lendenwirbel abwärts hört das Rückenmark auf und finden sich im Rückgratkanale nur noch die Wurzelstränge der Cauda.

Diese Daten beziehen sich auf das Verhältnis zu den Wirbelpörpern; wie unsere Figur zeigt (sie ist nach Angaben von *Déjérine* und *Thomas* konstruiert), ist das Verhältnis zu den Dornfortsätzen ein vielfach wesentlich anderes.

Zweiter Hauptabschnitt.

Topische Diagnostik der Hirnläsionen.

A. Läsionen im Bereich des Hirnstammes.

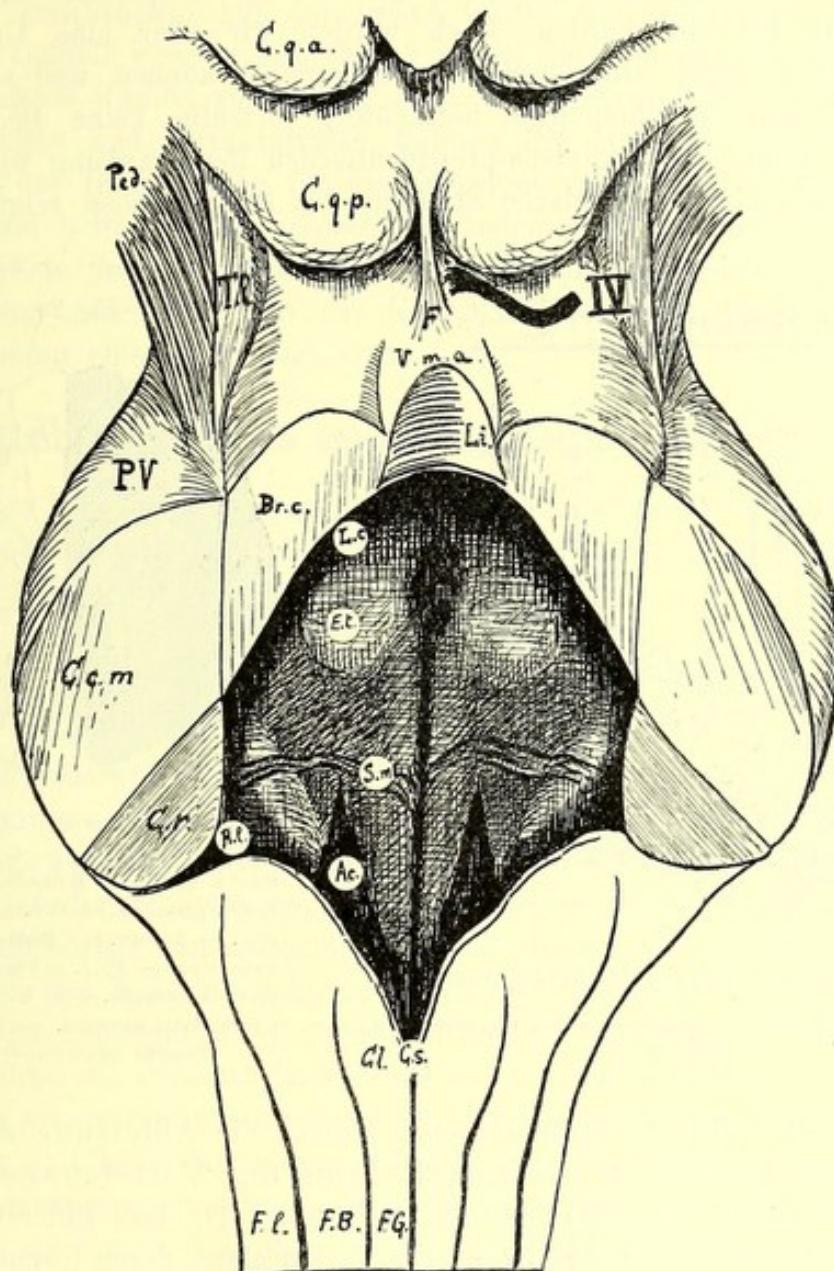

Die Gebilde, die der Neuropathologe als „Hirnstamm“ (Truncus seu axis cerebralis) zusammenfaßt — d. h. das verlängerte Mark, die Brücke und die Hirnschenkel nebst den Vierhügeln —, bekunden schon dadurch ihre anatomische und physiologische Zusammengehörigkeit, daß sie (wenn wir vom Olfactorius und vom Opticus absehen) die Kerngebiete sämtlicher Gehirnnerven in sich bergen. Und von den beiden ersten cerebralnen Nervenpaaren zu abstrahieren, sind wir vollauf berechtigt; repräsentieren sie doch bekanntlich keine eigentlichen peripheren Nerven, also kein Analogon zu den zehn übrigen Paaren, sondern Gehirnpartien, die sich in embryonaler Zeit röhrenförmig vorgestülpt haben.

Diesem anatomisch-physiologischen Charakteristikum des Hirnstammes entspricht auch das klinisch-semiotische. Denn die nucleären Ausfallsymptome im Bereich der cranialen Nerven vom Oculomotorius bis zum Hypoglossus sind das prägnanteste Merkmal sämtlicher Affektionen des Hirnstammes. Ja, noch mehr: nur durch die Berücksichtigung ihrer Erscheinungsweise und ihrer Kombination kann uns die nähere Lokalisation eines pathologischen Prozesses innerhalb des Hirnstammes gelingen.

Die Kenntnis der Morphologie des Gehirnstammes und diejenige der Austrittsverhältnisse seiner Nerven sei vorausgesetzt. Als Rekapitulation mag die Durchsicht der Abbildungen 26—28 dienen. Eine Schilderung des inneren Aufbaues dieser Gebilde können wir uns jedoch nicht ersparen. Ist es doch nach dem soeben hervorgehobenen topisch-diagnostischen Hauptkriterium des Truncus cerebralis unerläss-

lich, mit den topographischen Verhältnissen der in ihm eingeschlossenen Ursprungs- und Endigungsstätten der Hirn-

Fig. 26.

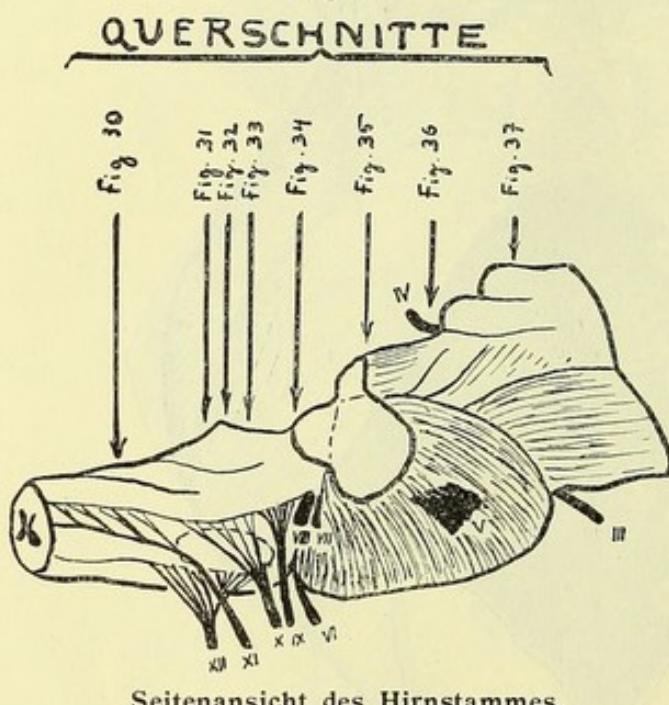


Ventrale Ansicht des Hirnstamms mit den Nervenaustritten.

Py. = Pyramis medullae oblongatae	X = Nervus vagus
D. = Decussatio pyramidum	IX = " glossopharyngeus
O. = Oliva	VIII = " acusticus
P. V. = Pons Varolii	VII = " facialis
Ped. = Pedunculus cerebri	VI = " abducens
XII = Nervus hypoglossus	V = " trigeminus
XI = " accessorius Willisii	III = " oculomotorius

nerven III bis XII vertraut zu sein. Daneben wird auch dem Verlaufe der hauptsächlichen Faserkomplexe motorischer oder sensibler

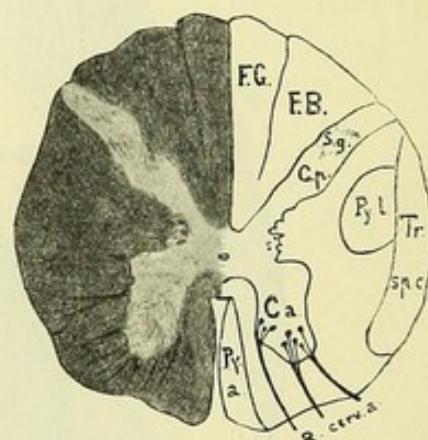
Fig. 27.



Dorsale Ansicht des Hirnstamms mit freigelegter Rautengrube.

F. G. = Funiculus Golli	Br. c. = Brachium conjunctivum e. crus cerebelli anterior
F. B. = " Burdachii	Li. = Lingula cerebelli
F. l. = " lateralis	V. m. a. = Velum medullare anterius
C. l. = Clava medullae oblongatae	P. V. = Pons Varoli
C. s. = Calamus scriptorius	T. l. = Trigonum laquei s. lemnisci
A. e. = Ala cinerea	Ped. = Pedunculus cerebri
R. l. = Recessus lateralis fossae rhomboideae	C. q. p. = Corpus quadrigeminum post.
S. m. = Striae medullares	C. q. a. = " " ant.
E. t. = Eminentia teres	F. = Frenulum veli medullaris ant.
L. c. = Locus coeruleus	IV = Nervus trochlearis
C. r. = Corpus restiformis s. crus cerebelli poster.	
C. c. m. = Crus cerebelli med. s. brachium pontis	

Funktion Rechnung zu tragen sein, mit denen wir bereits im ersten Abschnitte bekannt wurden. Doch werden wir über eine Unmenge struktureller Details stillschweigend hinweggehen können, weil sie, vom diagnostischen Gesichtspunkte betrachtet, vorläufig keine Bedeutung besitzen. Dank dieser klinisch-propädeutischen Beschränkung wird sich das mikroskopisch-anatomische Studium des Hirnstammes relativ ein-


Fig. 28.

Seitenansicht des Hirnstammes.

(Zugleich Orientierungsbild zu den Querschnittsfiguren
Abb. 30—37.)

Fig. 29.

F. G. = Funiculus Golli. — F. B. = Funiculus Burdachii. — S. g. = Substantia gelatinosa Rolandi. — C. p. = Cornu posterius. — C. a. = Cornu anterius. — R. cerv. a. = Radices cervicales anteriores. — Py. l. = Fasciculus pyramidalis lateralis. — Py. a. = Fasciculus pyramidalis anterior. — Tr. sp. c. = Tractus spino-cerebellares.

fach gestalten (Kapitel I), und ebenso einfach die Ableitung der allgemeinen Regeln für die Lokalisation der Verletzungen und Erkrankungen des Hirnstammes (Kapitel II). Das Eintreten auf einige kompliziertere faseranatomische Verhältnisse, deren Kenntnis für die topisch-diagnostische Würdigung gewisser spezieller Symptomenkomplexe nötig ist, wird gemeinschaftlich mit der Besprechung der letzteren im III. Kapitel stattfinden.

KAPITEL I.

Der Aufbau des Hirnstammes.

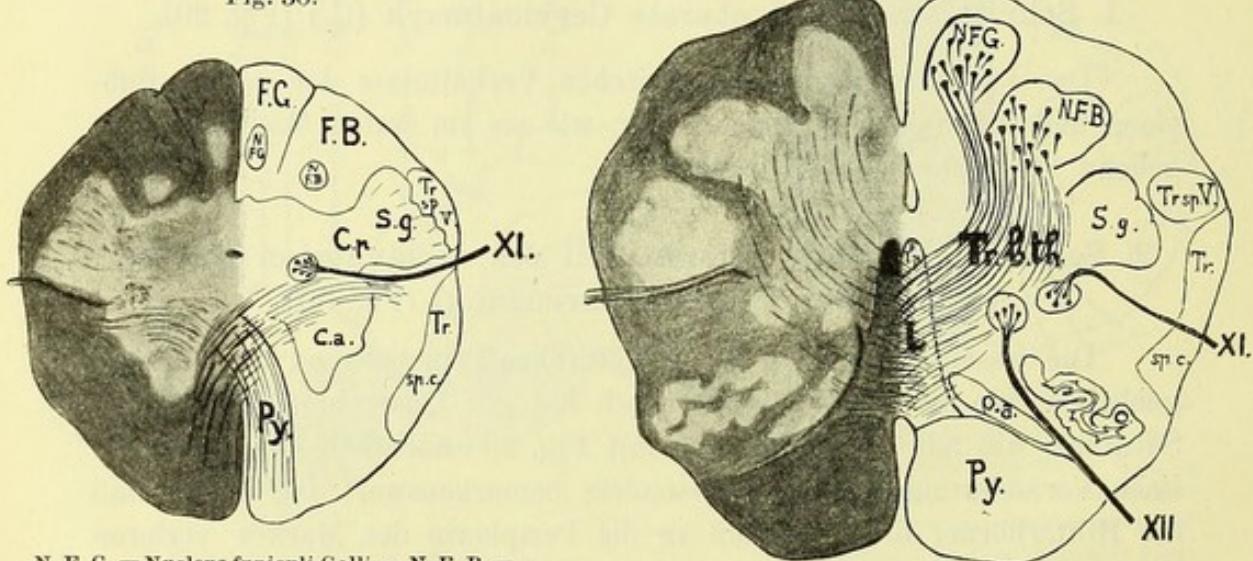
Unsere Bilder (Fig. 29—37) sind derartig hergestellt, daß die rechte Hälfte einen Querschnitt durch ein bestimmtes Niveau von Oblon-

gata, Pons oder Hirnschenkeln wiedergibt (welches Niveau ist aus Fig. 28 ersichtlich). Auf der linken Hälfte sind schematisch nur diejenigen Gebilde eingetragen, die für unsere diagnostischen Ausführungen im nächsten Kapitel von Belang sind, also vornehmlich die Ursprünge, Endigungen und intrazentralen Bahnen der Hirnnerven sowie der Verlauf der Hauptbahnen für die Körpersensibilität und -Motilität. Wir gehen am besten ikonographisch vor, indem wir, vom Cervicalmark aus frontalwärts fortschreitend, einen Querschnitt nach den anderen beschreiben; dabei läßt sich das Kompliziertere ungezwungen aus dem Einfacheren ableiten und erklären.

1. Schnitt durch das oberste Cervicalmark (C_2) (Fig. 29).

Das Bild gibt die topographischen Verhältnisse der grauen Substanz und die weißen Stränge wieder, wie sie im ersten Abschnitte eingehend besprochen worden sind.

2. Schnitt durch den unteren Teil des verlängerten Markes (Niveau der Pyramidenkreuzung) (Fig. 30).


Die wesentlichen Züge des strukturellen Prinzips sind die gleichen geblieben wie im Rückenmark. Doch hat der Querschnitt der grauen Substanz, wie aus dem Vergleiche mit Fig. 29 ersichtlich, eine beträchtliche Veränderung erfahren. Besonders bemerkenswert ist dabei, daß die Hinterhörner den Anschluß an die Peripherie des Markes verloren haben, da ein Eindringen hinterer Wurzeln, wie es im ganzen Rückenmark geschah, hier nicht mehr stattfindet. Infolgedessen schließt die graue Substanz dorsalwärts mit der Substantia gelatinosa ab. Letztere ist hier mächtig entwickelt; zu ihren Ganglienzellen treten Fasern, die von weit höheren Niveaus, nämlich aus der Brücke stammen und dem Trigeminus angehören. Diese Fasern bilden die absteigende oder — weil sie bis an das obere Ende des Rückenmarkes gelangt — die spinale Trigeminuswurzel. Sie sitzt auf unserem Schnitte der Substantia gelatinosa (die man hier auch als den Kern der spinalen Trigeminuswurzel bezeichnen kann) nach hinten und außen kappenartig auf.

Auch die vorderen Wurzeln vermissen wir. Dagegen geht aus einer Kerngruppe an der Basis des Vorderhorns eine Wurzel des Nervus accessorius hervor, des motorischen Nerven der Muskeln Sternocleidomastoideus und Trapezius, dessen Austritt bekanntlich weder in der Flucht der hinteren Wurzeln, noch in derjenigen der Vorderwurzeln liegen, vielmehr direkt lateralwärts aus der Oblongata erfolgen.

Die Lage und die Topographie der Tractus spino-cerebellares hat sich gegenüber dem Rückenmark nicht modifiziert. Ebensowenig diejenige der Hinterstränge. Innerhalb der letzteren treten jedoch in diesem Niveau zwei Zellkonglomerate auf, der Kern des *Gollschen* und derjenige des *Burdachschen* Stranges. In ihnen finden die Hinterstrangfasern, d. h. die auf pag. 9 besprochenen langen Neurone des Hinterwurzelsystems, ihr Ende, indem sie an sensible Neurone zweiter Ordnung Anschluß gewinnen. Diese, die Tractus bulbo-thalamicci, die wir in den nächsten Schnitten erblicken werden, sind die

Fig. 31.

Fig. 30.

N. F. G. = Nucleus funiculi *Golli*. — N. F. B. = Nucleus funiculi *Burdachi*. — Py. = Fasciculus pyramidalis. — Tr. sp. V. = Tractus spinales trigemini. — XI. = Nervus accessorius. — Sonstige Abkürzungen wie auf Fig. 29.

Tr. b. th. = Tractus bulbo-thalamicci. — L = Lemniscus. — F. l. p. = Fasciculus longitudinalis posterior. — O. = Oliva. — O. a. = Oliva accessoria. — XII = Nervus hypoglossus. — Sonstige Abkürzungen wie auf Fig. 30.

Achsenzyylinder des Nucleus funiculi *Golli* und des Nucleus funiculi *Burdachi*.

Das Hauptcharakteristikum unseres Schnittes ist aber die Pyramidenkreuzung (Decussatio pyramidum): Aus dem Areal zu beiden Seiten der vorderen Medianfissur, das in den höheren Teilen des verlängerten Markes das gesamte Kontingent der corticospinalen Bahnen enthält, zieht deren Majorität in denjenigen Teil des gegenüberliegenden Seitenstranges herüber, der von da an caudalwärts als Pyramidenseitenstrang bezeichnet wird. Nur ein kleiner Teil der Fasern behält als Pyramidenvorderstrangbahn die ursprüngliche antero-mediane Lageung bei.

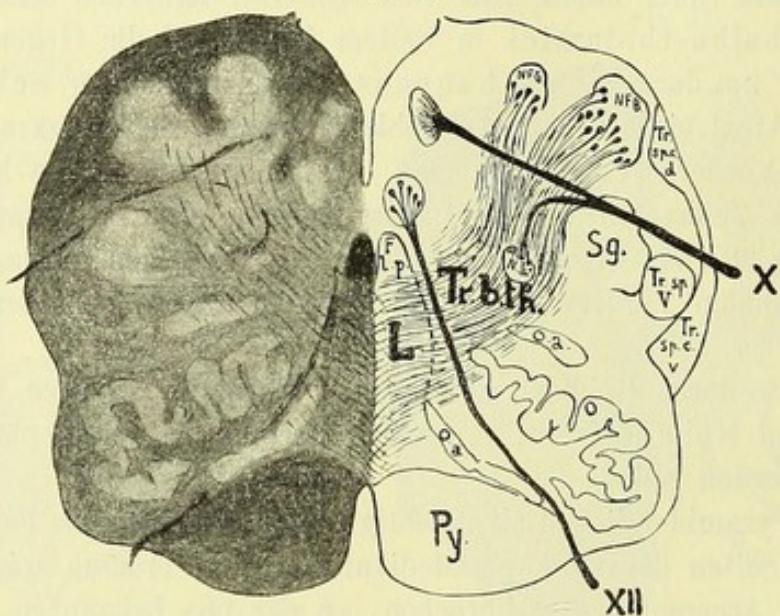
3. Schnitt durch das verlängerte Mark (Niveau der hinteren Hypoglossuswurzeln) (Fig. 31).

Die graue Substanz hat noch tiefergreifende Veränderungen ihrer Verteilung erfahren. Der Hinterhornrest (die Substantia gelatinosa) ist durch die mächtig angeschwollenen Ganglienmassen des *Gollschen* und des *Burdachschen* Kernes weit seitwärts gedrängt worden, seine Beziehungen zur spinalen Trigeminuswurzel sind dagegen die gleichen geblieben wie tiefer unten. Aus den Hinterstrangkernen sehen wir die *Tractus bulbo-thalamici* in weitem Bogen auf die Gegenseite überziehen, um dort das als *Laqueus*, *Lemniscus* oder *Schleife* bezeichnete Areal einzunehmen (sensible Kreuzung, Schleifenkreuzung).

Von Vorderhörnern kann man nicht mehr reden. Sie haben sich in einzelne Zellhaufen aufgelöst: Der *Nucleus accessorii* verhält sich wie auf Fig. 30; aus dem *Nucleus hypoglossi* gehen, analog gelagert wie die spinalen Vorderwurzeln, die Wurzeln des motorischen Zungennerven hervor.

Von weiteren Gebilden der grauen Substanz sind zu erwähnen: *Oliven* und *Nebenoliven*, von deren Beziehungen erst später einiges erwähnt werden soll.

Die Pyramiden liegen als mächtige, dicht geschlossene Fasermassen zu beiden Seiten der vorderen Medianfissur, die *Tractus spino-cerebellares*, vom *Accessorius* durchbrochen, an der uns bekannten Stelle der Seitenstrangsperipherie.


Statt des dorsalen *Mediansulcus* ist eine *Medianfissur* aufgetreten, die auf unserem Schnitte beinahe bis zum Zentralkanal vorgedrungen ist (mit der Vereinigung der hinteren Medianfissur und des Zentralkanales, d. h. mit der Bildung des sogenannten „*Calamus scriptorius*“ nimmt bekanntlich die Rautengrube ihren Anfang).

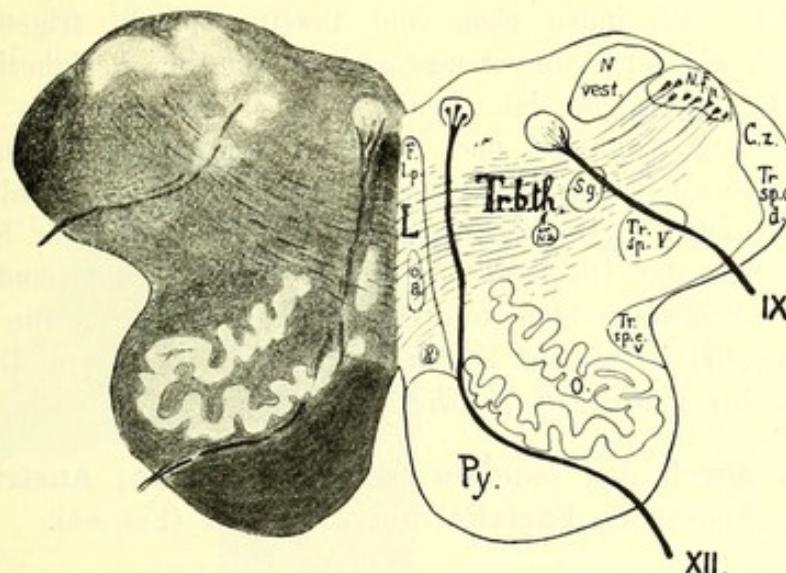
Dorsal vom Schleifenareal erblickt man das hintere Längsbündel (*Fasciculus longitudinalis posterior*). Erst in dieser Höhe bildet es ein scharf konturiertes Querschnittsfeld, tatsächlich aber setzen sich seine Neurone bis tief ins Rückenmark fort. Es ist ein Komplex wichtiger Assoziationsneurone (cf. pag. 10), die cerebrale und spinale Kerne miteinander verbinden. Wegen seiner engen Beziehungen zu den Augenmuskelkernen und zum Vestibularissystem (siehe weiter unten) nimmt man allgemein an, daß das hintere Längsbündel vornehmlich im Dienste der Synergien steht, die zum Zustandekommen der Orientierung im Raum notwendig sind.

4. Schnitt durch das verlängerte Mark (unteres Drittel der Rautengrube, Vagusaustritt) (Fig. 32).

Die Rautengrube hat sich eröffnet. Dicht unter ihrem Boden liegt jetzt der Hypoglossuskern, der auf Fig. 31 viel weiter ventral, d. h. in der axialen Fortsetzung der Vorderhörner zu finden war. Die sensiblen Kerne liegen natürlich noch weiter dorsal, und zwar treffen wir (von außen nach innen vorgehend): 1. den *Burdachschen* Kern — hier noch

Fig. 32.

Tr. sp. c. d. = Tractus spinocerebellaris dorsalis. — Tr. sp. c. v. = Tract. spinocereb. ventr. — X = Nervus vagus. — N. a. = Nucleus ambiguus. — Sonstige Abkürzungen wie auf Fig. 31.


ziemlich mächtig entwickelt; 2. den *Gollschen* Kern — hier sehr klein, d. h. bereits fast ganz in die Bildung der Schleife aufgegangen; 3. den sensiblen Vaguskern, welcher, am makroskopischen Präparat durch den Boden der Rautengrube durchschimmernd, der als *Ala cinerea* bekannten Partie ihre graue Färbung verleiht.

Der motorische Vaguskern (Nucleus ambiguus vagi) liegt, ventrolateral vom Hypoglossuskerne, mitten im Areal der bogenförmigen Züge der Schleifenkreuzung. Der aus sensiblen und motorischen Wurzeln (für den Kehlkopf, den Magen, den Oesophagus, für das Herz und die Lunge) sich zusammensetzende Vagusstamm verläßt die Oblongata seitlich zwischen *Gowersscher* Bahn und Kleinhirnseitenstrangbahn. Während nämlich erstere an der früheren Stelle (dorsolateral von der Olive) geblieben ist, ist letztere, der Tractus spinocerebellaris dorsalis, in dorsal-

wärts gerichteter Wanderung begriffen, bereits neben dem *Burdachschen* Kerne angelangt, sich auf diesem Wege zwischen die Peripherie des Markes und das Areal der spinalen Trigeminuswurzel drängend. Der Kern der letzteren, die *Substantia gelatinosa Rolandi*, liegt wie bei Fig. 31 zwischen ihr und dem Reviere der *Tractus bulbo-thalamici*, wird aber jetzt von dem Faserkontingente des *Vagus* durchbrochen.

Über hinteres Längsbündel, Schleife, Pyramiden, Hypoglossuswurzeln und Olivien ist gegenüber dem vorhergehenden Schnitte keine

Fig. 33.

N. vest. = *Nucleus vestibularis*. — IX = *Nervus glossopharyngeus*. — C. r. = *Corpus restiforme*. — N. f. p. = *Nucleus funiculorum posteriorum*. — Sonstige Abkürzungen wie auf Fig. 32.

wesentliche Abweichung namhaft zu machen. Außer der medialen Nebenolive haben wir jetzt noch eine dorsale.

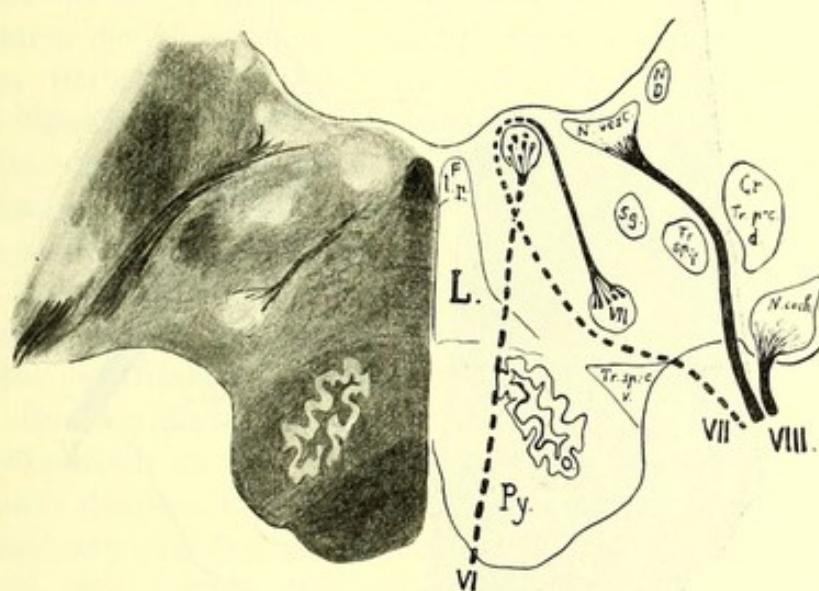
5. Schnitt durch das verlängerte Mark (größte Breite der Rautengrube, *Glossopharyngeusaustritt*) (Fig. 33).

Der Gesamtquerschnitt hat in den dorsalen Partien durch Weitung und Abflachung der Rautengrube eine beträchtliche Verbreiterung erfahren. Auch die Hinterstrangkerne liegen jetzt unter dem Boden des 4. Ventrikels, und zwar ganz seitlich, am sogenannten Recessus lateralis. Eine Trennung zwischen *Grollschem* und *Burdachschem* Kerne ist hier nicht mehr möglich, wir sehen noch die letzten spärlichen Neurone der gegenüberliegenden Schleife zustreben; auf den späteren Schnitten werden wir den Hinterstrangkernen nicht mehr begegnen.

Medial von den Hinterstrangskernen taucht bereits in diesem Niveau der Vestibulariskern auf (siehe unten). Den Hypoglossus- und den motorischen Vaguskern sehen wir noch in gleichen topographischen Verhältnissen wie in den caudaleren Schnitten. An die Stelle des sensiblen Vaguskernes ist derjenige des Glossopharyngeus getreten, in dem die Geschmacksfasern des hinteren Zungendrittels und die sensiblen Neurone aus dem Pharynx und der Paukenhöhle ihr Ende finden. Wo auf Fig. 32 der Vagus die Peripherie durchbrach, tut es jetzt der Glossopharyngeus. Auch er durchschneidet die Substantia gelatinosa Rolandi, die hier einen beträchtlich kleineren Querschnitt angenommen und nach innen oben vom Tractus spinalis trigemini sich entfernt hat, wie auch dieser noch weiter von der Peripherie dorso-medianwärts weggerückt ist. Der Tractus spinocerebellaris anterior, das *Gowersche* Bündel, ist noch an alter Stelle; der Tractus spinocerebellaris dorsalis, die Kleinhirnseitenstrangbahn, ist dorsalwärts im Areal des Corpus restiforme angelangt, das als hinterer Kleinhirnarm Cerebellum und Oblongata verbindet. Hinteres Längsbündel, Pyramiden und Schleife zeigen unveränderte Topographie. Die inneren Nebenoliven sind jetzt in der Schleifenschicht eingeschlossen. Die Oliven haben hier ihre mächtigste Entwicklung erlangt.

6. Schnitt durch das caudale Ende der Brücke; Austritte des *Acusticus*, *Facialis* und *Abducens* (Fig. 34).

Die Pyramiden sind knapp vor ihrer Zersplitterung zwischen den queren Faserzügen des Pons Varoli getroffen. Darüber erblickt man den Querschnitt des oberen Endes der Oliven. Die dorsale Hälfte des Präparates nehmen neben der Medianlinie oder Rhaphe die Areale der Schleife und des hinteren Längsbündels ein.

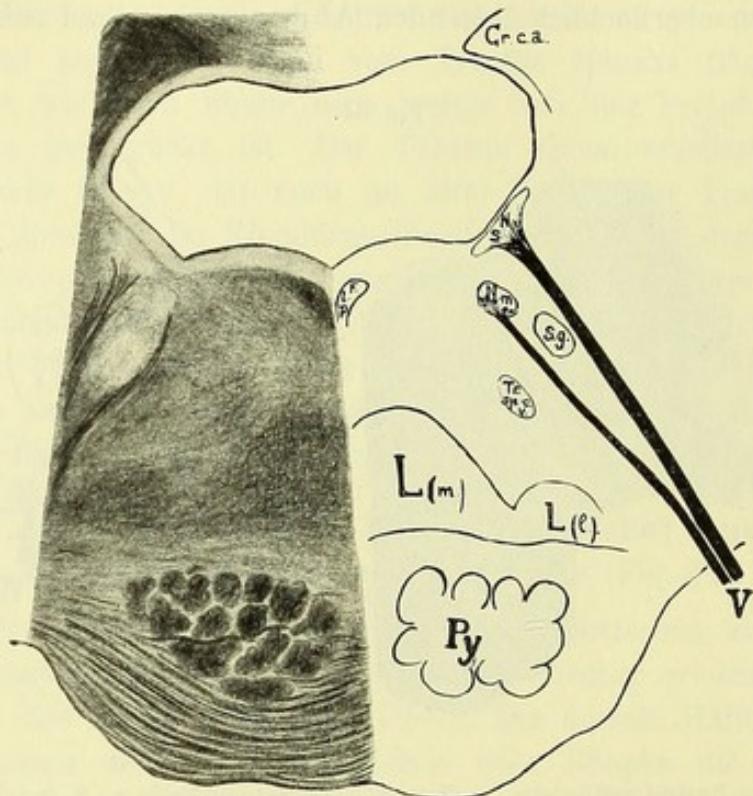

Nach den Seiten hin findet der kontinuierliche Übergang des Hirnstammes in das Cerebellum statt; hier sind im Corpus restiforme die Neurone der dorsalen Spinocerebellarbahn eingeschlossen. Der ventrale Anteil, das *Gowersche* Bündel, liegt noch immer an der Peripherie, dorsolateral von der Olive. Sein keilförmiger Querschnitt zeigt, wie in den früheren Schnitten, eine nach innen gerichtete Spitze. Substantia gelatinosa und Tractus spinalis trigemini liegen nicht wesentlich anders als auf Fig. 33.

Wie auf dieser letzteren, liegt ferner der Vestibulariskern oberflächlich unter dem Boden des seitlichen Teiles der Rautengrube. Jetzt sehen wir den Nervus vestibularis, den im Dienste des Raumsinnes stehenden Teil des 8. Gehirnnerven, zwischen Corpus restiforme und

spinaler Trigeminuswurzel hindurch, in jenen Kern einstrahlen. Der eigentliche Hörnerv, der *Nervus cochlearis*, hat den seinigen ventral im sogenannten Kleinhirnbrückenwinkel, an der Stelle, die als *Tuberculum acusticum* nach außen prominiert.

Nicht oberflächlich unter dem Boden der *Fossa rhomboidea*, sondern in der Tiefe der Haube (wie man die dorsale Hälfte der Brücke nennt) liegt der Kern des motorischen Gesichtsnerven, *Nucleus nervi facialis*. Der intrazentrale Verlauf dieses Nerven ist ein eigenartiger. Steigt er doch zuerst bis unter den Boden der Rautengrube empor, um sich dort um den oberflächlich liegenden *Abducenskern* zu schlingen und

Fig. 34.



N. vest. = Nucleus vestibularis. — N. coch. = Nucleus cochlearis. — N. D. = Nucleus Deitersi. — VIII = Nervus acusticus. — VII = Nervus facialis. — VI = Nervus abducens. — Sonstige Abkürzungen wie auf Fig. 33.

rückläufig zur Gehirnbasis zu gelangen, wo er in nächster Nähe des *Acusticus* am Kleinhirnbrückenwinkel austritt. Da die zweite Hälfte der auf diese Weise gebildeten Schlinge nicht im gleichen Querschnittsniveau verläuft wie die erste, sondern etwas weiter frontal, haben wir sie punktiert eingezeichnet. Ebenfalls weiter frontal tritt der *Abducens*, der Nerv des *Musculus rectus externus oculi*, aus. Auch seine Wurzeln sind deshalb punktiert eingezeichnet. Sie verlassen die Gehirnbasis am hinteren Brückenrande, beträchtlich medialer als diejenigen des *Facialis*. Der über dem *Abducenskern* liegende Teil dieser letzteren, das sogenannte *Facialisknie*, prominiert als *Eminentia teres* am Boden der Rautengrube.

Neben dem Nucleus vestibularis, auf der Grenze des Kleinhirnterritoriums, liegt der *Deiterssche Kern*; wir erinnern daran, daß er den Ausgangspunkt des Tractus vestibulo-spinalis darstellt. Seine Verbindungen mit dem hinteren Längsbündel haben wir, um das Bild nicht zu komplizieren, auf der Zeichnung nicht hervorgehoben, ebenso wenig wie seine Verbindungen mit dem Vestibulariskern und wie diejenigen zwischen dem Vestibulariskern und dem Fasciculus longitudi-

Fig. 35.

L. l. = Laqueus lateralis. — L. m. = Laqueus medialis. — N. s. = Nucleus sensitivus. — N. m. = Nucleus motorius. — V = Nervus trigeminus. — Cr. c. a. = Crus cerebelli anterius. — Sonstige Abkürzungen wie auf Fig. 34.

nalis posterior. Alle diese Beziehungen sind jedoch, wie schon ange deutet (pag. 85), physiologisch wichtig (Zusammenarbeiten der oculären und labyrinthären Apparate bei der Orientierung im Raum).

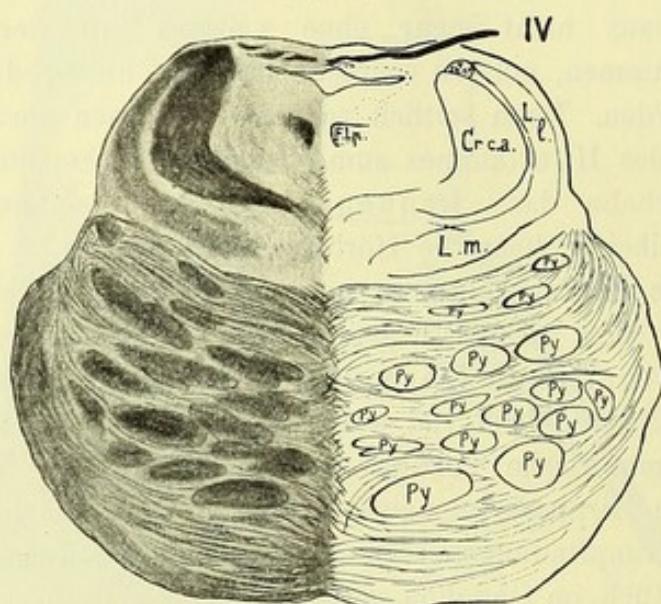
7. Schnitt durch die Brücke (mittleres Drittel, Höhe des Trigeminusaustrittes) (Fig. 35).

Der ventrale Teil der Brücke (Pars basilaris pontis) zeigt, in die Masse der queren Brückenfasern eingebettet (diese stehen größtenteils durch die mittleren Kleinhirnarme mit dem Cerebellum in Verbindung),

die quergeschnittenen Pyramidenbahnen. Sie stellen kein einheitliches, kompaktes Bündel mehr dar, wie auf den früheren Schnitten, sondern sind in einzelne Faszikel zersplittert.

Im dorsalen Teile der Brücke oder in der Haube (Tegmentum pontis) erblicken wir an bekannter Stelle das hintere Längsbündel. Das Areal des Laqueus hat nunmehr seine frühere schlanke Form gegen eine breitere vertauscht; dabei ist sein Höhendurchmesser beträchtlich zurückgegangen, so daß Tractus bulbothalamici und hinteres Längsbündel sich nicht mehr berühren. Erstere fallen in diesem und den frontalen Niveaus nicht mehr ohne weiteres mit der Bezeichnung „Schleife“ zusammen, müssen vielmehr jetzt als die mediale Schleife bezeichnet werden. Denn seitlich von ihnen nehmen die aus den Acusticuszentren des Hirnstammes zum Mittelhirne ziehenden Neurone der zentralen Hörbahn das „Laqueus lateralis“ benannte Areal ein (Nähere Einzelheiten über die Hörbahn siehe unten.)

Was die Kernverhältnisse in diesem Niveau anbelangt, so sind sie gegenüber den vorigen bedeutend vereinfacht. Der Trigeminus hat einen motorischen Kern, welcher in der gleichen Sagittalebene wie der Facialiskern, doch viel weiter dorsal liegt. Aus ihm entspringt die kleinere, motorische Portion des Trigeminus, der Kaumuskelnerv. Er verläßt die Hirnbasis gemeinschaftlich mit der mächtigen sensiblen Portion, dem Empfindungsnerven des Gesichts. Dessen Ganglienzellen liegen bekanntlich im Ganglion semilunare Gasseri; ihre Achsenzylinder streben dem sensiblen Trigeminuskern zu, der seitlich unter dem Rautenboden liegt und zum Teil am sogenannten Locus coeruleus blau durchschimmert. Zum letzten Male begegnen wir ferner der Substantia gelatinosa Rolandi, in die bis herab ins Halsmark Trigeminusfasern eintreten: diejenigen des uns bereits bekannten Tractus spinalis Trigemini, der aus Fasern der sensiblen Portion hervorgeht, welche, statt in den Nucleus sensibilis einzustrahlen, caudalwärts umbiegen, um mehr oder weniger weit den Gehirnstamm zu durchmessen.


Das *Gowerssche* Bündel hat seine periphere Lage am Kleinhirnbrückenwinkel verlassen, um am vorderen Rande des Pons Varoli in die dorsalen Teile der Haube zu gelangen. Unser Schnitt trifft es ungefähr auf der Mitte dieser Wanderung.

8. Schnitt durch die Brücke (vorderstes Drittel; Austritt des Trochlearis am Velum medull. ant.) (Fig. 36).

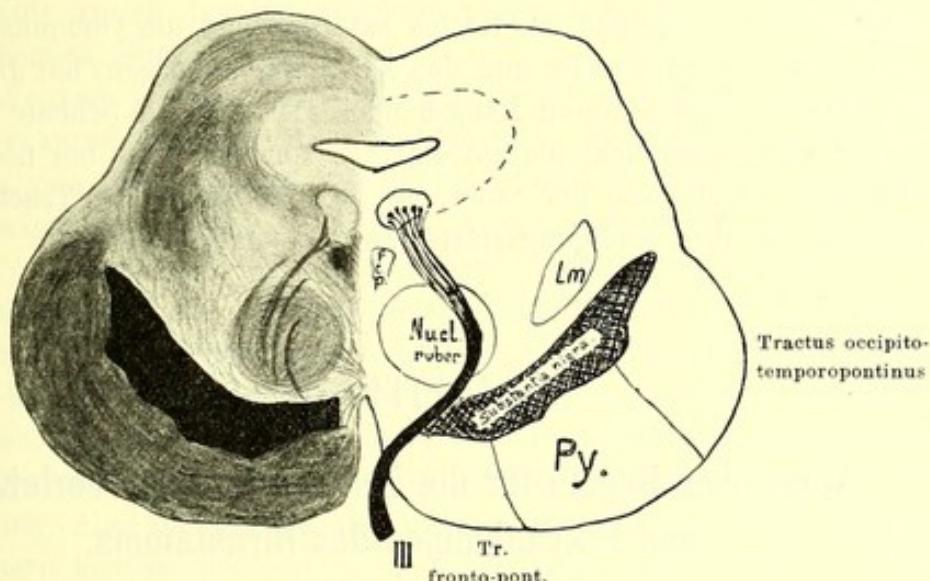
Die Pars basilaris pontis hat an Umfang gewaltig zugenommen; die in ihr eingebetteten Pyramidenbündel liegen noch zerstreuter als auf

Fig. 35. Dagegen ist das Volumen des dorsalen Teiles (der Haube), zugleich mit der starken Verjüngung, welche der 4. Ventrikel unter dem Velum medullare anterius erfährt, beträchtlich zurückgetreten. Noch immer schließt das Tegmentum das hintere Längsbündel und die Schleife (mediale und laterale) in sich. Ersteres liegt noch immer symmetrisch neben der Mittellinie unweit vom Ventrikel; der Lemniscus medialis ist am Boden der Haube etwas mehr lateralwärts gerückt (die beidseitigen

Fig. 36.

IV = Nervus trochlearis. — Sonstige Abkürzungen wie auf Fig. 35.

Tractus bulbo-thalamici tendieren bereits nach der Richtung der Sehhügel hin auseinander); der Lemniscus lateralis hat sich schon ganz seitwärts gegen das Velum medullare heraufgeschlagen, bereit, in den hinteren Vierhügel einzutreten.


Das gesamte Schleifenareal umgibt halbmondförmig dasjenige der Fasern, die, das Velum medullare anterius zwischen sich nehmend, aus dem Kleinhirn in die Lamina quadrigemina dringen. (Auf Fig. 35 sind diese Fasern beim Austritt aus dem Cerebellum getroffen.) Es handelt sich um den Komplex, der den Bindearm, das Brachium conjunctivum oder Crus cerebelli anterius darstellt. An dieses Gebilde hat sich die *Gowerssche* Bahn angeschmiegt, um mit ihm, also rückläufig, in den Vermis cerebelli zu gelangen.

Innerhalb des Velum medullare anterius erblicken wir die Kreuzung der Nervi trochlearis. Der Nervus trochlearis, der Nerv des Musculus obliquus superior oculi, ist bekanntlich unter allen Gehirnnerven

durch seinen **dorsalen** Austritt gekennzeichnet; einige Forscher erklären diese merkwürdige Sonderstellung phylogenetisch: der Trochlearis sei ursprünglich der Nerv eines Muskels für das „Parietalorgan“ gewesen.

Der Kern des Trochlearis findet sich auf unserem Schnitte nicht. Er liegt weiter vorn, am proximalen Ende der Brücke, unter den hinteren Vierhügeln, und zwar dorsal vom hinteren Längsbündel. Auf

Fig. 37.

III = Nervus oculomotorius. — Sonstige Abkürzungen wie auf Fig. 36.

welche Weise er um den Ventrikel herum seine Fasern zur dorsalen Kreuzung entsendet, ist auf meiner Figur punktiert angedeutet worden.

9. Schnitt durch die Hirnschenkel und das vordere Vierhügel-paar (Austritt des Oculomotorius) (Fig. 37).

Auch in diesem Niveau wird die Unterscheidung zwischen einer Pars basilaris und dem Tegmentum gemacht. Die Grenze zwischen beiden gibt die Substantia nigra Soemmeringi ab. In der Pars basilaris, dem Hirnschenkelfuß, verlaufen die Pyramiden, beidseits von Faserkomplexen, die Großhirnrinde und Brücke verbinden, in der Weise eingerahmt, wie es unsere Figur veranschaulicht: nach außen der Tractus occipito-temporo-pontinus, nach innen der Tractus fronto-pontinus.

In der Haube erblicken wir dicht unter dem Ventrikel, der hier bereits zum Aquaeductus Sylvii sich verengert hat, den Oculomo-

riuskern. Wir haben letzteren in einer Weise gezeichnet, die den komplizierteren Verhältnissen noch nicht Rechnung trägt, die er tatsächlich bietet und die uns weiter unten beschäftigen sollen. Kommt es uns doch hier vorerst nur auf die gröbere Topographie an. Man beachte den Verlauf des Oculomotoriusstammes zur Basis, wo er am medialen Rande des Hirnschenkelfußes zum Austritte gelangt; auf diesem Verlaufe durchzieht er den Nucleus ruber tegmenti, an dessen Wichtigkeit als Ausgangspunkt des *Monakowschen* Bündels (siehe S. 6) hier erinnert sei.

Der Oculomotoriuskern (dessen Neurone sämtliche äußeren Augenmuskeln mit Ausnahme des Rectus externus und des Obliquus superior, sowie den Sphincter iridis und den M. ciliaris versorgen) hat die engsten Beziehungen zum hinteren Längsbündel. Die „mediale Schleife“ ist noch weiter seitwärts gerückt als auf Fig. 36; sind wir doch nur noch wenige Millimeter caudal von der Stelle, wo sich die Masse der Tractus bulbotalamici in ihre Endigungsstätte, den Sehhügel, einsenkt.

KAPITEL II.

1. Allgemeine Regeln für die Lokalisation der Verletzungen und Erkrankungen des Hirnstamms.

Zunächst suchen wir aus den anatomischen Verhältnissen des Hirnstamms, wie wir sie im vorhergehenden Kapitel kennen lernten, die strukturellen Prinzipien abzuleiten, die den Aufbau des gesamten Hirnstamms beherrschen und in lokalisatorischen Prinzipien von ebenso genereller Gültigkeit ihr Korrelat haben.

a) Die Hirnnervenkerne sind fast durchwegs durch ihre Lage in den dorsalen Teilen des Truncus cerebri ausgezeichnet, und zwar können wir drei Etagen unterscheiden, von denen die beiden ersten in Brücke und Hirnschenkel die „Haube“ einnehmen: Am dorsalsten, d. h. dicht unter dem Boden der Rautengrube bzw. dicht unter dem Sylvischen Åquadukte liegen die Kerne von Hypoglossus, Vagus (sens.), Glossopharyngeus, Vestibularis, Abducens, Trigeminus (sens.), Trochlearis und Oculomotorius. — Eine etwas ventralere Lage kommt der Kernflucht zu, aus der Accessorius, motorischer Vagus, Facialis und motorischer Trigeminus hervorgehen. Die Partie, in die sie eingebettet ist, nennen wir „Formatio reticularis“. — Eine noch ventralere Lage nimmt nur der Cochleariskern ein, im „Tuberculum acusticum“.

b) Die Faserbüschel der Hirnnerven streben aus den erwähnten Kernen der Hirnbasis zu, meist in direktem Verlaufe, auf einem kleinen Umwege der motorische Vagus, auf einem größeren der Facialis. Einzig und allein der Trochlearis tritt dorsal aus (am Velum medullare anterius); er allein macht ferner auch in der Hinsicht eine Ausnahme, daß nach dem Austritte aus dem Kerne eine totale Kreuzung seiner Wurzeln stattfindet. (Über eine bisher nicht erwähnte partielle Kreuzung von Oculomotoriusfasern werden wir weiter unten noch reden.) Alle anderen Nervenwurzeln des Hirnstamms, sowohl motorischer als sensibler Natur, treten dagegen ungekreuzt aus, d. h. auf der ihrem Kerne entsprechenden Seite.

c) Ventral — oder besser ventromedial von dem Reviere der Hirnnervenkerne (also vom Rautenboden und der Formatio reticularis) liegt das von den Bahnen der Körper- und Extremitätensensibilität eingenommene Areal. Wir wissen, daß es mit der topographischen Bezeichnung: Schleife (Laqueus, Lemniscus) zusammenfällt, haben auch gesehen, wie die Hauptmasse dieses Gebildes aus den Tractus bulbo-thalamici hervorgeht, welch letztere Anschlußneurone der Hinterstränge, also der langen Faserzüge des Hinterwurzelsystems, darstellen (siehe oben, pag. 9). Somit leiten sie, nach unseren Ausführungen im ersten Abschnitte (pag. 17 u. 18), Tiefensensibilität (Lagesinn etc.) und Tastempfindung. Aber im gleichen Abschnitte lernten wir noch kurze Hinterwurzelfasern kennen, die bereits im Hinterhorn enden und an die sich die Tractus spino-thalamici des Seitenstranges anschließen. Diese Tractus spino-thalamici, die bald nach ihrem Ursprunge kreuzen, streben dann ohne weitere Kreuzung dem Sehhügel zu und mischen sich, nachdem die Schleife aus den Tractus bulbo-thalamici formiert worden, den letzteren bei. Sie übermitteln unserem Bewußtsein, neben der Gesamtheit der Schmerz- und Temperatureindrücke, einen Teil der Tastperzeptionen. Nach den vorliegenden klinischen und pathologisch-anatomischen Erfahrungen hat es den Anschein, als ob in den der Rhaphe benachbarten Teilen der Schleife nur bulbothalamische Fasern verlaufen, so daß bei ausschließlichem Ausfall der medialsten Teile des Laqueus vorwiegend Muskelsinnstörungen an Rumpf und Extremitäten in die Erscheinung treten. Erst wenn sich die Zerstörung auch auf die seitlichen Teile der Schleife erstreckt, pflegen sich deutliche taktile Ausfälle nebst Schmerz- und Temperatursinnstörungen geltend zu machen. Der Umstand, daß letztere auch bei Läsionen der Formatio reticularis (siehe pag. 96) auftreten können, spricht für die von verschiedenen Autoren geäußerte Ansicht, daß auch durch diese Gegend ein Teil der Tractus

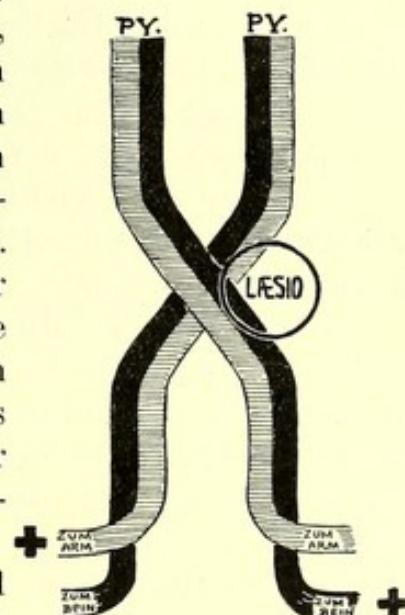
spino-thalamici seinen Weg zum Sehhügel einschlägt. — Während im hinteren Teile des Hirnstammes die beiderseitigen Schleifenareale einander tangieren, weichen sie von der Brückenmitte aus mehr und mehr auseinander.

d) Die ventralste Partie des verlängerten Markes und der Hirnschenkel nehmen die Pyramiden ein. Weniger oberflächlich ist ihre Lage innerhalb der Brücke, wo sie außerdem durch die queren Faserzüge in einzelne Fascikel zersprengt sind. Auch für sie gilt, wie für die Bahnen der Körper- und Extremitätensensibilität, der Satz, daß sie, hinten einander eng benachbart, nach vorn mehr und mehr auseinanderweichen. Dieses Divergieren beginnt hier freilich schon in der Oblongata.

e) Bei ihrem Eintritte aus der inneren Kapsel des Großhirnes in den Gehirnstamm bzw. in den Hirnschenkel enthalten die Pyramiden außer den zentralen motorischen Bahnen für Rumpf und Extremitäten auch diejenigen für Kaumuskeln, Gesichtsmuskulatur, Kehlkopf und Zunge. In diesem Niveau deckt sich somit der Begriff „Pyramidenbahnen“ keineswegs mit demjenigen „Tractus cortico-spinalis“, sondern schließt auch noch die Tractus cortico-bulbares in sich (supranukleäre motorische Trigeminus-, Facialis-, motorische Vagus- und Hypoglossusbahn). Aus dem Gesamtkomplexe lösen sich aber während des Verlaufes durch den Hirnstamm diese letzteren sukzessive ab, um, nach Überschreitung der Mittellinie, zum motorischen Trigeminuskern, zum Facialiskern, zum Nucleus ambiguus und zum Hypoglossus Anschluß zu gewinnen.

f) Langgestreckte Gebilde, welche im größten Teile des Truncus cerebri uns begegnen, sind: Dorsal in der Nähe der Mittellinie das hintere Längsbündel, lateral die spinale Trigeminuswurzel mit der ihr zugehörigen Kernsäule (Substantia gelatinosa Rolandi). Longitudinal und lateral verläuft in der Oblongata außerdem die gesamte Spino-cerebellarbahn, während in der Brücke nur noch deren *Gowers*-scher Anteil den auf pag. 94 geschilderten Weg einschlägt.

Behält man die soeben aufgezählten strukturellen Kriterien im Auge, so begegnet das Verständnis der topisch-diagnostischen Leitsätze, die wir nun anschließen, keinen Schwierigkeiten mehr:


Das geringe Kaliber der Medulla oblongata bringt es mit sich, daß schon kleine Herde, besonders in den hinteren Partien, sehr bedeutende Ausfälle zu erzeugen, namentlich doppelseitige klinische Symptome hervorzurufen imstande sind. So vermag schon eine winzige Blutung oder Erweichung die ganze Zunge zu lähmen, infolge des minimalen Abstandes, der die Hypoglossuskerne beider Oblongatahälften voneinander

trennt. Da nach vorn der Hirnstamm immer breiter wird, sind für Kernläsionen die Bedingungen zur Bilateralität in der Brücke und Hirnschenkelhaube viel seltener gegeben als im verlängerten Marke. Doch die gegenseitige Berührung des rechten und linken Schleifenareals macht es als verständlich, daß auch noch in der hinteren Hälfte der Brücke bilaterale Zerstörung derselben durch eine kleine Läsion keineswegs zu den Seltenheiten gehört, woraus doppelseitige Anästhesie von Rumpf und Extremitäten resultiert. Bei kleinen medianen Brückenherden erstreckt sich diese Anästhesie gewöhnlich nur auf die Tiefensensibilität. Dies findet seine Erklärung in unseren Ausführungen von pag. 97—98, ebenso der Umstand, daß je weiter ein Herd seitlich in der Schleife sitzt bzw. noch in die Formatio reticularis hineingreift, um so mehr Schmerz- und Temperatursinnstörungen sich einzustellen pflegen. Die durch einseitige Unterbrechung der Schleife entstandenen Sensibilitätsausfälle sind natürlich kontralateral (vornehmlich in Form gekreuzter Hemiataxie), es sei denn, daß die Unterbrechung in der untersten Oblongata, distal von der Decussatio lemniscorum, stattfand.

Homolaterale Hemiataxie (und zwar vom cerebellaren Typus, cf. pag. 33) kommt durch einseitige Affektion des Tractus spino-cerebellaris bzw. des Corpus restiforme zustande, worauf noch unter „Kleinhirn“ eingegangen werden soll.

In der Oblongata sind auch die Pyramiden einander so benachbart, daß es schon durch eine minimale Läsion zu Tetraplegien kommen kann. (Daß dies nicht häufiger zur Beobachtung kommt, als es tatsächlich der Fall ist, erklärt sich aus dem Umstande, daß Oblongataherde wegen der Lebenswichtigkeit vieler im Vaguskern eingeschlossener Zentren — Atmung, Schlucken, Herzhemmung — in den meisten Fällen zum Tode führen.) Eine exzessive Seltenheit stellt auch die Hemiplegia cruciata dar, die durch seitlich an der Pyramidenkreuzung sitzende Läsionen realisiert wird, wodurch die Bahnen für den Arm vor, diejenigen für das Bein nach dem Übertritt auf die Gegenseite

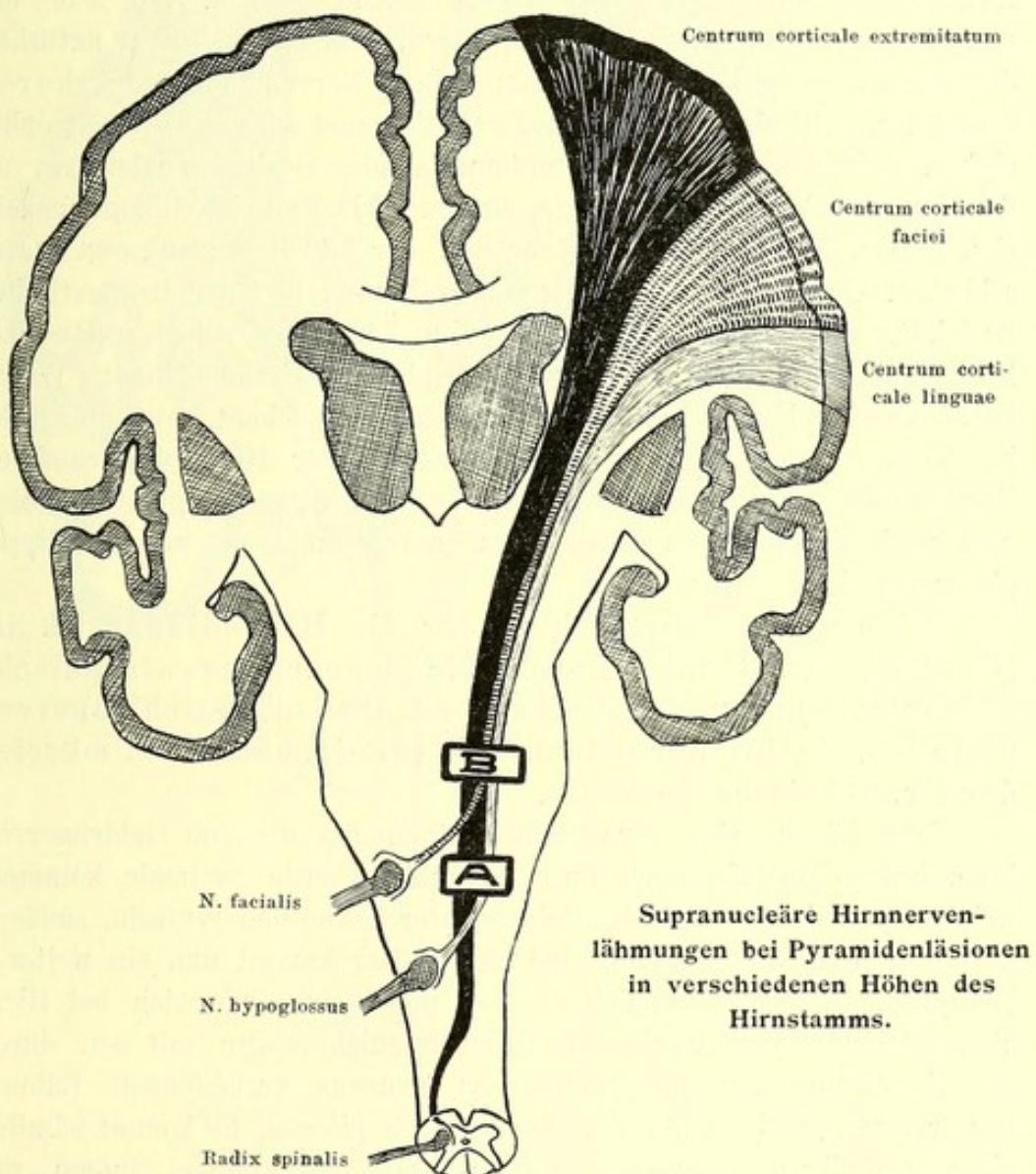
Fig. 38.

Das Zustandekommen der
Hemiplegia cruciata.

+= gelähmt.

getroffen werden. Es verfallen dann der kontralaterale Arm und das homolaterale Bein einer Lähmung vom zentralen corticospinalen Typus (siehe Fig. 38).

Im basalen Teile der Brücke, wo die Pyramiden, in einzelne Bündel zersprengt, durch große Mengen von Querfaserzügen getrennt sind, können kleine Herde ganz symptomlos bleiben, weil entweder zu wenig Pyramidenfasern alteriert werden oder die Pyramiden sogar gänzlich verschont geblieben sind.


Behalten wir nun aber den (bei Hirnstammläsionen häufigsten) Fall der einseitigen Pyramidenläsion im Auge, so ist es klar, daß eine Leitungsunterbrechung, welche ausschließlich die cortico-spinalen Bahnen beträfe, genau dieselben Symptome verursachen müßte, an welcher Stelle zwischen Gehirnrinde und Pyramidenkreuzung sie nun auch säße. Deshalb sind wir, um mit Bestimmtheit eine Hirnstammläsion diagnostizieren, noch mehr aber, um ihr richtiges Niveau innerhalb des Hirnstamms erkennen zu können, auf die Funktionsstörungen von seiten der Nervenpaare III bis XII angewiesen, die in solchen Fällen so gut wie nie vermißt werden.

In der Tat ist auf der genannten Strecke eine isolierte Leitungsunterbrechung der corticospinalen Bahnen durch herdförmige Läsionen fast unmöglich. Denn diese Bahnen, die zentralen Neurone der motorischen Rückenmarksnerven, sind, wie bereits betont, bis zum Übergange der Oblongata in das Halsmark mit den zentralen Neuronen der motorischen Gehirnnerven untermischt. Dies Verhältnis mag noch Fig. 39 veranschaulichen, in der die corticobulbären Bahnen des Facialis und des Hypoglossus eingetragen sind.

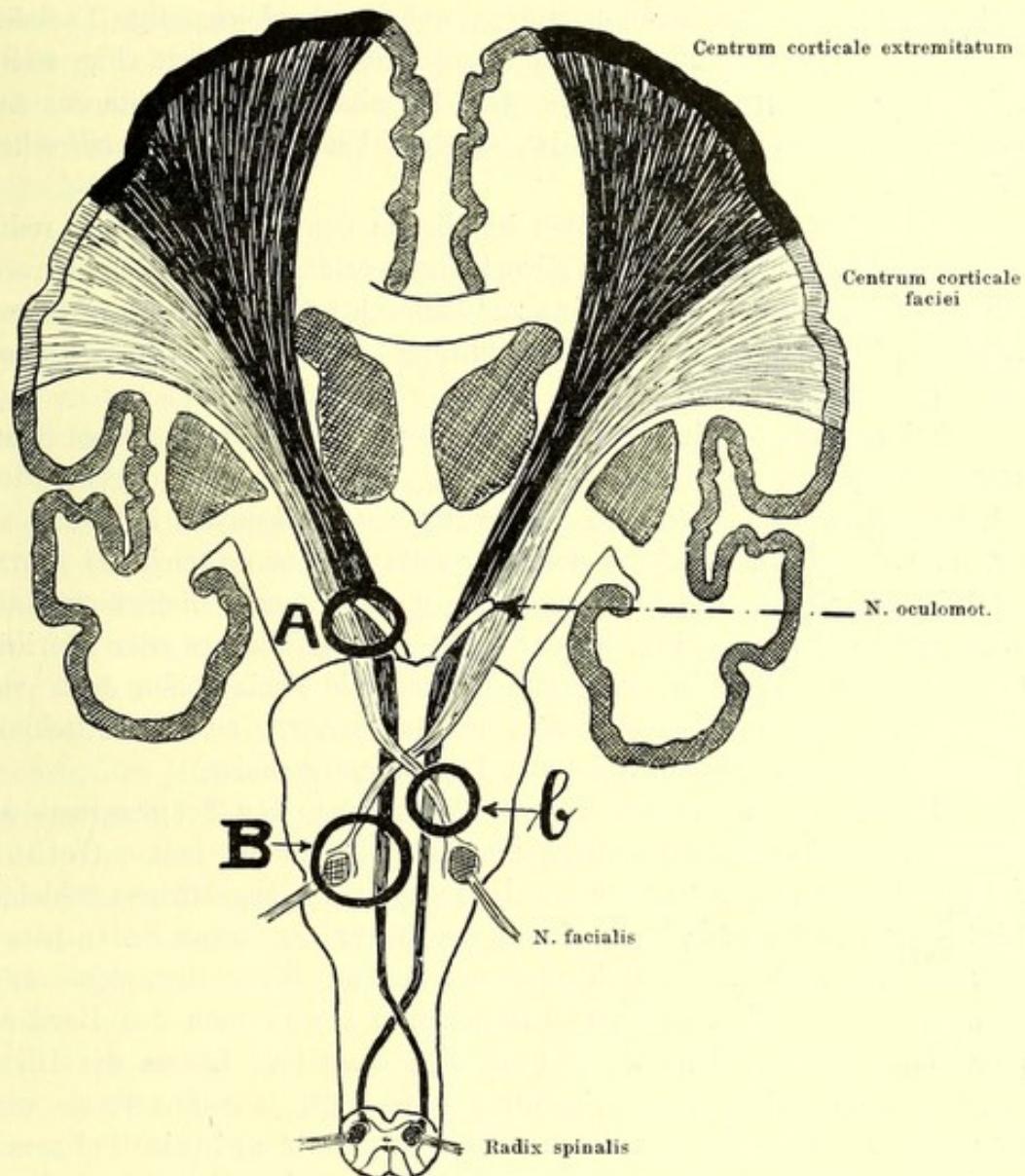
Supponieren wir nun zwei Herde, die eine Leitungsunterbrechung der Pyramidenbahnen bedingen: Ist diese Unterbrechung in dem verlängerten Marke gelegen (Herd A), so wird zwar neben der Extremitätenlähmung eine solche der Zunge einhergehen, die Gesichtsmuskeln werden dagegen normal funktionieren; liegt die Untersuchung in der Brücke (Herd B), so wird nebst der Zunge auch die Gesichtsmuskulatur gelähmt. Diese mit der corticospinalen Extremitätenlähmung einhergehenden Hirnnervenlähmungen bekunden, ebenso wie jene, durch den Mangel degenerativer Atrophie und das Fehlen von Entartungsreaktion ihren supranucleären Sitz. So finden wir als wichtiges lokalisatorisches Prinzip für die Höhendiagnostik im Truncus cerebri die Verschonung der proximal vom Herde gelegenen motorischen Hirnnervenkerne bei der (supranucleären) Lähmung durch Pyramidenausfall.

Nun sind aber Herde, die ein einziges Faserbündel wie dasjenige der Pyramiden betreffen, bei den kleinen Verhältnissen, welche die Oblongata darbietet, äußerst selten und auch in den vorderen Teilen des Hirnstamms nichts weniger als häufig. So werden uns also in den

Fig. 39.

meisten Fällen kombinierte Ausfälle vor Augen treten, und hier sind es wieder Störungen von seiten der Hirnnervenpaare III bis XII, welche, den Ausfallserscheinungen von seiten der langen Bahnen sich zugesellend, sofort auf die Lokalisation des Prozesses im Hirnstamme hinweisen.

Wie dicht gedrängt sich im Truncus cerebri die Kerne jener Nerven aneinander und nebeneinander reihen, sahen wir im vorhergehenden Kapitel. Kein Wunder, daß bei Hirnstammläsionen fast ausnahmslos der eine oder andere dieser Kerne Schaden leidet. Bei ihrer großen Vulnerabilität braucht sie sogar der Krankheitsherd nicht einmal direkt einzubegreifen. Schon die indirekte Wirkung benachbarter Herde (Druck, Zirkulationsstörung) kann sie schwer beeinträchtigen. Wo aber ein motorischer Kern des Hirnstammes zugrunde gegangen, trägt natürlich die daraus resultierende Lähmung seines Nerven den peripheren Charakter, geht also mit Entartungsreaktion und degenerativer Atrophie einher. Sobald also letztere Symptome an der Gesichtsmuskulatur, an der Kaumuskulatur, an der Zunge, an den Schluck- und Kehlkopfmuskeln sich finden, ist ein supranuklearer Sitz der Läsion schlankweg auszuschließen. Und daß nun die betroffenen Nerven in höhendiagnostischer Beziehung die wertvollsten Anhaltspunkte liefern, ist selbstverständlich. Ein Haubenherd, der degenerativ-atrophische Facialislähmung setzt, aber Zunge, Schlund, Kehlkopf und Masseteren schont, wird ungefähr im Niveau unserer Fig. 34, das heißt in der Höhe des caudalen Brückenden sitzen, dagegen weder nach vorn ins Trigeminusgebiet, noch nach hinten in die Gegend des Nucleus ambiguus und des Hypoglossus reichen.


Eine weitere Richtschnur für die Höhendiagnostik im Hirnstamme ist also durch die degenerativ-atrophische Lähmung gegeben, der diejenigen motorischen Gehirnnerven verfallen, die ihre Kerne innerhalb oder im nächsten Umkreise der Krankheitsherde haben.

Nun können aber atrophische Lähmungen der von Gehirnnerven innervierten Muskeln auch durch Krankheitsherde zustande kommen, welche diese Nerven nicht im Gebiete ihrer Kerne und Wurzeln, sondern in ihrem peripheren Verlaufe betreffen. Hier kommt nun ein weiteres Kriterium in Frage, nämlich die Art und Weise, wie sich bei Hirnstammläsionen die atrophischen Hirnnervenlähmungen mit den durch die Zerstörung der longitudinal im Truncus verlaufenden Bahnen hervorgerufenen Symptomen zu kombinieren pflegen. Es kommt nämlich überaus häufig zur sogenannten *Hemiplegia alternans*, indem, wie Fig. 40 es veranschaulicht, Hirnnerven der einen Seite gleichzeitig mit der Motilität und eventuell auch Sensibilität der distaleren Bezirke durch die Läsion ausgeschaltet werden.

Wir können bei der *Hemiplegia alternans* verschiedene Typen unterscheiden:

a) Bei Affektionen im Hirnschenkel werden neben der Pyramidenläsion, die eine komplette (das heißt Gesichtsmuskeln, Zunge und

Fig. 40.

Zustandekommen der alternierenden Hemiplegien.

A = Pedunculusherd, eine Hemiplegia alternans oculomotoria hervorrufend.
 B und b = Brückengerde, eine Hemiplegia alternans facialis hervorrufend; bei B mit, bei b ohne degenerative Muskelatrophie im Facialisgebiet.

Extremitätenmuskulatur betreffende) Hemiplegie auf der gegenüberliegenden Seite setzt, auch die Wurzeln des gleichseitigen dritten Gehirnnervs unterbrochen, woraus eine homolaterale Oculomotorius-

lähmung resultiert. So kommt die *Hemiplegia alternans oculomotoria* (= *Webersche Lähmung*) zustande (Fig. 40A).*

b) Bei Affektionen im hinteren Teile der Brücke kann auf analoge Weise die *Hemiplegia alternans facialis* (= *Millard-Gublersche Lähmung*) in die Erscheinung treten, wobei sich gleichseitige Facialisparalyse mit gegenseitiger Extremitätenlähmung kombiniert (Fig. 40 B). Ist der Herd so groß, daß außer dem Facialis auch der Abducens auf der Seite der Läsion vernichtet ist, so spricht man von der *Fovilleschen Lähmung*.

c) Seltener (was sich aus den im Niveau der Oblongata stark reduzierten Kaliberverhältnissen des Hirnstammes erklärt) kommt eine *Hemiplegia alternans hypoglossica* zur Beobachtung, bei der eine Zungenhälfte auf der lädierten, die Extremitäten auf der entgegengesetzten Seite gelähmt sind.

Ist es auch die Regel, daß bei den erwähnten alternierenden Symptomenkomplexen die Hirnnervenlähmung eine periphere, degenerative ist, so kommt auch — speziell bei der *Millard-Gublerschen Lähmung* — der Fall vor, daß sie, gleich der Extremitätenlähmung, sich als supranukleäre kundgibt. Die Erklärung für diese Tatsache liefert uns die Lage des Herdes b auf Fig. 40, der nicht den Facialiskern oder die ihm entstammenden Wurzeln, sondern die zentrale Facialisbahn kurz vor Eintritt in den Kern betrifft, also bereits nachdem sie die Mittellinie überschritten und auf die Seite der Läsion getreten ist.

Ebenso wie motorische Nerven kann auch der Trigeminus an einem alternierenden Symptomenkomplexe teilnehmen, indem Gefühllosigkeit der einen Gesichtshälfte (nebst den zugehörigen Schleimhäuten) sich mit Hemiplegie der gegenüberliegenden Seite paart. Je nach den motorischen Gehirnnerven, die an dieser Hemiplegie teilnehmen (namentlich Facialis und Hypoglossus), wird man den Herd zu lokalisieren suchen, denn an und für sich kann jede Läsion des Hirnstammes, die caudal vom Trigeminuskerne liegt, jene Anästhesie verursachen. Diese Möglichkeit ist natürlich durch die spinale Trigeminuswurzel und die *Substantia gelatinosa Rolandi* gegeben. Freilich verursacht die Läsion dieser Gebilde keine so extensive Sensibili-

* Herde, die, ohne eine Zerstörung der Pyramidenbahnen zu bedingen, auf den Hirnschenkelfuß vermöge ihrer Nachbarschaft einen Reiz ausüben, die Oculomotoriusfasern jedoch durchtrennen, rufen motorische Reizerscheinungen (Tremor) der contralateralen Extremitäten nebst homolateraler Oculomotoriuslähmung hervor. Dies bezeichnet man als den *Benediktschen Symptomenkomplex*. Wie aus Fig. 37 ersichtlich, sind besonders Herde in einem Nucleus ruber befähigt, jenes Syndrom in die Erscheinung treten zu lassen.

tätsstörung wie diejenige des sensiblen Hauptkernes oder der in ihr eintretenden Wurzelfasern. Es ist sogar wahrscheinlich, daß die Zerstörung der Substantia gelatinosa im verlängerten Marke nur im Gebiete des ersten Trigeminusastes Sensibilitätsstörungen hervorruft; doch liegen noch nicht genug beweisende Beobachtungen vor, um dies mit Bestimmtheit zu behaupten. Wo auch Kaumuskellähmung besteht, wird freilich die Verlegung des Herdes auf die entsprechende Seite der mittleren Brückenpartie und nicht auf diejenige tieferer Niveaus ohne Zögern geschehen können.

Auch die Körpersensibilität kann sich an den alternierenden Symptomenkomplexen beteiligen, sei es, daß der eine Hemiplegia alternans erzeugende Herd auch in die Schleife hineinragt (wobei die hemiplegische Partie von Rumpf und Extremitäten auch Sensibilitätsstörungen aufweist), sei es, daß die Läsion die Pyramiden verschont, dafür aber Schleife und Hirnnervenzentren oder -wurzeln gleichzeitig betrifft.

Wir haben uns deshalb als ein Hauptcharakteristikum der Hirnstammläsionen ganz allgemein den „alternierenden“ Charakter der motorischen Störungen zu merken. In querschnittsdiagnostischer Beziehung vermag überdies das spezielle Bild des vorliegenden alternierenden Syndroms nicht nur unzweideutig die Seite der Affektion uns kund zu tun, sondern auch ihre ventrale oder dorsale Lage und ihre Ausdehnung — je nach der Zahl der teilnehmenden Hirnnerven, je nachdem Pyramiden oder Schleife oder Pyramiden plus Schleife betroffen sind usw.

Die Art und Weise der sonstigen Deduktionen, mit denen die Querschnittsdiagnostik der Affektionen im Truncus cerebri operiert, sei an den wichtigsten Paradigmen erläutert. Daß Haubenerkrankungen (und denselben sind auch solche Affektionen gleichzusetzen, die von außen her — wie etwa Vermistumoren des Kleinhirns — durch Druck das Tegmentum schädigen) sich in allererster Linie durch Ausfälle im Gebiete der Hirnstammnerven offenbaren, ist selbstverständlich, haben doch letztere in der Haube ihre Kerngebiete. In solchen Fällen ist aber auch das hintere Längsbündel durch seine dorsale Lage zur Mitbeteiligung prädisponiert; ist nun dieses wichtige Assoziationsbündel der Augenmuskelkerne nur leicht in Mitleidenschaft gezogen, so sehen wir Nystagmus beim Blicke nach der lädierten Seite auftreten; ist die Zerstörung eine totale, so wird das kombinierte Bewegen der Augen nach der lädierten Seite überhaupt unmöglich (konjugierte Blicklähmung). Wir kommen im nächsten Kapitel auf diese Dinge und ihre Erklärung eingehend zurück.

Soweit es sich bei Haubenerkrankungen um die Schädigung motorischer Kerne handelt, wird sich natürlich der nucleäre Charakter der Störung durch die degenerative Paralyse kundgeben. Greift die Läsion mehr in die Tiefe, so gesellen sich Sensibilitätsstörungen in Rumpf und Extremitäten dazu (Laqueus!) — bei noch größerer, ventralwärts gerichteter Ausdehnung des Herdes kommen endlich die Pyramiden an die Reihe (spastische Lähmung der distal von der Läsionsstelle gelegenen Muskelgebiete).

Nicht minder wichtig ist die eingehende und gewissenhafte Berücksichtigung der Reihenfolge, in der sich die einzelnen Ausfälle entwickeln, wo es sich um die Diagnose eines von der Gehirnbasis ausgehenden Prozesses handelt, der wie ein Tumor in den Hirnstamm hereinwächst oder, wie ein Aneurysma der Arteria basilaris, ihn komprimiert. In letzterem Falle ist schon *a priori* nach der anatomischen Überlegung der Beginn mit mehr oder minder symmetrischen bilateralen Pyramidenstörungen am wahrscheinlichsten, an die sich erst später die Zeichen des Schleifenausfalles und die nucleären Hirnnervenlähmungen anschließen (mit Ausnahme des Abducens und Oculomotorius, die, infolge des Austrittes ihre Wurzeln nahe an der Mittellinie, auch schon initial zerstört werden können). Anders liegen die Dinge bei den Tumorbildungen der Gehirnbasis, deren Ausgangspunkt in der Mehrzahl der Fälle die austretenden Nervenstämme sind oder die Meningen in der Umgebung von solchen. Einseitigkeit ist deshalb die Regel und die Schädigung von Nervenwurzeln das prägnanteste und auch fast immer das initiale örtliche Symptom.

Hier begegnen uns nun besonders häufig in der Anamnese Reizsymptome, die mit denjenigen, die beim Rückenmark besprochen worden sind, vielfach eine völlige Analogie aufweisen. Dies gilt namentlich von Hyperästhesien und neuralgiformen „Wurzelschmerzen“ (siehe oben pag. 33) im Trigeminusgebiete. Das Reizsymptom des motorischen Trigeminus ist der „Trismus“, der zum Zähneknirschen führende Masseiterkrampf, dasjenige des Facialis sind Zuckungen der Gesichtsmuskulatur. Auch sensorische Reizerscheinungen, wie „Tinnitus“, Ohrensausen, Schwindelerscheinungen etc., sind nicht selten; über diese Punkte wie über die gesamte Symptomatologie der speziellen Sinnesnerven des Hirnstamms, die bis jetzt absichtlich außer acht gelassen wurden, kommen wir im nächsten Kapitel zu sprechen. Am häufigsten leiden bei Hirnbasisprozessen (neben den Tumoren, Gummen, Tuberkeln kommen auch die zirkumskripten Meningitiden hier in Betracht) Facialis, Abducens und Oculomotorius. Von letzterem sind offenbar die Fasern zum Levator

Fig. 42.

Fig. 41.

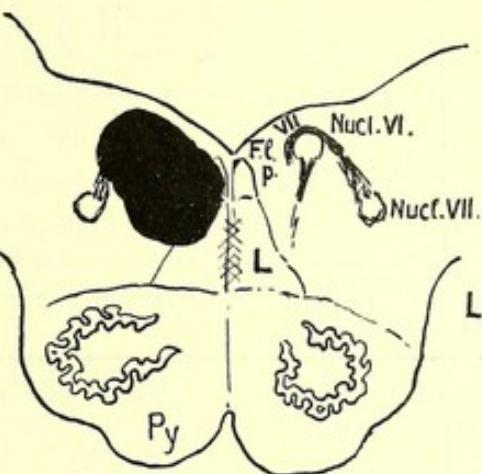
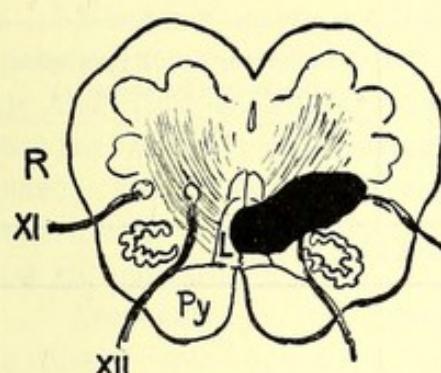



Fig. 43.

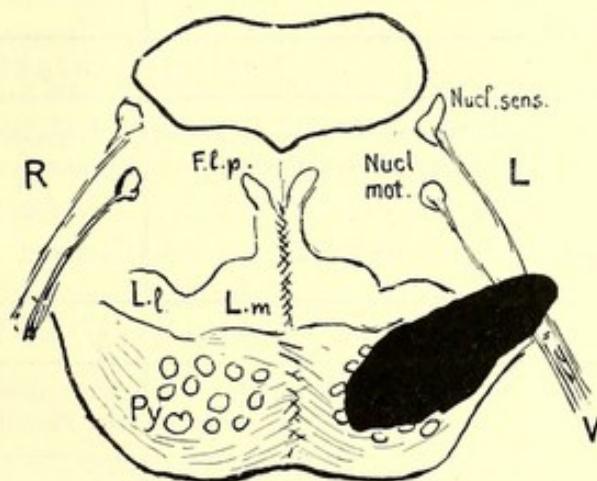


Fig. 44.

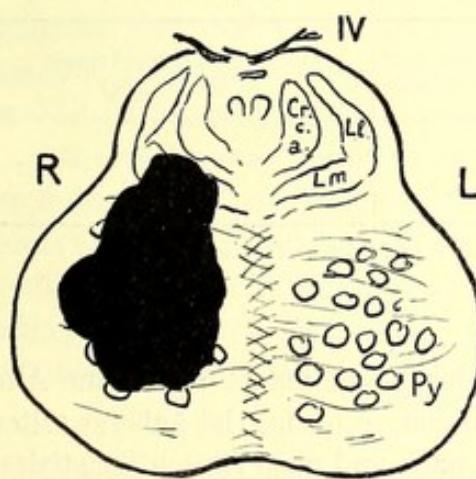
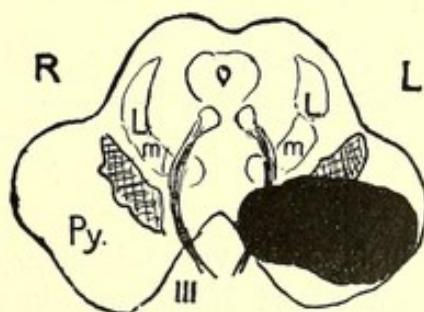



Fig. 45.

Text zu Fig. 41—45 auf der folgenden Seite.

		R e c h t s	L i n k s
	Kopf	—	Accessorius- und Hypoglossuslähmung (degenerativ)
zu Fig. 41	Rumpf und Extremitäten	Ataxie und Oberflächenanästhesie	Ataxie
		Motilität intakt	
	Kopf	Facialis- und Abducenslähmung (degenerativ), konjugierte Blicklähmung	—
zu Fig. 42	Rumpf und Extremitäten	—	Störungen der Oberflächensensibilität
		Motilität intakt	
	Kopf	Nicht degenerative Facialis- und Hypoglossuslähmung	Trigeminusanästhesie und degenerative Kaumuskellähmung
zu Fig. 43	Rumpf und Extremitäten	Hemiplegie	—
		Sensibilität intakt	
	Kopf	—	Nicht degenerative Lähmung des Facialis und Hypoglossus
zu Fig. 44	Rumpf und Extremitäten	—	Hemiplegie, Sensibilitätsstörungen
	Kopf	Nicht degenerative Lähmung des Facialis und Hypoglossus	Oculomotoriuslähmung (degenerativ)
zu Fig. 45	Rumpf und Extremitäten	Hemiplegie	—
		Sensibilität intakt	

palpebrae am vulnerabelsten, denn in der Regel macht sich seine Alteration zuerst durch Ptosis kund. Pyramidenzerstörung ist äußerst selten, leichtere Beeinträchtigung kommt erst nach und nach (durch Spastizität, *Babinski*-Reflex etc.) zum deutlichen Ausdruck. Nur die Läsionen in der

Nähe des Hirnschenkels haben eine größere Tendenz, den Pyramidenkomplex zu vernichten, so daß auch bei Basisherden die Hemiplegia alternans oculomotoria, das *Webersche Syndrom*, zur Beobachtung kommt.

Wenn wir soeben die Reizerscheinungen von seiten der Hirnstammnerven als für basale Prozesse charakteristisch angeführt haben, so dürfen wir hier nicht unterlassen, zu bemerken, daß sie, obwohl viel seltener, auch *intracerebrale* Hirnstammprozesse, namentlich Blutungen, begleiten können. Selbst die später zu besprechenden cerebellaren Reizerscheinungen sind als Fernwirkung bei Pons- und Oblongataherden etwa einmal zu konstatieren.

Nur wenige Worte seien den Symptomen der Vierhügelläsionen an dieser Stelle gewidmet. Weil hier auf sehr kleinem Raum viele wichtige Gebilde nahe beieinanderliegen (Oculomotorius- und Trochleariskern, mediale Schleife und laterale oder Acusticusschleife, ferner der mit dem Kleinhirn und dem Rückenmark in Beziehung stehende Nucleus ruber tegmenti und, wie wir später näher erörtern werden, ein wichtiger Teil der Opticusbahn), findet man gleichzeitig Pupillenlähmung, Lähmungen der äußeren Augenmuskeln (und zwar oft *symmetrische* Paralyse einzelner gleichnamiger Muskeln), Ataxie, Schwerhörigkeit, Sehstörungen — vielfach Symptome, deren Einzelheiten uns noch eingehender beschäftigen werden. Ein Frühsymptom des Druckes auf die Vierhügelgegend (z. B. infolge von Geschwüsten in den vorderen Kleinhirnpartien) ist der vertikale, aufwärts gerichtete Nystagmus, wovon weiter unten die Rede sein wird. — Darauf, daß der Ausgangspunkt einer auf die Lamina quadrigemina drückenden Geschwulst die Zirbeldrüse ist (*Epiphysis cerebri, Glandula pinealis*), deutet das Eintreten von sexuellen Erregungszuständen, abnormem Haarwuchs und Adipositas, bei jugendlichen Individuen auch von Hyperplasie der Genitalien und abnormem Längenwachstum des Körpers. Man faßt diesen Symptomenkomplex als den Ausdruck einer veränderten inneren Sekretion der Zirbeldrüse, eines „*Dyspinealismus*“ auf.

Dieses Kapitel kann kaum einen besseren Abschluß finden, als durch die Wiedergabe einiger auf Hirnstammquerschnitte eingezeichneter konkreter Fälle von herdförmigen Läsionen, denen die klinischen Symptome beigefügt sind. Das Studium dieser Bilder mit dem zugehörigen Texte wird eine kurze und bequeme Rekapitulation der oben erwähnten Materie darstellen (Fig. 41 — 45).

2. Lokalisorisch Wichtiges aus der Semiologie der Hirnstammnerven.

(Mit spezieller Berücksichtigung der Differentialdiagnose zwischen peripheren und zentralen Störungen.)

Gerade weil für die topische Diagnostik der Hirnstammläsionen den Störungen von seiten der Gehirnnerven III bis XII eine so prominente Bedeutung zukommt, wie wir es soeben gesehen haben, ist es notwendig, gewisse Punkte ihrer Semiotik noch eingehender durchzunehmen. Und zwar wird es sich dabei teils darum handeln, mit gewissen feineren lokalisatorischen Einzelheiten vertraut zu werden, die bis jetzt unberücksichtigt bleiben mußten — teils werden aber auch differentialdiagnostische Erwägungen in Betracht kommen. Muß es doch selbstverständlich nach Möglichkeit vermieden werden, eine Läsion der Hirnstammnerven, die außerhalb des Truncus cerebri sitzt, in ihrer peripheren Natur zu erkennen und als zentral anzusprechen. Endlich aber wird es nicht überflüssig sein, die den Erkrankungen der Gehirnnerven entsprechenden klinischen Erscheinungen in diesem Zusammenhange genauer namhaft zu machen, als es bisher geschehen konnte.

Wir teilen von diesen Gesichtspunkten aus die Gehirnstammnerven ein in:

- a) die caudale Nervengruppe: Glossopharyngeus, Vagus, Accessorius, Hypoglossus;
- b) die Nerven des Kleinhirnbrückenwinkels: Acusticus und Facialis;
- c) Trigeminus;
- d) die Augenmuskelnerven: Oculomotorius, Trochlearis, Abducens.

a) Die caudale Nervengruppe.

Zählen wir zunächst die Ausfallserscheinungen auf, die durch Läsionen der Nerven dieser Gruppe zustandekommen.

Der Hypoglossus kann kurzweg als der Nerv der Zungenmuskeln bezeichnet werden. Ist doch seine Beteiligung an der Innervation der unteren Zungenbeinmuskeln (Sternohyoideus, Sternothyreoides und Omohyoideus), die zum Teil der Fixation des Kehlkopfes dienen, eine nur scheinbare. In der sogenannten „Ansa hypoglossi“, durch welche diese Innervation geschieht, verlaufen nämlich keine Fasern aus dem Hirnstamm, sondern solche aus den obersten Cervicalnerven, die durch Anastomosen in den Hypoglossus hineingelangt

sind. Die bilaterale Hypoglossuslähmung erzeugt natürlich eine totale Glossoplegie: unbeweglich, der Schwere folgend, liegt die Zunge auf dem Boden der Mundhöhle; die Sprache wird unverständlich, das Essen bedeutend erschwert. Bei einseitiger Lähmung (Hemiglossoplegie) sind dagegen die Motilitätsstörungen relativ gering, namentlich sind Reden und Essen meist nicht oder kaum beeinträchtigt. Dies hängt wohl mit der starken gegenseitigen Durchflechtung der Muskelfasern beider Zungenhälften zusammen. Läßt man sich dagegen die Zunge zeigen, so bemerkt man — als Folge eines Überwiegens des Genioglossus, des Zungenstreckers, auf der gesunden Seite — ein Abweichen der Zungenspitze nach der Seite der Lähmung.

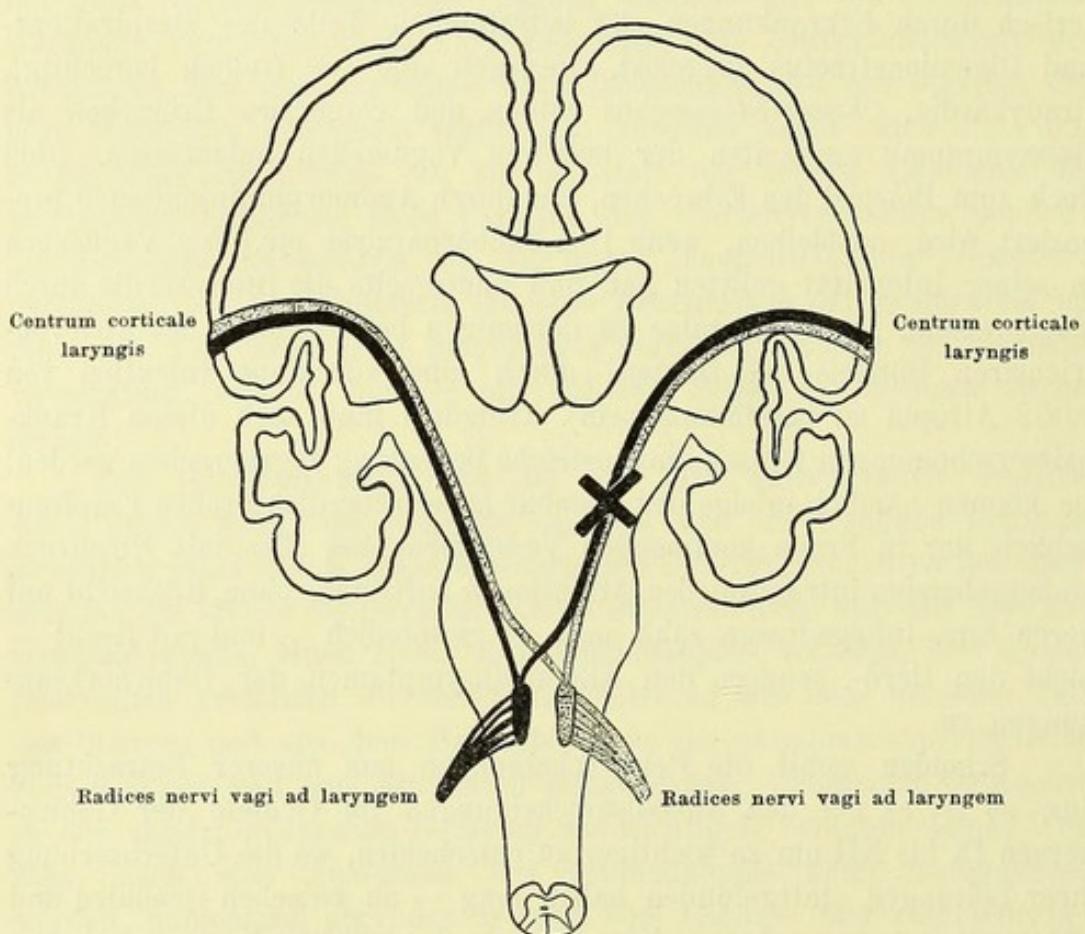
Der Accessorius besorgt allein die Innervation des Sternocleidomastoideus, während er bei derjenigen des Trapezius von oberen Cervicalnerven unterstützt wird. Ist deshalb der Accessorius zerstört, so kommt es zu vollständiger Lähmung des Sternocleidomastoideus. Es resultiert daraus bei einseitigem Sitze die Unmöglichkeit, das Kinn vollständig nach der entgegengesetzten Seite zu drehen; bei doppelseitiger Lähmung besteht außerdem eine Tendenz des Kopfes, nach hinten zu fallen. Dagegen ist die Lähmung des Cucullaris keine vollständige und macht sich meist nur durch mangelhafte Kraft und Ausgiebigkeit in der Hebung des Armes bemerkbar.

Ein gemischter Nerv ist der Vagus. Einerseits versorgt er die Muskulatur vom Gaumen, Pharynx, Kehlkopf, Trachea, Bronchien sowie diejenige von Oesophagus, Magen und Dünndarm mit motorischen Fasern und führt Hemmungsfasern für das Herz und vasomotorische Fasern für zahlreiche Gefäße. Andrerseits ist er der sensible Nerv für die Dura mater, den äußeren Gehörgang, den unteren Teil des Schlundes, den Larynx, die Luftröhre, die Speiseröhre und den Magen. In diesen Organen enden demnach die peripheren Nervenfortsätze aus den Zellen seiner beiden Ganglien, des Ganglion jugulare und des Ganglion nodosum vagi, welche als die Analoga der Spinalganglien der sensiblen Rückenmarksnerven aufzufassen sind. Einer totalen doppelseitigen Lähmung des Vagus kommt nun deshalb keine Symptomatologie zu, weil sie sofortigen Tod zur Folge hat. Dagegen können sowohl eine doppelseitige partielle, als eine totale einseitige Vaguslähmung zur klinischen Beobachtung gelangen. Im letzteren Falle findet man zunächst eine halbseitige Lähmung von Gaumen, Pharynx und Kehlkopf. Schlaff hängt die eine Hälfte des Velum palatinum herab, wodurch die Sprache näseldnd wird. Das eine Stimmband ist unbeweglich, in Mittel- oder Kadaverstellung, da sowohl die Schließer, als die Öffner der Glottis

außer Aktion gesetzt sind. Doch kann durch kompensatorisches stärkeres Vorschieben des anderen Stimmbandes die Stimme normal bleiben. Meistens freilich wird sie etwas heiser sein und in Fistel umschlagen. Dagegen sind die Schlingbeschwerden fast ausnahmslos nur minimale, denn die Hemipharyngoplegie ist infolge der gegenseitigen Durchflechtung der Muskelfasern des Schlundes ohne große funktionelle Bedeutung. Eine Herzbeschleunigung, Tachykardie, ist bei einseitiger Vagusausschaltung nur ganz vereinzelt konstatiert worden; dasselbe gilt von Respirationsstörungen (im Sinne einer Verlangsamung und Unregelmäßigkeit der Atemzüge). Bei unvollständigen Vaguslähmungen sind nur einzelne der oben erwähnten Symptome vorhanden, zuweilen sogar auch diese nur in partieller Ausbildung. So kommt statt der totalen Lähmung des Stimmbandes auch die bloße Paralyse des Cricoarytaenoideus posticus, des Stimmritzenerweiterers vor. Aus dieser „Posticuslähmung“ resultiert, namentlich wenn sie bilateral ist, eine Behinderung der Respiration bei normalem Phonieren. (Das umgekehrte Verhalten, Aphonie bei normaler Respiration, scheint dagegen nur auf dem Boden der Hysterie zu gedeihen.)

Der Glossopharyngeus ist ein fast ausschließlich sensibler Nerv, dessen Zellen im Ganglion superius und im Ganglion petrosum glossopharyngei liegen. Nach den neuesten Untersuchungen ist ihm überdies nur ein kleiner motorischer Anteil zuzuerkennen, der den Musculus stylopharyngeus, einen Heber des Schlundkopfes, versorgt. Der Glossopharyngeus vermittelt die sensiblen Eindrücke aus dem obersten Teile des Pharynx und aus dem Mittelohr sowie die Geschmacksperzeptionen vom Gaumen und vom hintersten Zungendrittel. Demgemäß ist Ageusie in den zuletzt genannten Gebieten das wichtigste Symptom seines Wegfalls; auch eine Anästhesie des Schlundkopfes kann nachgewiesen werden, namentlich aber der Wegfall von Rachen- und Gaumenreflex, der freilich nur bei rechts und links abweichendem Verhalten lokalisatorische Bedeutung hat. (Beiderseitiger kommt bekanntlich auch rein funktionell vor.) Der Stylopharyngeus ist als Heber des Schlundkopfes, in welcher Funktion er sich mit dem Pharyngopalatinus teilt, zu wenig wichtig, als daß deutliche motorische Störungen von seinem alleinigen Ausfalle zu erwarten wären.

Was die Reizsymptome anbelangt, die im Gebiete der caudalen Gruppe der Hirnstammnerven zur Beobachtung gelangen, so kommt ihnen samt und sonders eine wesentliche topisch-diagnostische Bedeutung nicht zu. Ein Teil derselben ist fast ausnahmslos ins Gebiet der Neurosen zu verweisen und gestattet somit keinen Schluß auf eine orga-


nische irritative Läsion der betreffenden anatomischen Gebilde. Dies gilt namentlich von den verschiedenen Formen des Glossospasmus, den tonischen oder klonischen Zungenkrämpfen, ferner von der Accessoriuskrämpfen (Spasmus nutans etc.). Auch Pharyngismus, Laryngismus und Oesophagismus werden sich kaum je auf eine lokalisierte Vaguserkrankung zurückführen lassen. Wo diese Zustände nicht auf der Basis einer allgemeinen funktionellen oder organischen Nervenkrankheit (Hysterie, Tetanie, Tabes, Lyssa, Tetanus) entstehen, sind sie in der Regel reflektorisch durch Erkrankungen der betreffenden Teile des Respirations- und Digestionstractus ausgelöst. Dagegen sind wir freilich berechtigt, Bradykardie, *Cheyne-Stokessches Atmen* und cerebrales Erbrechen als Reizsymptome von seiten der bulbären Vaguszellen aufzufassen. (Soll doch zum Beispiel das Erbrechen, das durch Apomorphininjektionen provoziert wird, ausbleiben, wenn [bei Bulbärparalyse etc.] der Vaguskern in seiner Integrität gelitten hat, und andrerseits die Bradykardie durch Vagusreizung [im Gegensatze zu derjenigen bei Läsionen des atrioventriculären Bündels am Herzen] durch eine subcutane Injektion von 0,002 Atropin zu beinflussen sein). Trotzdem muß auch diesen Krankheitserscheinungen topisch-diagnostische Bedeutung abgesprochen werden; sie können nämlich infolge der offenbar außerordentlich großen Empfindlichkeit der in Frage kommenden Vaguskerne bei allen mit Hirndruck einhergehenden intrakraniellen Affektionen auftreten, ohne Rücksicht auf deren Sitz. Infolgedessen zählt man sie gewöhnlich — und mit Recht — nicht den Herd-, sondern den Allgemeinsymptomen der Gehirnerkrankungen zu.

Scheiden somit die Reizerscheinungen aus unserer Betrachtung aus, so ist es bei den Ausfallserscheinungen im Gebiete der Hirnnerven IX bis XII um so wichtiger zu entscheiden, wo die Unterbrechung ihrer Leitungen stattgefunden haben mag — ob zwischen Großhirn und Oblongata (supranucleär), ob im Bereiche der bulbären Kerne (nucleär), ob jenseits derselben auf dem peripheren Verlaufe (infranucleär). Bei letzterer Eventualität ist es praktisch auch noch äußerst wichtig zu unterscheiden zwischen intracraniellen und extracraniellen Läsionen.

Die **supranucleären Lähmungen** sind, soweit motorische Systeme in Frage kommen, selbstverständlich in erster Linie aus dem Fehlen der degenerativen Atrophie und der Entartungsreaktion in den betroffenen Muskeln zu diagnostizieren, außerdem ist eventuell auf die Feststellung einer gesteigerten mechanischen und elektrischen Erregbarkeit Wert zu legen. Es sind dies Dinge von genereller Geltung. Ein besonderes Gepräge

wird aber den supranukleären Lähmungen der uns jetzt beschäftigenden Nervengruppe dadurch verliehen, daß ihre corticobulbäre Innervation eine bilaterale ist. Jede Großhirnhemisphäre beteiligt sich nämlich an der Innervation der beiderseitigen Kerne. Dies gilt vor allem für den Vagus. Infolgedessen machen einseitige Unterbrechungen der Bahnen zwischen Gehirnrinde und Nucleus ambiguus

Fig. 46.

Das Kehlkopfzentrum im Nucleus ambiguus.

Paradigma bilateraler supranukleärer Innervation.

(Einseitige, supranukleäre Läsion \times vermag keine Kehlkopflähmung hervorzurufen.)

keine klinisch nachweisbaren Störungen, da die eine, in intakter Verbindung mit den Kernen rechts und links verbliebene Großhirnhälfte ausreicht, um die Funktionen auch der gleichseitigen Schlund- und Kehlkopfmuskeln zu gewährleisten (siehe Fig. 46).

Haben wir deshalb eine halbseitige Pharyngo- und Laryngoplegie vor uns, so können wir schon vor der elektrodiagnostischen Prüfung etc. die supranukleäre Natur dieser Lähmung ausschließen. — Nur wenig

anders liegen die Dinge beim Accessorius und beim Hypoglossus. Was den ersteren betrifft, so sehen wir bei den cerebralen Hemiplegien die Funktionen des Sternocleidomastoideus fast immer ebenso intakt bleiben wie diejenigen der Glottis und wie der Schluckmechanismus. Also auch hierfür ausgiebige doppelseitige Rindeninnervation. Der Cucullaris freilich pflegt nur in seiner oberen (= clavicularen) Portion der Halbseitenlähmung zu entgehen. Nur dieser Teil, den man auch als den respiratorischen bezeichnet, scheint demnach beiderseitiger Rindenzentren teilhaftig zu sein. (Der Rest des Muskels gehört übrigens nicht nur ins Versorgungsrevier des Accessorius, sondern auch in dasjenige oberer Cervicalwurzeln.) — Beim Hypoglossus endlich vermag auch die einseitige nucleäre und infranucleäre Lähmung, also periphere Hemiglossoplegie (wie wir bereits auf pag. 108 betonten), keine schweren Motilitätsstörungen zu setzen — eine Folge der starken gegenseitigen Durchflechtung der Muskelfasern beider Zungenhälften. Da bei supranucleärem Sitze der Läsion noch die Tatsache einer zwar gekreuzt überwiegenden, aber doch beiderseitigen corticalen Innervation dazu kommt, darf es nicht wundernehmen, daß bei derartigen Unterbrechungen (man denke an den klassischen Fall der cerebralen Hemiplegie) die funktionellen Störungen äußerst gering sind und nur in dem Abweichen der vorgestreckten Zunge nach der gelähmten Seite (siehe pag. 111) zum Ausdrucke zu kommen pflegen.

Beidseitige Unterbrechung ihrer supranucleären Bahnen wird dagegen, wie aus dem soeben Erörterten zur Evidenz hervorgeht, eine beidseitige Lähmung bzw. Parese der oben angeführten Nervenpaare nach sich ziehen, zugleich mit einer schweren Beeinträchtigung der Schlund-, Kehlkopf- und Zungenmotilität. Diese Beeinträchtigung kommt derjenigen nahe, die wir bei den Zerstörungen der bulbären Nervenkerne beobachten, welche die Gruppe der Bulbärparalysen konstituieren. Man spricht deshalb von „pseudobulbärparalytischen“ Symptomen und diese können auf zweierlei Weise zustande kommen: 1. Es kommt zu simultaner Unterbrechung symmetrischer corticobulbärer Bahnen. 2. Der einseitigen Unterbrechung, die wegen der bilateralen Innervation der betreffenden Kerne die von ihnen beherrschten Funktionen unbeeinträchtigt ließ (also z. B. einer Hemiplegie vom basalen Typus), gesellt sich später eine solche auf der Gegenseite hinzu; sofort werden die pseudobulbären Erscheinungen (natürlich beiderseits) manifest.

Um nun den Symptomenkomplex der Pseudobulbärparalyse im Zusammenhang besprechen zu können, sei uns ein kleiner Exkurs hier gestattet. Wir wollen nämlich vorwegnehmen, daß dem

motorischen Trigeminus (also den Kaumuskeln) eine bilaterale Rindeninnervation ebenso zukommt wie dem Vagus — ferner daß einseitige Unterbrechung der corticobulbären Bahn für den untersten Facialisanteil (bzw. den Orbicularis oris) zwar eine Hemiparese desselben hervorbringt, aber erst die doppelseitige Unterbrechung die Funktion der Lippen als Sprachwerkzeuge annähernd so zu stören vermag, wie dies bei der Bulbärparalyse der Fall ist (siehe unten, pag. 119). Auch diese Apparate werden nun bei der Pseudobulbärparalyse in analoger Weise beeinträchtigt wie diejenigen der caudalen Oblongatnerven. Infolgedessen gestaltet sich das äußerst charakteristische klinische Bild der Pseudobulbärparalyse (auch supranucleäre Glossopharyngolabial-Paralyse genannt) wie folgt: Die Sprache ist schleppend, monoton, zuweilen aphonisch. Während die Vokalbildung weniger leidet, werden die Konsonanten schlecht und mühsam ausgesprochen, so daß in schweren Fällen die Sprache unverständlich wird. Oft geht beim Reden der Atem aus, zum Vollenden des Satzes ist mehrmaliges Ansetzen nötig (sakkadierte, semi-explosive Sprache). Je nachdem die Lippenparese oder diejenige des Gaumens dominiert, stehen die Störungen der Labialenbildung im Vordergrund oder mehr das „Näseln“. Die Zungenmotilität kann so schwer beeinträchtigt sein, daß die Zunge unbeweglich dem Mundboden aufliegt; meist aber läßt sie sich, jedenfalls bis zu einem gewissen Grade, vorstrecken, aber dann machen sich Störungen in den Seitwärtsbewegungen oder in der Rinnenbildung geltend oder das mehrmalige Wiederholen des Vorstreckens führt zur baldigen Erlahmung. (Es liegt eben in vielen Fällen eine nur partielle Durchtrennung der bilateralen Rindenbahnen vor.) Auch die Bewegungen des Gaumens sind entweder aufgehoben oder nur träge und inkomplett; am Kehlkopf erreicht die Stimmbandparese nur selten höhere Grade. Die Kaumuskeln sind gewöhnlich wiederum stärker betroffen: ein festes Zusammenbeißen der Zähne ist unmöglich, der Mund bleibt oft dauernd halbgeöffnet. Die eventuelle Lähmung der Pterygoidei gibt sich durch die Unmöglichkeit der Pro- und Lateropulsion des Unterkiefers kund; zuweilen sind auch die Mundöffner lahm, dann ist das totale Öffnen und das Öffnen gegen Widerstand unausführbar. Die Nahrungsaufnahme zeigt oft äußerst prägnante Störungen. Hier spielt vorerst neben der Schwäche der Kaumuskeln diejenige von Zungen-, Lippen- und Wangenmuskulatur eine Rolle: Die Speisen können nicht unter die Zahnreihen geschoben werden, fallen aus dem Munde heraus, müssen oft unter Nachhilfe des Fingers in den Rachen befördert wer-

den usw. Kommt gar noch Gaumen- und Rachenlähmung dazu, so verirren sich Speiseteile in die Nase oder den Kehlkopf. Doch in leichteren Fällen geht der Eßakt, namentlich wenn der Patient langsam ißt und feste und halbfüssige Speisen bevorzugt, noch relativ gut von statten. — Was den großen prinzipiellen Unterschied zwischen diesen Störungen und denjenigen der echten Bulbärparalyse ausmacht, ist der Umstand, daß die gelähmten Muskeln des Pseudobulbären keine degenerative Atrophie und keine Entartungsreaktion zeigen. Also, mutatis mutandis, der gleiche Unterschied wie ihn gegenüber einer spinalen progressiven Muskelatrophie die spastische Spinalparalyse darbietet. Echte Kontrakturzustände können sich sogar nach und nach an den Lippen, der Zunge, dem Gaumen der Patienten mit Pseudobulbärparalyse einstellen. Die Steigerung des Massestenreflexes wird kaum je vermißt und ist leicht verständlich.

Wir gehen über zu den nucleären Lähmungen der caudalen Hirnstammnervengruppe, die, wie wir soeben sahen, von den supra-nucleären unschwer zu differenzieren sind. Die Entartungsreaktion ist an der Zunge, am Sternocleidomastoideus und einzelnen Cucullarisbündeln mit Leichtigkeit nachzuweisen, etwas schwieriger am Gaumen oder gar am Rachen. Am Kehlkopf wird ihre regelrechte Feststellung überhaupt nur einem sehr geübten Spezialisten gelingen können; in praktischer Beziehung werden wir uns mit dem Nachweis begnügen, daß starke elektrische Reizung des Recurrensstammes am Halse keine Stimmbandadduktion zur Folge hat. An der Zunge (die unter allen Muskeln der Inspektion und Palpation am besten zugänglich ist) machen sich überdies bald Volumabnahme, abnorme Runzelung, Weichheit, Schlaffheit und fibrilläres Zittern sehr deutlich bemerkbar.

Nicht so einfach gestaltet sich die Unterscheidung der nucleären von den *infranucleären* Läsionen, das heißt von denjenigen, welche die betreffenden Nerven an irgend einer Stelle ihres peripheren Verlaufes treffen. Die elektrodiagnostische Untersuchung und das Fahnden auf degenerative Atrophie lassen natürlich hier vollkommen im Stiche, da es für diese Erscheinungen irrelevant ist, an welcher Stelle des Verlaufes die betreffenden peripheren motorischen Nerven unterbrochen worden sind. Hier wird, wo nicht etwa Art und Ort der vorliegenden Verletzung oder Erkrankung ohne weiteres auf die *infranucleäre* Natur der Lähmungen hinweisen, die Berücksichtigung der sonstigen Symptome auf die richtige Fährte führen müssen. Die Volumverhältnisse der Oblongata sind so klein, daß eine nucleäre Lähmung des Glossopharyngeus, Vagus, Accessorius oder Hypoglossus kaum je isoliert vorkommen wird.

Wo aber die Ausfälle von seiten dieser Nerven sich nicht miteinander kombinieren, werden meistens Störungen von seiten der Körpersensibilität und Motilität, in der Regel dem alternierenden Lähmungstypus (siehe oben pag. 104—105) entsprechend, zu konstatieren sein. Ferner liegen die beidseitigen Hypoglossuskerne einander so nahe, daß bei nucleärem Sitze der Läsion in den meisten Fällen beidseitige Zungenlähmung zu steht kommt. Sehr wichtig ist aber die Tatsache, daß bei nucleären Affektionen im Gegensatze zu den infranucleären die Hypoglossuslähmung mit einer Parese des gleichseitigen Orbicularis oris einhergeht. Wir müssen deshalb annehmen, daß sich an der Innervation des Orbicularis oris nicht nur der Facialiskern, sondern auch derjenige des Hypoglossus beteiligt. Auf Fig. 48 haben wir darum angedeutet, daß der Hypoglossuskern intrabulbär einige Neurone in den Facialisstamm entsendet, wenn auch der anatomische Beweis für diese Hypothese nicht erbracht ist.

Kombinierte Lähmungen verschiedener Nerven der caudalen Gruppe können auch bei infranucleärem, aber intracraniellem Sitze der Läsion vorkommen (Geschwülste, Aneurysmen, Exsudate etc. in die hintere Schädelgrube). Es resultiert der charakteristische Symptomenkomplex der Gaumen-, Kehlkopf- und Zungenlähmung, zuweilen sind auch Sternocleidomastoideus und Cucullaris betroffen*; der Orbicularis oris bleibt jedoch intakt. Im übrigen spricht die Reihenfolge in der Entwicklung der Symptome für den basalen Sitz der Affektion, wie oben (pag. 106) dargetan.

Nach dem Austritt aus der Schädelhöhle — also im extracranialen Verlaufe — sind die Bedingungen zu gemeinschaftlichem Untergange mehrerer der uns beschäftigenden Nerven nur sehr selten gegeben, nämlich durch einen Krankheitsprozeß, der weit oben am Halse seinen Sitz hat — und ein solcher wird meistens der direkten Konstatierung durch Inspektion, Palpation und Röntgenoskopie nicht entgehen können. Und was endlich die Leitungsunterbrechungen anbelangt, die irgendwo im peripheren Verlaufe eines der in Frage kommenden Nerven stattgefunden haben, so werden sie in der Regel nur partielle Lähmungen erzeugen, das heißt die proximal von der Läsionsstelle abgegangenen Nervenzweige verschonen. So sind Störungen des Schlingmechanismus bei extracranialen Vaguserkrankungen überhaupt selten; ist der Nerv nun gar erst im Mediastinum (durch Tumoren, Aortenaneurysmen etc.)

* Eine Hemiplegia pharyngo-laryngea oder glosso-pharyngo-laryngea wird als der *Avellische* Symptomenkomplex bezeichnet; gesellt sich eine gleichseitige Lähmung von Sternocleidomastoideus und Cucullaris hinzu, so spricht man vom *Schmidtschen Syndrom*.

geschädigt, so pflegt nur das Bild der Recurrenslähmung — Stimmbandlähmung in Mittelstellung (siehe oben pag. 111) — in die Erscheinung zu treten. Das umgekehrte Verhalten gilt für den Hypoglossus: wird er von Krankheitsprozessen erst im Bereiche oder unterhalb derjenigen Stelle seines peripheren Trajectes affiziert, wo die Wurzelfasern der in die Ansa eintretenden oberen Cervicalnerven zu ihnen stoßen, so resultieren daraus Symptome, die sonst der Hypoglossuslähmung fremd sind. Nämlich die Paralyse der äußeren, von der Ansa innervierten Kehlkopfmuskeln (Sternohyoideus, Sternothyreoideus, Omohyoideus), kenntlich an der degenerativen Atrophie der den Schildknorpel bedeckenden Muskelschicht und an der seitlichen Verschiebung des Larynx beim Schlucken.

b) Die Nerven des Kleinhirnbrückenwinkels.

z) Der Facialis.

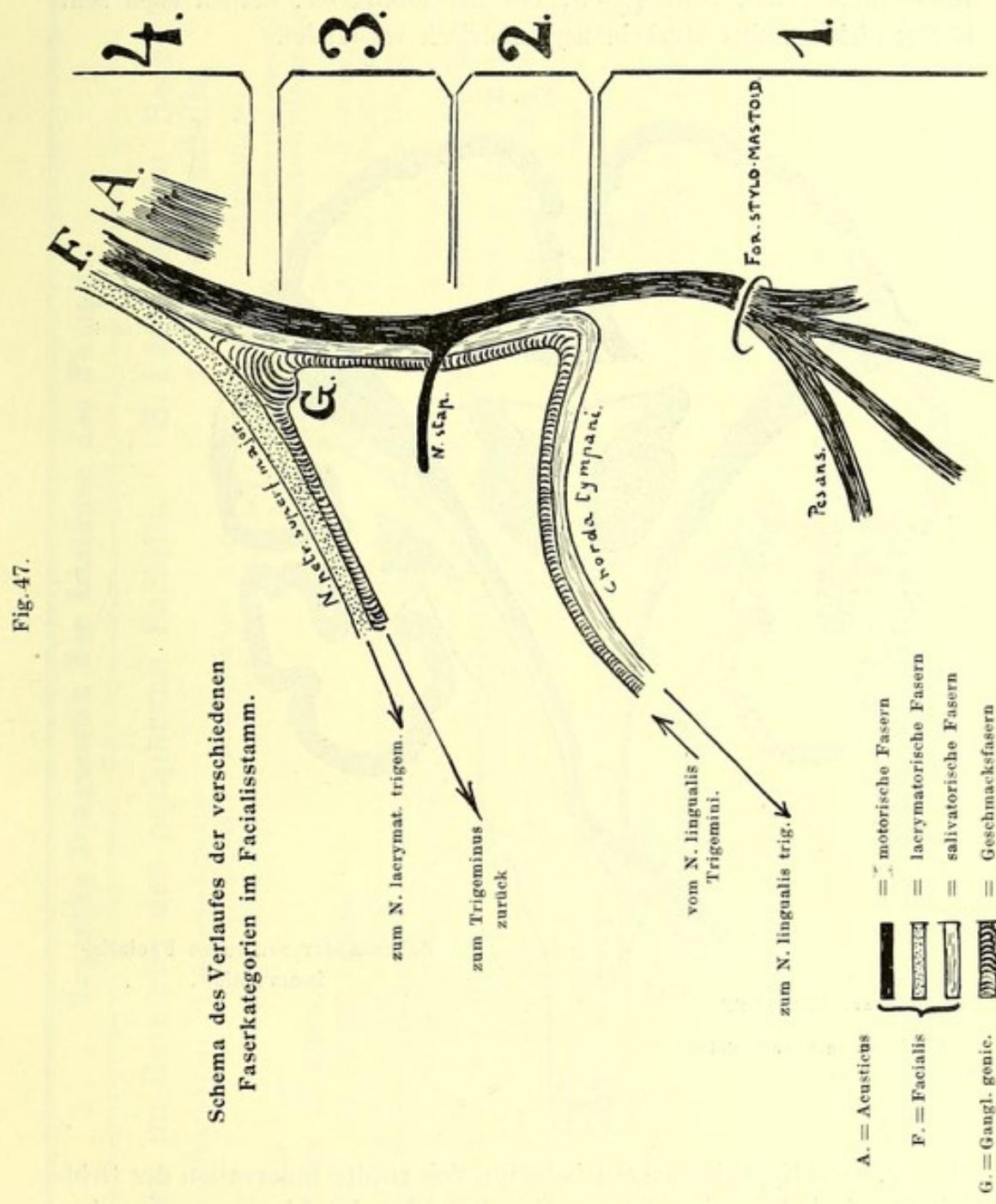
Dieser Nerv versorgt alle Gesichtsmuskeln — mit Einschluß des Buccinator, aber mit Ausnahme des vom Oculomotorius innervierten Levator palpebrae superioris — vom Frontalmuskel bis herunter zum Platysma myoides. Außerdem: Stylohyoideus, hinterer Bauch des Digastricus und Stapedius.

Der Ausfall der motorischen Facialisfunktion ruft das Bild der Gesichtslähmung, Prosopoplegie hervor, die, wenn einseitig, als Monoplegia facialis, wenn beidseitig, als Diplegia facialis zu bezeichnen ist. Sie führt auch den Namen *Bellsche Lähmung*. Die gelähmte Gesichtsseite läßt jede Mimik vermissen, ist maskenartig, unbeweglich, ausdruckslos, die Nasolabialfalte ist verstrichen, die Stirn kann nicht gerunzelt, das Auge — wegen des Ausfalls der Wirkung des Orbicularis oculi — nicht geschlossen werden (Lagophthalmus), der Mundwinkel hängt herab. Der Tiefstand des Zungengrundes verrät die Lähmung des Stylohyoideus und hinteren Digastricusbauches, eine abnorme Feinhörigkeit und besondere Empfindlichkeit gegen tiefe Töne (Oxyakoia, Hyperakusis), diejenige des Musculus stapedius, der die Fenestra ovalis der Paukenhöhle durch die Steigbügelplatte zu verschließen hat.

Nun führt aber der Facialisstamm von seinem Ursprungsgebiete an auch noch andersartige centrifugale Fasern mit sich, nämlich:

1. Solche für die Tränensekretion. Diese Fasern verlassen bereits auf dem Wege durch die Schädelwandung (Canalis Fallopii), und zwar an derjenigen Stelle, wo die als „Geniculum“ bezeichnete Knickung des Facialisstammes stattfindet, diesen letzteren, um durch eine Anastomose (Nervus petrosus superficialis major) in den Nervus lacrymalis trigemini zu gelangen.

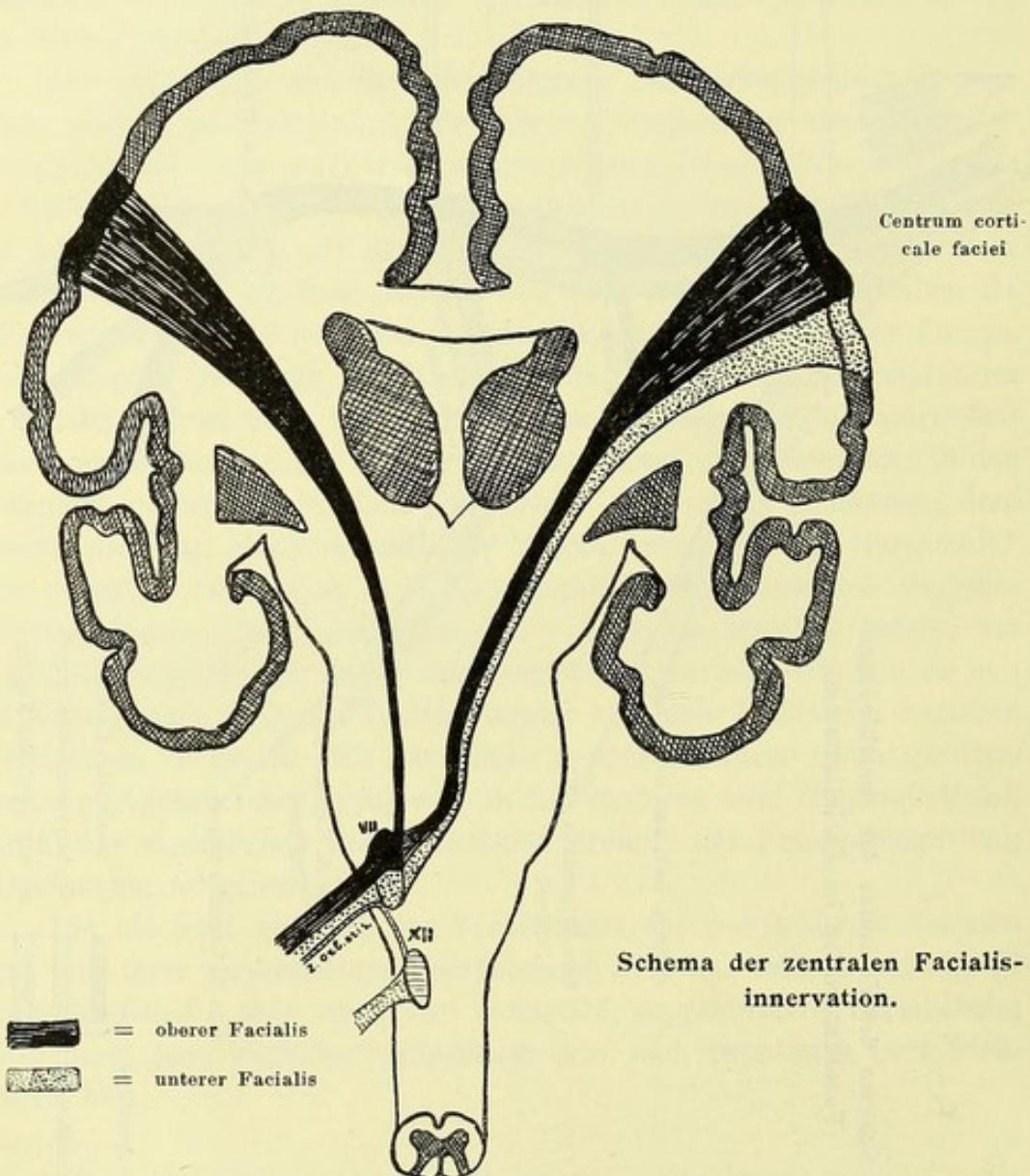
2. Solche für die Speichelsekretion, deren Komplex als „Nervus intermedius Wrisbergi“ oder auch als „Sapolinischer Nerv“ zusammengefaßt wird (vgl. auch weiter unten, pag. 135). Auch diese Fasern verlassen den Facialisstamm bereits im Canalis Fallopii (freilich erst dicht über dem Foramen stylomastoideum). Auch sie zweigen zum Trigeminusgebiete ab. Die betreffende Anastomose stellt die sogenannte Chorda tympani dar. Durch sie gelangen die salivatorischen Facialisneurone in den Nervus lingualis trigemini.


Auf der Strecke zwischen dem Abgang des Nervus petrosus superficialis major und demjenigen der Chorda tympani ist aber dem Facialisstamme eine weitere Kategorie von Fasern beigemischt, die eigentlich einem anderen Gehirnnerven zugehören, dem Trigeminus, und nur eine Zeitlang mit dem Facialis verlaufen, um dann wieder zum Trigeminus zurückzukehren. Es sind centripetale Fasern, nämlich die Geschmacksfasern aus den vorderen zwei Dritteln der Zunge. Vom Lingualis treten sie durch die Chorda tympani zum Facialisstamm im Canalis Fallopii über, ziehen, dessen motorischen und salivatorischen Fasern angeschlossen, bis zum Geniculum herauf und treten hier in das „Ganglion geniculi“ ein. Letzteres gehört also genau genommen dem Facialis nicht an (denn centrifugale Nerven haben ja keine Ganglien!).* Vom Ganglion aus ziehen diese Geschmacksfasern neben den lacrymatorischen Fasern des Facialis, die sie gleichsam abgeholt haben, via N. petrosus superficialis major zum Trigeminus zurück. Werden sie nun auf ihrem kurzen Wege im Facialisstamme von einer Läsion des letzteren mitbetroffen, so gesellt sich das klinische Zeichen ihrer Leitungsunterbrechung (Ageusie oder Hypogeusie in den vorderen zwei Zungendritteln), obwohl der eigentlichen Facialisfunktion fremd, der Prosopoplegie bei; mitgefangen, mitgehängen.**

Die bis jetzt geschilderten Verhältnisse der peripheren Facialisbahn und ihrer verschiedenen Componenten mag das Schema auf Fig. 47 veranschaulichen; aber auch die zentrale supranucleäre Facialisbahn bietet nicht ganz einfache Verhältnisse dar, und zwar nach zwei Richtungen hin:

* Nach der Auffassung, wonach der Nervus intermedius als gemischter Nerv zu betrachten ist, d. h. neben den secretorischen auch eine Anzahl Geschmacksfasern enthält (s. unten, pag. 135, Fußnote), müßte freilich das Ganglion geniculi als teilweise zum Intermedius gehörig bezeichnet werden.

** Über vasomotorische und Schweißfasern im Facialisstamme siehe unten, bei „Trigeminus“; dort auch über die Frage des Eintrittes von Geschmacksfasern aus der Chorda tympani in das Kerngebiet des Intermedius (Fußnote auf pag. 135).


1. Diejenigen Teile des Facialiskernes, aus denen die Fasern für den oberen Facialis entstammen, das heißt die Stirn- und Augenlideräste, haben (genau wie das in Fig. 46 dargestellte Kehlkopfzentrum

des Vagus) bilaterale Rindeninnervation. Die Stirnmuskeln sind eben ein eigentliches Paradigma für synergische Aktion der beiderseitigen Gebiete und auch der *Orbicularis oculi* wird unter gewöhnlichen Be-

dingungen stets rechts und links gleichzeitig kontrahiert; das isolierte Schließen eines Auges muß bekanntlich besonders erlernt werden. Der untere Facialis dagegen (Mund- und Wangenfacialis) hat gekreuzte Rindeninnervation; beim Essen, bei der Mimik etc. werden eben sehr häufig gleichnamige Muskeln asymmetrisch verwendet.

Fig. 48.

2. Der Hypoglossuskern beteiligt sich an der Innervation des Orbicularis oris-Anteils des unteren Facialis. Wo also Lippenparese neben nucleärer Hypoglossuslähmung vorkommt, braucht nicht eine Affektion des Facialis, falls keine anderen Symptome einer solchen vorliegen, angenommen zu werden.

Topische Diagnostik der Läsionen des **Facialis**.

A. Läsionen im Bereich des peripheren **Facialis**.

Allgemeine Charaktere: 1. Meistens einseitig.
2. Beeinträchtigung der el. Erregbarkeit, EAR.

3. In der Regel Affektion der gesamten Facialismuskulatur.

Spezielle Charaktere:

I. Infranucleäre Läsionen. a) Außerhalb des **Cavum cranii**.

Fast ausnahmslos Monoplegia facialis (Ausnahme: doppelseitige Otitiden!).

a) **Distal von der Abzweigung der Chorda tym. Strecke 1 auf Fig. 47.**

Symptome: lediglich Prosopoplegie; sitzt die Läsion ganz peripher, d. h. jenseits des Pes anserius, so können einzelne Facialisläste der Lähmung entgehen.

β) **Im Canalis Fallopp., zwischen Chorda- u. Stapediusabgang (Fig. 47, 2).**

Symptome: Prosopoplegie; Ageusie d. v. $\frac{2}{3}$ d. Zunge; Beeintr. d. Speichelsekr.

γ) **Im Canalis Fal. zwischen Stapediusabgang u. Ggl. geniculi (Fig. 47, 3).**

Symptome: Prosopoplegie; Ageusie der vorderen $\frac{2}{3}$ der Zunge; Beeinträchtigung der Speichelsecretion; Hyperakusis.

δ) **Zwischen Meatus acusticus internus und Ggl. geniculi (Fig. 47, 4).**

Symptome: Prosopoplegie; keine Ageusie; Beeintr. d. Speichelsekr.; oft nervöse Taubheit (s. u.) durch Beteiligung des Acusticus; nur wo diese ausgeblichen ist: Hyperakusis; Erlöschen d. affektiven und reflektorischen Tränensekr.

b) Innerhalb des **Cavum cranii — basale Läsionen.**

Nicht selten Diplegia facialis (basale gummöse Meningitis!).

Symptome: wie oben sub a) δ); meistens Mitbeteiligung einer größeren Anzahl basaler Nervenwurzeln (Abducens, Glossoph., Vagus, Access., Hypogl.); allgemeine Gehirnsymptome (Schwindel, Erbrechen, Kopfweh).

II. Nucleäre Läsionen.

Merkmale: Fast immer Abducens mit affiziert, ebenso Pyramiden (*Millard-Gubler*-sche Lähmung, siehe pag. 104 u. Fig. 40 B) od. Schleife (Hemianaesthesia alternans, s. pag. 105); in einem starken Prozentsatz der Fälle Verschonung des oberen Facialis.

B. Läsionen im Bereich des **zentralen **Facialis****.

Allgemeine Charaktere:

1. Fast ausnahmslos einseitig.
2. Keine Beeinträchtigung der el. Erregbarkeit.

3. Keine oder nur sehr geringe Beteiligung des oberen Facialis (bilaterale Innervation! cf. pag. 121—122, Fig. 48).

Spezielle Charaktere:

I. Läsionen im Bereich von **Großhirn, Hirnschenkel und vordere Brücke.**

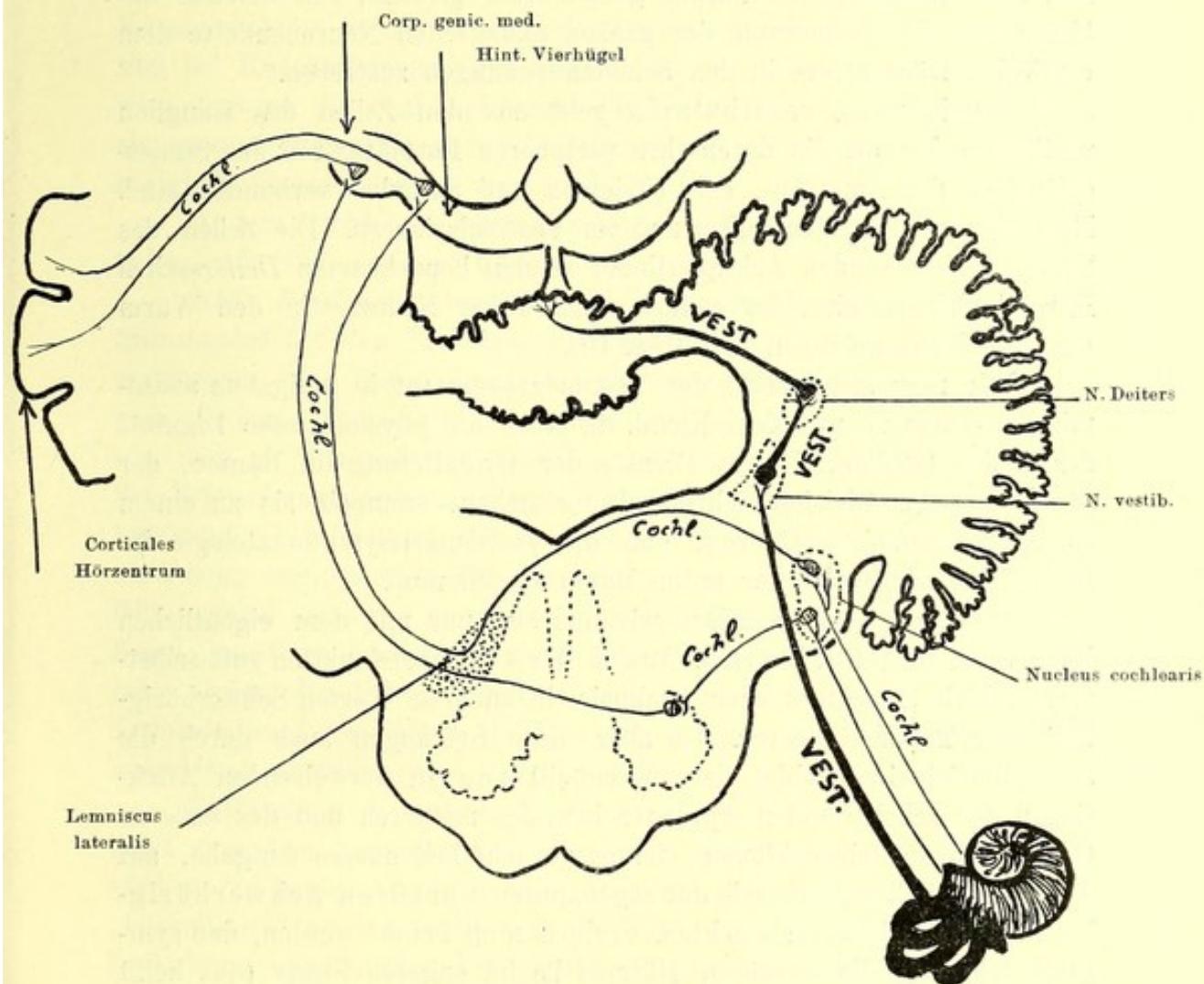
Merkmale: Kombination mit gleichseitiger Extremitätenlähmung (infolge des gemeinsamen Verlaufes der zentralen Facialisneurone und der Pyramidenbahn).

II. Läsionen im Bereich der hinteren Brücke, pränucläre Läsionen.

Merkmale: Kombination mit gekreuzter Extremitätenlähmung (Erklärung s. pag. 104 und Fig. 40, b).

Fig. 48 illustriert die Verhältnisse der supranucleären Facialisinnervation.

Die anatomisch-physiologischen Bedingungen, die der Verlauf sowohl des zentralen als des peripheren Facialis darbietet, bringen es mit sich, daß wir befähigt sind, in recht präziser Weise nach dem klinischen Bilde den Ort zu diagnostizieren, wo eine Leitungsunterbrechung jener Systeme stattgefunden hat. Wir bringen diese Dinge in tabellarischer Form; eine ausführliche Erklärung erübrigt sich; es genügt, an das soeben Besprochene zu erinnern und auf unsere Fig. 47 und 48 hinzuweisen.


Den Reizerscheinungen, die im Facialisgebiete vorkommen — Zuckungen, Zittern —, kommt meistens keine lokalisatorische Bedeutung zu. Denn in der überwiegenden Mehrzahl der Fälle handelt es sich um Symptome funktionell-neurotischer Natur (Tetanie, Maladie des Tics etc.) oder um reflektorische Phänomene, die von schmerzhaften Affektionen des Gesichts, der Mundhöhle etc. ausgelöst werden. Ist auch eine organische Grundlage für die Facialiszuckungen im Initialstadium der progressiven Paralyse anzunehmen, so steht doch der anatomische Nachweis der ihnen zugrunde liegenden materiellen Läsion noch aus. Dagegen sind schon Facialiszuckungen bei Druck eines Tumors, Aneurysmas etc. auf den intracranialen Facialistamm beobachtet worden; ferner bei Narben (zum Beispiel von Mensurverletzungen), die den Nerven in seinem peripheren Verlaufe reizen. Nur ausnahmsweise ist erhöhte mechanische Erregbarkeit des Facialis, die sich im sogenannten *Chvostek'schen* Phänomen äußert, unter derselben Bedingung festzustellen; in der Regel kommt jenes Symptom (Zuckungen im Facialisgebiete beim Beklopfen oder sogar bloßem Bestreichen der Hautpartie über dem Pes anserinus) auf funktioneller Basis zustande, namentlich bei der Tetanie. Und endlich werden wir später, bei Besprechung der „Rindenepilepsie“ sehen, daß solche Reizsymptome eine häufige Folge irritativer Läsionen des corticalen Facialiszentrums sind. In späten Stadien inkompletter Facialislähmungen jeglicher Ätiologie können übrigens in den gelähmten Muskeln Zuckungen auftreten.

β) Der Acusticus.

Im Abschnitte „Der Aufbau des Hirnstammes“ haben wir bereits die verschiedenen Bestandteile der Cochlearis- und Vestibularisapparate einzeln betrachtet. Jetzt sollen kurz die Bahnen dieser beiden Komponenten des Acusticus in ihrer Kontinuität verfolgt werden.

Der Nervus cochlearis hat seine Ursprungszellen im Ganglion spirale der Schnecke. Es sind bipolare Zellen, deren peripherie Ausläufer zu den Hörzellen des Cortischen Organes in Beziehung stehen, während die zentralen Ausläufer in den Cochleariskern des Kleinhirnbrücken-

Fig. 49.

Schema der Acusticusbahnen.

Cochlearisneurone dünn, Vestibularisneurone dick gezeichnet.

(Verhältnisse für klinische Zwecke etwas vereinfacht — Weglassung der Trapezkerne, des Bechterewschen Kernes etc.)

winkels eintreten. Hier beginnt mit den sich anschließenden Neuronen zweiter Ordnung die zentrale Hörbahn. Wie diese der lateralen Schleife der Gegenseite zustrebt, zeigt unsere Fig. 49. Die Neurone aus den dorsalen Teilen des Nucleus cochlearis (Tuberculum acusticum) ziehen unter dem Rautenboden durch, wo sie die Striae medullares seu

acusticae bilden; diejenigen aus den ventralen Partien schlagen den Weg durch die Basis der Haube ein, wobei in den Oliven eine Um- schaltung auf ein neues Neuron stattfindet. Diese Kategorie von Fasern wird als Trapezfasern bezeichnet. In Gestalt der lateralen Schleife gelangen dann beide Kontingente in den hinteren Vierhügel und das mit ihm zusammenhängende Corpus geniculatum mediale, von welchen Ge- bildet aus die Endneurone der ganzen akustischen Neuronenkette dem corticalen Hörzentrum in den Schläfenwindungen zustreben.

Der Nervus vestibularis geht aus den Zellen des Ganglion vestibulare hervor, die durch ihre peripheren Fortsätze mit den Sinnes- epithelien der Ampullen, des Utriculus und Sacculus verbunden sind. Er findet seine Endaufsplitterung im Vestibulariskern. Die Zellen des letzteren aber senden Achsenzylinder in den benachbarten *Deitersschen* Kern derselben Seite, der endlich selbst seine Neurone in den Wurm des Kleinhirns gelangen läßt (Fig. 49).

Wie man sieht, steht der Vestibularisapparat in innigstem anato- mischen Konnexe mit dem Kleinhirn. Auch die physiologische Dignität der beiden Gebilde, die im Dienste der Orientierung im Raum, der Statik und der Gleichgewichtserhaltung stehen, stempelt sie zu einem so unzertrennlichen Ganzen, daß die Vestibularissymptomatologie im Kleinhirnabschnitte weiter unten Raum finden muß.

An dieser Stelle befassen wir uns also nur mit dem eigentlichen Hörnerven, dem Cochlearis. Ausfall der Cochlearisfunktion ruft selbst- verständlich Hypakusis oder Anakusis, in anderen Worten Schwerhörig- keit oder Taubheit hervor. Da aber diese Störungen auch durch die ausschließlich ins Gebiet der Ohrenheilkunde zu verweisenden Affek- tionen der schalleitenden Apparate bzw. des mittleren und des äußeren Ohres sich einstellen können, ist es vornehmlich unsere Aufgabe, auf die differentiellen Merkmale der sogenannten nervösen Schwerhörig- keit und Taubheit zu achten. Freilich muß betont werden, daß sym- ptomatologisch die nervösen Hörausfälle im engeren Sinne (das heißt die durch Läsionen des Nervus cochlearis und seines supranucleären Überbaues hervorgebrachten) von denjenigen durch Störung der perzi- pierenden Teile in der Schnecke sich nicht unterscheiden lassen, so daß vom neurologischen Gesichtspunkte die topische Diagnostik innerhalb der Hörapparate als sehr mangelhaft empfunden werden muß.

Die beiden Hauptmerkmale der nervösen Schwerhörig- keit oder Taubheit sind die Herabsetzung oder der Verlust des Hörens durch Kopfknochenleitung und partielle Ausfälle in der Perception der Tonreihe.

Das erste dieser Phänomene wird am einfachsten durch die Vergleichung der Zeitspannen festgesetzt, während deren einerseits der Explorand, andrerseits der normalhörige Untersucher eine auf den Scheitel, die Zähne oder den Warzenfortsatz aufgesetzte tönende Stimmgabel wahrnimmt. Dies ist der *Schwabachsche Versuch*. Bei nervöser Schwerhörigkeit läßt er eine Verkürzung der Perceptionsdauer bei Knochenleitung konstatieren, bei nervöser Taubheit kann die Perception bei Knochenleitung total aufgehoben sein. Bei Mittelohraffektionen wird dagegen die nach *Schwabach* aufgesetzte Stimmgabel länger gehört als normal. Dieser Versuch ist natürlich nur bei doppelseitiger Schwerhörigkeit diagnostisch zu verwenden.

Andere leicht und rasch anzustellende Versuche sind der *Rinne-sche* und *Webersche Versuch*.

Nach *Rinne* setzt man dem zu Untersuchenden eine angeschlagene Stimmgabel auf den Processus mastoideus; nachdem sie dort für ihn verklungen (das Hören durch Knochenleitung also zu Ende ist), hält man sie ihm vor das Ohr. Und nun hört sie der Normale neuerdings, was man als den positiven Ausfall des *Rinneschen Versuches* bezeichnet. Bei Erkrankung der schalleitenden Apparate (wo die Perception durch Luftleitung herabgesetzt, durch Knochenleitung dagegen unverändert ist) wird beim zweiten Akte des Versuches nichts mehr wahrgenommen, er fällt negativ aus. Bei nervöser Hypakusis findet man dagegen in der Regel „positiven *Rinne*“, vorausgesetzt natürlich, daß es sich nicht um hohe Grade der Schwerhörigkeit handelt, wo, wie bei der nervösen Taubheit, auch das Hören bei Luftleitung beträchtlich herabgesetzt bis aufgehoben gefunden wird.

Eindeutiger in seinen Ergebnissen ist der *Webersche Versuch*. Setzt man dem Normalen eine tönende Stimmgabel auf den Vertex, so wird sie in beiden Ohren gehört; verstopft man ihm das eine Ohr, so „lateralisiert“ er den Schall auf der Seite, wo man auf diese Weise die Luftleitung unterbrochen hat. Spontan findet nur diese Lateralisierung des Schalles nach der schwerhörigen Seite bei den Patienten mit Erkrankungen der schalleitenden Apparate statt („positiver *Weber*“), während im Gegenteil der nervös Schwerhörige nach der gesunden Seite lateralisiert („negativer *Weber*“). Bei doppelseitigen Erkrankungen läßt der *Webersche Versuch* freilich im Stiche, ebenso bei Kombination von nervöser Schwerhörigkeit und Mittelohraffektionen.

Die Ausfälle in der Perception der Tonreihe werden durch die sogenannte *Galtonsche Pfeife* geprüft. Die Taubheit für die hohen Töne der Skala soll für die Affektionen des Labyrinths und der

akustischen Nervenbahnen im Gegensatze zu denjenigen des mittleren und äußenen Ohres besonders charakteristisch sein. Bei „nervöser Schwerhörigkeit“ leidet besonders die Perception von Worten mit scharfen Konsonanten und hellen Vokalen (Schwester, zwanzig, Wasser, Fisch etc.), während solche mit dumpfen Konsonanten und Vokalen (Bruder, hundert, Ohren, Dorn, Wurm etc.) auffallend besser verstanden werden. Das Umgekehrte trifft bei nichtnervöser Hypakusis zu.

Daß die Diagnose der nervösen Schwerhörigkeit und Taubheit im übrigen auch noch per exclusionem nach Untersuchung des Trommelfelles, nach dem Ausbleiben der Besserung des Hörvermögens durch Politzersche Lufteinblasung etc. gestellt wird, braucht hier nur angedeutet zu werden. Über den Wert eines eigenartigen Phänomens, der sogenannten Parakusis Willisii, für die Diagnostik der nervösen Schwerhörigkeit sind die Ansichten noch geteilt. Viele Otologen sind nämlich der Ansicht, daß die nervöse Schwerhörigkeit paradoxerweise in einem geräuschvollen Raume (Eisenbahncoupé) sich weniger geltend macht als im ruhigen Milieu; doch soll nach anderen auch bei Mittelohrerkrankungen die Parakusis Willisii vorkommen können.

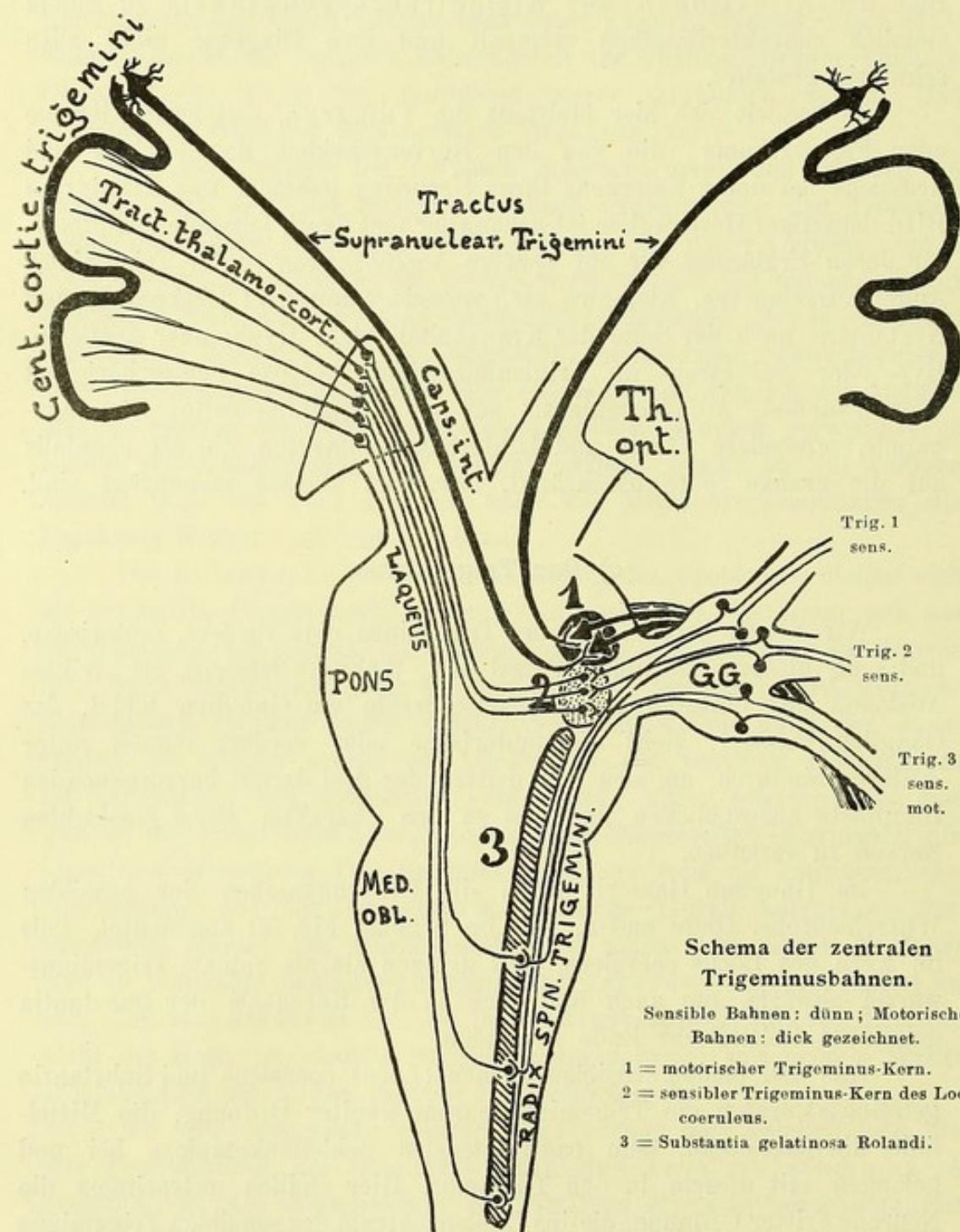
Die Reizerscheinungen von seiten des Cochlearis stellen sich als subjektive Ohrgeräusche, Tinnitus aurium, dar. Es kann sich um ein Rauschen, ein Sausen, ein Pfeifen handeln, das entweder ins Innere des Ohres verlegt oder aber in die Außenwelt projiziert wird. Topisch-diagnostisch ist mit diesen subjektiven Phänomenen nicht viel anzufangen, sie können sowohl bei Affektionen der nervösen Hörapparate als bei solchen des Mittelohres vorkommen: unter letzteren sei hier nur an die progressive Spongiosierung mit Stapesanklyse erinnert, die meist mit intensivem Tinnitus einhergeht, der wohl als kontinuierliche Reizwirkung auf das benachbarte *Cortische Organ* aufzufassen ist. Immerhin scheint ein Ohrensausen (von meist sehr hoher Tonlage) eine so konstante Begleiterscheinung der nervösen Schwerhörigkeit zu sein, daß man behauptet hat, wo in der Krankengeschichte von Tinnitus nicht die Rede ist, handle es sich schon a priori mit größter Wahrscheinlichkeit um keine nervöse Schwerhörigkeit.

Wo aber eine solche vorliegt, wird es nur dort möglich sein, sie mit Bestimmtheit auf eine Affektion des *Acusticusstammes* zu beziehen, wo die Kombination mit anderen Krankheitserscheinungen auf eine basale Erkrankung hindeutet. Natürlich wird in solchen Fällen vor allem der *Vestibularis* mit ergriffen sein (was sich, wie weiter unten zu besprechen, durch Schwindelerscheinungen kundgibt), ferner der *Facialis* und gewöhnlich noch andere Gehirnnerven; aber auch von

seiten der Oblongata, der Brücke und sogar des Kleinhirns pflegen sich Symptome hinzuzugesellen, und zwar in einer Art und Weise, die das Bild der Affektionen des Kleinhirnbrückenwinkels zu einem ziemlich charakteristischen stempelt und ihre Diagnose nicht allzu schwierig gestaltet.

Es handelt sich hier meistens um Tumoren, und zwar Fibrome oder Fibrosarkome, die von den Nervenscheiden des Facialis und Acusticus bei deren Emergenz ihren Ursprung nehmen. Das klinische Bild derartiger Geschwülste ist gekennzeichnet durch folgende Symptome, für deren Erklärung wir auf spätere Ausführungen (unter Trigeminus, Augenmuskelnerven, Kleinhirn etc.) verweisen müssen: Blickparese und Nystagmus nach der Seite des Krankheitsherdes; Hypo- oder Areflexie, Hyp- oder Anästhesie im Trigeminusgebiet, nervöse Schwerhörigkeit oder Taubheit, Adiachokinesia auf der erkrankten Seite; Stauungspapille, cerebellare Ataxie und Hinterhauptschmerzen, die oft ebenfalls auf die kranke Seite beschränkt, bzw. dort stärker ausgeprägt sind.

c) Der Trigeminus.


Wir wissen bereits, daß der Trigeminus eine vordere, motorische, und eine hintere, sensible, Wurzel hat. Während letztere, als striktes Analogon der hinteren Rückenmarkswurzeln ein Ganglion bildet, das Ganglion Gasseri, zieht die motorische oder vordere Wurzel unter letzterer hindurch, um sich den dritten der drei daraus hervorgehenden Hauptäste anzuschließen und ihm so den Charakter eines gemischten Nerven zu verleihen.

Im Ganglion Gasseri liegen die Ursprungszellen der sensiblen Wurzelneurone. Diese enden, wie im Schema Fig. 50 angedeutet, teils im Kern des Locus coeruleus, teils dringen sie als spinale Trigeminuswurzel abwärts, um nach und nach in der Kernsäule der Substantia gelatinosa Rolandi ihr Ende zu finden.

Aus den beiden sensiblen Kernen (Locus coeruleus und Substantia gelatinosa) treten die Trigeminusneurone zweiter Ordnung, die Mittellinie überschreitend, dem contralateralen Schleifenkomplexe bei und gelangen mit diesem in den Thalamus. Hier endlich entspringen die Neurone dritter Ordnung, die ins Rindenzentrum des sensiblen Trigeminus gelangen.

Aus Fig. 50 ist ohne weiters zu ersehen, daß die supranucleäre oder corticopontine Innervation des motorischen Trigeminus eine beiderseitige ist.

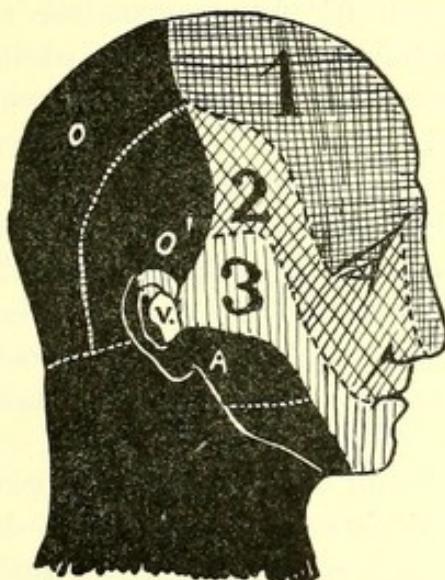
Fig. 50.

Schema der zentralen
Trigeminusbahnen.

Sensible Bahnen: dünn; Motorische
Bahnen: dick gezeichnet.

- 1 = motorischer Trigeminus-Kern.
- 2 = sensibler Trigeminus-Kern des Locus coeruleus.
- 3 = Substantia gelatinosa Rolandi.

Die von den drei Hauptästen des Trigeminus innervierten sensiblen Gebilde sind:


a) Ramus primus s. ophthalmicus.

- α) Das auf Fig. 51 mit 1 bezeichnete Hautgebiet.
- β) Conjunctiva, Cornea und Iris.
- γ) Die Schleimhaut der Stirnhöhle und der oberen Partien der Nase.

b) Ramus secundus s. maxillaris.

- α) Das Hautgebiet 2 auf Fig. 51.

Fig. 51.

Die sensible Versorgung des Kopfes.

Schraffiert: Trigeminus	1. Ramus ophthalmicus
	2. " maxillaris
	3. " mandibularis
Weiß: Vagus V. = Nervus auricularis vagi	O = N. occipitalis major
Schwarz: Cervicalnerven	O' = N. occipitalis minor
	A = N. auricularis magnus

- β) Die Schleimhaut des Antrum Highmori und der unteren Partien der Nase.
- γ) Die Schleimhaut des Oberkiefers und des Gaumens bis zum Arcus palatopharyngeus.
- δ) Die oberen Zähne.
- c) **Ramus tertius s. mandibularis.**
- α) Das Hautgebiet 3 auf Fig. 51.
- β) Die Schleimhaut der Wangen, des Unterkiefers, des Mundbodens, der Zunge.
- γ) Die unteren Zähne.

Bei totaler oder partieller Zerstörung einer der drei Äste macht sich natürlich die Anästhesie oder Hypästhesie in den entsprechenden Partien geltend. Ferner verschwindet bei einer Läsion des Ophthalmicus der Conjunctival- und Cornealreflex und der durch Kitzeln der oberen Teile der Nasenmucosa hervorzurufende Niesenreflex; bei einer solchen des Maxillaris bleibt das Niesen auch bei Reizung der unteren Partien der Nasenschleimhaut aus, ebenso wird der vordere Gaumenreflex vermißt. Doch sei hier bemerkt, daß letzterer inkonstant ist und namentlich bei funktionellen Neurosen oft fehlt. Dasselbe gilt auch für den Conjunctival- und den Cornealreflex und selbst die sternutatorische Reflexerregbarkeit der Mucosa nasal is ist individuellen Schwankungen unterworfen. Deshalb ist nur dem einseitigen Fehlen dieser Phänomene eine ausschlaggebende Bedeutung zuzuschreiben. Hier sei auch daran erinnert, daß die durch das Riechen an Ammoniak oder Essigsäure entstehenden stechenden Sensationen durch die Reizung der sensiblen Trigeminusendapparate der Nasenschleimhaut, nicht durch den Olfactorius zustande kommen. Bei Trigeminusausfall bleiben sie aus, ebenso wie die reflektorisch durch sie hervorgerufenen Symptome (Tränen der Augen, Pulsveränderungen, Atemstillstand).

Neben der sensiblen Funktion hat der Trigeminus auch eine sensorische. Der Mandibularis bzw. einer seiner Äste, der Lingualis, sammelt die Geschmacksfasern aus den vorderen zwei Dritteln der Zunge. Wir haben aber bereits (pag. 120) eingehend erörtert, wie diese Fasern durch die Chorda tympani zum Facialistamm gelangen und ihn eine Strecke weit begleiten, um dann wieder zum Trigeminus zu gelangen. Die Stelle, wo diese Wiedervereinigung erfolgt, ist das dem Maxillaris zugehörige Ganglion sphenopalatinum, und mit dem zweiten Trigeminusaste gelangen dann auch diese Fasern ins Ganglion Gasseri und in die Kerngebiete des Trigeminus. (Die Frage, ob sie dort bleiben oder schließlich noch in den Nucleus glossopharyngei gelangen, ist klinisch völlig belanglos.)

Die vom dritten Trigeminusaste motorisch innervierten Gebilde sind:

- z) Die Kaumuskeln,
- β) der vordere Bauch des M. digastricus und der M. mylohyoideus,
- γ) der M. tensor tympani und der M. tensor veli palatini.

Einseitiger Ausfall der Kaumuskeln (Masseteren, Temporalis, Pterygoidei) wird als Monoplegia masticatoria bezeichnet. Dabei ist die Seitwärtsbewegung des Unterkiefers nur nach der gelähmten Seite möglich,

weil nur die Pterygoidei der gesunden Seite sich noch zu kontrahieren vermögen. Auch stellt der aufgesetzte Finger das einseitige Ausbleiben der Kontraktion im Masseter und im Temporalis fest. Bei der Diplegia masticatoria fällt der Unterkiefer herunter, auch jede Seitwärtsbewegung hört auf. Ferner bleibt der Unterkieferreflex aus — die Masseterenzuckung, die man durch Schlag auf den der unteren Zahnrreihe aufgelegten Finger bei den meisten normalen Individuen hervorrufen kann.

Die Lähmung des vorderen Digastricusbauches und des Mylohyoideus soll zuweilen auf der gelähmten Seite dem Mundboden eine schlaffe Konsistenz verleihen; über die Ausfallssymptome von seiten des Tensor tympani und des Tensor veli palatini liegen spärliche Angaben vor. Sicher bleiben sie in den meisten Fällen latent; hie und da scheint es aber zu Stellungsanomalien des Arcus palatopharyngeus und zu Dysakusis für tiefe Töne zu kommen.

Sensible Reizerscheinungen sind: Schmerzen, Hyperästhesien, eventuell Anaesthesia dolorosa, nach Art der beim Rückenmark durchgenommenen analogen Phänomene (pag. 33—34); motorische: die tonischen und klonischen Kaumuskelkrämpfe. (Erstere werden als Trismus, letztere als mastikatorische Krämpfe bezeichnet.) In bezug auf die topisch-diagnostische Bedeutung der Reizerscheinungen des motorischen Trigeminus gilt im großen ganzen das, was wir über diejenigen des Facialis gesagt haben (pag. 124), nur daß hier seltener funktionelle Neurosen, häufiger infektiöse Erkrankungen des Nervensystems (Tetanus, Meningitis) es sind, auf deren Boden jene Erscheinungen entstehen. Auch die lokalisatorische Bedeutung der Schmerzen im Trigeminusgebiete büßt infolge der Häufigkeit echter spontaner Neuralgien beträchtlich an Wert ein. Immerhin verdient das Fehlen neuralgiformer Phänomene bei zentralen Quintusaffektionen hervorgehoben zu werden.

Außer den besprochenen motorischen und sensiblen Fasern werden bald nach dem Austritte aus der Schädelhöhle allen drei Ästen des Trigeminus sympathische Fasern beigesellt, welche dann diese Äste bzw. einige ihrer Zweige auf ihrem ferneren Verlaufe begleiten. Das Zusammentreffen jener sympathischen Fasern (sie stammen durchweg aus den die Kopfarterien begleitenden Plexus) mit Trigeminusneuronen findet an bestimmten Knotenpunkten im Verlaufe der letzteren statt. Die Ganglien sind:

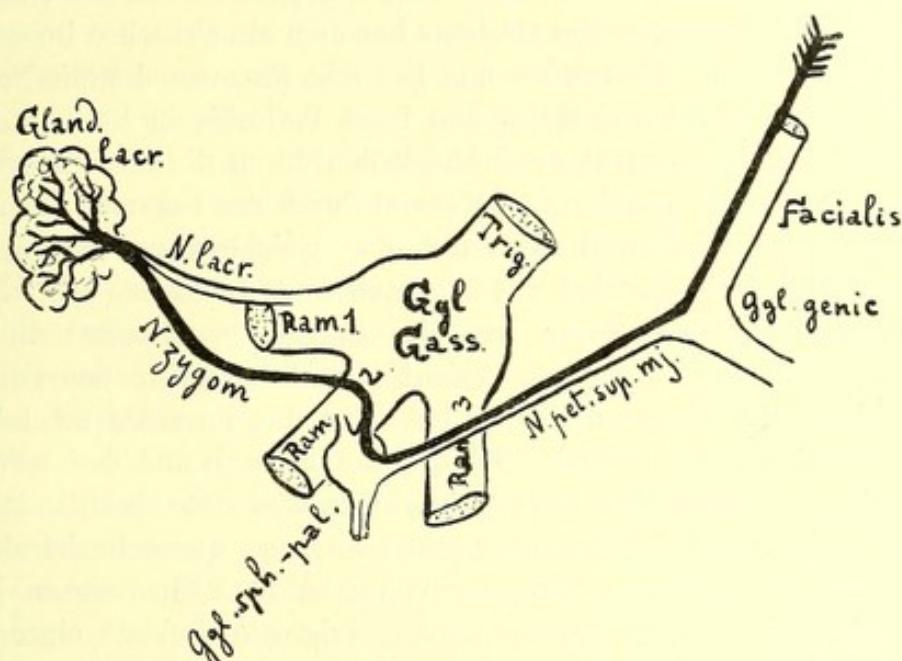
1. für den Ophthalmicus das Ganglion ciliare; seine Radices sympathicae stammen aus dem Plexus caroticus internus;
2. für den Maxillaris das Ganglion sphenopalatinum; seine Radices sympathicae haben dieselbe Herkunft;

3. für den Mandibularis das Ganglion oticum; seine Radices sympathicae entspringen dem Plexus meningeus medius.

4. Außerdem besitzt der Hauptast des Mandibularis, der Lingualis, noch ein eigenes Ganglion, das Ganglion submaxillare, das aus dem Plexus maxillaris externus seine sympathischen Wurzeln bezieht.

Welches sind nun die Funktionen dieser sympathischen Fasern?

In erster Linie verweisen wir auf Fig. 24 und erinnern an den damals geschilderten sympathischen Symptomenkomplex am Kopf (siehe pag. 67—68). Die auf der rechten Seite jener Figur eingetragenen sympathischen Bahnen „ad musculum tarsalem superiorem“, „ad musculum dilatatorem pupillae“, „ad musculum orbitalem“ nehmen ihren Weg, die beiden ersten durch das Ganglion ciliare, letztere durch das Ganglion sphenopalatinum. Wirkt hier eine Läsion zerstörend ein, so kann es einerseits zu Pupillenlähmung und Lidspaltenverengung, andererseits eventuell zu Enophthalmus kommen. Die Bahnen „ad glandulas sudoriparas“ und „ad vasa sanguinea“ müssen aber in allen drei Trigeminusästen verlaufen. Denn bei Leitungsunterbrechung dieser Nerven finden wir fast regelmäßig an den anästhetischen Partien Hitze und Rötung (frische Fälle) oder Cyanose und Kälte (ältere Fälle) sowie Anidrosis. (Hier sei erwähnt, daß hie und da auch bei Facialislähmung dasselbe beobachtet worden ist; auch mit dem Facialis scheint demgemäß ein Teil dieser Fasern verlaufen zu können.)


Von ferneren, ursprünglich sympathischen, aber in Trigeminusbahnen verlaufenden Neuronen müssen noch erwähnt werden die im Ophthalmicus und Maxillaris enthaltenen sekretorischen Fasern für die Absonderung des Nasenschleimes. Auf ihrer Ausschaltung beruht die abnorme Trockenheit der Mucosa nasalis, die sich bei Lähmung jener Nerven einstellt und sekundär zu Herabsetzung des Geruches führt.

Daß die salivatorischen Fasern des Mandibularis bzw. Lingualis vom Facialis stammen (via Chorda tympani), ebenso die lacrymatorischen Fasern des Ophthalmicus bzw. Lacrymalis (via Nervus petrosus superficialis major), wissen wir bereits. Der Anschluß der letzteren an den ersten Trigeminusast findet durch das bereits mehrfach erwähnte Ganglion sphenopalatinum und eine Anastomose zwischen Ramus secundus und Ramus primus, den Nervus zygomaticus, statt. Daraus ergibt sich die topisch-diagnostische Lehre, daß Trigeminusläsionen, die gehirnwärts vom Nervus zygomaticus ihren Sitz haben, also zum Beispiel solche des Ganglion Gasseri, kein Versiegen der Tränensekretion zur Folge haben. Die Tränensekretion wird nur lahmgelegt, wenn die Leitungsunterbrechung das Ganglion sphenopala-

tinum selbst, den proximal benachbarten Teil des Maxillaris, den Nervus zygomaticus oder den Nervus lacrymalis betrifft, kurz eine Stelle der auf Fig. 52 schwarz hervorgehobenen Strecke.

Umgekehrt wird eine Trigeminusleitungsunterbrechung, die sich durch Beeinträchtigung der Speichelsekretion kundgibt, ihren Sitz nur weit an der Peripherie im Verzweigungsgebiete des dritten Astes haben können, da ja erst durch den Zuzug der Chordafasern aus

Fig. 52.

Die Bahn der Tränensekretion im Facialis und Trigeminus.

dem Facialis dem Lingualnerven die salivatorischen Fasern beigefügt werden.

Geschmacksstörungen auf den vorderen zwei Dritteln der Zunge werden aber auftreten können: 1. bei Läsionen proximal vom Ganglion sphenopalatinum, mögen sie nun den Ramus secundus, das *Gassersche Ganglion* oder den gemeinsamen Trigeminusstamm betreffen*; 2. bei solchen des Lingualis distal von der Verbindung mit der Chorda

* Da nach Exstirpation des Ganglion Gasseri eine Ageusie der vorderen zwei Zungendrittel zuweilen ganz vermißt wird, zuweilen auch nur eine Hypogeusie eintritt, so ist die Annahme berechtigt, daß bei den betreffenden Individuen eine gewisse Anzahl von Geschmackfasern vom Ganglion geniculatum aus, statt durch den Nervus petrosus superficialis major in den Trigeminus zu gelangen, dem Nervus intermedius (siehe oben pag. 120) sich anschließt und in dessen Kerngebiet eintritt. Jener Facialisteil müßte dann als gemischter (sekretorisch-sensorischer) Nerv bezeichnet werden.

tympani. Wo aber solche gustatorische Störungen, nebst Reduktion der Speichelabsonderung, ohne Anästhesie im Trigeminus- und ohne Lähmungen im Facialisgebiete (siehe oben, pag. 123) bestehen, ist als Sitz der Leitungsunterbrechung die Chorda tympani selbst anzunehmen, welche Eventualität bei den Affektionen der Paukenhöhle gar nicht selten eintritt.

Im großen ganzen ist nun zu sagen, daß Zerstörungen einzelner Hauptäste oder gar peripherer Zweige des fünften Gehirnnervenpaars recht selten sind; abgesehen von den Knochen- und Weichteilverletzungen des Gesichts kommen als Ursachen im wesentlichen nur Tumoren, tuberkulöse undluetische Prozesse der die Nervendurchtritte enthaltenden Knochen und ihres Periostes in Betracht. (Der Ramus ophthalmicus verläßt die Schädelhöhle durch die Fissura orbitalis superior; der Ramus maxillaris geht zuerst durch das Foramen rotundum, später als Nervus infraorbitalis durch den gleichnamigen Kanal; dem Ramus mandibularis gewährt das Foramen ovale Durchlaß, sein Endast, der Nervus alveolaris inferior, liegt im Canalis mandibulae; die Austrittspunkte der drei Äste am Gesicht sind bekanntlich das Foramen supraorbitale, das Foramen infraorbitale und das Foramen mentale.)

Viel häufiger sind das Ganglion Gasseri und der gemeinschaftliche Stamm des Nerven betroffen, fast stets einseitig (Meningitis gummosa, Aneurysmen der Carotis interna, quere Basisfrakturen hinter dem Türkensattel, Hypophysistumoren etc.). In solchen Fällen findet man neben Anästhesie im ganzen Trigeminusgebiete einer Kopfhälfte die Monoplegia masticatoria (siehe oben), auf deren periphere Natur das Ergebnis der elektrischen Untersuchung (Entartungsreaktion) und die degenerative Atrophie hinweisen, welch letztere sich durch das Einsinken der Fossa temporalis und der Masseterenregion und infolgedessen durch ein abnormes Vorspringen des Jochbogens kundgibt. Für die Affektion des Ganglion Gasseri spricht das Auftreten von Herpes zoster im cutanen Verbreitungsgebiete des Nerven (entsprechend den analogen Phänomenen bei Erkrankungen der Spinalganglien, cf. pag. 34, 62).

An der Gehirnbasis werden der Trigeminusstamm und sein Ganglion selten allein, sondern fast stets mit anderen Gehirnnerven zusammen durch pathologische Prozesse betroffen; außerdem machen sich die sonstigen Kriterien der basalen Affektionen geltend, auf die schon mehrfach hingewiesen wurde.

Nucleäre Trigeminusaffektionen kombinieren sich, wie ebenfalls bereits betont, meist in typischer Weise mit Ausfallssymptomen von seiten anderer Gebilde des Gehirnstammes. Wo Herde des ver-

längerten Markes den Trigeminus durch Zerstörung der Substantia gelatinosa Rolandi oder der spinalen Wurzel beeinträchtigen, weist die Mitbeteiligung von Kernen und Wurzeln der Oblongatanerven an den alternierenden Symptomenkomplexen auf den caudalen Sitz der Trigeminusläsion hin. Hier ist es nun notwendig, zu bemerken, daß bei Affektionen der distalsten Teile der Substantia gelatinosa medullae oblongatae Sensibilitätsstörungen der Stirn auftreten, ein etwas höherer Sitz hat solche an den Schläfen und Augenlidern zur Folge, erst bei noch proximalerem Vorrücken der Kernläsion werden Nase und Wange betroffen etc. Also zeigen die nucleären Trigeminusanästhesien topographische Verhältnisse, die sich von denjenigen der peripheren ebenso unterscheiden, wie dies bei den sensiblen Rückenmarksnerven der Fall ist. Freilich sind unsere Kenntnisse hierüber noch nicht so weit gediehen, daß wir die sensiblen Hautareale für die verschiedenen Niveaus der Kernsäule des Trigeminus ebenso scharf einzeichnen können, wie dies für die spinalen Wurzelfelder der Fall ist. Immerhin muß bei partiellen Ausfällen im Quintusgebiete die Inkongruenz mit den Fig. 51 wiedergegebenen peripheren Arealen als ein Hinweis auf den zentralen Sitz der Affektion aufgefaßt werden.

Was endlich die supranucleären Unterbrechungen der Trigeminusbahn anbelangt, so machen sie bei halbseitigem Sitz (der typische Fall ist die cerebrale Apoplexie) nur sensible, keine motorischen Symptome, infolge der bilateralen Rindeninnervation der Kaumuskelkerne. Das Bild der supranucleären masticatorischen Diplegie haben wir bei Besprechung der Pseudobulbärparalyse bereits geschildert (pag. 116, 117).

Dank diesen verschiedenen Anhaltspunkten wird im konkreten Falle die Lokalisation der Krankheitsprozesse und Verletzungen im Verlaufe des Trigeminus und seiner Äste im allgemeinen keinen großen Schwierigkeiten begegnen.

d) Die Augenmuskelnerven.

Wir haben im Verlaufe unserer anatomischen Vorbemerkungen über den Aufbau des Hirnstammes drei Augenmuskelkerne namhaft gemacht, denjenigen des Abducens, denjenigen des Trochlearis und denjenigen des Oculomotorius.

Während wir nun diesen letzteren bisher als einheitliches Gebilde betrachtet haben, ist es jetzt notwendig, auf die Komplikation einzugehen, die seiner Struktur daraus erwächst, daß die einzelnen vom Oculomotorius versorgten Augenmuskeln durch bestimmte Kerngruppen im Ursprungsgebiete vertreten sind.

Das Kerngebiet des Oculomotorius besteht nämlich, wie Fig. 53 schematisch andeutet, aus

1. einem „kleinzelligen Lateralkern“ (auch *Westphal-Edingerscher Kern* genannt),
2. einem „großzelligen Lateralkern“,
3. einem (kleinzelligen) „Medialkern“.

Die beträchtlichste Längsausdehnung kommt dem großzelligen Lateralkerne zu; in ihm reihen sich hintereinander (die Kerne auf unserem Schema sind in Horizontalprojektion gezeichnet!):

- a) das Zentrum für den *Musc. levator palpebrae superioris*,
- b) „ „ „ „ rectus superior,
- c) „ „ „ „ rectus internus,
- d) „ „ „ „ obliquus inferior,
- e) „ „ „ „ rectus inferior.

Die Fasern aus *a* und *b* entspringen ausschließlich aus dem gleichseitigen, diejenigen aus *e* ausschließlich aus dem gekreuzten, diejenigen aus *c* und *d* sowohl aus dem gleichseitigen als aus dem gekreuzten Kern.

Der Medialkern ist das Zentrum der Accommodation bzw. dasjenige des Ciliarmuskels, dessen Kontraktion bekanntlich die Zonula der Linse entspannt; der *Westphal-Edingersche Kern* innerviert dagegen den *Sphincter pupillae*, ist infolgedessen der Antagonist des pupillenerweiternden *Centrum cilio-spinale* im unteren Halsmarke (siehe pag. 67). Wie die Neurone dieses letzteren Zentrums und im Gegensatze zu denjenigen des großzelligen Kernes des Oculomotorius, treten aber die Elemente seiner beiden kleinzelligen Kerne nicht direkt zu den von ihnen versorgten Muskeln in Beziehung, vielmehr findet im gleichseitigen Ganglion ciliare die Einschaltung eines neuen Neurons statt, und zwar (entsprechend der glatten Beschaffenheit der „Binnenmuskeln“ des Auges) eines sympathischen.

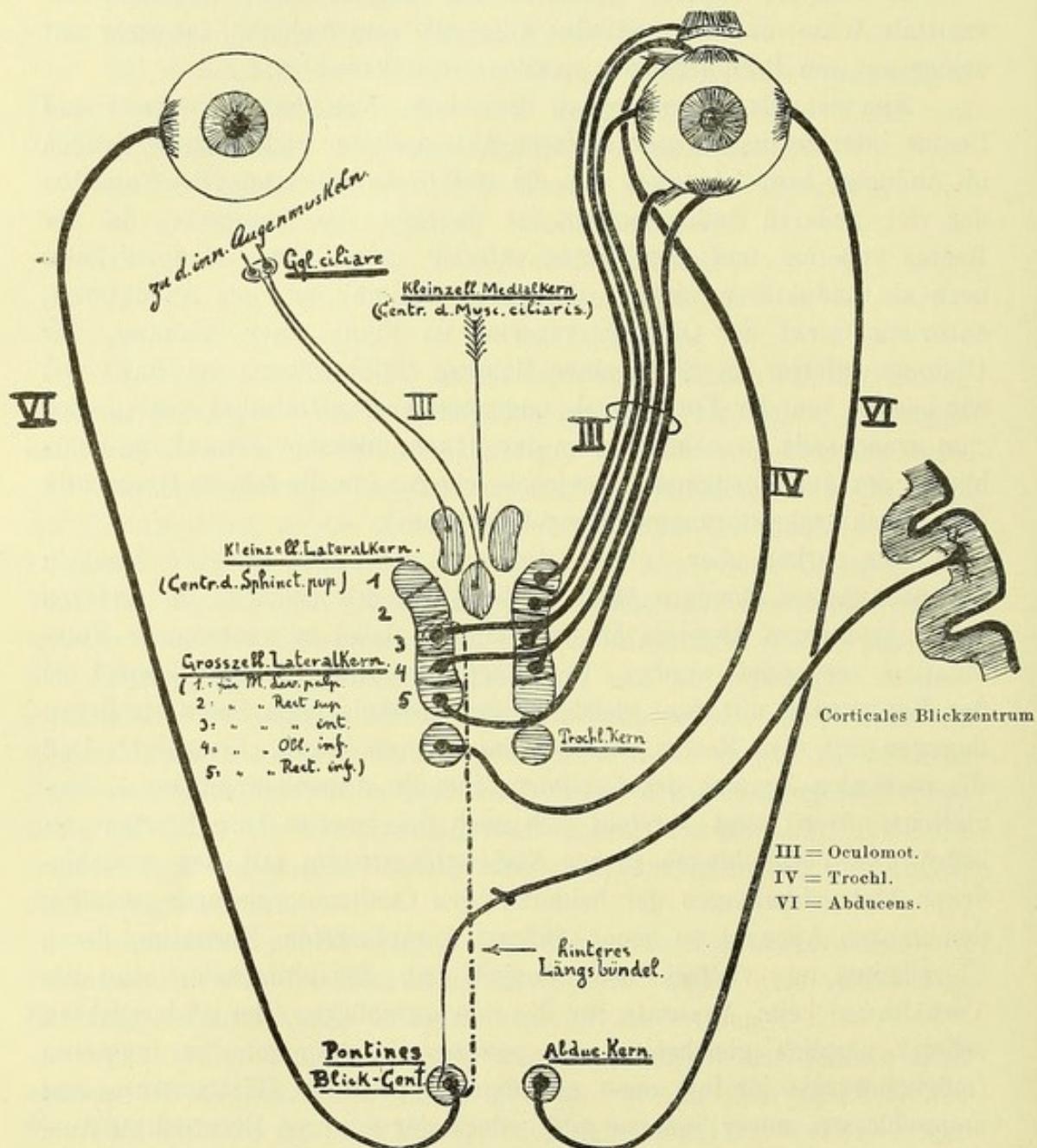
Unmittelbar caudal schließt sich dem großzelligen Lateralkern des Oculomotorius der Trochleariskern an, dessen Fasern, eine vollständige Kreuzung erfahrend, den *Obliquus superior* innervieren.

Viel weiter hinten, in den distalen Bezirken der Brücke liegt endlich der Abducenskern. Seine Neurone streben dem gleichseitigen *M. rectus externus* zu, stehen jedoch gleichzeitig durch lange Collateralen mit den Ursprungszellen des Oculomotoriusanteils für den gegenseitigen *Rectus internus* in Verbindung. Diese Collateralen verlaufen im hinteren Längsbündel.

Welche sind nun die **Funktionen der äußeren Augenmuskeln?**

1. Der *Levator palpebrae* hebt das Oberlid;

2. Rectus internus und externus drehen den Bulbus um die vertikale Achse, das heißt nach innen und außen;
3. Rectus superior und inferior drehen den Bulbus um die transversale Achse, das heißt nach oben und unten;
4. Obliquus superior und inferior drehen den Bulbus um die sagittale Achse; ersterer rollt das Auge mit seiner oberen, letzterer mit seiner unteren Peripherie der nasalen Orbitalwand zu.


Nun ist aber folgendes zu bemerken: Nur Rectus externus und Rectus internus haben eine einfache Aktionsweise, wirken ausschließlich als Abductor bzw. Adductor, also als strikte Antagonisten. Die Funktion der vier anderen Bulbusmuskeln ist dagegen eine komplexe, da der Rectus superior und der Rectus inferior neben ihrer Hauptwirkung noch als Adduktoren wirken, die beiden Obliqui noch als Abduktoren; außerdem wirkt der Obliquus superior im Sinne einer Senkung, der Obliquus inferior im Sinne einer Hebung. Infolgedessen ist das, was wir soeben von der Transversal- und von der Sagittalachse sagten, nur *cum grano salis* zu nehmen. Für das Nähere hierüber sei auf die Lehrbücher der Augenheilkunde verwiesen; ebenso für die feinere Diagnostik der Augenmuskelstörungen (Doppelbilder etc.).

Nun wirken aber beim „Blicken“ nicht nur mehrere Muskeln desselben Auges, sondern Muskeln des einen mit solchen des anderen Auges zusammen. Gewisse Muskeln können dabei in wechselnder Kombination verwendet werden. Der Rectus internus ist zum Beispiel bei der Konvergenz mit dem gleichnamigen Muskel, beim Seitwärtsblicken dagegen mit dem Rectus externus des anderen Auges „assoziiert“. Daß die corticalen Zentren des Großhirns für die Augenbewegungen „Assoziationszentren“ sind, versteht sich nach dem soeben Ausgeführten von selbst. Die Verbindungen dieser Assoziationszentren mit den verschiedenen Unterabteilungen der beiderseitigen Oculomotoriuskerne gestalten den ganzen Apparat zu einer äußerst komplizierten Klaviatur, deren Einzelheiten uns vielfach noch dunkel sind. Am einfachsten sind die Verhältnisse beim Apparate für das Seitwärtsblicken; der Abducenskern scheint nämlich gleichzeitig als pontines Blickzentrum zu fungieren (möglicherweise ist ihm auch ein eigenes pontines Blickzentrum eng angeschlossen, unser Schema gibt jedoch der ersteren Eventualität Ausdruck). Die supranucleäre Bahn* leitet, wie Fig. 53 zeigt, von dem Blickzentrum der contralateralen Hemisphärenrinde den Reiz auf die

* Respektive die supranucleäre Hauptbahn, denn es gibt noch eine von der gleichseitigen Gehirnrinde stammende accessorische Bahn, cf. unten pag. 143.

Ganglienzellen des Abducenskernes über; die Achsenzylinder dieser letzteren treten aber erstens zum gleichzeitigen Rectus externus, zweitens bringen sie (vermittelst ihrer Collateralen, die im hinteren Längsbündel

Fig. 53.

Die Innervationsverhältnisse der Augenmuskeln.

verlaufen) den Rectus internus des anderen Auges zur Kontraktion. Das Rindenzenrum für die Bewegung des Seitwärtsblickens löst also eine Drehung beider Augen nach der Gegenseite aus.

Analog wie Fasern aus dem Nucleus hypoglossi in den unteren Facialiskern gelangen, um an der Innervation des Orbicularis oris teilzunehmen, scheinen Neurone des Oculomotoriuskernes in den oberen Facialiskern überzutreten und an der Innervation des Orbicularis oculi zu partizipieren. Man schließt dies 1. aus der Orbicularisparese, die bei Kernläsion des Oculomotorius auftritt, 2. aus der Aufwärtsbewegung des Augapfels bei Lidschluß.

In bezug auf die **Ausfallssymptome**, die durch Störungen im Bereiche der geschilderten Innervationsapparate zustande kommen, läßt sich folgendes sagen:

Daß isolierte Augenmuskellähmungen hauptsächlich am Rectus externus und am Obliquus superior vorkommen, von denen ja jeder seinen eigenen Nerven besitzt (Abducens bzw. Trochlearis), ist leicht verständlich. Lähmungen einzelner vom Oculomotorius versorgter Muskeln sind viel seltener, setzen sie doch äußerst circumsripte Läsionen in seinem Ursprungsgebiete voraus.

Bei kompletter Oculomotoriuslähmung besteht schlaffes Herabhängen des Oberlids (Ptosis)* und der Bulbus ist dauernd nach außen und unten abgelenkt (Rectus ext. und Obl. sup.); außerdem ist die Pupille erweitert und das Auge bleibt dauernd für die Ferne eingestellt (Paralyse von Sphincter pupillae und Musculus ciliaris). Sind überdies noch Abducens und Trochlearis gelähmt, so spricht man von Ophthalmoplegia totalis, wobei die Augen unbeweglich nach vorn gerichtet bleiben. Die kleinzelligen Kerne für die Binnenmuskulatur des Auges sind, wie aus Fig. 23 zu ersehen, von den großzelligen Ursprungsstätten der äußeren Augenmuskeln getrennt; sie können einer Schädigung entgehen, die jene vernichtet (es resultiert die Ophthalmoplegia externa), oder auch allein zugrunde gehen (Ophthalmoplegia interna).

Wo synergistische Bewegungen mehrerer Muskeln ausfallen, spricht man von konjugierten Lähmungen; so können der Blick nach rechts oder nach links oder nach oben oder nach unten oder die Konvergenz aufgehoben sein. Es handelt sich um den Wegfall von Assoziationszentren. Am übersichtlichsten liegen auch hier die Dinge beim Abducens, dessen Kern gleichzeitig ein pontines Assoziationszentrum darstellt. Nucleäre Abducensläsion hat infolgedessen nicht etwa isolierte Abdu-

* Nicht zu verwechseln mit der durch Wegfall der Innervation des Musc. tarsalis sup. entstehenden sympathischen Lidspaltenverengerung, von der auf pag. 67—68 und pag. 134 die Rede war.

censlähmung zur Folge, sondern eine Behinderung des Blickes nach der Seite des zerstörten Kernes; nur wenn die Abducensfasern peripher von ihrem Nucleus (also jenseits vom Abgang der Collateralen zum Internuskerne des Oculomotorius) unterbrochen sind, kommt es zu isolierter Paralyse des Rectus externus.

Für die **topische Diagnostik der Augenmuskellähmungen** gelten nun folgende Regeln:

1. Einseitige Augenmuskellähmungen, gleichviel ob multipel oder isoliert, sind fast immer vom peripheren Typus, das heißt durch nucleäre oder subnucleäre Läsion entstanden. Die supranucleäre Innervation der Augenmuskeln ist eben überwiegend eine bilaterale, und es liegen somit Verhältnisse vor, wie wir sie am Paradigma des Kehlkopfzentrums (siehe Fig. 46 und Text pag. 114) erläutert haben. Nur bei Affektionen beider Hemisphären können im allgemeinen supranucleäre Augenmuskel-lähmungen entstehen, und zwar auch diese äußerst selten, weil die in Betracht kommenden corticonucleären Fasern nicht als kompaktes Bündel, sondern sehr zerstreut von der Hirnoberfläche herzukommen scheinen. (Deshalb gehören Augenmuskelstörungen nicht zum typischen Bilde der pag. 116—117 geschilderten Pseudobulbärparalyse.) Ausgedehnte beidseitige Erkrankung der Großhirnrinde pflegt am ehesten noch beidseitige Ophthalmoplegien zu verursachen (Meningitis!).* Eine Ausnahme von dieser Regel macht die Ptosis; isolierte gekreuzte Lähmung des Levator palpebrae ist bei einseitigen corticalen Herden nicht ganz selten. Für diesen Muskel scheint deshalb bei manchen Individuen die corticale Innervation eine vorwiegend kontralaterale zu sein.

2. Letzteres gilt ganz allgemein für die supranucleäre Bahn der wichtigsten konjugierten Augenbewegung, der Seitwärtswendung beider Bulbi. Diese Bahn zieht, wie Fig. 53 zeigt, von einer bestimmten Rindenpartie der einen Hemisphäre (über die Lokalisation dieses corticalen Blickzentrums siehe weiter unten im Abschnitt Großhirn) zum Abducens- bzw. pontinen Blickzentrum der anderen Seite. Diese supranucleäre Bahn überschreitet die Mittellinie an der auf unserem Schema markierten Stelle: letztere liegt im Niveau des vorderen Randes der Brücke. Ist nun jene Bahn durch einen pathologischen Prozeß proximal von der Kreuzungsstelle unterbrochen, so wird, angenommen, der Herd liege rechts, das Blickwenden nach links unmöglich; sitzt die Läsion da-

* Im Gegensatze zu den nucleären und infranucleären Augenmuskellähmungen können bei diesen supranucleären Ophthalmoplegien vom Labyrinth aus reflektorische Augenbewegungen („calorisches Nystagmus“, s. u. pag. 156) erzielt werden.

gegen im Pons, also distal vom Übergang auf die Gegenseite, so fällt das Blicken nach rechts aus. Es resultiert durch das Überwiegen der nicht gelähmten Antagonisten eine Ablenkung der beiden Augen, in ersten Falle nach rechts, im zweiten Falle nach links. Tritt also durch Unterbrechung der corticonucleären Bahnen diese „Déviation conjugée“ ein, so blickt, wenn die Läsion oberhalb des Pons sitzt, der Patient nach der Seite seines Krankheitsherdes hin; liegt die Unterbrechung in der Brücke, blickt er im Gegenteile von der Seite seine Läsion weg. Wie man aber Brückenherde diagnostiziert, haben wir bereits eingehend besprochen. Die Déviation conjugée ist kein bleibendes Symptom; es vermögen offenbar die pag. 139 (Fußnote) angedeuteten gleichseitigen corticonucleären Verbindungen nach und nach vikariierend einzuspringen.

3. Nucleäre Lähmungen des Oculomotorius sind (wegen der großen Ausdehnung des Kernes) selten total; meistens bleiben Sphincter pupilla und Musculus ciliaris frei. Eine Parese des Orbicularis oculi spricht für nucleären, gegen infranucleären Sitz; siehe oben und vergleiche das analoge Verhältnis zwischen Hypoglossuskern und Orbicularis oris. Die Ptosis tritt bei progressiven Nuclearlähmungen des Oculomotorius meistens erst dann auf, wenn die Recti superior, inferior und internus und der Obliquus inferior nach und nach ergriffen worden sind — so daß gleichsam, nachdem die Erkrankung ihren Höhepunkt erreicht, „zum Schluss der Vorhang fällt“. Eine nucleäre Läsion des Abducens erzeugt, wie wir sahen, nicht etwa isolierte Lähmung des gleichseitigen Externus, sondern konjugierte Blicklähmung nach der lädierten, bzw. Déviation conjugée nach der gesunden Seite hin. (Dabei ist, das sei hier ausdrücklich betont, bei intaktem Oculomotorius die Konvergenz unbehindert.) Außerdem geht die nucleäre Abducenslähmung mit einer Facialislähmung vor peripheren Typus einher — wegen des sich um den Nucleus abducens schlingenden Facialisknies.

4. Die infranucleäre Oculomotoriuslähmung verschont Pupillen sphincter und Accommodation so gut wie nie, da die betreffenden Neuronen denjenigen der äußeren Augenmuskeln im Oculomotoriusstamme eingemischt sind. Die infranucleäre Abducenslähmung hat isolierte Externuslähmung, keine konjugierte Lähmung der Blickwender zur Folge.

5. Die Hemiplegia alternans superior seu oculomotoria = Webersche Lähmung ist charakteristisch für infranucleäre Oculomotoriuslähmungen (siehe oben pag. 103—104). Meistens liegt die Läsion innerhalb des Hirnstamms bzw. Hirnschenkels (pedunculäre Oculomotoriuslähmung), zuweilen aber auch basal. Bei der *Fovilleschen* Lähmung (Hemiplegi-

alternans abducento-facialis) ist der Abducens meistens ebenfalls infra-nucleär betroffen.

6. Für den basalen Sitz eines Ophthalmoplegie erzeugenden Prozesses spricht, abgesehen von den allgemeinen Zeichen einer intracranialen, speziell basalen Affektion, die Mitbeteiligung anderer Hirnnerven (Anosmie, Amaurose, Trigeminusanästhesie, Facialislähmung, nervöse Taubheit). Wo es sich um progressive Prozesse (Tumoren, Gummen, Meningitiden) in der Nähe des Oculomotoriusaustrettes handelt, pflegt als erstes Symptom Ptosis aufzutreten (vgl. das umgekehrte Verhalten bei nucleärer Oculomotoriuslähmung!). Basisfrakturen betreffen am häufigsten den Abducens, der an der Spitze der Felsenbeinpyramide eine sehr exponierte Lage einnimmt (siehe Fig. 71).

Als **Reizsymptome von seiten der Augenmuskeln** ist in erster Linie der Nystagmus namhaft zu machen. So bezeichnet man bekanntlich rhythmische Zuckungen der Augenmuskeln, die schon in Ruhestellung auftreten können („spontaner Nystagmus“), namentlich aber bei Bewegung, als einen Intentionstremor. Am häufigsten wird der horizontale Nystagmus beobachtet, es gibt aber auch einen vertikalen und sogar einen rotatorischen. Nystagmus kommt auch infolge angeborener Schwachsichtigkeit vor oder von solcher, die frühzeitig (das heißt bevor das Individuum zu „fixieren“ gelernt hat) erworben wurde, ferner als professioneller Krampf bei den Kohlenhauern der Bergwerke. Einiges über Nystagmus werden wir noch im Abschnitte Kleinhirn zu sagen haben (siehe unten). Der Nystagmus, den Reizung der Bogengänge des inneren Ohres hervorruft (kalte oder heiße Einspritzungen *, acute Entzündungen), kommt auf dem Wege der Verbindungen zwischen *Deitersschem* Kerne und hinterem Längsbündel zustande. Haubenläsionen in der Nähe des letzteren können gleichfalls Nystagmus erzeugen (und zwar tritt dieser beim Blick nach derjenigen Seite auf, wo der Herd sitzt), ebenso Läsionen in der Nachbarschaft des Abducenskernes bzw. pontinen Blickzentrums. Druck auf die Vierhügelgegend, unter welcher Oculomotorius- und Trochleariskern liegen (er kann durch Tumoren in den vorderen Partien des Cerebellums zustande kommen), erzeugt zuweilen einen vertikalen Nystagmus nach oben. In seltenen Fällen erzeugten Läsionen der

* Ausspritzen des Ohres mit kaltem Wasser erzeugt beim Gesunden einen Nystagmus nach der gegenüberliegenden Seite, verwendet man dagegen heißes Wasser, so tritt ein Nystagmus nach der Seite des ausgespritzten Ohres auf (*Bárány'scher Versuch*, calorischer Nystagmus). Es kommen dabei durch Temperaturdifferenzen bedingte Bewegungen der Endolymphe zustande, die auf die nervösen Apparate des Labyrinths als Reiz wirken.

letzteren Art eine als Reizsymptom aufzufassende Déviation conjuguée, also nach der Seite des gereizten Abducenskernes. Eine viel größere Bedeutung kommt der Déviation conjuguée zu, die im Bereich des corticalen Blickzentrums nicht auf paralytischer bzw. antagonistischer Grundlage entsteht, sondern als Reizphänomen. Davon soll aber erst später, bei Gelegenheit der Rindenlokalisationen, die Rede sein.

Die Symptomatologie der Pupillenreflexe wird uns erst im Zusammenhange mit derjenigen des Nervus opticus beschäftigen.

B. Läsionen des Kleinhirns.

Das Kleinhirn ist, morphologisch betrachtet, als ein wohlbegrenztes und in sich abgeschlossenes Gebilde zu bezeichnen. Es stellt in seiner durch die hintere Schädelgrube und das Tentorium gebildeten Kapsel einen ziemlich selbständigen Anhang des übrigen Zentralnervensystems dar, mit dem es drei Paare von „Stielen“ verbinden (cf. Fig. 27):

1. die hinteren Kleinhirnstiele, Crura s. pedunculi cerebelli ad medullam;
2. die mittleren Kleinhirnstiele, Crura s. pedunculi cerebelli ad pontem, Brachia pontis;
3. die vorderen Kleinhirnstiele, Crura s. pedunculi cerebelli ad laminam quadrigeminam, Brachia conjunctiva.

Durch die hinteren und mittleren Kleinhirnstiele treten hauptsächlich afferente oder cerebellipetale Fasern in das Kleinhirn ein, während die Bindearme größtenteils aus cerebellifugalen Neuronen, aus efferenten Fasern, gebildet sind.

Am Kleinhirn selbst unterscheidet die Anatomie bekanntlich eine Menge von Lappen, die, aus Rinden- und Marksubstanz bestehend, auf dem Querschnitte das charakteristische Bild des „Arbor vitae“ ergeben. Im Innern birgt das Cerebellum als mächtigste Ansammlung grauer Substanz den Nucleus dentatus, außerdem einige andere Zellkonglomerate — Nucleus fastigii, Embolus, Nucleus globosus. Klinisch kommen wir aber mit einer viel einfacheren Gliederung aus, indem wir lediglich einen mittleren Teil, den Vermis cerebelli, von zwei seitlichen Teilen, den Hemisphären, zu unterscheiden haben. Können wir nämlich bei der Diagnosestellung auf Kleinhirnaffektion bestimmen, im Bereich welches dieser drei Teile die Läsion liegt, so müssen wir uns sehr zufrieden erklären — jedenfalls nach dem heutigen Stande unserer kleinhirnlokalisatorischen Kenntnisse.

Wie kommt es denn, daß diese letzteren so mangelhaft sind? Wie erklärt sich dieser Gegensatz zu den bisher durchgenommenen Teilen des Zentralnervensystems — Rückenmark und Hirnstamm —, für die uns vielfach ein topisch-diagnostisches Rüstzeug von solcher Präzision zu Gebote steht, daß wir millimetergroße Läsionen zu erkennen und richtig zu lokalisieren vermögen?

Hier spielen zunächst topographische Verhältnisse insofern eine Rolle, als (infolge der Einzwängung des Organs zwischen Tentorium und Schädelbasis) alle einigermaßen raumbeengenden Krankheitsprozesse gleich auf sehr große Partien desselben schädigend einwirken und für Fernwirkungen viel günstigere Bedingungen vorliegen, als es anderwärts in der Pathologie des Zentralnervensystems der Fall ist.

In noch größerem Maße ist aber die relativ geringe physiologische Dignität des Cerebellums verantwortlich zu machen. Das Kleinhirn ist nämlich weder ein motorisches noch ein sensibles Organ; auch läßt es, beim Menschen jedenfalls, eine scharfe topographische Verteilung bestimmter Zentren für spezifische Funktionen nicht erkennen. Vielmehr wirkt es, als ein im Nebenschluß der cerebrospinalen Achse angegliederter Apparat, nur modifizierend auf die sich dort abspielenden Erregungsvorgänge ein. Infolgedessen können auch cerebellare Ausfallserscheinungen relativ leicht und in weitgehendem Maße durch eine kompensierende Mehrbelastung anderer Nervenzentren (namentlich der Großhirnrinde) ausgeglichen werden.

Das Kleinhirn ist ein Reflexapparat im Dienste der Gleichgewichtserhaltung beim Stehen und Gehen. Es ist somit nicht der Sitz einer selbständigen Funktion, sondern einer bestimmten Reaktion auf zentripetale Reize.

Jene zentripetalen Reize resultieren nun aus der jeweiligen Lage unseres Körpers und seiner Teile zur Außenwelt. Die von ihnen selbsttätig im Kleinhirn ausgelösten centrifugalen Effekte wirken aber der gestalt auf die vom Großhirn angeregten willkürlichen Bewegungen ein, daß diese sich in zweckmäßiger Weise abspielen, in einer Weise, die die Gleichgewichtserhaltung garantiert. Präziser ausgedrückt: das Cerebellum sorgt für ein richtiges Zusammenarbeiten verschiedener Muskelgruppen (Synergie) und für eine richtige Dosierung der ihnen zuströmenden Innervation (Eumetrie); es wirkt koordinierend und moderierend, damit 1. beim Stehen der Schwerpunkt stabilisiert wird, 2. bei der Lokomotion der Körper äquilibriert bleibt und nicht ins Schwanken gerät.

Die centripetalen Erregungen (Rezeptionen), welche automatisch diese äußerst subtile Regulierungstätigkeit in Gang setzen,

werden nun von zwei verschiedenen Seiten dem Kleinhirn übermittelt, nämlich:

a) Via *Tractus spino-cerebellares*. Es handelt sich hier um einen Teil der als „Tiefensensibilität“ zusammengefaßten Rezeptionen aus den Muskeln und Gelenken der Wirbelsäule und der Extremitäten, namentlich der unteren (vgl. oben pag. 17—18). Die überwiegende Majorität der spino-cerebellaren Systeme stammt aus dem Lenden- und Thorakalmark; für die Äquilibrierung ist eben, sowohl beim Stehen als beim Gehen, in erster Linie die Haltung der Beine und des Rumpfes bestimmend.

b) Via *Nucleus Deiters*, dessen direkte Verbindungen mit der Kleinhirnrinde aus Fig. 49 zu ersehen sind. Jenes Bild zeigt auch die Bahn, die vom Utriculus und vom Sacculus zu jenem Kerne führt, also die Vestibularisbahn. Der Vestibularis trägt nun als der Nerv des „Raumsinnes“ dem Cerebellum Nachrichten zu über die Lage unseres Körpers (speziell unseres Kopfes) inmitten des Raumes, der uns umgibt; dank den zahlreichen Assoziationsfasern zwischen den Augenmuskelkernen und dem *Nucleus Deiters* wird aber das Kleinhirn auch von der Stellung unserer Bulbi und dem Kontraktionszustand seiner Muskeln unterrichtet (wenn dieser Ausdruck für unterbewußte Vorgänge gestattet ist). Es sei darauf hingewiesen, wieviel Bedeutung für die Orientierung im Raum diesen oculären Rezeptionen zukommen muß; der Spannungszustand der Augenmuskeln verändert sich bei allen Verschiebungen, die zwischen unserem Ich und der Außenwelt stattfinden, er spielt eine große Rolle beim Distanzschätzen etc.

Nun betrachten wir die Wege, welche die cerebellifugalen Erregungen den Bewegungsorganen zuführen und somit als efferente Schenkel des cerebellaren Reflexbogens wirken. Es sei vorausgeschickt, daß diese efferenten Reflexschenkel nie durch ein einfaches Neuron zwischen Cerebellum und motorischen Zellen dargestellt sind, sondern stets durch eine Neuronenkette; die wichtigsten Schaltstationen sind: der *Deiterssche Kern*, der *Thalamus opticus* und der *rote Haubenkern*.

Der *Deiterssche Kern* ist also nicht nur ein sensorischer, sondern auch ein motorischer Kern. Wir haben ja die *Tractus vestibulo-spinales* bereits oben (pag. 18) kennen gelernt als eine Kategorie der subcortico-spinalen Bahnen, die bei Pyramidenwegfall den Vorderhornzellen trotzdem ein gewisses Maß von Innervation zukommen lassen. Unter normalen Verhältnissen aber wirken sie, im Dienste des Kleinhirns stehend, regulierend auf die Innervationsvorgänge in den Vorderhornzellen des Rückenmarkes ein.

Außerdem tritt aber ein Teil der centrifugalen Neurone des *Deiters*-schen Kernes, durch das hintere Längsbündel frontalwärtsziehend, zu den Ursprungszellen des Oculomotorius-, Trochlearis- und Abducenskernes in Beziehung. So kann das Kleinhirn auch für die Synergie und Eumetrie der Augenbewegungen Sorge tragen.

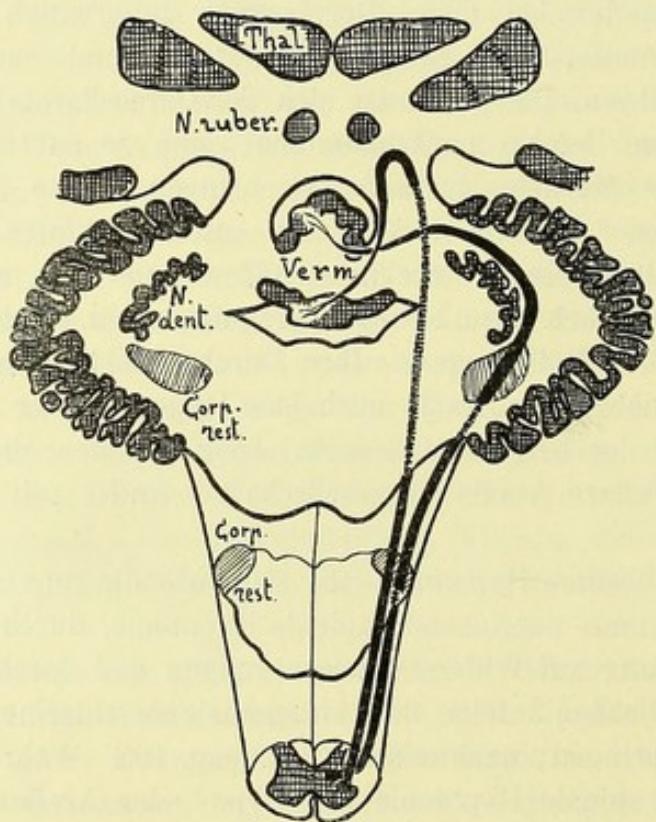
Thalamus opticus und Nucleus ruber tegmenti senden ferner, wie wir wissen (cf. pag. 6), zu den Vorderhornzellen des Rückenmarkes den Tractus thalamospinalis und den Tractus rubrospinalis (= *Monakowsches* Bündel) herab. Da aber zu den Ursprungszellen dieser Bahnen ein starkes Kontingent cerebellifugaler Fasern durch die Bindearme hinzieht, schreibt man ihnen eine analoge Bedeutung für die cerebellare Bewegungsregulation zu wie den vestibulo-spinalen Bahnen.

Resümierend können wir also sagen, daß das Kleinhirn — durch die Tractus spino-cerebellares und das System des *Deitersschen* Kernes über die Stellung unseres Körpers, unserer Gliedmaßen, unseres Kopfes und unserer Augenachsen orientiert — vermittelst der Tractus vestibulospinales, thalamospinales und rubrospinales sowie des Fasciculus longitudinalis posterior die Innervation unserer Rumpf-, Gliedmaßen- und Augenmuskeln in der Weise regelt, daß für eine kontinuierliche und harmonische Erhaltung der Gleichgewichtslage beim Gehen und Stehen gesorgt ist.

So stellt denn auch die **cerebellare Ataxie**, eine typische Koordinationsstörung, das weitaus wichtigste Symptom der Kleinhirnerkrankungen dar.

Im Gegensatz zur „Hinterwurzelataxie“, bei der alle Bewegungen unkoordiniert ausgeführt werden, bezieht sich die Kleinhirnataxie vornehmlich auf grobe Bewegungen, auf die sogenannten „Gemeinschaftsbewegungen“, und zwar hauptsächlich auf diejenigen von Rumpf und Beinen. Die Einzelbewegungen (wie Flexion und Extension des Fußes, des Knies und der Hüfte, Abduction und Adduction des Schenkels) können gut ausgeführt werden; doch ist ihr dynamischer und statischer Zusammenhang derartig unterbrochen, daß der Gang im Zickzack erfolgt, dem Torkeln des Betrunkenen ähnlich, das Stehen aber durch ein mehr oder minder heftiges Schwanken beeinträchtigt wird. Die einzelnen Rumpf- und Gliedmaßenmuskeln vermögen eben nicht mehr korrekt im Sinne einer Immobilisierung und Stabilisierung zusammenzuwirken. Diese „cerebellare Asynergie“ kann sich auch dadurch kundgeben, daß beim Vorwärtsschreiten Kopf und Rumpf zurückbleiben, hintenüberfallen, wodurch der ganze Körper aus dem Gleichgewicht

und zu Falle gebracht werden kann — daß beim Aufrichten aus der Rückenlage statt des Rumpfes die Beine emporgehoben werden etc.

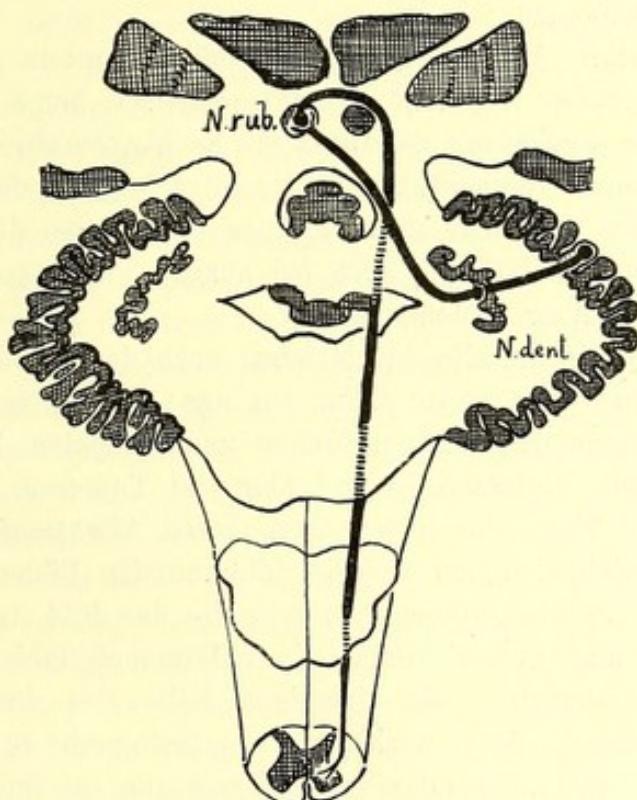

Von der cerebellaren Ataxie sind die oberen Extremitäten meist nur sehr wenig betroffen, zuweilen sogar anscheinend verschont. Doch wird eine gewisse Unsicherheit beim Greifen wohl in den meisten Fällen nachzuweisen sein. Die oberen Extremitäten sind wohl deshalb dem tak-tischen Einflusse des Kleinhirns nur in geringem Maße unterworfen, weil sie mit der Gleichgewichtserhaltung wenig zu tun haben. Hier und da kann man aber die latente Koordinationsstörung der Arme durch einen Kunstgriff feststellen. Man befiehlt nämlich dem Patienten, in rascher Aufeinanderfolge eine alternierende Innervation von Antagonisten vorzunehmen, zum Beispiel Pronations- und Supinationsbewegungen auszuführen. Dabei erweist sich der Cerebellarataktische oft als unfähig, diesem Befehle nachzukommen, eine so subtile Cooperation antagonistischer Muskeln zustande zu bringen. Diese Störung heißt „Adiachokinesie“ ($\deltaιzδoγή$ = Ablösung, Aufeinanderfolge, Successio).

Die Tractus spino-cerebellares bilden nun aber nicht nur den zentripetalen Schenkel eines bewegungsregulierenden, sondern auch eines tonusregulierenden Reflexbogens. Ihre Durchschneidung beim Tierexperiment ergibt neben der Ataxie auch eine Hypotonie der Extremitätenmuskulatur auf der betreffenden Seite. Kein Wunder, daß sich in der Regel die cerebellare Ataxie vergesellschaftet findet mit **cerebellarer Hypotonie**.

Diese cerebellare Hypotonie läßt sich, wie die durch Läsionen des Hinterwurzelsystems entstehende spinale Hypotonie, durch die Palpation, durch die Prüfung auf Widerstandsbewegungen und durch die Möglichkeit, die Gliedmaßen infolge der Antagonistenerschlaffung in abnorme Stellungen zu bringen, nachweisen (s. o. pag. 19). Während aber, wie wir sahen, die spinale Hypotonie mit Hypo- oder Areflexie einhergeht, ist die cerebellare vom Zustande der Reflexe unabhängig. Nach halbseitigen Kleinhirnabtragungen beim Menschen (Operation wegen Tumoren des Cerebellums) sieht man die Reflexe, wenn sie auch unmittelbar nach dem Eingriffe fehlten, bald wiederkehren, zuweilen sogar in gesteigertem Maße, obwohl die Hypotonie weiterbesteht. Etwas anderes freilich, als bei solchen „reinen Fällen“ von Kleinhirnläsionen (die dem Tierexperiment an die Seite zu stellen sind), liegen die Dinge bei den raumbeengenden Kleinhirnerkrankungen, namentlich den Geschwülsten. Denn hier findet man nicht selten ein Fehlen der Sehnenreflexe, insbesondere des Patellar- und Achillessehnenphänomens. Dies ist aber als eine Fernwirkung zu bezeichnen; der gesteigerte intrakranielle Druck

pflanzt sich nämlich in den Duralsack des Rückenmarkes fort und schädigt, wie anatomisch nachgewiesen ist, die zentripetalen Neurone jener Reflexe an derjenigen Stelle, wo die Hinterwurzeln durch den umschließenden Blindsack der Pachymeninx treten. Diese Stelle ist, wie auch die Pathogenese der Tabes dorsalis lehrt, als ein Locus minoris resistantiae aufzufassen. Man hat sogar im Anschluß an diese Druckläsionen aufsteigende Entartungen in den Hintersträngen des Rückenmarkes histologisch feststellen können.

Fig. 54.



Verlauf und Endigung der spino-cerebellaren Bahnen (Kleinhirnseitenstrangbahn und Gowerssche Bahn).

Cerebellare Ataxie und Hypotonie sind am stärksten ausgeprägt bei Erkrankungen des Wurms; in dessen grauer Substanz endigen ja die Tractus spinocerebellares. Bei halbseitigen oder vorwiegend halbseitigen Kleinhirnläsionen können die Ataxie und die Hypotonie Rumpf und Extremitäten zuweilen nur homolateral betreffen oder sie sind homolateral stärker ausgesprochen; auch dies erklärt sich ungezwungen aus den anatomischen Verhältnissen. Denn die spinocerebellaren Bahnen (die ja mit Ausnahme

eines kleinen Teiles des *Gowerschen* Bündels im Rückenmarke keine Kreuzung erfahren) durchziehen das Kleinhirn ebenfalls gleichseitig. Die Kleinhirnseitenstrangbahn schlägt den Weg durch das homolaterale Corpus restiforme und dann um den homolateralen Nucleus dentatus ein; die *Gowersche* Bahn durch den homolateralen Bindearm. Die Endigung in der Wurmrinde erfolgt freilich größtenteils nach Überschreitung der Mittellinie, aber so nahe an der letzteren, daß dies beinahe einer medianen Endigung gleichkommt (siehe Fig. 54).

Fig. 55.

Verbindung der Kleinhirnhemisphäre mit der gleichseitigen Rückenmarks-hälfte durch den Tractus cerebello-rubrospinalis.

Auch durch die efferenten Reflexbogen (Tractus cerebello-rubrospinales und Tractus cerebello-vestibulo-spinales) wird jede Kleinhirnhälfte mit der homolateralen Rückenmarkshälfte verbunden. Hängt auch jede Cerebellarhemisphäre mit dem gegenüberliegenden roten Haubenkerne zusammen, so wird nämlich diese Kreuzung durch diejenige der *Monakowschen* Bündel wieder wettgemacht; siehe Fig. 55. Die Cerebello-vestibulo-spinal-Bahn erfordert dagegen in ihrem ganzen Verlaufe überhaupt keine Kreuzung.

Daß die Gehstörung des Kleinhirnkranken in der Weise charakteristisch sei, daß seine Schwankungen und sein Abweichen von der geraden Linie vornehmlich nach der Seite hin erfolgt, wo die Affektion sitzt, ist neuerdings behauptet worden, scheint jedoch keine allgemeine Gültigkeit beanspruchen zu können. Auch das Umgekehrte kommt nämlich vor.

Eine ausgeprägte cerebellare Hemihypotonie kann auch zu einer eigentlichen gleichseitigen Hemiparese führen. Die Hypotonie wird ohne weiteres gestatten, die letztere von der gekreuzten cerebralen Hemiparese, die ja spastisch ist, zu unterscheiden. Auch vermißt man das *Babinskische Phänomen*.

Die cerebellare Ataxie stellt das Kleinhirnsymptom par excellence dar; der cerebellaren Hypotonie kommt praktisch keine auch nur annähernd ähnliche Bedeutung zu. Denn die Nachbarschaftssymptome der Kleinhirnaffektionen (namentlich die Beeinträchtigung der Pyramidenbahnen) vermögen sie leicht zu verwischen — was bei der cerebellaren Ataxie nicht der Fall ist, die auch bei ausgeprägten spastischen Phänomenen unverkennbar bestehen kann.

Betrachten wir die Kleinhirnläsionen nach der ätiologischen Seite, so haben wir eine recht bunte Reihe vor uns: congenitale Hypoplasien und Defekte, sklerotische Schrumpfungen und Atrophien, Hämorrhagien und Erweichungen, Verletzungen und Abscesse, Tumoren, Gummen und Tuberkel. Es ist klar, daß unter allen diesen Affektionen die totalen und partiellen Atrophien und Aplasien die reinsten Bilder des cerebellaren Ausfalles ergeben müssen, da hier die das Bild verschleiernden Reizphänomene und Fernwirkungen ja vollkommen fehlen. Eliminiert man nun noch sorgfältig alle diejenigen Fälle, bei denen außer der „reinen“ cerebellaren Läsion noch andere pathologische Befunde im Be- reiche des Zentralnervensystems vorhanden waren, so findet man, daß einerseits partielle Defekte, selbst wenn es sich um den Wegfall einer ganzen Kleinhirnhälfte handelt, latent bleiben können — daß andererseits hochgradige Defekte, die beide Hälften betreffen, nichts weiteres zeigen, als eine unkomplizierte cerebellare Ataxie, die wahrscheinlich immer mit Hypotonie einhergeht (in den früheren Beobachtungen wurde leider auf letzteren Punkt noch nicht geachtet).

Demnach sind alle übrigen Symptome, die in der Diagnostik der Kleinhirnläsionen eine Rolle spielen und an deren Betrachtung wir jetzt herantreten werden, nicht als integrierende Komponenten des cerebellaren Symptomenkomplexes zu deuten; sie können übrigens alle auch von

nichtcerebellaren Läsionen provoziert werden. Wo cerebellare Ataxie (sei es allein, sei es mit Hypotonie) vermißt wird, sind wir nicht berechtigt, eine Kleinhirnerkrankung mit Sicherheit zu diagnostizieren. Deswegen sind aber jene beiden Symptome nicht als pathognomonisch zu bezeichnen! Denn auch die Läsion cerebellifugaler oder cerebellipetaliger Bahnen außerhalb des Kleinhirns vermag dessen regulierende Tätigkeit außer Funktion zu setzen — mag sie nun im Mittelhirne, in der Brücke, in der Oblongata oder sogar im Rückenmark ihren Sitz haben (man denke an die *Friedreichsche Krankheit!*). Für einen Reflexapparat kann es eben unter Umständen aufs gleiche herauskommen, ob eine Unterbrechung die zentripetale Komponente, das Zentrum, oder die zentrifugale Komponente betrifft.

Daß der **Schwindel**, der nächst der ataktischen beziehungsweise ataktisch-hypotonischen Innervationsstörung das weitaus häufigste Symptom der Kleinhirnerkrankungen darstellt, kein eigentliches cerebellares Phänomen ist, sondern eine vestibulare Störung, das lehren uns übereinstimmend klinische Erfahrung und experimentelle Physiologie. Der sogenannte „Kleinhirnenschwindel“ ist seiner Natur nach mit dem labyrinthären Schwindel aufs innigste verwandt, man darf wohl sagen identisch. Er ist selbst bei Erkrankungen rein intracerebellaren Sitzes als ein Reizsymptom von seiten der das Kleinhirn durchziehenden und in sein Rindengrau einstrahlenden vestibulo-cerebellaren Bahnen aufzufassen, die auf Fig. 49 zu sehen sind. Der cerebellare Schwindel ist wie der labyrinthäre ein sogenannter „systematischer“ Schwindel, ein „Drehschwindel“, und als solcher wohl zu unterscheiden vom „asystematischen“ Schwindel, der diffusen Störung der Raumvorstellungen, die bei den verschiedensten Neuropathien, bei Schwankungen der Zirkulationsverhältnisse im Gehirn bei der Seekrankheit etc. vorkommen kann. Es handelt sich um die Empfindung rotatorischer, nach bestimmter Richtung verlaufender Verschiebungen zwischen dem Patienten und der Außenwelt; diese Empfindung führt aber reflektorisch oder durch Irradiation zu intensivem Unlust- und Übelkeitsgefühl, das sich bis zum Erbrechen steigern kann. Wir erklären uns dieses Phänomen folgendermaßen:

Das Labyrinth wird seinen Funktionen im Dienste des Raumsinnes dadurch gerecht, daß die hydrostatischen Verhältnisse in den nach den drei Hauptebenen des Raumes orientierten Bogengängen zu nervösen Erregungen im Vestibularis führen, diese letzteren aber via Nucleus vestibularis und *Deitersschen* Kern ins Kleinhirn gelangen. Besteht nun ein Widerspruch zwischen dem Erregungszustande dieses

Vestibularisapparates und der wirklichen Lage des Körpers im Raume, so werden die Rezeptionen von seiten der Muskeln und Gelenke, des Auges etc. gleichsam Lügen gestraft, und aus dieser Inkongruenz resultieren die vertiginösen Scheinbewegungen und indirekt deren quälende Begleiterscheinungen.

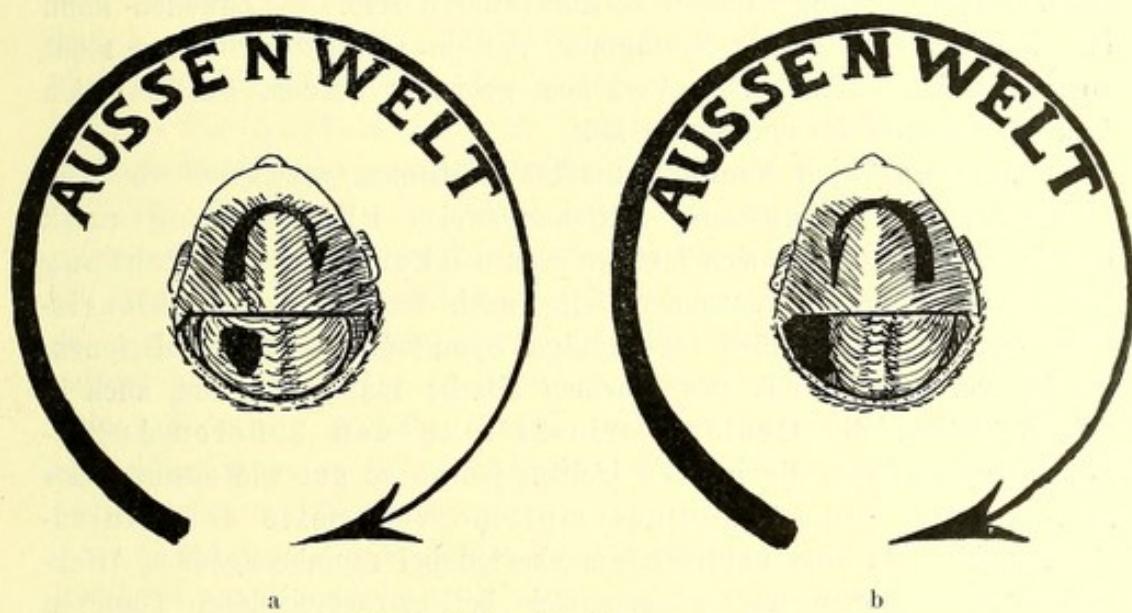
Der echte vestibuläre Drehschwindel kann deshalb unter folgenden Bedingungen zur Beobachtung gelangen:

1. Bei Affektionen des Labyrinths, z. B. Blutungen in dasselbe (*Menière'scher Krankheit* im engeren Sinne), primärer Labyrinthitis (sogenannter *Voltolinischer Krankheit*) etc.; zuweilen aber auch bei Mittelohraffektionen durch Fernwirkung auf das Labyrinth.
2. Bei Läsionen des Vestibularisstammes und der Vestibulariskerne (basalen Blutungen, Tumoren, Hämorragien in der Brücke, gummösen Prozessen etc.).
3. Bei intracerebellaren Affektionen.

Die Differentialdiagnose zwischen diesen Eventualitäten wird in der Regel bei sorgfältiger Berücksichtigung der Nebenumstände keine Schwierigkeiten darbieten. Für 1. und 2. fallen meist begleitende Ausfalls- oder Reizsymptome von seiten des Gehörs in die Wagschale (Übelhörigkeit, Taubheit, subjektive Ohrgeräusche); eine Affektion des Mittelohres ist otologisch nicht schwierig aufzudecken. Herde, die das periphere Vestibularisneuron zwischen dem Vestibulariskern und dem Labyrinth schädigen, zeigen in der Regel außer den Vestibularisstörungen die schon mehrfach erwähnten Kriterien der basalen oder pontinen Läsion. Wo es sich aber um Geschwulstbildungen handelt, die aus den oben erwähnten Gründen in der hinteren Schädelgrube eine besonders markante Tendenz zu Fernwirkungen entfalten, verlieren jene Kriterien beträchtlich an Wert. Denn Kleinhirntumoren schädigen die pontinen und basalen Gebilde ebenso, wie umgekehrt Tumoren am Acusticusstamm und in der Brücke das Cerebellum beeinträchtigen („Kleinhirnbrückenwinkeltumoren“, s. o. pag. 129).

Hier scheint es nun (nach den neueren an großem Materiale gesammelten Erfahrungen englischer Autoren), daß die Richtung der vertiginösen Scheinbewegung sowohl der Außenwelt, als des Patienten selbst das Dilemma: „intra- oder extracerebellarer Sitz?“ zu lösen vermag, außerdem aber Anhaltspunkte liefert über die Seite, auf der der krankhafte Prozeß sich entwickelt hat.

Bringt man nämlich von Kranken mit genügender Selbstbeobachtungsgabe und Intelligenz die Richtung der von ihnen bei den


Schwindelanfällen empfundenen Scheinbewegungen in Erfahrung, so soll sich folgendes herausstellen:

Scheinbewegungen der umgebenden Objekte des erkrankten Individuums	bei intracerebellaren Tumoren	von der gesunden Seite nach der gesunden Seite
	bei extracerebellaren Tumoren	von der gesunden Seite nach der gesunden Seite.

Mnemotechnisch mag Fig. 56 wirken:

Zuweilen kann sich bei raumbeengenden Affektionen der hinteren Schädelgrube der systematische Schwindel in Gestalt sogenannter cere-

Fig. 56.

Vertiginöse Scheinbewegungen:

a = bei intracerebellaren, b = bei extracerebellaren Tumoren.

bellarer oder vestibularer Anfälle zeigen. Er tritt dann paroxysmal in stärkster Heftigkeit und mit äußerst stürmischen Begleiterscheinungen auf (höchstgradige Ataxie, Kopfweh, starkes Erbrechen, Ohrensausen, Ohnmacht und Nystagmus).

Nystagmus wird aber auch außerhalb des Rahmens der cerebellaren Anfälle bei Kleinhirnerkrankungen außerordentlich häufig gefunden. Früher war man zur Annahme geneigt, der Nystagmus komme ebenso wie der Kleinhirnenschwindel durch eine Läsion der im Kleinhirn selbst enthaltenen Teile des Vestibularis zustande. Doch dürfte dies nicht zutreffen. Wir wissen zwar, daß eine Reizung der Vestibularisendapparate, der Bogengänge (durch Entzündungsvorgänge des inneren

Ohres, durch Einspritzung kalten oder heißen Wassers — calorischer Nystagmus, s. o. pag. 144) einen vorübergehenden Nystagmus zu erzeugen vermag. Der „Kleinhirnnystagmus“ scheint aber als ein Nachbarschaftssymptom aufgefaßt werden zu müssen. Man nimmt eine Reizwirkung auf den *Deitersschen* Kern oder auf das (infolge seiner dorsalen Lage in der Haube, dicht unter dem Vermis cerebelli, besonders exponierte) hintere Längsbündel an. Selten nur tritt dieser Nystagmus schon beim Blick geradeaus in die Erscheinung, gewöhnlich wird er erst durch Seitwärtswenden der Augen ausgelöst und in diesem Falle in der Regel dann am stärksten, wenn der Kranke nach der dem Krankheitsherde entsprechenden Seite blickt. Gewöhnlich schwanken beide Augen gleich stark, „konjugiert“; hie und da sollen auf der kranken Seite größere Exkursionen der Augenachsen zu konstatieren sein. — Zuweilen kann bei Kleinhirntumoren der Nystagmus, der in aufrechter Stellung nicht vorhanden ist, dadurch zum Vorschein gebracht werden, daß man den Patienten Seitenlage einnehmen läßt.

Von sonstigen **Nachbarschaftssymptomen** erwähnen wir: Die Lähmung des *Abducens*, beziehungsweise Blicklähmung nach der kranken Seite, welch letztere eventuell konjugierte Ablenkung der Augen nach der gesunden Seite nach sich zieht. *Trochlearislähmung* ist ein ziemlich regelmäßiges Symptom der Kleinhirnläsionen, die im vordersten Teile des Wurmes sitzen; manchmal sind auch in solchen Fällen die *Oculomotoriusäste* zu den äußeren Augenmuskeln ergriffen, die inneren bleiben jedoch so gut wie ausnahmslos frei. — Reiz- und Lähmungssymptome von Seite der Gehirnnerven V—XII sind natürlich am ehesten bei raumbeengenden Affektionen zu erwarten und pflegen sich bei extracerebellaren Tumoren früher einzustellen als bei intracerebellaren. Phonations-, Respirations-, Deglutitions-, Artikulationsstörungen können zum Bilde der *Bulbärparalyse* führen. Plötzlicher Tod durch Druck auf die *Oblongata* ist wiederholt verzeichnet. *Hemiplegie* kann sowohl auf der Seite der Affektion als auf der Gegenseite entstehen, je nachdem die Pyramiden vor oder hinter ihrer *Decussatio* komprimiert worden sind. Es genügt wohl, nur kurz auf alle diese Dinge hinzuweisen; sie werden wohl auf richtige diagnostische Würdigung zählen können, sobald die anatomischen Verhältnisse, auf die wir wiederholt eingegangen sind, einigermaßen im Auge behalten werden.

Zwangslagen und Zwangsbewegungen (Wendungen des Rumpfes oder des Kopfes nach einer bestimmten Seite, Rollung des Körpers um die Längsachse) sind bei reizausübenden Erkrankungen

(Geschwulstbildungen, Hämorrhagien) namentlich dann beobachtet worden, wenn sie die vorderen oder mittleren Kleinhirnarme betrafen. Eine Gesetzmäßigkeit in bezug auf die Seite, nach der jene Wendungen und Rotationen erfolgen, läßt sich nicht erkennen, ebenso dunkel ist zur Zeit noch ihr physiopathologisches Substrat. Vollends gilt dies für gewisse choreatisch-athetotische Bewegungen an den Extremitäten einer Körperhälfte, welche mit dem Ausfalle der gleichseitigen Bindearme in Verbindung gebracht werden, und für die sogenannte *Magendie*-sche Schielstellung der Augen (Vertikaldivergenz der Bulbi), die, zugleich mit einer Déviation conjuguée sich einstellend, für eine Läsion des Brückenarmes sprechen soll.

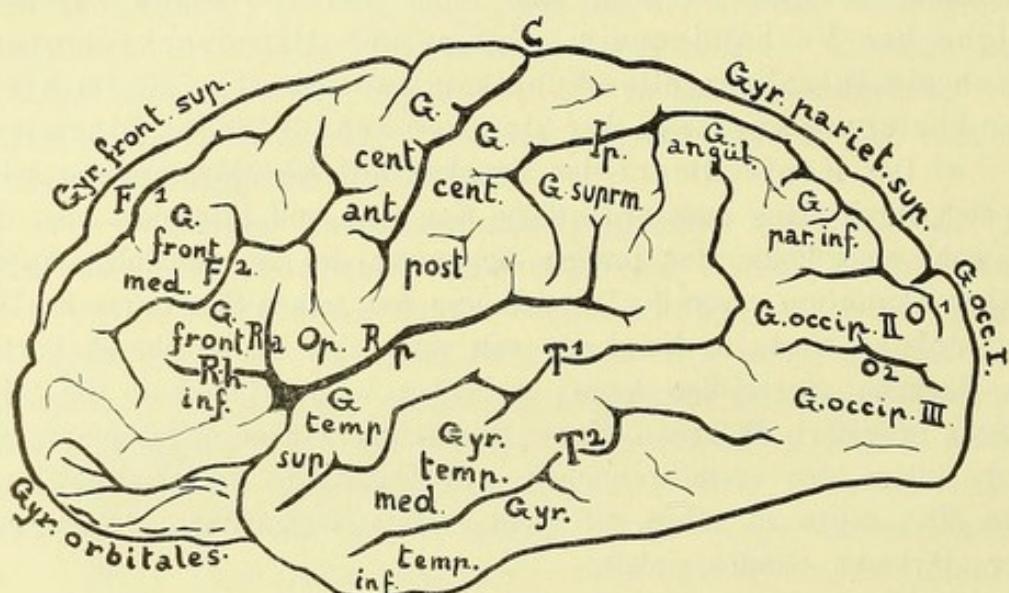
Zum Schluß sei noch eine Reihe von Kriterien angeführt, welche bei Vorhandensein allgemeiner Hirndrucksymptome durch ein intrakranielles Neoplasm auf dessen Sitz im Kleinhirn beziehungsweise in der hinteren Schädelgrube hinweisen:

a) Der Kopfschmerz der Kranken mit Kleinhirntumoren zeichnet sich durch seine außerordentliche Konstanz und Intensität aus; dies ist wohl eine Folge der prallen Spannung des an sensiblen Fasern reichen Tentorium cerebelli. Der Schmerz hat seinen Sitz vornehmlich im Occiput und im Nacken, von wo er bis in die oberen Partien des Rückens ausstrahlen kann; nebenbei wird er auch in die Stirn-gegend projiziert. Während dieser Stirnschmerz aber diffus empfunden wird, pflegt der occipito-nuchale auf der Seite der Erkrankung sein Maximum zu haben. Oft geht er mit Nackenstarre schwächeren oder stärkeren Grades einher.

b) Häufig ist eine lokale Perkussions- oder Druckempfindlichkeit am Hinterhaupte vorhanden, zuweilen entsteht ein charakteristischer Schmerz bei aufwärtsgerichtetem Druck auf die Spitze des Mastoids, beides auf der der Affektion entsprechenden Seite.

c) Die Stauungspapille tritt besonders früh und intensiv und meist beidseitig auf; nicht selten führt sie zu baldiger Erblindung.

d) Bei Vornahme der Lumbalpunktion pflegt unter rascher Drucksenkung der Ablauf des Liquors bald zu versiegen. Der Tumor drückt offenbar die Medulla oblongata rasch ins Hinterhauptsloch hinein und versperrt so die Kommunikation zwischen intrakraniellem und spinalem Liquor. Dieser Mechanismus birgt übrigens so große Gefahren für den Patienten in sich (plötzliche Todesfälle sind dabei verzeichnet worden!), daß bei Verdacht auf cerebellaren Sitz eines Neoplasmas dringend zu raten ist, von diesem diagnostischen Hilfsmittel Abstand zu nehmen.


C. Läsionen des Großhirns, der Stammganglien, der Hypophyse.

KAPITEL I.

Anatomisch-physiologische Vorbemerkungen.

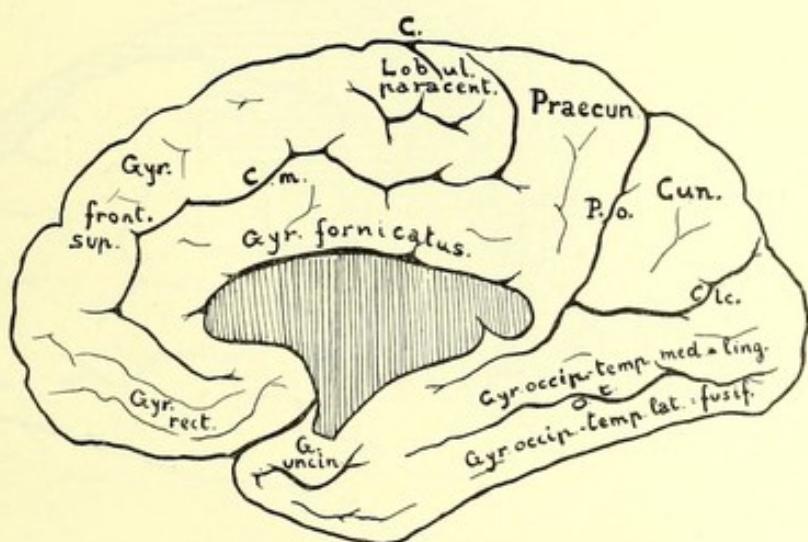
Das Organ der bewußten psychischen Vorgänge ist die Großhirnrinde. Sie erfüllt ihre Aufgaben nicht in diffuser Weise, sondern

Fig. 57.

Anatomische Gliederung der lateralen Großhirnoberfläche.

F¹, F² = erste und zweite Frontalfurche. — C = Zentralfurche. — Ip. = Interparietalfurche. — O¹ u. O² = erste und zweite Occipitalfurche. — T¹ u. T² = erste und zweite Temporalfurche. — R. h., R. a., R. p. = Ramus horizontalis, ascendens, posterior Fissurae Sylvii. — G. = Gyrus.

läßt eine funktionelle Gliederung erkennen. Sowohl die von ihr ausgehenden, zentrifugalen, als die ihr zustrebenden, zentripetalen Bahnen nehmen nämlich ihren Ursprung, beziehungsweise finden ihre Endigung in topographisch umschriebenen Partien der Hemisphärenoberfläche, in sogenannten Rindenfeldern.


Während Fig. 57 und 58 die anatomische Gliederung des Cortex cerebri (die Windungen und Furchen) wiedergibt, ist die physiologische Einteilung (eben jene Rindenfelder) auf der Fig. 59 und 60 eingetragen worden.

Die Rindenfelder können wir einteilen in:

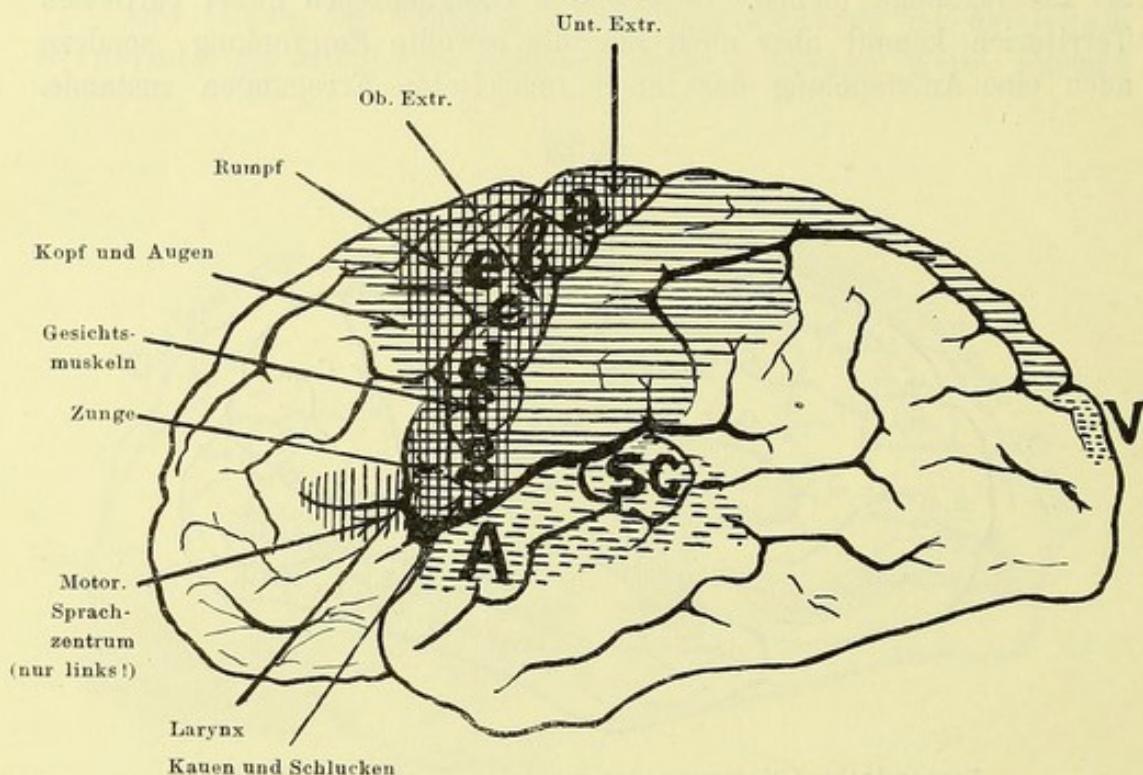
1. Motorische Rindenfelder: Aus diesen nehmen die cortico-nucleären Bahnen für unsere gesamte willkürliche Muskulatur ihren Ursprung.

2. Sensible Rindenfelder: Hier findet die Einmündung derjenigen Neuronenketten statt, welche den Receptionen der allgemeinen Oberflächen- und Tiefensensibilität (also den taktilen, dolorischen, thermischen Eindrücken und denjenigen des Lage- und Bewegungssinnes) als Leitungswege dienen. In gewissen Ganglienzellen dieser corticalen Territorien kommt aber nicht nur die bewußte Empfindung, sondern auch eine Aufstapelung der ihnen zugeleiteten Erregungen zustande,

Fig. 58.

Anatomische Gliederung der medialen Großhirnoberfläche.

C. = Zentralfurche. — C. m. = Sulcus callosomarginalis. — P. o. = Parieto-occipitalfurche. —
C. lc. = Fissura calcarina. — O. t. = Occipitotemporalfurche.


wobei wir von Erinnerungsbildern sprechen. Die Erinnerungsbilder des Muskelsinns, die kinästhetischen Erinnerungsbilder, ermöglichen gleichzeitig die Ausführung bestimmter Bewegungen, die ja an die Erinnerung der früher ausgeführten analogen Bewegungen gebunden ist. Deshalb fällt die kinästhetische Zone mit der motorischen zusammen. Wird durch psychische Vorgänge eine kinästhetische Vorstellung wacherufen, so kann sie sich sofort in die betreffende Bewegung umsetzen. Aber auch das Rindenareal der Oberflächensensibilität deckt sich größtenteils mit der corticalen motorischen Zone (die man deshalb auch die sensomotorische nennt), reicht jedoch noch über dieselbe hinaus.

3. Sensorische Rindenfelder. Es sind die Endigungsstätten der Seh-, Hör-, Riech- und Geschmacksbahn und die Aufstapelungsorte

für die mit diesen Sinnesqualitäten in Beziehung stehenden Erinnerungsbilder.

Ad 2 und 3: Den einfachen Erinnerungsbildern (für Tastindrücke, Klänge, Farben, Formen etc.) sind komplexe Erinnerungsbilder (für das Aussehen der Gegenstände, für das gesprochene, geschriebene und gedruckte Wort etc.) übergeordnet. Assoziationsfasern, welche diese

Fig. 59.

Motorische sensible und sensorische Rindenfelder.

A. = akustisches, V. = visuelles Rindenfeld. — S. C. = Sensorisches Sprachzentrum (nur links!). — a = Zentrum für den Fuß, b = Ellbogen, c = Hand, d = Finger, e = Schulter, f = oberer Facialis, g = unterer Facialis.

verschiedenen höheren Wahrnehmungszentren miteinander verbinden, erheben die Wahrnehmungen zum Begriff, so daß zum Beispiel das Lesen eines bestimmten Wortes zu dessen Verständnis führt und gleichzeitig auch die Idee vom Gegenstande erweckt, den es bezeichnet; so daß ferner die akustische Wahrnehmung des Glockenschalles in uns nicht nur die Gegenstandsvorstellung der Glocke hervorruft, sondern auch das Wortbild „Glocke“ auftauchen läßt, und uns sofort die kinästhetischen Erinnerungen für das Aussprechen und Niederschreiben dieses

Wortes zur Verfügung stellt. Assoziative Verknüpfungen zwischen den verschiedenen, aus Wahrnehmungen aufgebauten Begriffen geben endlich die Grundlage für unsere höheren psychischen Verrichtungen ab („nihil est in intellectu, quod non fuerit in sensu“), freilich in einer Weise, deren anatomisch-physiologische Grundlage zu erkennen, unserem heutigen Wissen noch versagt ist.

Durch die verschiedene Schraffierung sind auf unseren Figuren 59 und 60 motorische, sensible und sensorische Felder auseinandergehalten. Die physiologische Bedeutung der weiß gelassenen Partien der Großhirnrinde ist noch unklar, doch berechtigen uns die bisherigen Erfah-

Fig. 60.

Motorische sensible und sensorische Rindenfelder.
V. = visuelles, O. = olfaktorisches Rindenfeld.

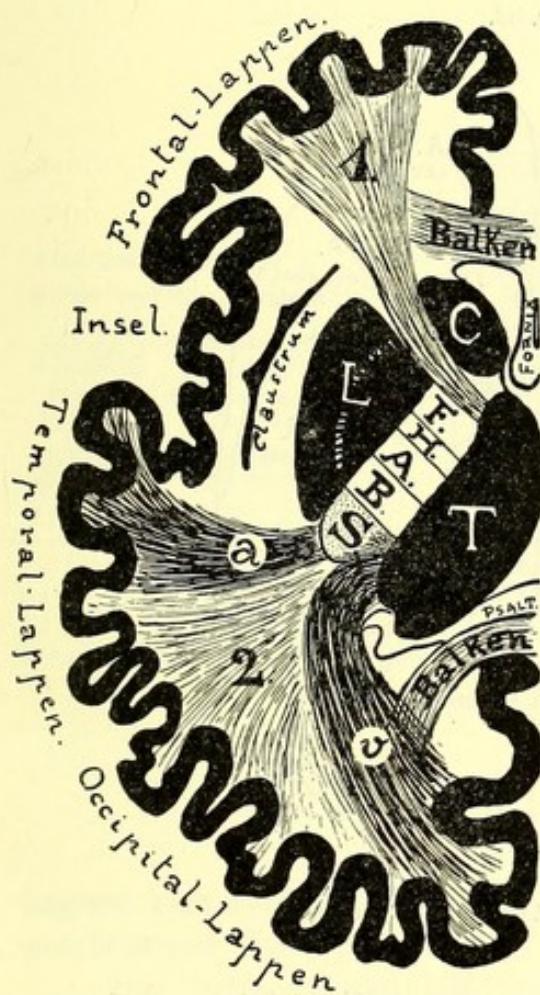
rungen, den im Stirnhirn gelegenen Anteil dieser Areale für die Formierung der Begriffe und deren Synthetisierung zur geistigen Persönlichkeit in Anspruch zu nehmen, während das gleichfalls weiß gelassene „temporo-occipito-parietale“ Feld Zentren enthält, die in die Assoziationsbahnen zwischen Fühl-, Seh- und Hörsphäre eingeschaltet sind. — Das corticale Geschmackszentrum ist auf unseren Figuren nicht eingetragen, weil dessen Lokalisation strittig und überdies noch recht hypothetisch ist. Bald wird es in die untere Stirnwindung verlegt, bald schreibt man ihm ein mit dem Geruchszentrum gemeinsames Rindenareal zu. Eine Entscheidung zu fällen wird man nach den bisher vorliegenden Erfahrungen ablehnen müssen!

Unter den Assoziationsbahnen, welche einzelne Bezirke der Gehirnrinde miteinander verbinden, nehmen die sogenannten commissuralen Bahnen eine Sonderstellung ein, indem sie die Aktion symmetrischer Bezirke beider Hemisphären koordinieren. Der mächtigste Commissurenkomplex ist der Balken, aber auch die Commissura anterior stellt eine wichtige derartige Querverbindung dar.

Unter den Fasersystemen, die, abgesehen von den cortico-corticalen Verbindungen, zur Gehirnrinde in Beziehung treten, sind namhaft zu machen:

1. **Corticofugale.**

- a) **Corticounucleäre**, das heißt die supranucleären Neuronen der motorischen Gehirn- und Rückenmarksnerven, erstere = Tractus corticobulbares, letztere = Tractus corticospinales.
- b) **Cortico-subcorticale**. Diese Fasern ziehen, teils direkt, teils durch Zwischenstationen unterbrochen, zu den „subcorticalen Zentren“, zum Thalamus, zum roten Haubenkern, zum Mittelhirndach, zum Kleinhirn etc. Ihre Anschlußneurone sind unter anderem die subcortico-spinalen Bahnen (Tractus thalamo-spinales, rubro-spinales, tecto-spinales, vestibulo-spinales), deren Bedeutung als motorische Nebenbahnen wir auf pag. 6 gewürdigt haben.

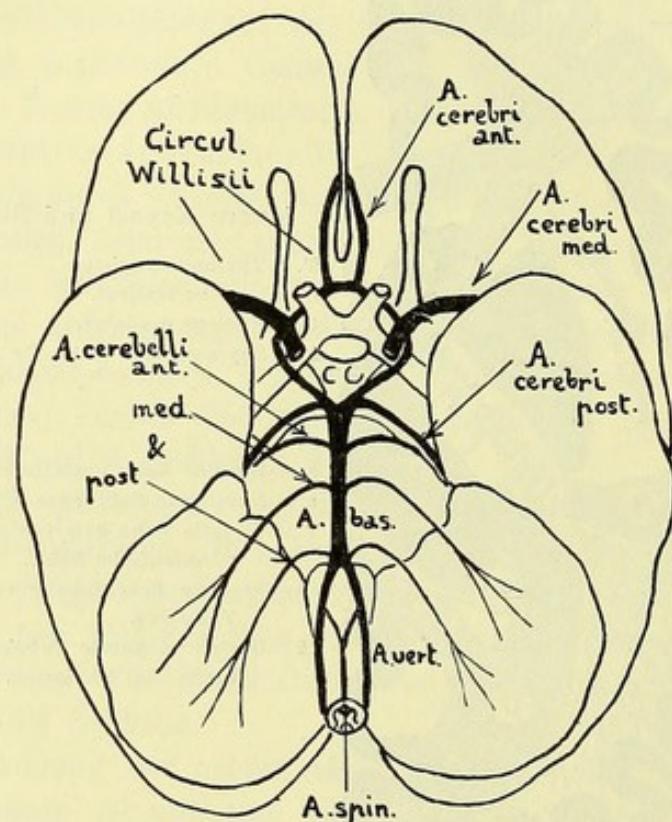

2. **Corticopetale**. Es sind die Endglieder der sensiblen und sensorischen Neuronenketten. Ihre Ursprungszellen liegen in subcorticalen Zentren, zum Beispiel im Thalamus für die Bahnen aus den sensiblen Rückenmarks- und Gehirnnerven, im hinteren Vierhügel und Corpus geniculatum mediale für die Hörbahn, im Thalamus und im vorderen Vierhügel für die Sehbahn.

Die Anordnung der großen Mehrzahl der corticofugalen und corticopetalen Bahnen ist nun eine sehr charakteristische. Dadurch, daß 1. ein großer Teil der corticosubcorticalen und der corticopetalen Faserzüge zum Thalamus hinstrebt beziehungsweise vom Thalamus herkommt; 2. die corticonucleären Bahnen nebst einem Kontingent von cortico-subcorticalen in die innere Kapsel eintreten (die bekanntlich zwischen Seh- und Streifenhügel eingerahmt ist) — findet ein strahlenförmiges Konvergieren aus einem großen Teile der Hemisphärenrinde nach diesen beiden zentral gelegenen Gebilden zu statt. So entsteht die sogenannte **Corona radiata**, die **Stabkranzfaserung**.

Denjenigen Teil der Corona radiata, der sich in den Thalamus ein senkt, bezeichnen wir als die **Sehhügelstiele**; die Fasermassen aber, die in der Bildung der inneren Kapsel aufgehen, lagern sich so,

daß wir an dieser letzteren auf dem Horizontalschnitte einen „vorderen“, einen „hinteren Schenkel“ und ein „Knie“ unterscheiden können. Wie Fig. 61 zeigt, kommt nun den verschiedenen, nach Ursprung und Funktion differenten Faserkomplexen der Capsula interna eine bestimmte Anordnung zu. An der Stelle des Kniees liegen die supranukleären Facialisbahnen; nach hinten schließen sich die Pyramidenanteile für Hypo-

Fig. 61.


Innere Kapsel und Strahlenkranz.

T. = Thalamus opticus.
 L. = Nucleus lenticul.
 C. = Nucleus caudatus.
 F. = Supranukleäre Bahn für den Facialis.
 H. = " " " den Hypogl.
 A. = " " " die Armmuskeln.
 B. = " " " die Beinmuskeln.
 S. = Sensible Bahn (Tractus thalamo-corticale).
 a. = Akustische Bahn zum Schläfenlappen.
 v. = Visuelle Bahn zum Occipitallappen
 (Gratioletsche Bahn).
 1 = Frontale Brückenbahn und Stabkranz zum Thalamus.
 2 = Occipitotemporale Brückenbahn und Stabkranz zum Thalamus.

glossus, Arme und Beine an. Die hinterste Partie des hinteren Schenkels nehmen endlich die sensiblen Bahnen ein; da an dieser Stelle auch die zwei wichtigsten sensorischen Bahnen (die visuelle und die akustische) nach der Temporal- beziehungsweise Occipitalrinde abzweigen, bezeichnen die Franzosen diese Stelle sehr zutreffend als „Carrefour sensitif“ — carrefour = Scheideweg. Im übrigen bedarf unsere Abbildung keiner näheren Erläuterung. Wir wollen nur noch erwähnen, daß der

Tractus fronto-pontinus und der Tractus occipito-temporo-pontinus (schon auf pag. 95, Fig. 37 erwähnt) cortico-subcorticale Neurone führen, welche von den im Namen angedeuteten Rindenabschnitten in die Brücke gelangen und dort um gewisse, zwischen die Brückenfasern eingestreute Ganglienzellenhaufen (die sogenannten „Brückengerne“) sich aufsplittern. Letztere aber senden ihre Achsenzylinder ins Kleinhirn. Auf diesem Wege kommt wohl eine Kontrolle der Kleinhirntätigkeit durch Groß-

Fig. 62.

Die Hauptarterienstämme des Gehirns.

hirnrindenpartien zustande, die wir bereits als wichtige psychosensorische Assoziationsgebiete bezeichnet haben.

Wir wollen dieses Kapitel mit einem kurzen Hinweis auf die Gefäßverteilung des Gehirns schließen. Der Umstand, daß die große Mehrzahl der Herderkrankungen des Gehirns vasculären Ursprungs und in ihren topographischen Verhältnissen an die Gefäßverteilung gebunden ist, verleiht diesen Dingen eine besondere Wichtigkeit.

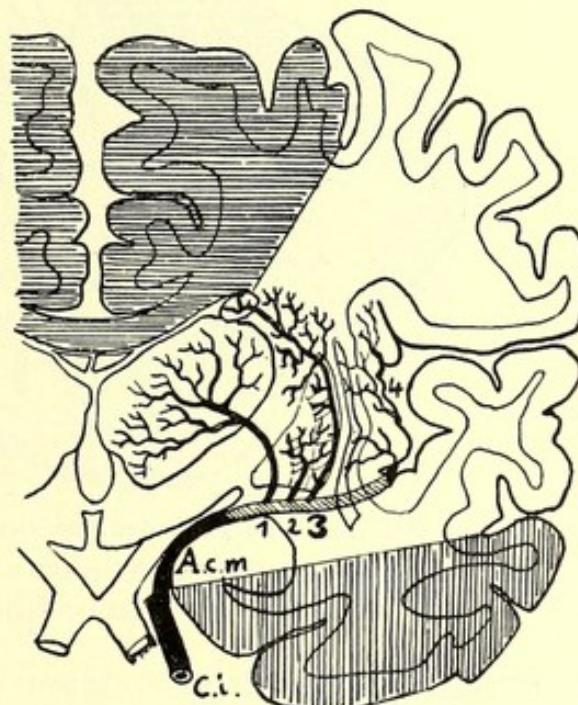
Zwei Arterienpaare liefern dem Gehirne sein Blut: die inneren Carotiden und die Vertebralarterien (cf. zum folgenden Fig. 62 bis 65!).

Letztere vereinigen sich, nachdem sie die Oblongata gespiesen, zur Basilaris, welche nicht nur die Brücke versorgt, sondern auch durch ihre Äste, die Arteriae cerebelli, das Kleinhirn (Arteria cerebelli anterior dessen dorsale, Arteria cerebelli media und posterior dessen ventrale Partien). Im Niveau der Hirnschenkeldivergenz teilt sich die Basilaris in die beiden Arteriae cerebri posteriores, welche, nachdem sie sich um die Pedunculi geschlungen und an die Corpora quadrigemina Äste abgegeben, den unteren Teil des Schläfenlappens und Occipital-

Fig. 63.

Arterienversorgung des Großhirns und der Stammganglien.

- [Horizontal lines] Verteilungsgebiet der Art. cerebri ant.
- [Vertical lines] Verteilungsgebiet der A. cer. med.
- [Horizontal and vertical lines] Verteilungsgebiet der A. cer. post.

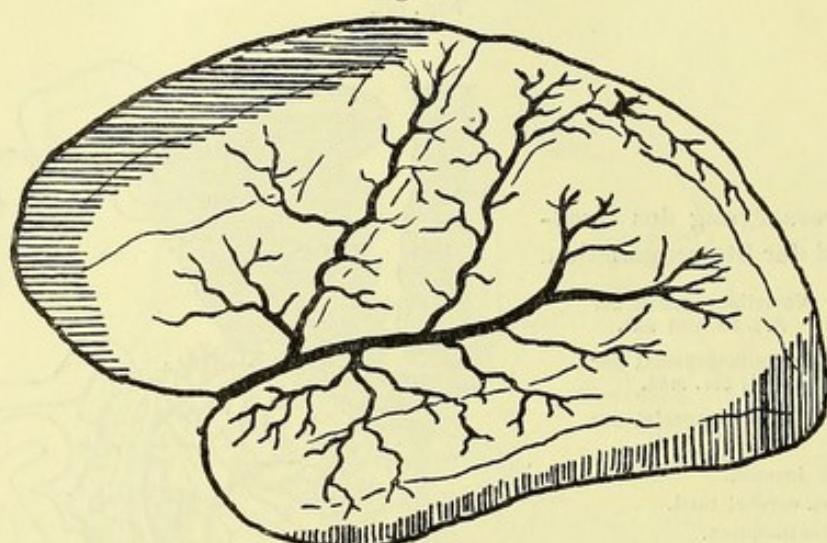

C. i. = Carotis interna.

A. c. m. = Art. cerebri med.

1 = Art. lenticulo-optica.

2 | = Arteriae lenticulo-striatae.

3 | = sog. „Arterie der Hirnhämorrhagie“.



lappens vascularisieren. Jede hintere Cerebralarterie sendet endlich zur gleichseitigen Carotis interna eine Arteria communicans posterior.

Die Carotis interna teilt sich in zwei Äste, die Arteria cerebri anterior und die Arteria cerebri media. Da die beiden vorderen Großhirnarterien durch eine Anastomose (Arteria communicans anterior) verbunden sind, kommt ein sich um Trichtergrund und Opticuskreuzung schlingender Arterienkranz zustande, der Circulus arteriosus Willisii. Die Arteriae cerebri anteriores ziehen in der großen Medianfissur nach vorn und schlingen sich um den Balken herum. Sie versorgen den vorderen Teil des Stirnlappens sowie die mediale Hemisphärenfläche bis zur Fissura parieto-occipitalis.

Die größte pathologische Bedeutung kommt aber der Arteria cerebri media zu (vgl. hierzu insbesondere Fig. 63). Ihr Hauptstamm dringt als Art. fossae Sylvii bis zur Insula Reilii, wo sie in ihre Endäste zerfällt. Vorher gibt sie aber an der Gehirnbasis senkrecht aufsteigende Zweige zum Sehhügel, Streifenbügel und zur inneren Kapsel ab: die Arteria lenticulo-optica und die Arteriae lenticulo-striatae. Eine der letzteren, die auf der äußeren Oberfläche des Linsenkernes zur inneren Kapsel kriecht, diese durchbohrt und endlich im Schwanzkern endigt, ist die

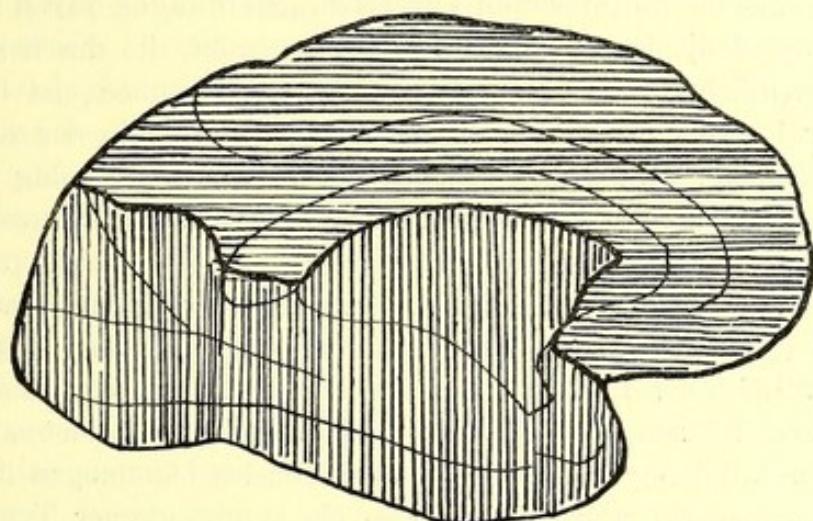
Fig. 64.

Arterienversorgung der lateralen Großhirnoberfläche.

Verzweigungsbaum der Art. cerebri media, bzw. Fossae Sylvii.

== Gebiet der Art. cerebri ant. == Gebiet der Art. cer. post.

sogenannte „Arterie der Gehirnhämorrhagie“, weil die meisten Fälle von Apoplexie durch ihre Ruptur zustande kommen. Diese perforierenden Basalgefäße sind im Gegensatze zu den Arterien der Gehirnrinde, die miteinander anastomosieren, sogenannte „Endarterien“ und bieten deshalb bei eventueller embolischer oder thrombotischer Verstopfung viel größere Chancen für den ischämischen Untergang der vom Blutstrom abgesperrten Partien als jene.


Im übrigen gibt, wie Fig. 64 zeigt, die Arteria fissurae Sylvii während ihres Verlaufes Äste an die untere und mittlere Stirnwindung, an die Zentralwindungen, an den Lobus supramarginalis, den Lobus angularis und an die äußere Oberfläche des Schläfenlappens ab — also an das motorische und sensorische Sprachzentrum, an den weitaus größten Teil des sensomotorischen Rindenfeldes und an das corticale Hörzentrum.

KAPITEL II.

Topisch-diagnostische Bedeutung der cerebralen Motilitäts- und Sensibilitätsstörungen.

Nach unseren anatomischen Ausführungen im vorhergehenden Kapitel ist es einleuchtend, daß herdförmige Erkrankungen des Großhirns, welche sich durch Störungen der Motilität und der allgemeinen Sensibilität kundgeben, verschiedene Lokalisationen aufweisen können.

Fig. 65.

Arterienversorgung der medialen Hemisphärenoberfläche.

Horizontal schraffiert = Gebiet der Art. cerebri ant.; vertikal schraffiert = Gebiet der Art. cerebri post.

Ihr Sitz kann nämlich sowohl die Gehirnrinde als] der Stabkranz (beziehungsweise das Centrum semiovale), als endlich die innere Kapsel sein.

a) Die corticalen Motilitäts- und Sensibilitätsstörungen.

Die motorischen Rindenfelder beherrschen infolge der Kreuzung der von ihnen ausgehenden Pyramidenfasern die Muskeln der kontralateralen Körperhälfte; nur wenige corticale Zentren stehen überdies mit den gleichnamigen Muskeln derselben Körperhälfte in Verbindung. Wir haben in unseren bisherigen Ausführungen bereits Gelegenheit gehabt, darauf hinzuweisen, daß dieser bilateralen Rindeninnervation die Muskeln des oberen Facialis, die Kau-, Schling-, Kehlkopfmuskeln, der Sternocleidomastoideus und die obere „respiratorische“ Portion des Cucullaris sowie die Mehrzahl der Augenmuskeln teilhaftig sind. Es

sei hier noch beigefügt, daß dasselbe auch für die Rumpfmuskulatur gilt. Diese kleine Kategorie von Muskeln wird also bei einseitigen Großhirnherden der Lähmung entgehen. Da ihnen aber die überwiegende Majorität der lediglich kontralateral innervierten Muskeln gegenübersteht, sind wir berechtigt, für die Lähmungen, die durch Ausfall der motorischen Impulse aus einer Hemisphäre zustande kommen, den Ausdruck *cerebrale Hemiplegie* in Anwendung zu bringen.

Wo es sich um die Unterbrechung der vom Thalamus opticus den sensiblen Rindenfeldern zustrebenden corticopetalen Neurone handelt, sprechen wir in analoger Weise von *cerebraler Hemianästhesie*.

Was nun die **motorischen Ausfallserscheinungen durch Rindenherde*** von denjenigen zu unterscheiden gestattet, die durch subcorticale (namentlich capsuläre) Läsionen zustande kommen, ist in erster Linie der Umstand, daß das betroffene Muskelgebiet in der Regel ein beschränktes ist. Dies bringt schon die gewaltige Ausdehnung der motorischen Rindenfelder mit sich: Kaum wird jemals ein corticaler Herd die Gesamtoberfläche der vorderen Zentralwindung, die angrenzenden Partien der beiden oberen Stirnwindungen und den Lobus paracentralis gleichmäßig vernichten. Darum ist der *monoplegische* Typus der *supranukleären* (also *spastischen*) Lähmung ein eigentliches Kriterium der Affektionen, die sich innerhalb jener Rindengebiete abspielen. (Eine Einschränkung muß nur für die corticalen Lähmungen des Kindesalters gemacht werden, bei denen ein *hemiplegischer* Typus nicht so ganz außergewöhnlich ist!) Man wird, je nachdem eine *Monoplegia cruralis, brachialis, facialis, faciobrachialis, faciolingualis* vorliegt, an Hand unserer Fig. 59 und 60 unschwer die Lokalisation vornehmen können.** Die *Facialislähmung* beschränkt sich natürlich auf den unilaterals innervierten, d. h. den unteren Abschnitt seiner Muskulatur.

Wo es sich um Tumoren handelt (wohl die häufigste Ursache der corticalen Lähmungen!), pflegt die *Monoplegie* sich als allmählich progrediente *Parese* einzustellen. Bei Blutungen kann zunächst (Fernwirkung) eine *Hemiplegie* da sein, sie geht aber dann rasch zurück

* Die äußerst seltenen, durch diffuse Rindenerkrankungen verursachten „*intracorticalen Hemiplegien*“ werden wir weiter unten im Zusammenhange mit den subcorticalen Motilitätsstörungen, beziehungsweise den Atypien der *cerebralen Hemiplegie*, anführen.

** Geringgradige Läsionen motorischer Rindenzentren können, statt zu einer *Paralyse* oder *Parese* lediglich zu einer „*motorischen oder gliedkinetischen Apraxie*“ führen; s. u. Kap. V.

und hinterläßt eine bloße Monoplegie. — Es muß hier darauf hingewiesen werden, daß vorübergehende Monoplegien als Zeichen eines temporären Stillstandes die Tätigkeit einer bestimmten Partie der Großhirnoberfläche (wohl als Erschöpfungsphänomen!) nach epileptischen und paralytischen Anfällen häufig beobachtet worden sind; nur dauernde Monoplegien dürfen deshalb als Zeichen einer wirklichen Zerstörung der Hirnrinde aufgefaßt werden.

Doppelseitige Herde der sensomotorischen Rindenzone sind selten. Am ehesten können sie auf dem Boden diffuser Arteriosclerosis cerebri zustande kommen. Es treten dann natürlich Diplegien auf, und dort, wo die symmetrischen Läsionen ins Gebiet des Operculum mit seinen Kau-, Schluck-, Kehlkopf- und Zungenzentren fallen, resultiert der Symptomenkomplex der Pseudobulbärparalyse (siehe oben pag. 116—117). Tumoren des einen Lobus paracentralis erzeugen gerne durch Druck auf den benachbarten anderen eine Paraplegie der Beine.

Sensible Ausfallserscheinungen durch Rindenherde: Das örtliche Zusammenfallen der motorischen Zone mit dem größten Teil der sensiblen, namentlich demjenigen der Tiefensensibilität, macht sich nun bei vielen dieser Monoplegien in typischer Weise geltend. Man nimmt nämlich in der paretischen Extremität, zuweilen freilich nur in Teilen derselben, eine Hypästhesie wahr, welche fast stets die Oberflächensensibilität viel weniger betrifft, als das Empfindungsvermögen der tiefen Teile. Auf Ataxie, Beeinträchtigung des Lagesinns und der Stereognose (siehe pag. 16—17) wird in allererster Linie zu fahnden sein. Es kann als Regel gelten, daß diese corticalen Sensibilitätsstörungen (wie die cerebralen Sensibilitätsstörungen überhaupt) die Extremitätenenden bevorzugen, bzw. dort ihre größte Intensität aufweisen.* Daß vollständige Anästhesie durch Erkrankungen der Großhirnrinde eigentlich niemals zustande kommt, beruht darauf, daß die Endigungen der sensiblen Neurone im corticalen Sensibilitätsareal diffus stattfinden und keine so scharf umschriebenen Felder für einzelne Körperteile vorhanden sind, wie in Hinsicht auf die motorischen Funktionen. Deshalb können auch sehr kleine Herde der sensomotorischen Zone ohne Sensibilitätsstörungen vorkommen. Andrerseits können auch Herde außerhalb des motorischen Rindenareals, namentlich solche der oberen Parietalwindung und des Gyrus supramarginalis, Sensibilitätsstörungen (in der Regel Ataxie, Lagesinnstörung und Astereo-

* Die Umstände, unter denen corticale Herde Sensibilitätsstörungen von einer topographischen Verteilung erzeugen können, die an die radiculäre erinnert, sind noch nicht genügend aufgeklärt.

gnosis der gegenüberliegenden Hand) verursachen; auf Fig. 60 ist zu ersehen, daß hier das sensible Rindenfeld über das motorische hinausragt. Schwankender Gang durch Ataxie der Rumpfmuskeln, sogenannte „cerebrale Ataxie“ (an die cerebellare Ataxie erinnernd), kommt bei Erkrankungen der oberen Stirnwindung vor. — Eine ebenso wichtige Rolle, wie die Ausfallserscheinungen, spielen bei den Affektionen der sensomotorischen Sphäre die Reizerscheinungen, die entweder für sich oder mit monoplegisch-paretischen Phänomenen vergesellschaftet zur Beobachtung gelangen.

In erster Linie sind hier die **motorischen Reizerscheinungen** zu erwähnen.

Als cerebrale Monospasmen bezeichnet man tonisch-klonische Krämpfe, die ein bis dahin normales oder aber bereits paretisches Muskelgebiet (zum Beispiel Facialis, Arm, Hand etc.) befallen und eine dauernde Parese hinterlassen, beziehungsweise eine dauernde Verschlimmerung der vorher bereits vorhandenen.

Einen höheren Grad corticaler Irritation tun uns aber die *Jacksonschen* oder rindenepileptischen Anfälle kund. Ein solcher Anfall beginnt als Monospasmus, und zwar in der Regel zuerst tonisch. Einen ab initio klonischen Charakter beobachtet man jedoch namentlich dann, wenn der Ausgangspunkt der Attacke der Mundfacialis ist. In diesem Falle bleiben nun die Zuckungen nicht, wie bei einem gewöhnlichen corticalen Monospasmus, auf die untere Gesichtshälfte beschränkt, sondern sie ergreifen den homolateralen Arm und schließlich auch das homolaterale Bein. Bei brachialem Beginne des Anfalles kommt gewöhnlich, nachdem der ganze Arm ergriffen worden, zunächst das Gesicht und sodann das Bein derselben Körperseite an die Reihe. Als cruralen Typus bezeichnet man den „Turnus“ Untergliedmaße, Obergliedmaße, Gesicht. Eine genaue Beobachtung hat festzustellen, in welchen Muskeln die allerersten Zuckungen, die sogenannte „motorische Aura“, auftreten; denn dieses „Signalsymptom“ ist für die topische Diagnose der corticalen Affektion maßgebend. Beginnt zum Beispiel der Anfall mit Zuckungen der Finger der rechten Hand (es kann sogar ursprünglich nur der Daumen zucken!), so sitzt der Herd (meistens Tumor, aber eventuell auch Narbe, Fremdkörper, kleiner Absceß, circumscripte Meningitis etc.) in der linken hinteren Zentralwindung an demjenigen Punkte, der auf Fig. 59 die Bezeichnung d trägt. Zuckt zuerst der linke Mundwinkel, so findet sich die Läsion rechts bei g. Dieser Herd versetzt die ihm benachbarten Pyramidenzellen in einen Reizzustand, der sich wie die Wellen auf einer Wasserfläche allmählich über die anschließenden Rinden-

partien ausbreitet. Werden doch die Muskeln in derjenigen Reihenfolge ergriffen, die der Aneinanderreihung ihrer Rindenzentren entspricht. In schweren Fällen springen die *Jacksonschen* Krämpfe auch auf die Extremitäten der anderen Seite über und können mit Bewußtlosigkeit einhergehen. Ein sehr intensiver Reiz kann sich eben durch die Commissurenbahnen (cf. pag. 162) auf das motorische Rindenfeld der anderen Hemisphäre propagieren und ferner die Zentren der höheren psychischen Funktionen (wohl in erster Linie die Stirnlappenrinde) betäuben. Die bilateral innervierten Muskeln (Stirn-, Augenlider, Kaumuskeln, Sternocleidomastoideus etc.) krampfen auf beiden Körperseiten meistens synchron.

Wo nicht andere Punkte die Diagnose stützen (etwa Hirndrucksymptome, wie Pulsverlangsamung, hartnäckiger Kopfschmerz, Stauungspapille, cerebrales Erbrechen etc. — oder die frühere Einwirkung eines Schädeltraumas usw.) wird man aus den rindenepileptischen Anfällen den Schluß auf eine Läsion im motorischen Rindenfelde nicht mit absoluter Sicherheit fällen können. Denn erstens gibt es eine Form der genuinen Epilepsie, welche die typische *Jacksonsche* Symptomatologie hat, sogenannte „idiopathische Hemiepilepsie“; freilich deuten neuere Untersuchungen und auch die Erfolge der chirurgischen Eingriffe darauf hin, daß dieser Form tatsächlich Veränderungen im Bereich der den Anfall einleitenden Rindengebiete zugrunde liegen (Cysten, Encephalitiden). Zweitens aber können auch Intoxikationen und Autointoxikationen (Alkoholismus, Absinthismus, Urämie) durch chemische Reizwirkung auf die motorische Gehirnrinde *Jacksonsche* Attacken hervorrufen. Alle diese Zustände können auch vorübergehende monoplegische oder hemiplegische Paresen nach sich ziehen. Nur wo jene einen bleibenden Charakter bekunden, sind sie ein vollwertiges Argument für die organische Natur der corticalen Reizung; dasselbe gilt natürlich auch für die Fälle, wo die *Jackson-Epilepsie* in bereits vorher paretischen Muskeln einsetzt.

Der Reizzustand einer bestimmten Partie der motorischen Gehirnrinde, nämlich des Fußes der 2. Stirnwindung (also desjenigen Gebietes, das auf Fig. 59 die Bezeichnung „Kopf und Augen“ führt), gibt sich durch ein Phänomen kund, dem wir bereits im Abschnitte über die Augenmuskelnerven begegnet sind, nämlich durch die *Déviation conjuguée*. Wir verweisen auf unsere Ausführungen von pag. 140—145; denselben ist zu entnehmen, daß, im Gegensatze zu den übrigen Bewegungen des Augapfels, die konjugierte Seitwärtsbewegung des Bulbus vorwiegend einseitig innerviert wird. Die supranucleäre Bahn, die zum pontinen Blickzentrum führt, welches gleichzeitig den

einen Abducens und den anderen Internus, wie wir genau geschildert haben, in Aktion setzt, stammt aus dem corticalen Blickzentrum der gekreuzten Hemisphäre. Eine Lähmung dieses corticalen Blickzentrums hat denselben Effekt wie eine solche, welche die von ihm ausgehenden cortico-nucleären Bahnen vor ihrer Kreuzung am vorderen Brückeneende trifft, das heißt sie verunmöglicht das Blicken nach der Gegenseite und bewirkt dadurch eine antagonistische Déviation conjuguée nach der Seite der Affektion (vgl. hierzu Fig. 53). Wirkt nun ein Reiz auf das corticale Blickzentrum ein, findet natürlich das Umgekehrte statt, der Patient blickt nicht nach seinem Krankheitsherde hin, sondern von demselben weg bzw. auf seine krampfenden Gliedmaßen, wenn gleichzeitig (wie es oft der Fall ist) ein *Jacksonscher* Anfall stattfindet. Manchmal kommt es gleichzeitig zu einer krampfhaften Wendung des Kopfes in derselben Richtung wie die Augen.

Da auch nach Zerstörung des Gyrus angularis (siehe Fig. 57) eine Déviation conjuguée nach der Seite des Herdes beobachtet wird, könnte man sich veranlaßt sehen, hier ein zweites corticales Blickzentrum zu erblicken. Dies ist aber nicht der Fall. Vielmehr der Gyrus angularis ist bloß die Durchgangsstelle einer Faserung, welche das optische Rindenfeld mit dem Augenmuskelzentrum im Stirnhirn verbindet. Topisch-diagnostisch ist natürlich der Umstand, daß auch nach Scheitellappenzerstörung Déviation conjuguée vorkommen kann, deswegen nicht minder wichtig.

Auch **sensible Reizerscheinungen** kommen bei den Affektionen der sensomotorischen Rindenzone vor. Nicht selten hat man in den von der Monoplegie befallenen Muskelgebieten Parästhesien beobachtet. Sehr häufig wird durch solche Parästhesien der *Jacksonsche* Anfall eingeleitet (sensible Aura); seltener ist es ein blitzartiger Schmerz, der den Extremitätenabschnitt durchzuckt, an welchem dann die Konvulsionen einsetzen. Doch ist im großen ganzen der Gehirnrinde keine große Schmerzempfindlichkeit zuzusprechen. Der furchtbare Kopfschmerz, an dem so viele Gehirnkranke leiden, ist kein Reizsymptom von seiten der Cortex, sondern von seiten der sehr empfindlichen Hirnhäute. Wird der Spannungszustand, in den letztere bei Vermehrung des intrakraniellen Druckes gelangen, vermindert (Trepanation, Lumbalpunktion), so nehmen auch die Schmerzen rasch ab. Steigerung des Schmerzes bei Beklopfen der den Zentralwindungen etc. korrespondierenden Schädelpartie wird freilich bei Tumoren der sensomotorischen Region zuweilen beobachtet.

b) Die subcorticalen Motilitäts- und Sensibilitätsstörungen.

Die fächer- oder kegelförmige Anordnung der motorischen und sensiblen Fasern im Stabkranze (rasches Konvergieren der Pyramidenfasern und Divergieren der thalamocorticalen Fasern) bringt es mit sich, daß, je tiefer ein Herd zwischen Rinde einerseits, innerer Kapsel und Stammganglien andererseits, sitzt, desto mehr Bahnen er bei gleicher Größe zerstören wird.

Für die durch Herde im Centrum semiovale erzeugten gekreuzten motorischen Störungen ist deshalb, im Gegensatze zu den corticalen und kapsulären Herden, ein mehr als monoplegischer, wenn auch nicht vollständig hemiplegischer Typus bezeichnend. Da aber Herde im Centrum semiovale sehr oft auch die wichtigen Commissuralfasern der Balkenfaserung unterbrechen, sind zuweilen jene Lähmungssymptome durch die für Balkenläsionen charakteristischen apraktischen Störungen kompliziert, von welchen weiter unten (in Kapitel V) die Rede sein soll.

Was die Sensibilitätsstörungen anbelangt, so pflegt ihre Intensität und Extensität im allgemeinen der Tiefenlage unter der Großhirnoberfläche proportional zu sein. Das Vorherrschen an den Extremitätenenden (Händen und Füßen) macht sich meist ebenso bemerkbar, wie bei den corticalen Anästhesien (s. o. S. 169), und zwar entweder vom Anfang an, oder aber erst beim Zurückgehen der sensiblen Ausfallerscheinungen.

Wenden wir uns nun den kapsulären Lähmungen zu, welche unter anderen bei der großen Mehrzahl der Gehirnblutungen durch die Ruptur einer auf pag. 166 besonders hervorgehobenen Arteria lenticulo-striata zustande kommen. Unsere Fig. 61 zeigt, daß im hinteren Schenkel der inneren Kapsel die Gesamtheit der motorischen Bahnen für die gekreuzte Körperhälfte auf relativ sehr kleinem Raum zusammengepfercht ist. Komplette Hemiplegie ist darum in weitaus den meisten Fällen die Folge einer Läsion jenes hinteren Kapselschenkels. Es kommt nämlich zur gekreuzten Lähmung des unteren Facialis, des Hypoglossus, des Armes und des Beines. Erstreckt sich der Krankheitsherd auch auf das hintere Drittel des Crus posterius capsulae internae, wo die Sensibilitätsbahnen unmittelbar nach ihrem Austritte aus dem Sehhügel zusammenliegen, so resultiert überdies eine gekreuzte Hemianästhesie des gesamten Körpers.

Zuweilen ist aber der Zerstörungsherd auf das hinterste Ende der Capsula interna beschränkt, auf das „Carrefour sensitif“. Die Unter-

brechung sowohl der sensiblen als der akustischen und der optischen Bahnen (cf. Fig. 61) zeitigt in solchen Fällen die charakteristische Trias der gekreuzten Hemianästhesie, Hemianopsie und Hemianakusis. (Daß außerdem auch Hemianosmie und Hemiageusie entstehen können, wird behauptet, ist aber nicht genügend bewiesen.) Dabei ist spastische Paräse des anästhetischen Beines nicht selten, weil ja die Pyramidenneurone für diese Extremität sich nach vorn dem Komplexe der sensiblen Fasern im hinteren Kapseldrittel dicht anschließen.

Die Verhältnisse der Capsula interna sind so klein, daß das Zustandekommen von Monoplegien fast unmöglich ist und solche denn auch nur als exzessive Seltenheiten beobachtet worden sind.

Hier seien nun die **wichtigsten Kennzeichen der cerebralen Hemiplegie** kurz angeführt:

1. Daß sie die bilateral innervierten Muskeln (Kau-, Schluck-, Kehlkopf-, Augen-, Rumpf- und obere Facialismuskeln) verschont, haben wir schon mehrfach betont. Es ist aber in bezug auf den oberen Facialis darauf hinzuweisen, daß doch auf der gegenüberliegenden Seite manchmal eine geringe Verminderung der Kontraktionsfähigkeit im Frontalis und Orbicularis oculi festzustellen ist. Die Augenbraue steht vielleicht etwas tiefer oder das Auge kann weniger lange geschlossen gehalten werden, als auf der homolateralen Gesichtshälfte.

2. Auch bei vollständigen Hemiplegien sind regelmäßig an den Extremitäten verschiedene Muskelgruppen ungleich betroffen. Während die Bewegungsfähigkeit einer großen Anzahl von Muskeln nach und nach zurückkehrt, pflegen sich andere nicht wieder zu erholen (Peroneusmuskulatur, Kniebeuger, Ellenbogenstrekker, Extensoren von Hand und Fingern, Auswärtsdreher des Oberarmes, Supinatoren des Vorderarmes). Der Arm ist in der Regel viel stärker betroffen als das Bein. Bei Kindern bekundet freilich die Hand eine viel größere Tendenz, sich zu erholen, als bei Erwachsenen.

3. Die Stellungen, welche die Extremitäten infolge der überwiegenden Aktion derjenigen Muskeln einnehmen, die ihre Bewegung wieder erlangen, werden nun in der späteren Zeit häufig durch Contracturen fixiert. Infolgedessen wird der Fuß in Equinovarusstellung gehalten und das Knie gestreckt, so daß beim Gehen das Bein schleifend in seitlichem Bogen vorgeschnoben werden muß („Circumduction“, „Heliocopodie“). Der Oberarm wird in Adduction, der Ellenbogen in Flexion, der Vorderarm in Pronation, Hand und Finger in Beugestellung fixiert. Diese Contracturen kommen wohl dadurch zustande, daß die Vorderhornzellen, vom hemmenden Einflusse der Pyramidenbahnen befreit, durch

die via Hinterwurzeln zuströmenden Reize beständig in tonischer Weise erregt werden und es zu einer Summation dieser Erregungen kommt. Daß es aber gerade bestimmte Muskeln sind, die ihre Beweglichkeit wieder erlangen und somit (dank der supranuklear-hypertonischen Natur der cerebralen Hemiplegie) zur Contractur prädisponiert sind — diese auffällige Gesetzmäßigkeit muß auf uns anatomisch noch nicht genügend aufgeklärten Innervationsverhältnissen beruhen. Wahrscheinlich treten gerade zu den Vorderhornzellen dieser Muskelgruppen die auf pag. 6 besprochenen subcorticospinalen Bahnen (aus dem Thalamus, der Haube, dem *Deitersschen* Kerne, dem Mittelhirndache) in überwiegender Weise in Kontakt, so daß es dem reparatorischen Bestreben des Organismus nicht schwer fällt, sie auf Umwegen der cerebralen Innervation wieder teilhaftig werden zu lassen. Fälle von cerebraler Hemiplegie, bei denen andere Muskelgruppen das Übergewicht erhalten und in Contractur geraten (so daß zum Beispiel die Beine in Beugung fixiert werden), stellen geradezu verschwindende Ausnahmen dar.

4. Die Hypertonie der cerebralen Hemiplegie geht (falls keine den Reflexbogen störenden Komplikationen vorliegen; vgl. das bei Anlaß der Kleinhirntumoren pag. 49—150 Gesagte!) mit Steigerung der Sehnenreflexe einher. Für diese Hyperreflexie und die sie so oft begleitenden pathologischen Reflexphänomene (*Babinskisches*, *Mendel-Bechterew'sches* und *Oppenheim'sches* Zeichen), Cloni, Mitbewegungen etc. gilt das im Rückenmarksabschnitte (pag. 26—28) Ausgeführte. Die Hautreflexe (namentlich Abdominal- und Cremasterreflex) sind dagegen fast immer auf der gelähmten Seite herabgesetzt oder sogar aufgehoben; diese Erscheinung kann, wenn ein Patient nach einem Schlaganfall bewußtlos daliegt, zur Eruierung derjenigen Körperseite herbeigezogen werden, auf der nach dem Erwachen aus dem Koma die hemiplegische Lähmung zu konstatieren sein wird. Das Zustandekommen dieses Phänomens ist uns keineswegs klar. Wir haben bei Gelegenheit der Höhendiagnostik der Rückenmarksläsionen denjenigen Erklärungsversuch angeführt, mit dem wir uns vorläufig zufrieden geben müssen. Auch der Conjunctivalreflex fehlt häufig auf der gelähmten Seite.

5. Die Lähmung ist eine nicht-degenerative. Doch gibt es seltene Ausnahmefälle, bei denen in den gelähmten, ja sogar in den wiederhergestellten Muskeln sich die sogenannte „cerebrale Atrophie“ einstellt, die sich nicht auf Inaktivität zurückführen ließ und mit Herabsetzung der elektrischen Erregbarkeit, wenn auch ohne Entartungsreaktion einherging. Dabei sind auch schon Arthropathien vermerkt worden. Noch vereinzelter sind die Beobachtungen von Knochenatrophie auf der ge-

lähmten Seite. Häufiger dagegen als alle diese trophischen Störungen sind sympathische Störungen vasculärer und sudoraler Natur, für deren physiopathologische Erklärung wir auf den Rückenmarksabschnitt pag. 23—25 verweisen.

6. Bei Hemiplegien infolge Encephalorrhagie kann nicht selten in relativ kurzer Zeit die Motilitätsstörung sich ziemlich vollständig zurückbilden. Das ist der Fall, wenn die Blutung nicht direkt die corticospinalen Bahnen durchtrennt, sondern in ihrer Nähe, zum Beispiel im Linsenkern, stattgefunden hat. Der Spannungszustand, in den die Umgebung des hämorrhagischen Herdes eine Zeitlang versetzt wird, das kollaterale Ödem etc. sind in solchen Fällen für die indirekten Ausfallsymptome im Bereiche der motorischen Bahnen verantwortlich zu machen. Nur die Paresen, die 6—8 Monate nach dem Insult noch bestehen, sind als unmittelbare Herdsymptome aufzufassen und demnach prognostisch zu beurteilen. Es kann sich bei dieser Restitution auch um das Abklingen der sog. „Diaschisis“ handeln. Unter diesem Ausdrucke wird eine Art passiven Shocks verstanden: das Ausbleiben von Reizen, welche an die zerstörten Nervenbahnen gebunden sind, legt auch anatomisch intakte Bezirke lahm, die sich in ihrer Tätigkeit auf jene Erregungen eingestellt haben. Diese Diaschisiswirkung ist ihrem Wesen nach vorübergehender Natur, temporär, nicht residuär.

7. Unmittelbar nach dem Ictus apoplecticus sind gewöhnlich (infolge Shock- oder Diaschisiswirkung) die Sehnenreflexe erloschen und die Muskeln schlaff. Wo trotz des Komas erstere gesteigert, letztere spastisch sind, ist man nach den bisherigen Erfahrungen berechtigt, den Durchbruch der Blutung in den Seitenventrikel — ein sehr schlimmes Vorkommnis — mit ziemlicher Wahrscheinlichkeit zu diagnostizieren. Eine befriedigende Erklärung für diese Tatsache kann nicht gegeben werden.

Auch einige **Atypien der cerebralen Hemiplegie** sollen erwähnt werden.

a) Die sogenannte „Hemiplegia sine materia“. Cerebrale Halbseitenlähmungen, die, abgesehen vom typischen Falle der Gehirnblutung, auch durch encephalomalacische Herde, Tumoren, Höhlenbildungen, Sklerosen etc. hervorgebracht werden können, sind hie und da auch vorgekommen, ohne daß die Autopsie eine Läsion im Zentralnervensystem aufzudecken vermochte. Vielfach handelte es sich um nephritische Patienten, die urämisch starben. Das urämische Gift scheint hier aus uns durchaus unklaren Gründen einseitig lähmend gewirkt zu haben, ebenso wie es auch einseitig erregend wirken und *Jacksonsche Epilepsie*

erzeugen kann. Die älteren Autoren dachten an einen halbseitigen Gefäßkrampf und sprachen von „Apoplexia serosa“. Andere Fälle sogenannter Hemiplegia sine materia, welche die ältere Literatur verzeichnet, beruhen wahrscheinlich auf ungenügender Beobachtung und wären der sub b zu besprechenden Form zuzurechnen gewesen.

b) Die sogenannte „lacunäre Hemiplegie“. Dabei handelt es sich nicht um einen massigen Herd, der die corticospinalen Bahnen unterbricht, sondern um disseminierte, meist miliare Gewebslücken, Erweichungsherdchen und capilläre Blutaustritte, die auf dem Boden der cerebralen Arteriosklerose entstanden sind. Diese Form der Hemiplegie zeichnet sich zunächst durch große und sehr rasche Restitutionsfähigkeit und mangelnde Neigung zu Contracturbildung aus, andererseits aber durch eine ausgesprochene Tendenz zu Rezidiven in der ursprünglich freigebliebenen Hemisphäre. In letzterem Falle treten denn auch paretisch-spastische Störungen in den bilateral-innervierten Muskeln ein, die sich namentlich durch pseudobulbärparalytische Phänomene kundgeben. Die Sensibilität und die Hautreflexe sind bei dieser Form kaum gestört. Auch bei plötzlichem Eintreten ist der Ictus kein schwerer, das Bewußtsein meist erhalten oder nur leicht getrübt, eventuelle Bewußtlosigkeit aber nur von sehr kurzer Dauer (weniger als eine Stunde).

c) Die „chronisch-progressive Hemiplegie“, welche in ganz allmählicher Weise, sei es durch Geschwulstbildungen in der inneren Kapsel, sei es durch zunehmenden arteriosklerotischen Gefäßverschluß zustande kommt, und sich in letzterem Falle durch den kontinuierlichen Verlauf und die fehlende Tendenz zur Restitution von der lacunären Hemiplegie klinisch unterscheidet. Als große Seltenheit kommt es auch vor, daß chronische Erkrankungen bzw. Atrophien der Gehirnrinde (z. B. bei Epileptikern) das Bild dieser chronisch-progressiven Hemiplegie in der Weise hervorbringen, daß sie den Zusammenhang der (im übrigen intakt bleibenden) Pyramidenbahnen und der sonstigen corticalen Zellen und Zellverbände aufheben. Es sind dies die sog. „intracorticalen Hemiplegien“.

d) Die sogenannte „homolaterale Hemiplegie“. Es ist in der Literatur eine Reihe von Fällen niedergelegt, bei denen der Herd, statt auf der den gelähmten Muskeln gegenüberliegenden, auf der ihnen entsprechenden Seite des Großhirns, gefunden wurde. Meistens hat es sich gewiß um klinische oder pathologisch-anatomische Beobachtungsfehler gehandelt. So können in den gelähmten Extremitäten kurz nach dem Ictus Reizerscheinungen auftreten (siehe unten) und fälschlich als Zeichen willkürlicher Tätigkeit aufgefaßt werden, während die kontralateralen

Gliedmaßen infolge des Comas bewegungslos daliegen und für gelähmt gehalten werden.

Ferner kann bei der Sektion die Aufmerksamkeit durch eine die motorischen Bahnen gar nicht tangierende Läsion einer Hemisphäre so in Beschlag genommen werden, daß unscheinbarere, eventuell in der Brücke oder Oblongata versteckte Herdchen der anderen Seite nicht bemerkt werden. Aber nach Abzug dieser irrtümlich als homolateral bezeichneten Hemiplegiefälle bleiben doch einige einwandfreie Beobachtungen bestehen. Einige Male wurde bei solchen ein Fehlen der Pyramidenkreuzung, eine relativ seltene Faseranomalie, anatomisch nachgewiesen. Ferner kann eine Geschwulst die eine Hemisphäre so sehr auf die Gegenseite schieben, daß die Substanz der anderen am stärksten komprimiert, ischämisiert und geschädigt wird.

Die Differentialdiagnose der cerebralen von den pedunculären, pontinen und bulbären Hemiplegien, die in der Regel durch den alternierenden Typus gekennzeichnet sind, ist in dem betreffenden Abschnitte (pag. 102 ff.) nachzulesen. Wie die *Hemiplegia cruciata* durch Herde im Niveau der Pyramidenkreuzung zustande kommen kann, ist an derselben Stelle ausgeführt. Halbseitige Läsionen, die noch weiter distal die corticospinalen Bahnen durchtrennen, bekunden ihren spinalen Sitz durch den *Brown-Séguard'schen Symptomenkomplex*.

Die **Reizsymptome** von seiten der motorischen Komplexe der inneren Kapsel sind nur zum kleinen Teile Frühsymptome. Wenn eine Apoplexie einsetzt, besonders aber im Moment der embolischen Gefäßverstopfung, können dadurch, daß das dem Untergange geweihte Gebiet zunächst irritiert wird, in den Muskeln, die der Sitz der späteren Lähmung sein werden, Zuckungen auftreten. Sie haben nichts besonderes Charakteristisches, da sie auch bei Reizung der motorischen Bahnen im Hirnschenkel, der Brücke, dem verlängerten und Rückenmark vorkommen können.

Um so typischer sind die späten Reizsymptome, die dann entstehen, wenn eine Blutung in der Nähe der capsulären Bewegungsbahnen stattgefunden und der Vernarbungsprozeß für diese einen dauernden Reizzustand gesetzt hat. Wir meinen die halbseitigen choreatischen oder athetotischen Bewegungen, die sich nur in reinen Fällen scharf differenzieren lassen.

Bei der *Hemichorea posthemiplegica* sind die Extremitäten von lebhaften zappelnden oder schüttelnden Bewegungen („Hemiballismus“) befallen, die im Schlafe fehlen, willkürlich aber nicht unterdrückt werden können, ja durch einen solchen Versuch sogar gesteigert werden.

Bei der *Hemiathetosis posthemiplegica* machen Hände und Füße, namentlich aber die einzelnen Finger und Zehen, langsame, mit Hyperextension einhergehende Exkursionen (analog den Bewegungen der Fangarme eines Tintenfisches), die im Schlaf nicht immer aufhören, durch den Willensimpuls aber bis zu einem gewissen Grade stillgestellt werden können. In zahlreichen Fällen werden aber Reizphänomene beobachtet, die einen Übergang zwischen *Hemichorea* und *Hemiathetose* darstellen. Vielleicht ist letztere bloß eine Varietät der ersten, übrigens die überwiegend häufigere, da halbseitige *Chorea* im ganzen eine recht seltene Erscheinung ist.

Die *Hemiathetose* und *Hemichorea* erzeugenden Herde haben am häufigsten ihren Sitz in dem der inneren Kapsel benachbarten Teile des Thalamus, zuweilen auch des Linsenkerns, seltener in der inneren Kapsel selbst, und zwar im hintersten Drittel ihres hinteren Schenkels. Die Reizsymptome beginnen gewöhnlich erst einige Monate nach der *Hemiplegie*, wenn sich die aktive Bewegung wieder bis zu einem gewissen Grade hergestellt hat. — Sehr selten ist die *Hemichorea praehemiplegica*, die bei langsamer Durchblutung des Sehhügels konstatiert worden ist.

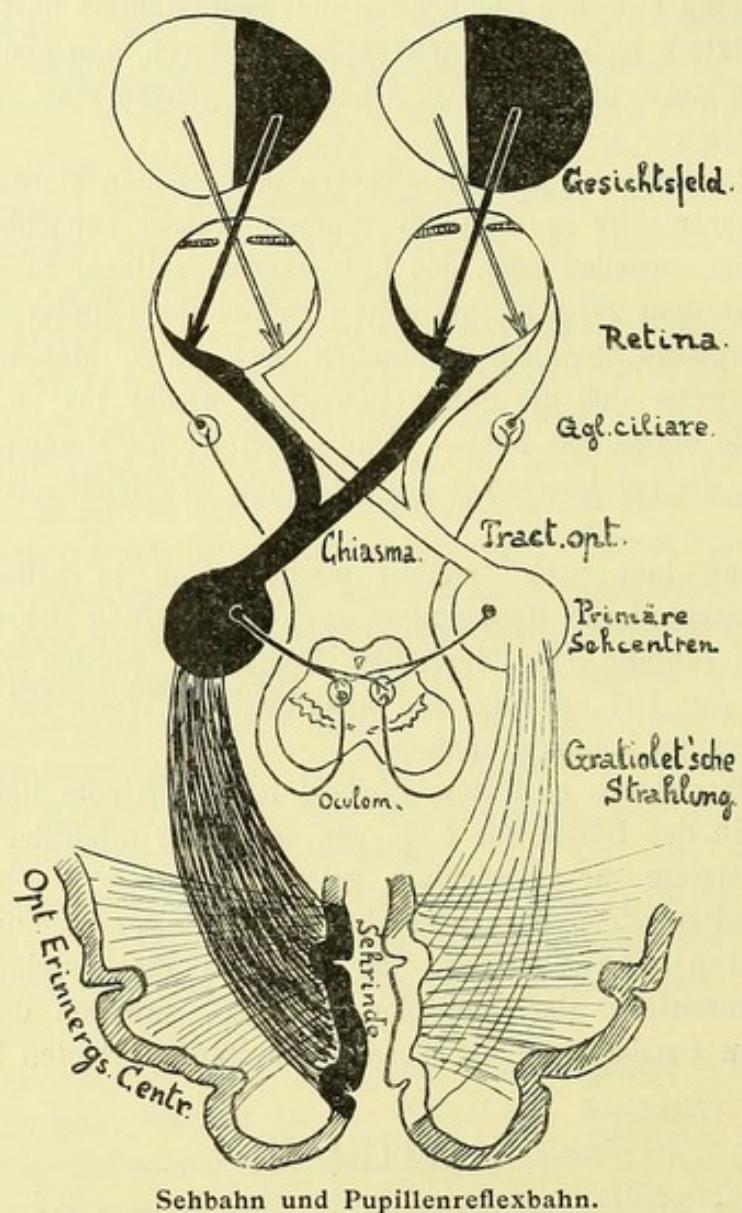
Es muß hier noch erwähnt werden, daß in seltenen Fällen choreatisch-athetotische Bewegungen auch bei Reizung der motorischen Rinde durch Blutung oder Meningitis beobachtet worden sind, ferner, wie bereits pag. 157 erwähnt, auf unaufgeklärte Weise bei Bindegarmläsionen zustande kommen können.

Für *Hemichorea* und *Hemiathetose* ist das Kindesalter besonders disponiert. In der Hälfte der Fälle von cerebraler infantiler *Hemiplegie* sieht man letztere zur Entwicklung gelangen.

Eine seltene Form der *posthemiplegischen* Reizerscheinungen ist der *posthemiplegische Tremor*, der zuweilen die Erscheinungsweise des *Intentionszitterns* der *multiplen Sklerose*, zuweilen diejenige der *rhythmisichen Oscillationen* der *Paralysis agitans* darbieten kann.

KAPITEL III.

Topisch-diagnostische Bedeutung der Sehstörungen.


1. Die Sehbahn (cf. Fig. 66).

Von der Retina, wo sie mit den spezifischen Sinnesepithelien, den sogenannten Stäbchen und Zapfen, in Beziehung stehen, ziehen die Opticusfasern im Sehnerven bis zum Chiasma. Hier findet eine partielle

Kreuzung statt, so daß im rechten, aus dem Chiasma hervorgehenden Tractus opticus die Fasern aus den beiden rechten, im linken Tractus opticus diejenigen aus den linken Hälften der Netzhaut vereinigt sind.

Diese morphologische Tatsache ergibt (da die Linse auf die Retina ein umgekehrtes Bild der Außenwelt projiziert) das physio-

Fig. 66.

Sehbahn und Pupillenreflexbahn.

logische Resultat, daß die Wahrnehmung der linken Hälfte des Gesichtsfeldes durch den rechten Tractus opticus vermittelt wird, und umgekehrt.

Die im Chiasma kreuzenden Fasern stammen aus den medialen (nasalen) Partien der Retina und repräsentieren die Majorität sämtlicher

Opticusfasern. Die lateralen Gesichtsfeldhälften, deren Eindrücke diese kreuzenden Fasern in Reizzustand versetzen, sind eben größer als die medialen, die schon durch den Vorsprung des Nasenrückens eingeschränkt sind.

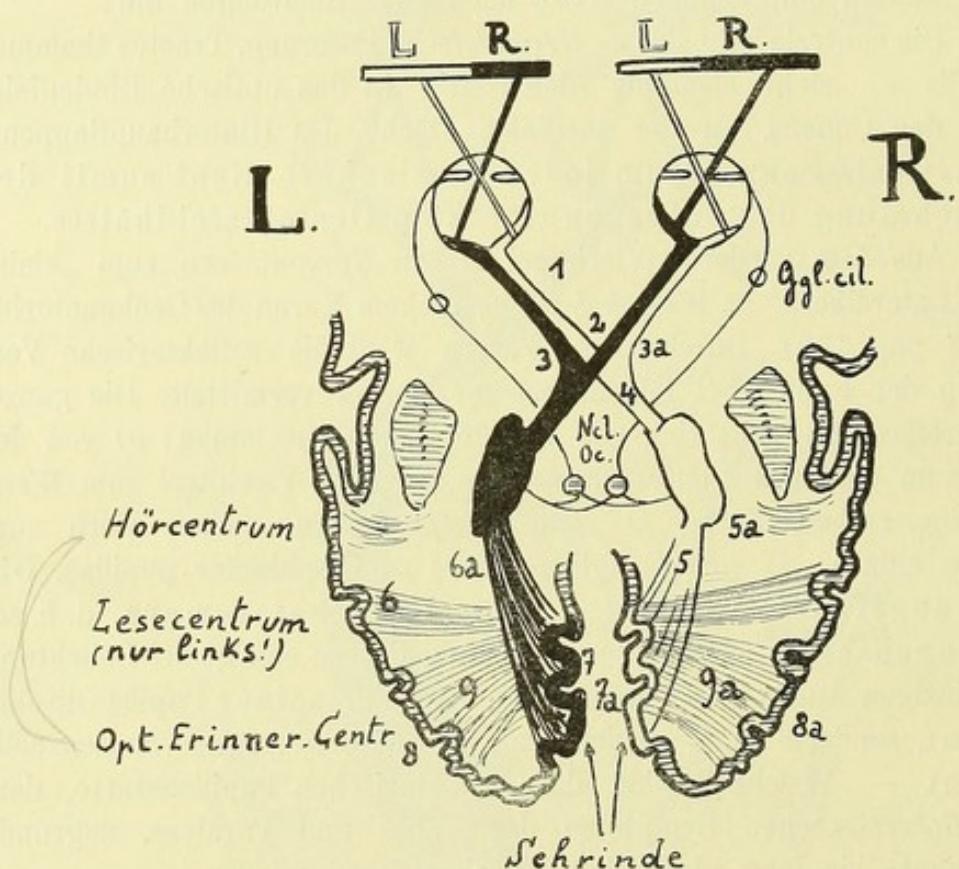
Jeder Tractus opticus führt die Sehnervenneurone um den Hirnschenkel herum dorsalwärts zu den gleichseitigen „primären Sehzentren“, wo ihre Endigung stattfindet. Diese Zentren sind: der hintere Teil des Sehhügels (Pulvinar thalami), das Corpus geniculatum laterale und der vordere Vierhügel.

Von den primären Sehzentren aus erfolgt die Weiterleitung der aus der Retina empfangenen Reize nach zwei Richtungen hin:

1. Die zentrale Sehbahn — *Gratioletsche* Faserung, Tractus thalamo-occipitalis — zieht ebenfalls gleichseitig in das optische Rindenfeld, d. h. in den Cuneus, an der medialen Fläche des Hinterhauptlappens. Das corticale Sehzentrum jeder Hemisphäre dient somit der Wahrnehmung der entgegengesetzten Gesichtsfeldhälfte.

2. Aus dem vorderen Vierhügel ziehen Nervenfasern zum „kleinzelligen Lateralkern“ = *Westphal-Edingerschem* Kerne des Oculomotorius (cf. oben pag. 138). Durch diese Fasern wird die reflektorische Verengerung der Pupille bei Belichtung der Retina vermittelt. Die ganze, Pupillenreflexbahn setzt sich aus vier Neuronen zusammen: a) von der Retina zum vorderen Vierhügel; b) vom vorderen Vierhügel zum *Westphal-Edingerschen* Kern; c) vom *Westphal-Edingerschen* Kern zum Ganglion ciliare; d) vom Ganglion ciliare zum Sphincter pupillae. Die sub b) angeführte Verbindung ist eine hekateromere, d. h. sowohl gegenseitig als gekreuzt: infolgedessen erfolgt bei Belichtung eines einzigen Auges eine Verengerung nicht nur seiner Pupille (direkte Reaktion), sondern auch derjenigen des anderen Auges (konsensuelle Reaktion). — Welche Läsion der reflektorischen Pupillenstarre, dem *Argyll-Robertsonschen* Symptome der Tabes und Paralyse, zugrunde liegt, konnte bis jetzt nicht sicher nachgewiesen werden.

Aus dem Cuneus ziehen Assoziationsfasern zur lateralen, konvexen Fläche des Occipitallappens und des unteren Scheitellappens herüber. Ist der Cuneus das Wahrnehmungszentrum für die optischen Eindrücke so stellen jene Rindenpartien die optischen Vorstellungszentren dar; in ihnen sind die Erinnerungsbilder für die Bedeutung eines gesehenen Gegenstandes aufgestapelt.


2. Lokalisierung der Unterbrechungen der Sehbahn.

Die Kenntnis der soeben geschilderten Faserverhältnisse ermöglicht uns, in vielen Fällen den Sitz eines Krankheitsherdes im Bereich der

optischen Leitungsbahnen mit großer Genauigkeit zu bestimmen; vergl. zum Folgenden Fig. 67!

A. Läsionen des Nervus opticus: Totale Zerstörung der Opticusfasern peripher vom Chiasma (bei Punkt 1 der Abbildung) erzeugt natürlich vollständige Erblindung — Amaurose — des einen Auges. Pupillenreflexe werden vom betreffenden Auge nicht mehr, wohl aber vom anderen, lichtperzipierenden Auge ausgelöst werden können. Ist nur ein Teil des Sehnerven vernichtet worden, so werden, statt Amaurose,

Fig. 67.

Schema zur Lokalisation der Sehstörungen.

Skotome, Gesichtsfeldeinengungen etc. zu konstatieren sein, pathologische Erscheinungen, auf die wir hier nicht näher eingehen, da sie ins Gebiet der Ophthalmologie gehören.

B. Läsionen des Chiasmas.

a) Trifft eine Schädigung nur die mediale Partie des Chiasmas — Punkt 2 unserer Figur — (wie dies bei Tumoren der Hypophyse, bei Hydrocephalus des dritten Ventrikels und Dilatation des Trichters, bei Empyem der Keilbeinhöhle der Fall ist), so vernichtet sie dessen

sich kreuzende, aus den nasalen Teilen der Netzhäute stammende Neurone. Dadurch kommt es zum Ausfall der beiden temporalen Gesichtsfeldhälften, zur **bitemporalen heteronymen Hemianopsie** oder **Hemiopie**. Heteronym, weil das rechte Auge für die rechte, das linke Auge für die linke Gesichtsfeldhälfte erblindet ist.

b) Werden im Gegenteile die äußeren Partien der Sehnervenkreuzung unter Verschonung der medialen zerstört ($3 + 3a$) — ein sehr seltes Vorkommnis! Aneurysmen beider Carotiden, symmetrische gummöse Herde an der Schädelbasis, eventuell auch Cysten der Hypophyse mit lateraler Ausbuchtung etc. —, so kommt die Funktion der äußeren Bezirke der Fundi oculorum in Wegfall und es resultiert: **nasale heteronyme Hemianopsie**.

c) Zerstörung einer Hälfte des Chiasmas ($2 + 3$) erzeugt Blindheit auf dem gleichseitigen, mit temporaler Hemianopsie auf dem anderen Auge.

C. Läsionen des Tractus opticus, der primären Sehzentren und der Gratioletschen Strahlung.

Alle diese Läsionen erzeugen **homonyme laterale Hemianopsie** für die gegenüberliegende Partie des Gesichtsfeldes. Homonym, weil eben beide rechte oder beide linke Gesichtsfeldhälften ausfallen.

a) Sitzt die Läsion vor der Abzweigung der Reflexfasern zum *Westphal-Edingerschen* Pupillenkern (also bei 4), so löst ein auf die blinde Netzhauthälfte geworfener Lichtstrahl keine Pupillenverengerung aus (**hemianopische Pupillenstarre**).

b) Sitzt die Läsion hinter der Abzweigung der Reflexfasern zum *Westphal-Edingerschen* Kern (also bei 5), so tritt dagegen auch bei Belichtung der unempfindlichen Netzhautteile Pupillenverengerung ein (**hemianopische Pupillenreaktion, Wernickesches Phänomen**).

D. Läsionen der Cuneusrinde. Eine einseitige Läsion (7) hat natürlich, wenn sie die ganze corticale Sehsphäre vernichtet hat, dieselbe Störung zur Folge, wie eine Leitungsunterbrechung der entsprechenden thalamo-occipitalen Fasern, also **homonyme laterale Hemianopsie** mit erhaltener Pupillarreaktion. — Ist die Zerstörung der einen Sehsphäre eine nur partielle, so fällt nur ein Bruchteil der gegenüberliegenden Gesichtsfeldhälfte aus, sogenannte **Quadrantanopie**. — Bei doppelseitigem Sitze der Affektion ($7 + 7a$) — Tumoren der Falx cerebri toxische Funktionsstörungen der Gehirnrinde (Urämie, Saturnismus) — kommt es zur „**Rindenblindheit**“, bei der die Pupillenreaktion gleichfalls intakt bleibt und von beiden amaurotischen Augen aus erhalten werden kann.

E. Läsionen der Konvexität und des Markes des Occipitallappens nebst Gyrus angularis.

Beidseitige Zerstörung im Bereiche der corticalen optischen Erinnerungsfelder oder der Assoziationsfasern, die vom Cuneus ihnen zu streben ($8 + 8a$ oder $9 + 9a$ oder $8 + 9a$ oder $8a + 9$), erzeugt die „Seelenblindheit“, bei der die Patienten die Gegenstände als flächenhafte oder körperliche Gebilde zu sehen, aber nicht zu erkennen vermögen. (Wo einseitige Erkrankung des Hinterhauptlappens Seelenblindheit erzeugte, handelte es sich um Tumoren, die auch den gegenseitigen Lobus occipitalis durch Druck schädigen mußten.) Eine besondere Funktion kommt dem Gyrus angularis der linken Seite zu. Hier geschieht die Erkennung der Schriftzeichen in ihrer Bedeutung; hier ist das Zentrum der Buchstabenbilder, das außer zur optischen Rindensphäre innige Beziehungen zum corticalen Felde des Sprachverständnisses (siehe Fig. 59 u. 68) darbietet. Läsionen des Gyrus angularis (6) erzeugen deshalb Alexie, Wortblindheit, Unfähigkeit zu lesen. (Dabei zuweilen auch Déviation conjuguée, siehe oben pag. 172.)

Ist in der einen Hemisphäre die Cuneusrinde zerstört, in der andern das Occipitalmark oder die occipitale Konvexitätsrinde ($7 + 9a$ oder $7 + 8a$ etc.), so kompliziert sich die Hemianopsie mit Seelenblindheit, da auch das intakt gebliebene optische Erinnerungsfeld dadurch außer Betrieb gesetzt wird, daß ihm keine Reize vom benachbarten Cuneus zuströmen.

Wir wollen noch beifügen, daß vielfach die begleitenden anderweitigen Symptome bei der topischen Diagnostik der Sehstörungen in Betracht gezogen werden müssen. Tritt zum Beispiel eine homonyme laterale Hemianopsie im Verlaufe einer Meningitis ein, so deutet dies auf eine Erkrankung der gegenüberliegenden Cuneusrinde; findet sich bei einer Encephalomalacie neben einer rechtseitigen homonymen Hemianopsie mit *Wernickeschen* Phänomen Alexie, so ist anzunehmen, daß ein Erweichungsherd im Gyrus angularis, wie es nicht gerade selten vorkommt, bis auf die unter diese Stelle vorbeiziehende *Gratioletsche* Strahlung vorgedrungen ist ($6 + 6a$); sind dagegen Hemianästhesie und Hemianakusis dabei vorhanden, so wird der Herd im „Carrefour sensitif“ zu suchen sein ($5 + 5a$).

Die direkte Betrachtung des Sehnerven mit dem Augenspiegel kommt zwar der topischen Diagnostik kaum zur Hilfe, um so wichtiger ist aber die Feststellung der Stauungspapille als allgemeines Symptom für eine Raumbeengung im Cavum cranii. Spielt sie doch neben den Kopfschmerzen, dem cerebralen Erbrechen und Schwindel,

der Pulsverlangsamung und den Bewußtseinsstörungen eine Hauptrolle im Rahmen des „Hirndrucksymptomenkomplexes“.

KAPITEL IV.

Topisch-diagnostische Bedeutung der Sprachstörungen.

Die Sprachstörungen, welche durch herdförmige Gehirnerkrankungen zur Entwicklung gelangen, müssen in anarthrische und aphatische unterschieden werden.

Die anarthrische Sprache, die Störung der Lautbildung, beruht auf einer Alteration der die Sprachmuskeln beherrschenden Neurone. Wir begegnen ihr deshalb bei der Bulbärparalyse infolge nucleärer, bei der Pseudobulbärparalyse infolge supranucleärer Läsionen. Letztere müssen beidseitig sein, da alle in Betracht kommenden Muskeln, mindestens in bezug auf ihre spezifische Sprachfunktion, von beiden Hemisphären aus beherrscht werden. An welchem Punkte der corticonucleären Neurone die bilateralen Unterbrechungen aber sitzen (ob im Operculum, im Centrum semiovale, in der inneren Kapsel, im Hirnschenkel, in der Brücke), ist für die Entstehung der Anarthrie (bzw. ihres leichteren Grades, der Dysarthrie) irrelevant. Eine Schilderung der anarthrischen Sprache geben wir bereits pag. 116.

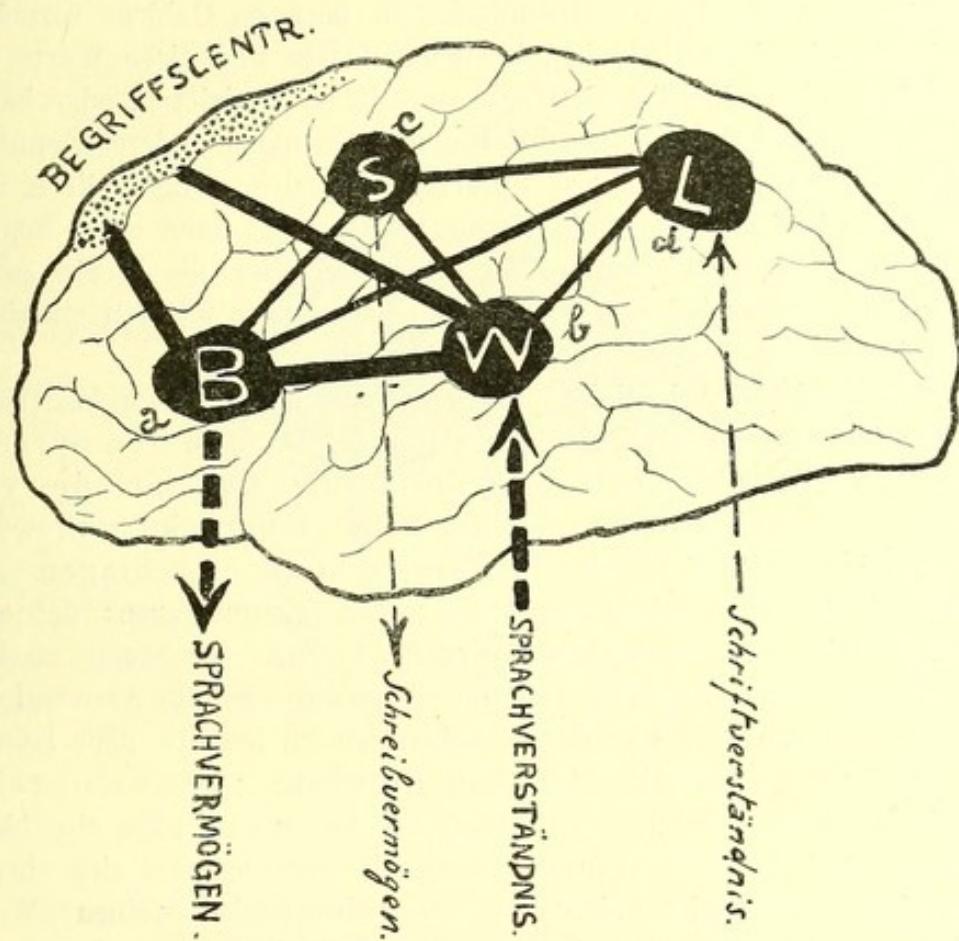
Ganz anders liegen die Dinge bei den Aphasien, die wir in motorische oder expressive und sensorische oder perceptive zu trennen haben.

a) Bei der motorischen Aphasie liegt die Unmöglichkeit vor, Begriffe in Worte umzusetzen. Zwar kann der Kranke Laute von sich geben (ist also nicht stumm geworden) und seine Sprachmuskeln sind durchaus nicht gelähmt. Ihr zum Sprechen notwendiges geregeltes Zusammenarbeiten ist jedoch unmöglich geworden; hat der Patient als Kind nach und nach lernen müssen, wie man die Worte mit den Sprachwerkzeugen formt, so sind ihm jetzt die kinästhetischen Erinnerungsbilder (siehe pag. 159) für das beim Sprechenlernen Aufgenommene abhanden gekommen. Den Gegensatz zwischen dieser Sprachstörung und derjenigen des Anarthrischen vermag die französische Sprache in viel kürzerer und prägnanterer Weise auszudrücken, als die deutsche: „l'aphasique ne sait plus parler, l'anarthrique ne peut plus parler.“

b) Bei der sensorischen Aphasie ist nicht das Sprachvermögen, sondern das Sprachverständnis verloren gegangen. Hierbei hört zwar der Kranke das zu ihm gesprochene Wort wohl, kann es aber nicht mehr verstehen, da es im Bewußtsein die ihm zukommenden Vor-

stellungen nicht mehr auslöst. Die Muttersprache klingt ihm, wie dem Gesunden eine fremde Sprache, von der er gar nichts oder nur wenig gelernt hat. Er hat das Gedächtnis für die Bedeutung der Worte verloren. — Sensorische Aphasie geht oft mit Paraphasie einher, d. h. der Patient „verspricht“ sich beständig beim Reden und bringt statt der Worte, die am Platze wären, andere, eventuell ähnlich lautende hervor. Das hängt damit zusammen, daß wir unbewußt das Wort, das wir aussprechen wollen, zuerst innerlich erklingen lassen, und zwar vermittelst des Klangbildzentrums (=sensorischen Sprachzentrums). Wo dieses nicht mehr funktioniert, kommt es leicht zum Vorbringen falscher Worte, was der Patient wiederum deshalb nicht merken kann, weil er ja infolge seiner sensorischen Aphasie auch sein eigenes Wort nicht „versteht“.

Das **motorische Sprachzentrum** (vorderes Sprachzentrum, *Brocasches Zentrum*), welches als Depot kinästhetischer Erinnerungsbilder die Synergie der Artikulationsmechanismen beherrscht, liegt im Fuß (d. h. im hinteren, ans Operculum grenzenden Teile) der linken untersten Frontalwindung (cf. Fig. 68), greift aber wahrscheinlich auch auf benachbarte Teile der Insel, der zweiten Stirnwindung und des Gyrus praecentralis über; das **sensorische Sprachzentrum** (hinteres Sprachzentrum, *Wernickesches Zentrum*), wo die das Sprachverständnis ermöglichen Klangbilder aufbewahrt werden, findet sich an der auf obiger Abbildung mit W. bezeichneten Partie der linken oberen Schläfenwindung.


Zerstört ein pathologischer Prozeß das vordere Sprachzentrum, so entsteht motorische, vernichtet er das hintere, so kommt es zu sensorischer Aphasie, gehen aber beide Zentren zugrunde, so erlischt sowohl das Sprachvermögen, als das Sprachverständnis und man spricht dann von **Totalaphasie**.

A priori sollte man nun denken, daß eine Zerstörung der vom *Brocaschen Zentrum* ausgehenden oder zum *Wernickeschen Zentrum* hinziehenden Faserzüge die gleiche Symptomatologie ergeben sollte, wie der Untergang dieser Rindenbezirke selbst. Dem ist aber nicht so, und wir sind befähigt, die corticale motorische und sensorische Aphasie einerseits von der subcorticalen motorischen und sensorischen Aphasie anderseits zu differenzieren.

In einem Leitfaden der Lokalisationslehre ist eine genaue Darstellung der Symptomatologie dieser einzelnen Aphasieformen und ihres psychophysiologischen Zustandekommens nicht am Platze; es genügt, die prinzipiell wichtigen Verhältnisse festzulegen.

Wie aus Fig. 68 ersichtlich, ist das Zentrum der motorischen Aphasie (B) nicht nur mit den corticalen Zentren für die Lippen-, Zungen- und Kehlkopfmuskeln, dasjenige der sensorischen (W) nicht nur mit der akustischen Rindenzone verbunden, sondern es kommunizieren auch diese beiden Rindenpartien durch Assoziationsfasern 1. unter-

Fig. 68.

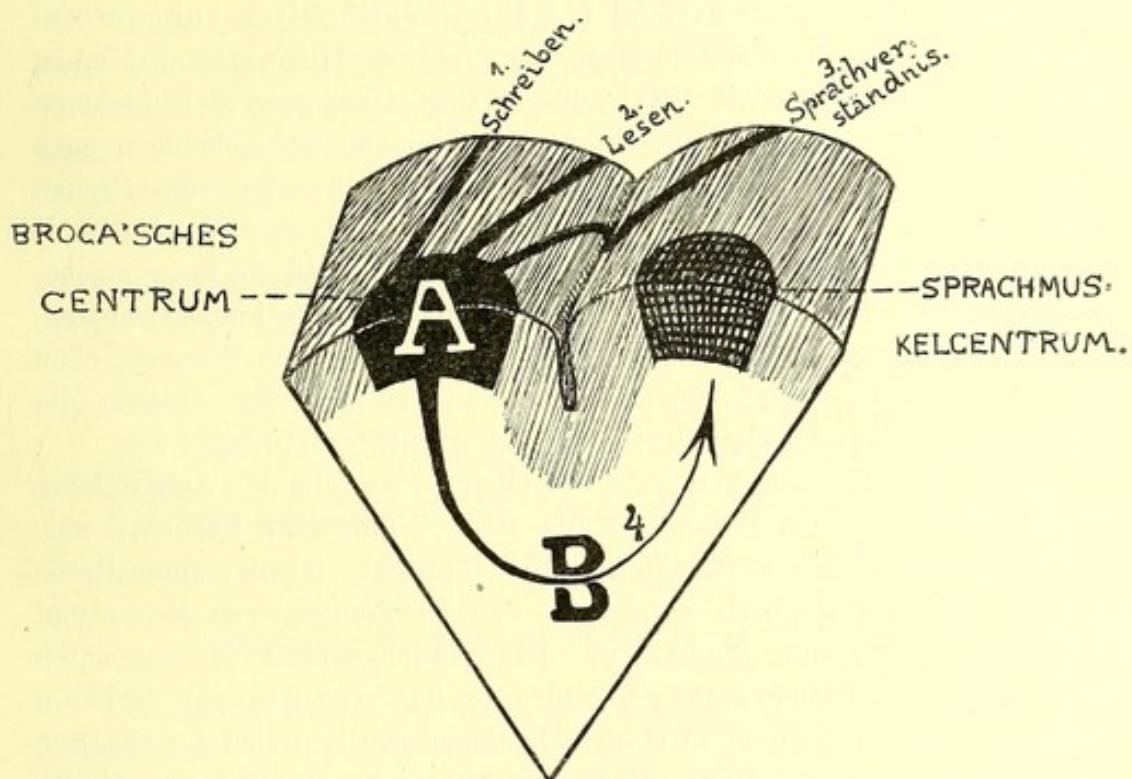
Die corticalen Sprachzentren und ihre Verbindungen.

B = Brocasches Zentrum. W = Wernickes Zentrum. L = Lesezentrum. S = Schreibzentrum. a = 3. (untere) Stirnwindung. b = 1. (obere) Schläfenwindung. c = vordere Zentralwindung. d = Gyrus angularis.

einander, 2. mit den höheren psychischen Zentren der Stirnrinde, dem sogenannten „Begriffszentrum“, und 3. mit den corticalen Apparaten, die das Schreiben und Lesen ermöglichen (S und L). Ein eigentliches Lesezentrum stellt der linke Gyrus angularis dar, das Erinnerungsfeld für die Erkennung der Schriftzeichen, dessen Zerstörung Alexie, Wortblindheit, hervorruft (vgl. oben pag. 184). Ein „Schreibzentrum“ wurde

früher im Fuße der linken mittleren Stirnwindung angenommen, doch ist diese Annahme als irrig erkannt worden und das Schreibzentrum ist wohl mit dem Hand- und Fingerzentrum im linken Gyrus praecentralis (*c* und *d* auf Fig. 59) identisch.

Das Netz dieser verschiedenen Assoziationsfasern kommt für diejenigen psychischen Funktionen in Betracht, die wir kurz als die „innere Sprache“ bezeichnen können. Darunter verstehen wir alles, was unter der Schwelle des Bewußtseins in unserem Gehirne vorgehen muß, bevor wir einen Gedanken in Worte fassen und diese Worte auf mündlichem oder schriftlichem Wege nach außen projizieren, oder bevor wir von gesprochenen oder geschriebenen Äußerungen anderer Kenntnis nehmen können. Diese innere Sprache baut sich ontogenetisch auf, indem das Kind zuerst gehörte Worte nachspricht, dann einen Begriff daran knüpft, dann bei Auftauchen dieses Begriffes die Worte selbst reproduziert, später beim Schreiben- und Lesenlernen mit den einzelnen Lauten bestimmte Symbole verbindet etc.


Von kapitaler Wichtigkeit für das Verständnis der Aphasiefrage ist nun die Tatsache, daß alle im Dienste der inneren Sprache stehenden Assoziationsfasern durch die Gehirnrinde verlaufen, während die im Dienste der äußeren Sprache stehenden Neurone ihren Weg durch die Marksubstanz einschlagen. Auf Fig. 69 ist dies schematisch angedeutet; man erkennt daraus, daß eine corticale Läsion des *Brocaschen Zentrums* (A) mehr Symptome machen muß, als eine subcorticale (B). Denn durch erstere wird das Assoziationsnetz der „inneren Sprache“ durchbrochen, durch letztere aber keineswegs tangiert, so daß die subcorticale motorische Aphasie eine reine Aphasie, eine ausschließliche Aufhebung der äußeren Sprache, eine bloße Wortstummheit bedeutet. Mutatis mutandis unterscheidet sich ebenso die corticale sensorische Aphasie von der subcorticalen, reinen „Worttaubheit“. Also kann der allgemeine Satz aufgestellt werden: *Corticale Aphasien sind niemals rein.*

Am schwersten leidet die „innere Sprache“ bei Totalaphasie; hier pflegt der Kranke auch der Mienen- und Geberdensprache verlustig zu gehen und sogar das Verständnis dafür einzubüßen (motorische und sensorische Amimie). Der Gesamtzustand, der jede Möglichkeit einer Verständigung mit Nebenmenschen ausschließt, heißt *Asymbolie* oder *Asemie*.

Die Agraphie und Alexie, welche die corticale sensorische Aphasie begleiten, sind beide sehr augenfällig. Bei der corticalen motorischen Aphasie pflegt dagegen nur die Agraphie hochgradig

zu sein; das Lesen ist dagegen viel weniger beeinträchtigt und es bedarf oft besonderer Methoden, um diese Störung evident zu machen: so können z. B. gedruckte Worte verstanden werden, geschriebene nicht, oder das Schriftverständnis wird aufgehoben, wenn man die Silben voneinander distanziert etc. Die Störung des Sprechens bei der corticalen sensorischen Aphasie ist stets eine offenkundige, in Gestalt der oben erwähnten Paraphasie; bei der corticalen motorischen Aphasie kann man dagegen die Erschwerung des Sprachverständnisses meist erst dann

Fig. 69.

Sitz einer corticalen motorischen Aphasie (A, sperrt 1, 2, 3 und 4) und einer subcorticalen motorischen Aphasie (B, sperrt nur 4).

konstatieren, wenn man mit dem Patienten sehr rasch oder in komplizierten Sätzen spricht.

Anders verhält es sich mit den durch subcorticale, die Rinde selbst nicht tangierende Affektionen des linken Stirn- oder Schläfenlappens hervorgerufenen Aphasien. Im ersten Falle entsteht die reine motorische Aphasie = Wortstummheit, im letzteren die reine sensorische Aphasie = Worttaubheit. In beiden Fällen ist die innere Sprache intakt, sind Lesen und Schreiben ungestört möglich und nur das Sprachvermögen, bzw. Sprachverständnis ist aufgehoben. Außer-

dem fehlt der reinen Worttaubheit die Paraphasie (siehe oben), weil das sensorische Rindenzentrum hier eben seine anregende und kontrollierende Einwirkung auf das motorische weiter auszuüben vermag. Bei reiner Wortstummheit hat der Kranke, obwohl er die Worte nicht aussprechen kann, im Gegensatze zum Patienten mit corticaler motorischer Aphasie die entsprechenden kinästhetischen Erinnerungsbilder behalten; vermag er doch mit den Fingern die Silbenzahl des Ausdruckes anzugeben, den auszusprechen er vergebens trachtet (*Dejerine-Lichtheimsches Phänomen*).

Um topisch-diagnostischen Fehlschlüssen vorzubeugen, muß hier noch auf zweierlei hingewiesen werden: 1. Sehr oberflächlich subcortical sitzende Herde, d. h. solche im Mark der einzelnen Hirnwindung, können in ihrer physiopathologischen Wirkung corticalen Läsionen gleichkommen und „unreine“ Aphasien hervorrufen. 2. Es können wahrscheinlich auch unvollständige Zerstörungen des motorischen oder sensorischen Sprachzentrums ausnahmsweise reine Wortstummheit bzw. Worttaubheit verursachen. Man kann in solchen Fällen annehmen, daß die Assoziationsfasern zwischen dem *Brocaschen* Zentrum und den Sprachmuskelzentren, resp. zwischen den Rindenfeldern des *Cochlearis* und dem *Wernickeschen* Zentrum intracortical unterbrochen wurden, ohne daß deshalb die Funktion der betreffenden Sprachzentren vernichtet worden wäre.

Der weitere, zum Teil sehr komplizierte Ausbau der Aphasielehre tangiert die topische Diagnostik bis jetzt kaum. Für Formen, wie: Leitungsaphasie, trans corticale Aphasien, optische, taktile, amnestische Aphasie etc., die dadurch entstehen, daß die Zentren von *Broca* und *Wernicke* voneinander, oder von den Rindengebieten der höchsten psychischen Funktionen („Begriffszentren“), oder von den Sinnessphären abgeschnitten sind, können wir nicht Läsionen von typischer Lokalisation verantwortlich machen. Diesen klinischen Bildern liegen vielmehr mannigfache und in ihrer Erscheinungsweise oft variable, Leitungsunterbrechungen zugrunde. Die trans corticale Aphasien sind überdies wahrscheinlich meistens Zwischenstadien bei in Besserung begriffenen corticalen Aphasien.

Die linkseitige Rindenlokalisation der psychischen Sprachmechanismen ist nur beim Rechtshänder die Regel. Der Linkshänder hat seine Sprachosphäre rechts. Immerhin hat man auch schon Linkshänder bei Zerstörung der linken untersten Stirnwindung motorisch-aphatisch werden sehen. Es darf darum auch nicht wundernehmen und nicht gegen die *Brocasche* Lehre ins Feld geführt werden, daß Rechtshänder nach Zerstörung der linken untersten Stirnwindung zuweilen nicht aphasisch geworden sind — sie hatten eben ausnahmsweise ihr Sprach-

vermögenszentrum links, wie denn überhaupt eine ursprünglich doppelseitige Anlage dieser corticalen Sphären mit größter Wahrscheinlichkeit angenommen werden darf.

In lokalisatorischer Beziehung läßt sich nach dem soeben Ausgeführten das Fazit der Lehre von den Sprachstörungen in folgenden Sätzen zusammenfassen:

1. Motorische Aphasie deutet auf eine Läsion der hinteren unteren Stirnlappenpartie, bei Rechtshändern links, bei Linkshändern rechts.
2. Sensorische Aphasie deutet auf eine Läsion der hinteren oberen Schläfenlappenpartie, bei Rechtshändern links, bei Linkshändern rechts.
3. In den seltenen Fällen, wo diese Aphasien rein sind (d. h. nicht mit Störungen der inneren Sprache, des Lesens und Schreibens kompliziert), ist mit größter Wahrscheinlichkeit eine subcorticale, aber nicht zu oberflächlich sitzende, Läsion anzunehmen. Ausnahmsweise kann es sich um sehr kleine corticale Läsionen handeln.
4. Das Gesetz von der Linkseitigkeit dieser Lokalisationen bei Rechtshändern und von ihrer Rechtseitigkeit bei Linkshändern erfährt einige seltene Ausnahmen.

KAPITEL V.

1. Topisch-diagnostische Bedeutung einiger seltenerer cerebraler Symptome.

a) Cerebrale Störungen des Gehörs und Geruchs.

Einseitige Zerstörung der akustischen Rindensphäre (siehe Fig. 59) oder der aus dem hinteren Vierhügel und Corpus geniculatum mediale zu ihr ziehenden Neurone hat Schwerhörigkeit oder Taubheit auf der anderen Seite zur Folge. Diese gekreuzte Hemianakusis (wir erwähnten sie schon als Symptom von Herden im Carrefour sensitif, pag. 173 u. 174) hat jedoch nur flüchtigen Charakter, was uns zur Annahme zwingt, daß jeder Cochlearis mit beiden akustischen Arealen der Temporalrinde verbunden ist, wenn auch die Beziehungen zum kontralateralen überwiegen. Die Verhältnisse sind somit etwas komplizierter, als auf Fig. 49 angegeben. — Dauernde „Rindentaubheit“ entsteht nur durch doppelseitige totale Zerstörung jenes Rindenfeldes.

Was das olfaktorische Rindenfeld im Gyrus uncinatus anbelangt, so steht fest, daß einseitige Zerstörung desselben keine Geruchsstörungen verursacht und Anosmie nur durch beidseitige totale Zerstörung dieses

corticalen Bezirkes entstehen kann. — Von Geschmacksstörungen als cerebralen Herdsymptomen wissen wir überhaupt nichts.

b) Apraxie.

Als Apraxie bezeichnen wir eine Störung, bei der die Extremitäten, und zwar speziell die Hände, zwar zu korrekten Einzelbewegungen, nicht aber zu bestimmten Zweckbewegungen befähigt sind. Ein derartiger Kranke hat das Gedächtnis für die zum sachgemäßen Gebrauch einer Schere, zum Winken, Grüßen etc. notwendigen Synergien und Kombinationen von Einzelbewegungen verloren, er steckt die Zahnbürste wie eine Zigarette in den Mund etc. Es bestehen somit große Analogien mit der motorischen Aphasie.

Man unterscheidet klinisch 3 Arten von Apraxie: 1. Die ideatorische Apraxie, die dem Bilde einer hochgradigen Zerstreutheit ähnelt, und gewöhnlich erst bei komplizierteren Bewegungen auftritt. Dabei ist der Ideenentwurf zu den auszuführenden Handlungen gestört, die Willensimpulse sind unrichtig. Anatomisch handelt es sich um diffuse Prozesse (senile Demenz, progressive Paralyse, diffuse Gehirnarteriosklerose); diese Apraxievarietät hat deshalb keine topisch-diagnostische Bedeutung.

2. Die motorische oder gliedkinetische Apraxie. Die Bewegungen einer Extremität werden so vollzogen, wie wenn sie der Kranke zum ersten Male versuchte; grobe Bewegungen fallen sehr ungelenk aus, feine Verrichtungen aber (Schreiben, Einfädeln, Nähen) kommen gar nicht zustande. Anatomische Grundlage dieser Störung ist eine Schädigung des betreffenden Gliedmaßenzentrums, die nicht zu deren Lähmung ausreicht, wohl aber zur Löschung jener kinästhetischen Erinnerungsbilder.

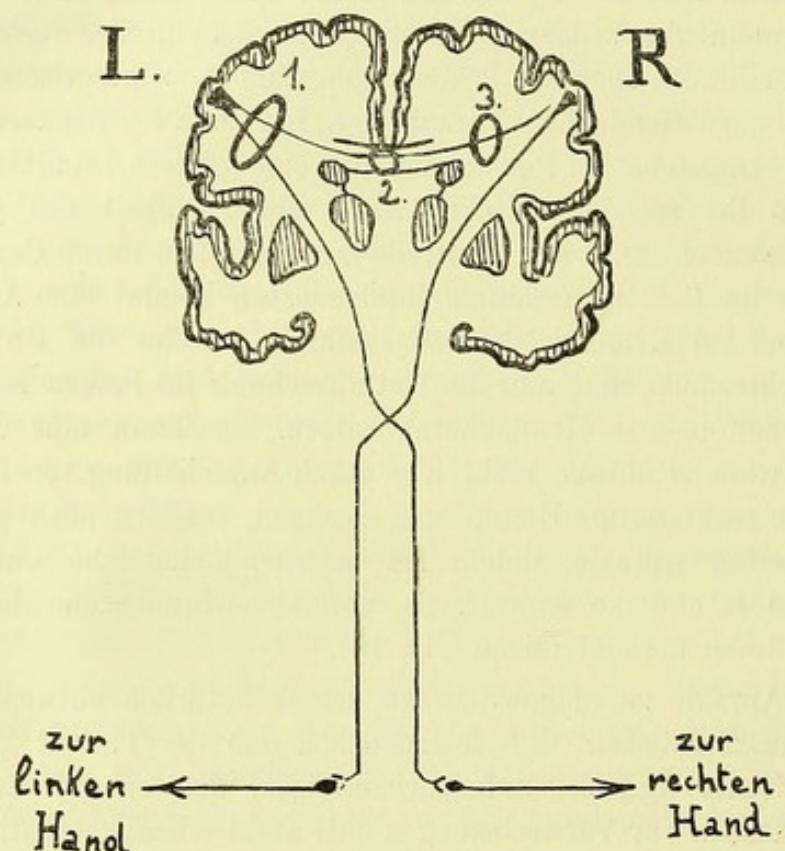
3. Die ideo-motorische oder ideo-kinetische Apraxie. Hierbei sind sowohl der Ideenentwurf, als auch das Gliedzentrum mit seinem Besitzstande an kinästhetischen Erinnerungsbildern intakt, dafür aber deren Verbindungen gelöst. Darum werden einfache Akte, deren Ausführung mnestisch im Gliedmaßenzentrum niedergelegt ist, korrekt ausgeführt, jedoch innerhalb größerer Bewegungsfolgen unrichtig angebracht. Die richtigen Befehle gelangen nicht mehr aus den Ideationszentren in das Gliedzentrum; dieses ist bis zu einem gewissen Grade vom Gesamtgehirn autonom geworden.

Die ideo-motorische Apraxie findet sich nun unter zwei verschiedenen Bedingungen:

Erstens im allgemeinen dann, wenn die sensomotorische Rinde zwar in ihrer Integrität erhalten, aber von ihren Verbindungen mit anderen Rindenteilen abgeschnitten ist, namentlich mit den Depots der Wort- und Gegenstandsvorstellungen im Schläfen- und Hinterhauptsappen. Darum haben Scheitellappenherde zuweilen eine Apraxie der gegenüberliegenden Hand zur Folge. Die („apraktische“) Agraphie, welche als Teilerscheinung einer solchen Störung auftreten kann, ist pathogenetisch von der „aphatischen“ Agraphie zu trennen.

Zweitens kommt eine Apraxie der linken Hand dann zur Beobachtung, wenn ihr sensomotorisches Rindenfeld in der rechten Hemisphäre zwar intakt, aber der Beziehungen zum sensomotorischen Rindenfelde der linken Hemisphäre beraubt ist. Die linke Hemisphäre bekundet offenbar (wenigstens bei Rechtshändern) eine größere Dignität auch dadurch, daß ihr sensomotorisches Areal die Tätigkeit des gegenüberliegenden kontrolliert. Diese Kontrolle geschieht nur durch Commissuralfasern, die im Balken verlaufen. Infolgedessen kommt eine Apraxie der linken Hand bei Krankheitsherden zustande, welche die Balkenfaserung durchtrennen, mag nun die Unterbrechung im Balken selbst* oder in einer der beiden Hemisphären sitzen. So kann eine Läsion im linken Centrum semiovale nicht nur durch Ausschaltung von Pyramidenfasern eine rechtsseitige Hemiplegie erzeugen, sondern auch gleichzeitig eine linkseitige Apraxie, indem sie interhemisphärische Commissuralfasern zerstört und die rechte sensomotorische Rindenzone der Führung durch die linke beraubt (siehe Fig. 70).

Um Apraxie zu diagnostizieren, ist es natürlich notwendig, Worttaubheit auszuschließen, d. h. festzustellen, daß der Patient die Befehle versteht, ferner Agnosie, d. h. nachzuweisen, daß er die Gegenstände richtig erkennt. Vor Verwechslungen mit ataktischen, choreatischen und athetotischen Bewegungen muß man natürlich auch auf der Hut sein.


Die Apraxiefrage ist im übrigen noch nicht ganz geklärt und noch in vollem Ausbau begriffen.

* Für den Sitz der Unterbrechung im Balken spricht die Vergesellschaftung der Apraxie mit einer doppelseitigen Hemiparese ohne Hyperreflexie noch Babinski-Phänomen. Je nach dem mehr oder weniger medianen Sitz der Läsion ist die Intensität der Parese auf beiden Seiten gleich oder verschieden; es kann auch einseitige Hemiparese sich mit kontralateralen motorischen Reizsymptomen (z. B. Zuckungen oder Hemichorea) kombinieren. Die Sensibilität bleibt bei Balkenläsionen in der Regel intakt, ebenso die Hirnnervenfunktion; nur bei Einbegreifen des vordersten Teiles des Corpus callosum findet man den Facialis paretisch.

c) Intelligenz- und Charakterstörungen.

Psychische Störungen treten namentlich bei Herden in den vorderen Partien des Stirnlappens in den Vordergrund. Freilich bedarf es dazu in der Regel beidseitiger Herde bzw. muß eine einseitige Läsion die symmetrischen kontralateralen Teile in Mitleidenschaft ziehen (Druck

Fig. 70.

Drei Herde, die Apraxie der linken Hand bedingen können.
(Herd 1 überdies Lähmung der rechten.)

eines Tumors). Dann pflegt sich ein ausgesprochener Intelligenzdefekt nach Art desjenigen der progressiven Paralyse (bei der ja hochgradige Stirnhirnatrophie gefunden wird) einzustellen und überdies (namentlich bei Tumoren) manchmal die sogenannte „Witzelsucht“ oder „Moria“ (Neigung zu läppischen Scherzen mit Verlust der ethischen Gefühle und Freude an anstößigem Benehmen). Einseitige Stirnlappenherde können jedoch ganz latent bleiben.

2. Symptome durch Läsionen der Stammganglien.

Zurzeit sind wir nicht in der Lage, einen Krankheitsherd mit auch nur annähernder Bestimmtheit in das Corpus striatum (Nucleus caudatus und Nucleus lentiformis) zu verlegen. Denn sensible oder motorische Störungen, die bei Krankheitsprozessen innerhalb dieser Gebilde konstatiert worden sind, müssen als durch Nachbarschaftswirkung auf die das Corpus striatum durchziehende innere Kapsel entstanden aufgefaßt werden. Können sie doch in identischer Erscheinungsweise auch bei der Capsula interna benachbarten Herden auftreten, die weder im Linsenkern, noch im Schwanzkern ihren Sitz haben. Nachbarschaftswirkung auf vorüberziehende corticonucleäre Neurone macht es auch verständlich, daß doppelseitige Striatumherde zu pseudobulbär-paralytischen Symptomen Anlaß geben können. — Bei symmetrischen multiplen arteriosklerotischen Erweichungsherden in beiden Corpora striata (wobei übrigens meistens auch solche im Sehhügel vorhanden waren), hat man zuweilen eine dauernde Incontinentia urinaria beobachtet, bei der die Urinentleerung automatischen Charakter zeigte (aktive oder intermittierende Inkontinenz, siehe oben pag. 74). In mehr oder minder gleichen Intervallen werden, unter regelmäßigem Zurückbleiben von Residualharn, annähernd gleiche Harnmengen plötzlich unwillkürlich im Strahle entleert, und die Fähigkeit, spontan zu urinieren, hört auf. Die subcorticale Blaseninnervation im Corpus striatum (und wohl auch im Thalamus opticus, siehe oben pag. 72) ist offenbar eine bilaterale.

Wir haben schon gesagt, daß Thalamusherde, wenn sie im Pulvinar sitzen, homonyme laterale Hemianopsie auf der Gegenseite hervorrufen (pag. 183), ebenso daß sie durch Wirkung auf die innere Kapsel gekreuzte unvollständige Hemiplegie nach sich zu ziehen pflegen, auf deren Boden sich nicht selten hemiathetotische (ausnahmsweise hemichoreatische) Phänomene entwickeln. Als direkte Thalamussymptome sind aber aufzufassen:

1. Die Aufhebung gewisser „Psychoreflexe“. Zuweilen ist nämlich bei Thalamusherden folgende paradoxe Erscheinung vermerkt worden: bei unbeabsichtigtem Lachen und Weinen bleibt die untere Facialismuskulatur der Gegenseite maskenartig starr und unbeweglich, während sie willkürlich in jeder Weise in Aktion gesetzt werden kann. Da das umgekehrte Verhalten zuweilen bei capsulären Hemiplegien konstatiert werden kann, ist man zur Annahme berechtigt, daß hier

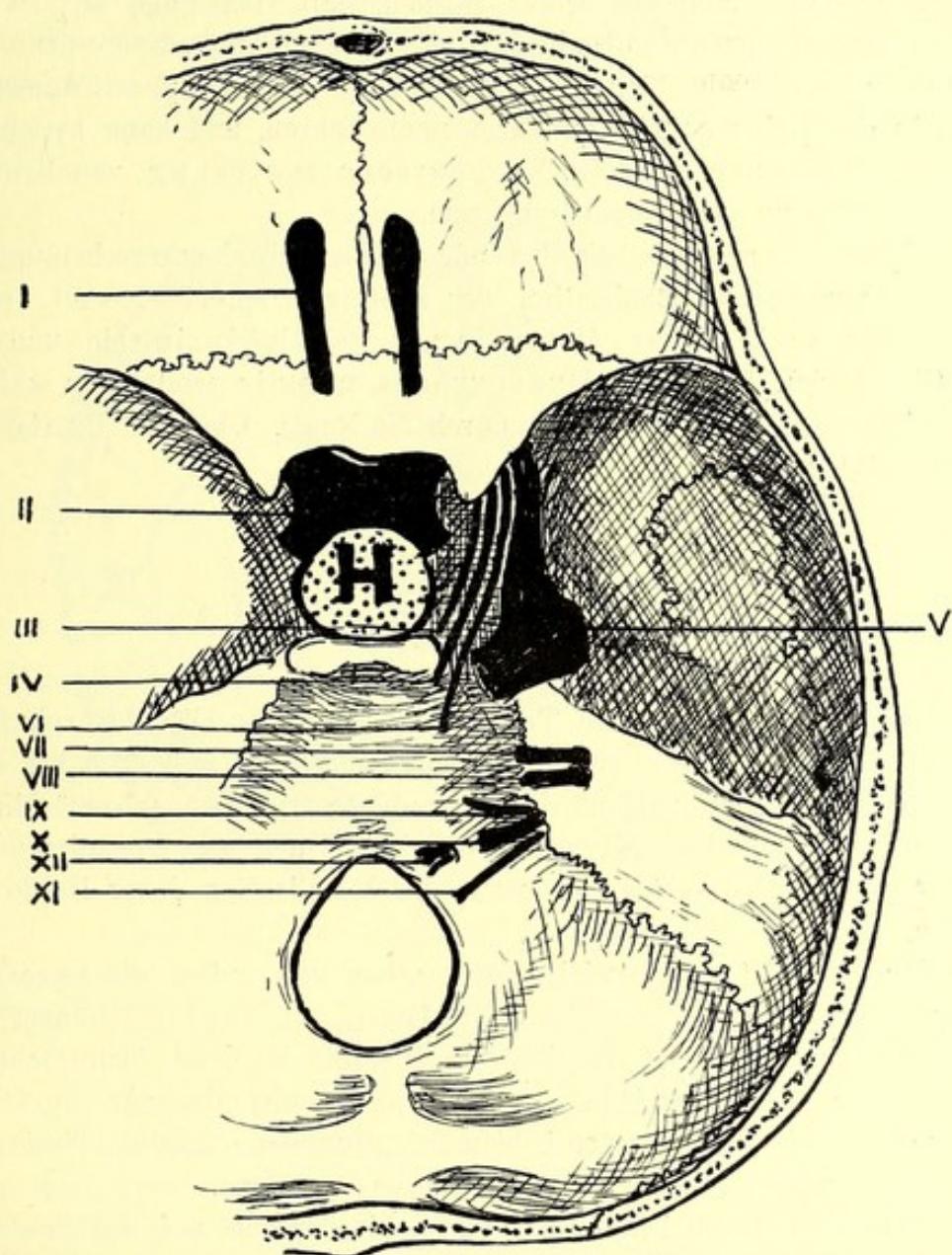
tatsächlich die Unterbrechung eines durch den Thalamus ziehenden Reflexbogens anzuschuldigen ist.*

2. Eine gekreuzte, persistierende Hemianästhesie, die für Berührung, Schmerz und Temperatur gewöhnlich viel weniger ausgesprochen ist, als für die Tiefensensibilität. Aus der Alterierung der letzteren ergibt sich halbseitige Ataxie und Astereognosie.

3. Äußerst heftige, kontinuierliche, aber zeitweise exazerbierende und gegen Antalgetica refraktäre Schmerzen. Diese „zentralen Schmerzen“ werden in die kontralaterale Körperhälfte projiziert, stempeln also deren Hemianästhesie zu einer „Hemianaesthesia dolorosa“ (cf. pag. 34).

Während die Störung der Psychoreflexe für einen Sitz des Herdes im vorderen Thalamusteile spricht, kommen die beiden letzterwähnten Symptome vorzugsweise bei Läsionen der hinteren Sehhügelpartie zur Beobachtung. In ihrer Natur als Ausfalls- und Reizsymptome stehen sie mit der Funktion des Thalamus im Einklange, der mächtigen Schaltstation, durch welche beinahe die gesamte sensible Bahn vor ihrem Divergieren zur corticalen Gefühlssphäre passieren muß.

3. Symptome durch Läsion der Hypophysis.


Handelt es sich um Tumoren, so pflegt es in erster Linie bald zur Beeinträchtigung benachbarter Nerven zu kommen. Die unmittelbar anliegende Sehnervenkreuzung ist besonders exponiert, woraus frühzeitige Sehstörungen resultieren: am charakteristischsten ist die heteronyme bitemporale Hemianopsie; doch kann auch, durch totale Chiasmazerstörung, beidseitige Amaurose entstehen, oder durch halbseitige Vernichtung, unilaterale Erblindung mit Hemianopsie des anderen Auges; Hypophyscysten mit starker lateraler Ausbuchtung können sogar nasale heteronyme Hemianopsie erzeugen. Die Entstehung dieser Symptomenkomplexe ist oben (pag. 182—183) erörtert worden. — Die von hinten her auf ihrem Wege zur Orbita an der Hypophysis vorbeiziehenden Augenmuskelnerven (Oculomotorius, Trochlearis, Abducens) können durch deren Geschwülste unschwer gelähmt werden, ebenso der erste Trigeminusast (siehe Fig. 71).

Bei vielen Erkrankungen der Zirbeldrüse (Blutungen, kolloide oder fibröse Entartung, Tumoren) kann der typische Symptomenkomplex der Akromegalie (Riesenwachstum von Händen, Füßen, Zunge, Nase, Unterkiefer) zustande kommen. In anderen Fällen aber kommt es zum

* Vielleicht können irritierende Läsionen in der Nähe dieses thalamischen Reflexzentrums zu Zwangslachen und Zwangswinen führen.

„hypophysären Eunuchismus“, zur sog. „*Degeneratio adiposogenitalis*“. (Exzessive Fettentwicklung nebst Zurückbleiben in der

Fig. 71.

Topographie der Schädelbasis.

H = Hypophysis. I—XII = Hirnnerven.

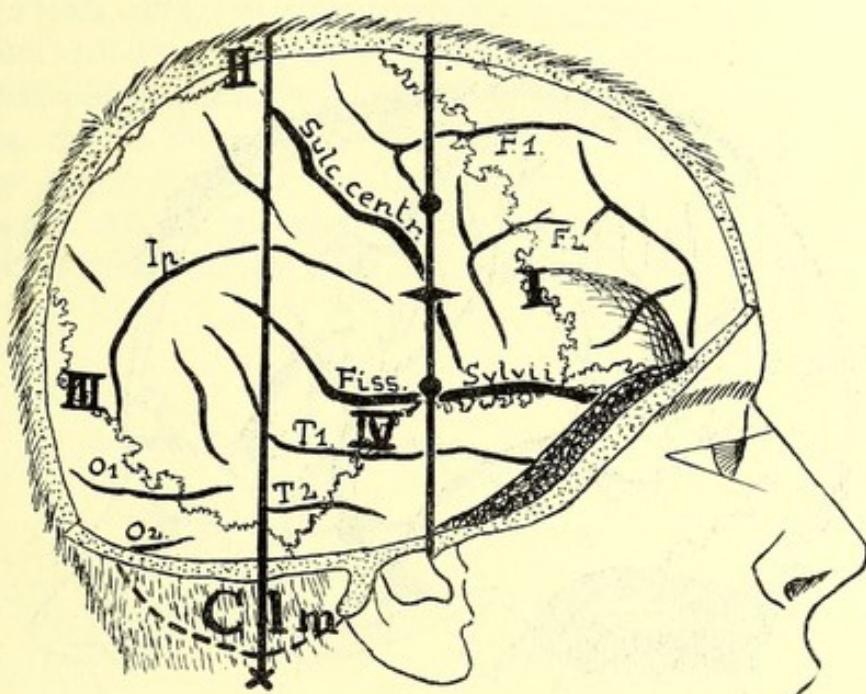
Ausbildung der Genitalien und der sekundären Geschlechtscharaktere [Pubes, Achselbehaarung].) Es scheint, daß die Akromegalie das Resultat

einer pathologisch angeregten übermäßigen, inneren Sekretion der Hypophyse darstellt, also einen hyperhypophysären Symptomenkomplex, die Degeneratio adiposo-genitalis dagegen umgekehrt einen hypohypophysären, d. h. den Ausdruck einer sekretorischen Insuffizienz des Hirnanhangs. Es muß immerhin betont werden, daß viele Fälle von Hypophysistumoren ohne Akromegalie und ohne Degeneratio adiposo-genitalis bekannt sind. Auch können versprengte Hypophysenadenome (z. B. in der Keilbeinhöhle) zu Akromegalie führen, und kann hypophysärer Eunuchismus eine bloße Nachbarschaftswirkung von Krankheitsprozessen an der Schädelbasis sein.

Weitere Symptome, die bei allgemeinen Hirndruckerscheinungen für die hypophysäre Lokalisation des Prozesses sprechen, sind: eine hartnäckige Schlafsucht; Polyurie nebst Polydipsie (hie und da mit Glykosurie); ferner die Hydrorrhoea nasalis (zeitweiser Abfluß von hellem Liquor cerebrospinalis durch die Nase). Über die Röntgendiagnostik s. u. (pag. 201).

ANHANG.

I.


Die cranio-cerebrale Topographie ist für alle chirurgischen Eingriffe am Gehirn von erheblicher Bedeutung. Hat sich doch bei den operativem Vorgehen zugänglichen Krankheitsprozessen (oberflächliche Blutergüsse, Tumoren, Abscesse) die Wahl der zu trepanierenden Schädelpartie selbstverständlich nach der Lokalisation jener Herde zu richten.

Praktisch ist es am wichtigsten, schon von außen die Lage der Fissura Sylvii und des Sulcus centralis Rolandi bestimmen zu können; denn erstens ist die Großhirnchirurgie bis jetzt hauptsächlich eine Chirurgie der Zentralwindungen und des Schläfenlappens, zweitens aber wird man sich von jenen beiden Hauptfurchen aus ohne Schwierigkeit die Lage der anderen zu konstruieren vermögen.

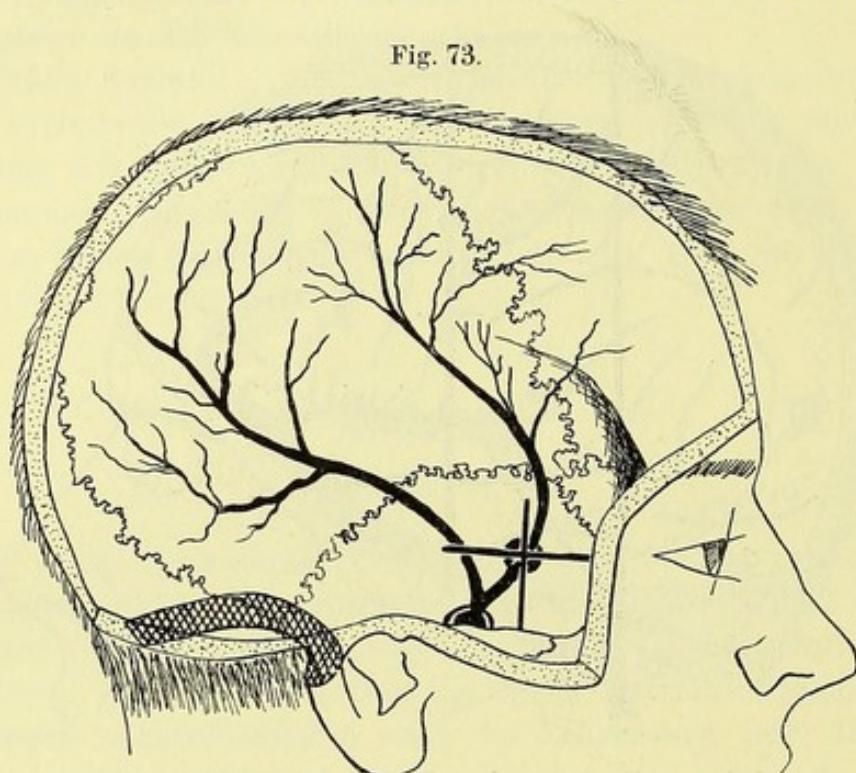
Fig. 72 soll die Projektion der Gehirnfurchen auf die Schädeloberfläche vor Augen führen. Die beiden darauf sichtbaren senkrechten Linien, die sogenannte vordere und hintere Ohrlinie, werden behufs Feststellung der Lage der zwei Hauptfurchen folgendermaßen konstruiert. Erstere steigt vom vorderen Rande des äußeren Gehörgangs in der Weise zum Schädeldache empor, daß sie in einem rechten Winkel auf die Sagittallinie (Verbindung der Nasenwurzel und der Protuberantia

occipitalis externa) stößt; letztere wird in analoger Weise, aber vom hinteren Rande des Warzenfortsatzes ausgehend, gezogen. Die Punkte *a* und *b* teilen die vordere Ohrlinie in drei gleiche Teile, Punkt *c* halbiert sie. Trepaniert man nun zwischen Punkt *c* und *b*, so wird man auf das untere Ende der Zentralwindungen stoßen, das im allgemeinen beim Erwachsenen ca. 7 cm oberhalb des Gehörganges liegt. Manchmal findet sich das untere Ende der Zentralfurche direkt in der vorderen

Fig. 72.

Projektionen der Gehirnfurchen auf die Schädeloberfläche.

I = Kranznaht. II = Pfeilnaht. III = Lambdanaht. IV = Schläfennaht. F¹ und F² = erste und zweite Frontalfurche. O¹ und O² = erste und zweite Occipitalfurche. Ip = Interparietalfurche. T¹ und T² = erste und zweite Temporalfurche. K = Kleinhirn. X = hinterer Rand des processus mastoideus.


Ohrlinie; auf unserer Abbildung ist es weiter frontalwärts gerückt, wie man denn überhaupt den von uns dargestellten „frontopetalen“ Typus der Gehirnlage von einem „occipitopetalen“ unterscheiden kann, bei dem die verschiedenen Furchen und Windungen etwas mehr nach hinten liegen.

Die hintere Ohrlinie geht durch das obere Ende der Zentralfurche hindurch. Auf die Fissura Sylvii wird man 1—1½ cm unterhalb des unteren Endes des Sulcus centralis stoßen. Im übrigen liegt sie eine Strecke weit unter der Schläfennaht (Sutura squamosa). Unter dem

Tuber parietale pflegt das obere Ende der Fissura Sylvii, beziehungsweise der Gyrus supramarginalis zu liegen.

Einen Anlaß zu raschem chirurgischem Eingreifen können die Blutungen aus der Arteria meningea media geben (nach Schädelfrakturen etc.). Dieses Gefäß, ein Ast der Arteria maxillaris, gelangt durch das Foramen spinosum in die Schädelhöhle und teilt sich in einen vorderen und hinteren Ast. Um den gemeinsamen Stamm zu unterbinden, hat man dicht über der Mitte des Jochbogens einzugehen (cf. Fig. 70). Auf den vorderen Ast stößt man, wenn der Trepan an dem Kreuzungs-

Fig. 73.

Projektion der Arteria meningea media und des Sinus transversus auf die Schädeloberfläche.

punkte zweier Linien angesetzt wird, deren eine zweifingerbreit über dem Jochbogen demselben parallel verläuft, während die andere hinter dem Processus zygomaticus des Stirnbeins vertikal auf erstere errichtet wird.

Fig. 73 zeigt noch die Oberflächenprojektion des Sinus transversus, dessen Schonung bei Kleinhirnoperationen wichtig sein kann.

II.

Für die Lokalisation der Gehirntumoren kommt der Röntgen-diagnostik eine bedeutende Rolle zu. Direkte Röntgenoskopie der

Geschwülste ist zwar unmöglich (soweit letztere nicht etwa verkalkt sind), wohl aber können auf Grund der an den Schädelknochen sichtbaren Veränderungen wertvolle Schlüsse gezogen werden.

Am eindeutigsten sind umschriebene Zerstörungen der Schädelwand: Hypophysistumoren arrodieren oft die Sella turcica, Kleinhirnbrückewinkelgeschwülste die Hinterfläche der Sattellehne, Neubildungen des Cerebellums die Hinterhauptschuppe etc. Demgegenüber können circumscripte Verdickungen der Schädelwand im Bereiche von Geschwülsten sich finden, die von der Dura ausgehen; derartige Wucherungsprozesse können sich auch mit Usurierung von Knochensubstanz kombinieren. Zuweilen ist eine lokalisierte Vorwölbung und Verdünnung der Schädelkapsel an der einem Tumor entsprechenden Partie festgestellt worden. Endlich können die Venae diploëtiae, die, auf normalen Röntgenbildern kaum erkennbar, bei Gehirntumoren sich zuweilen dermaßen ausdehnen, daß sie als breite Streifen auf der Platte erscheinen, diese Dilatation gerade in der Nähe der Geschwulst am stärksten aufweisen.

Register.

(Die Ziffern bedeuten die Seitenzahlen.)

A.

- Abdominalreflex 65.
- Abduzens 91.
 - Lähmung 141, 156.
 - Kern 91, 138 ff.
- Abscessus cerebri 170, 198.
- Accessorius 85, 87, 111.
 - Kern 85, 87.
 - Lähmung 111.
- Achillessehnenreflex 65.
 - clonus 27.
- Acusticus 90, 124.
- Adams-Stokesche Krankheit 70.
- Adiadochokinesie 149.
- Adipositas 109, 197.
- Ageusie 112, 120, 135 ff.
- Agnosie 17, 193.
- Agraphie 188, 193.
- Akromegalie 196.
- Ala cinerea 88.
- Alexie 184, 187.
- Amimie 188.
- Amyotrophische Lateralsklerose 30.
- Anästhesie 16 ff.
 - dissozierte 32.
 - dolorosa 34.
 - perianogenitale 77.
- Anakusis 126.
- Analgesie 16, 32.
- Anarthrie 185.
- Aneurysmen 106, 118, 136, 183.
- Anidrosis 25, 71, 134.
- Anisokorie 67.
- Anosmie 191.
- Ansa hypoglossi 110.
- Aphasia 185 ff.
- Apomorphininjektion, diagnostische 113.
- Apoplexie 174 ff.
 - „seröse“ 177.
- Apraxie 173, 192 ff.
- Areflexie 20 ff., 35.
 - bei Kleinhirntumoren 149.

- Argyll-Robertsonsches Phänomen 181.
- Arterien des Gehirns 164 ff.
 - des Rückenmarks 15.
- Arteriosclerosis cerebri 169.
- Asemie 188.
- Assoziationsbahnen 10.
- Astereognosie 17, 169, 196.
- Asymbolie 188.
- Asynergie 17, 148.
- Ataxie 17, 32, 99, 109, 169.
 - cerebellare 33, 148 ff.
 - cerebrale 170.
 - locomotrice 33.
- Athetose 157, 179, 195.
- Atonie 19 ff., 29, 36.
- Atropininjektion, diagnostische 113.
- Augenmuskelkerne 137 ff.
- Augenmuskellähmung 141 ff.; cf. auch
 - Ophthalmoplegie.
 - konjugierte 141.
 - symmetrische 109.
- Augenmuskeln, Funktion 138 ff.
- Aura des Jacksonschen Anfalls 170, 172.
- Avellisscher Symptomenkomplex 118.

B.

- Babinskisches Phänomen 27, 30, 39, 108, 175, 193.
- Balken 162, 193.
- Bárányscher Versuch 144.
- Bellsche Lähmung 119.
- Benediktscher Symptomenkomplex 104.
- Biceps 52 ff.
- Bindarm 94.
- Bindegautreflex 132.
- Blase, Innervation 72.
 - Störungen 74 ff.
- Blicklähmung, konjugierte 105, 141, 156.
- Blickzentren 139, 143, 144.
- Brachialis internus 52 ff.
- Bradykardie 113, 171.
- Brocasches Zentrum 186.
- Brown-Séquardsche Spinalepilepsie 31

Brown-Séquardscher Symptomenkomplex
Brücke 93 ff. [38 ff.]

Brückenerne 164.

Bulbärparalyse 156, 185.

Burdachscher Strang 9.

Burdachscher Kern 86.

C.

(Siehe auch K. und Z.)

Calamus scriptorius 87.

Capsula interna 162, 173 ff.

Carrefour sensitif 163, 173.

Cauda equina 77.

— Läsionen, Symptomenkomplex 78.

Centrum anospinale 72.

— ciliospinale 67.

— genitospinale 73.

— semiovale 173.

— vesicospinale 72.

Cerebellare Anfälle 155.

Chiasma-Läsionen 182.

Cheyne-Stokesches Atmen 113.

Chorda tympani 120.

Chorea posthemiplegica 178.

— bei Bindegarmläsionen 157.

Chvostek'sches Phänomen 124.

Ciliospinalreflex 71.

Circumduction 174.

Clarkesche Säule 8, 10, 14.

Clonus 27, 175.

Cochlearis 91, 126.

— Kern 91.

Commissura anterior 162.

Conjunctivalreflex 132.

Conus terminalis 76.

— Läsionen, Symptomenkomplex 76 ff.

Cornealreflex 132.

Corona radiata 162.

Corpus geniculatum 126, 181.

— restiforme 90, 145.

— striatum 195 ff.

Craniocerebrale Topographie 198 ff.

Cremasterreflex 65.

Cucullaris siehe Trapezius.

D.

Daumenmuskeln 52 ff.

Degeneratio adiposogenitalis 197.

Deitersscher Kern 92, 147.

Dejerine-Lichtheimsches Phänomen 190.

Dejerine-Thomas' Angaben zur Rückenmarkstopographie 79 ff.

Deltoideus 51, 56.

Déviation conjuguée 142 ff., 156 ff., 171 ff.

Diaschisis 176. [184.]

Dilatator pupillae 67.

Diplegia cerebralis 169.

— facialis 119.

— masticatoria 133.

Dissocierte Anästhesie 32.

— Potenzstörung 76.

Drehschwindel 128, 153 ff.

Duchenne-Erbsche Plexuslähmung 57.

Dysarthrie 185.

Dyspinealismus 109.

E.

Edingers Sensibilitätsschema 62.

Ejaculation 73.

Ellbogenclonus 27.

Eminentia teres 91.

Empfindungszentren 159 ff.

Empyem der Keilbeinhöhle 182.

Endogene Hinterstrangsfelder 10, 12.

— Rückenmarksbahnen 4, 9.

Encephalorrhagie 173 ff.

Enophthalmus 68, 134.

Epilepsie, *Jacksonsche* 124, 170.

— spinale 31, 38.

Epiphysistumoren 109.

Erbrechen, cerebrales 113, 171.

Erbsche Lähmung 57.

Erektion 73.

Eumetrie 146.

Eunuchismus hypophysärer 197.

Exogene Rückenmarksbahnen 4.

Exophthalmus 68.

F.

Facialis 91.

— Funktion 119 ff.

— Knie 91.

— Lähmung 119 ff.

Fasciculus, fasciculi siehe Tractus.

— longit. post., siehe Längsbündel, hint.

Faserbahnen des Rückenmarkes 4 ff.

Fibra, Fibrae siehe Tractus.

Fibrae propriae 10.

Fibrae propriae endopyramidales 13.
 Fibrilläres Zittern 31.
 Fingerclonus 27.
 Fissura Sylvii, Lage 198.
Fovillesche Lähmung 104, 143.
 Frakturen der Schädelbasis 144.
 — — Wirbelsäule 35, 59.
 Fremdkörper des Gehirns 170.
Friedreichsche Krankheit 33, 153.
 Frontopetale Gehirnlage 199.
 Fußclonus 27.
 Fußrückenreflex 27, 30, 39, 175.
 Fußtypus der radiculären Lähmungen 58.

G.

Ganglion ciliare 133, 138.
 — Gasseri 93, 129, 135.
 — geniculi 120.
 — jugulare vagi 111.
 — nodosum vagi 111.
 — oticum 134.
 — petrosum glossoph. 112.
 — sphenopalatinum 132ff.
 — spinale, siehe Spinalganglien.
 — spirale 125.
 — submaxillare 134.
 — superius glossoph. 112.
 — vestibuli 126.
 Gaumenreflex 112, 132.
 Gefäße des Gehirns 164 ff.
 — des Rückenmarks 14 ff.
 Gefühlsstörungen 16.
 Gehirnarterien 164 ff.
 Gehirnbasis, Läsionen 106, 136.
 Gehirnblutung 173ff.
 Gehirngeschwülste, siehe Tumor cerebri.
 Gehirnrinde 158ff.
 Gehirnwindungen 158.
 Gehörzentrum 161, 191.
 Genitalhyperplasie 109.
 Genitalinnervation 73.
 Glandula pinealis 109.
 Glossopharyngeus 90.
 — Funktion 112.
 — Kern 90.
 — Lähmung 112.
 Glossopharyngolabialparalyse, supranukleäre, siehe Pseudobulbärparalyse.

Glossoplegie 111.
 Glossospasmus 113.
 Glutaei 50, 53.
 Glykosurie 198.
Gollscher Kern 86ff.
 — Strang 9.
Gowersche Bahn 10ff., 88, 93, 151.
Gratioletsche Strahlung 181.
 Grenzstrang 22.
 Grundbündel 10.
 Gummata des Gehirns 106, 123, 144, 183.

H.

Hämatomyelie 32.
 Haemorrhagia cerebri 173ff.
 Halbseitenläsion des Rückenmarks 38ff.
 Handgelenkclonus 27.
 Handtypus der radicul. Lähmung 58.
 Haube 93ff., 106.
 Helicopodie 174.
 Hemiageusie 174.
 Hemianästhesie 168, 174, 196.
 Hemianakusis 174, 191.
 Hemianopsie 174, 182ff., 195.
 Hemianopische Pupillenstarre 183.
 Hemianosmie 174.
 Hemiataxie 99, 196.
 Hemiathetose 178, 195.
 Hemiballismus 178.
 Hemichorea posthemiplegica 178, 195.
 — praehemiplegica 178.
 Hemiepilepsie 170.
 Hemiglossoplegie 111, 115.
 Hemihypotonie 152.
 Hemiopie = Hemianopsie.
 Hemiparaplegie 40.
 Hemiparese 152.
 Hemiplegie 156, 168, 173, 195.
 Hemiplegia alternans 103, 143.
 — cruciata 99.
 — homolateralis 177.
 — intracorticalis 168, 177.
 — lacunar 177.
 — spinalis 40.
 Herpes zoster 34, 62, 136.
 Hinterstränge 32.
 — Kerne, siehe *Burdachscher* und *Gollscher* Kern.

Hinterwurzel-Läsionen 32.
 — Ataxie 33.
 Hirn . . . siehe Gehirn . . .
 Hirnstamm 81 ff.
 Hirnschenkel 95.
 Hörbahn 124 ff.
 Homolaterale Hemiplegie 177.
Hornerscher Symptomenkomplex 66, 71.
 Hornhautreflex 132.
 Hydrorrhoea nasalis 198.
 Hypästhesie 16.
 Hypakusis 126.
 Hypalgesie 16, 32.
 Hyperästhesie, 16, 34, 39.
 Hyperakusis 119.
 Hyperalgesie 16.
 Hyperidrose 71.
 Hyperkinesis 30.
 Hyperthermie 70.
 Hyphidrosis 25.
 Hypogesie 120.
 Hypoglossus 87 ff.
 — Funktion 110.
 — Kern 87 ff.
 — Lähmung 110.
 Hypophysis-Läsionen 196.
 — Tumoren 136, 183, 196.
 Hyporeflexie 21 ff.
 Hypotaxie 17.
 Hypotonie 21 ff., 149 ff.

I, J.

Jacksonsche Epilepsie 124, 170.
 Ileopsoas 50, 53.
 Impotenz 76.
 Incontinentia urinae 74 ff., 195.
 Inkoordination 17.
 Innere Kapsel 162 ff., 173 ff.
Intermedius Wrisbergi 120, 135.
 Interossei 49, 52.
 Intersegmentärbahnen 10.
 Ischuria paradoxa 75.

K.

(Siehe auch C.)

Kapsel, innere 162 ff., 173 ff.
 Kapsuläre Lähmungen 173 ff.
 Kaumuskellähmung 132.
 Kaumuskelkrampf 133.

Kehlkopfnerven 111.
 Kinästhetische Rindenzone 159.
 Klangbildzentrum 186.
 Kleinhirn 145 ff.
 Kleinhirnenschwindel 153.
 Kleinhirnataxie 33, 148 ff.
 Kleinhirnbrückenwinkeltumoren 129, 154.
 Kleinhirnschenkel 145.
 Kleinhirnseitenstrangbahn 10, 12, 88, 151.
 Kleinhirntumoren 149, 154 ff.
Klumpkesche Lähmung 68.
 Kniephänomen 66.
 Kollateralen 9.
 Konjugierte Abweichung der Augen 142 ff.,
 156 ff., 171 ff., 184.
 — Augenmuskellähmung 141.
 Kontraktur, hemiplegische 174.
 Koordinationsstörung 17.
 Kopfschmerz bei Hirndruck 172 ff.
 — bei Kleinhirntumor 157.

L.

Labyrinth, Funktion 153.
Lacrymalis 119, 134.
 Lähmung der einzelnen Gehirnnerven
 siehe diese.
 Längsbündel, hinteres 87 ff., 105, 140,
 Lagesinn 16. [144, 156.
Lagophthalmus 119.
Latissimus dorsi 48, 51.
Laryngismus 113.
 Lesezentrum 187.
 Lidspaltenverengerung 68, 134.
 Linsenkern 195.
 Lumbalpunktion 157, 172.
 Luxation der Wirbelsäule 35, 59.

M.

Magendiesche Schielstellung 157.
 Mastdarm, Innervation 70 ff.
 — Störungen 75.
 Masticatorische Krämpfe 133.
Medulla oblongata 85 ff.
Mendel-Bechterewsesches Phänomen 27, 30.
Menière'sche Krankheit 154. [39, 175.
 Meningitis 106, 136, 142, 144, 170.
Millard-Gublersche Lähmung 104.
 Miosis 67.
 Mitbewegungen 28, 175.

Monakowsches Bündel, siehe *Tractus rubro-spinalis*.

Monoplegie 168.

Monoplegia cruralis 168.

— *facialis* 119, 168.

— *faciobrachialis* 168.

— *faciolingualis* 168.

— *masticatoria* 132.

Moria 194.

Motorische Rindenfelder 159.

Musculus biceps, brachialis etc. siehe unter *Biceps, Brachialis etc.*

Muskeln, Funktion und Innervation 51—54.

Muskelatrophie, cerebrale 175.

— *degenerative* 21, 29.

— *neurale progressive* 32.

— *spinale* 30.

Muskeltonus 19.

Muskelzentren, spinale 45.

Mydriasis 68.

N.

Nervus abducens, accessorius etc. siehe unter *Abducens, Accessorius etc.*

Niesreflex 132.

Nucleus ambiguus 88 ff.

— *ruber tegmenti* 96.

— *abducentis, accessorii etc.* siehe unter *Abducenskern, Accessoriuskern etc.*

Nystagmus 105, 144, 155 ff.

O.

Oberarmtypus der radic. Lähmung 57.

Oberflächensensibilität 16.

Oberschenkeltypus der radic. Lähmung 58.

Occipitopetal Typus der Hirnlage 199.

Oculomotorius 95.

— *Kern* 95, 137 ff.

— *Lähmung* 141.

Oculopupilläre Symptome bei Halsmarkläsionen 66.

Oesophagismus 113.

Ohrensausen 106, 128.

Ohrlinie, vordere und hintere 198.

Olive 87, 89.

Ophthalmoplegie 141, 156.

Oppenheim'sches Phänomen 27, 30, 39, 175.

Optische Leitungsbahn 179 ff.

Oxyakoia 119.

P.

Pachymeningitis cervicalis hypertrophica

Pallanästhesie 17. [33.

Pallästhesie 17.

Parästhesien 34.

Parakusis Willisii 128.

Paralyse 18 ff.

Paralysis glossopharyngolabiea, siehe *Bul-*

Paraphasie 186. [bärparalyse.

Paraplegie 36.

Parese 18 ff.

Patellarklonus 27.

Patellarreflex 65.

Pectorales 48, 51.

Pedunculus cerebri 95.

Peripherie Innervation 44 ff.

Peripherische Lähmungen 54 ff.

Petrosus superficialis major 119, 135.

Pharyngismus 113.

Plexus 44, 51 ff.

Plexuslähmung, obere 57.

— *untere* 68.

Poliomyelitis anterior 30.

Polydipsie 198.

Polyurie 198.

Pons, siehe *Brücke*.

Posticuslähmung 112.

Pottsche Krankheit 35, 60.

Priapismus 38, 76.

Pronationsphänomen 28.

Prosopoplegie 119.

Pseudobulbärparalyse 115 ff., 169, 195.

Pseudoneuralgien 33.

Psychische Störungen bei Stirnhirnläsionen 194.

Pulsanomalien 70 ff., siehe auch *Bradykardie* und *Tachykardie*.

Pupillenreaktion, hemianopische 183.

Pupillenstarre, hemianopische 183.

Pyramidenbahn 4, 12, 86, 98.

Pyramidenkreuzung 4, 86.

Pyramidenseitenstrangbahn 4, 12, 86.

Pyramidenvorderstrangbahn 6, 12, 86.

Q.

Quadrantanopie 183.

Quadriceps 53 ff.

Querschnittsmyelitis 36.

Querschnittstrennung des Rückenmarks 35 ff.

R.

Rachenreflex 112.

Radialislähmung 55.

Radialisphänomen 28.

Radiculäre Innervation 44 ff.

— Zonen 47.

Recurrenslähmung 112, 119.

Reflexe 19, 65.

— Segmenttabelle 65.

Reflexbogen 19.

Reflexkollateralen 19.

Reizsymptome, mot. 31 ff., 106 ff., 113, 124, 144, 170, 178, 195.

— sens. 33 ff., 113 ff., 133, 172, 195.

Respiratorische Störungen 68 ff.

Rigidität 26.

Rindenblindheit 183.

Rindenepilepsie 124, 170.

Rinnéscher Versuch 127.

Röntgendiagnostik 200.

Rückenmark, Bahnen 4 ff.

— Zellen 14 ff.

— Physiologie 15 ff.

— Verletzungen 59 ff.

Rückenmarksgefäße 15.

Rückenmarksgeschwülste, siehe Tumor extra- und intramedullaris.

S.

Sapolinischer Nerv 120.

Schädel, Beziehungen zum Gehirn 198 ff.

— percutorische Empfindlichkeit 172.

Schleife 87 ff.

Schmerzen, zentrale 196.

Schmerzempfindung 16 ff.

Schmidtscher Symptomenkomplex 118.

Schultzesches Komma 9, 12.

Schwabachscher Versuch 127.

Schwerhörigkeit, nervöse 109, 126.

Schweißzentren 25.

Schwindel 128, 153 ff.

Seelenblindheit 184.

Segmentdiagnose der motorischen Lähmungen 47 ff.

— — Reflexstörungen 62 ff.

— — Sensibilitätsstörungen 62.

Sehbahn 179 ff.

Sehzentren 181.

Sehnenreflexe 36 ff., 65, 71, 149.

— Fehlen derselben, siehe Areflexie.

Sehstrahlung 181.

Seitenstrangläsionen 26 ff.

Sensibilität 16 ff.

Sexuelle Störungen 76 ff.

Signalsymptom des *Jacksonschen Anfalls*

Sohlenreflex 65. [170.

Spasmodynia cruciata 42.

Spasmus nutans 113.

Spinalganglien 34, 62.

Spinalepse 31, 38.

Spinalparalyse, spastische 30.

Spinalpunktion, siehe Lumbalpunktion.

Spinocerebellarbahnen, s. *Tractus spinocerebellares*, Kleinhirnseitenstrangbahn, *Gowerssche Bahn*.

Spondylitis 60.

Sprachzentren 186 ff.

Sprachstörung 116, 185 ff.

Stabkranz 162.

Stauungspapille 157, 171, 184.

Stereoanästhesie 17.

Stereognostische Empfindung 17, 169.

Stammganglienläsionen 195 ff.

Stimmbandlähmung 111.

Strümpellsches Zeichen 28.

Strangzellen 14.

Substantia gelatinosa Rolandi 85 ff.

Sulcus centralis, Lage 198.

Sympathicus 23 ff.

Synergie 146.

Syringomyelie 32.

T.

Tabes dorsalis 33.

Tachykardie 112.

Taubheit, nervöse 126 ff.

Temperatursinn 16.

Temporo - occipito - parietales Rindenfeld

Tetraplegie 36, 99. [161.

Thalamus opticus 179, 195.

Thermanästhesie 16, 32.

Tibialisphänomen 28.

Tiefensensibilität 16.

Tinnitus aurium 106, 128.

Tonus 19.
 Totalaphasie 186.
 Tractus bulbothalamicus 87 ff.
 — corticospinales 4, 86 ff., 162.
 — corticospinalis anterior 6, 12.
 — — lateral 4, 12.
 — frontopontinus 95, 164.
 — occipitotemporopontinus 95, 164.
 — radiculares post. 7, 12.
 — rubrospinalis 6, 12, 96, 148, 151.
 — spinocerebellares 10, 12, 86 ff., 148.
 — spinocerebellaris dors. 10, 88 ff.
 — — ventr. 10, 90 ff.
 — spinothalamicus 10, 13, 97.
 — tectospinalis 6, 12.
 — thalamospinalis 6, 12, 162.
 — thalamooccipitalis 181.
 — vestibulocerebellaris 153.
 — vestibulospinalis 6, 12, 92 ff., 147, 151.
 Trapezfasern 126.
 Trapezius 48 ff.
 Tremor posthemiplegicus 179.
 Triceps 52 ff.
 Trigeminus 93.
 — Kerne 93.
 — Lähmung 132 ff.
 Trigeminuswurzel, spinale 85 ff., 129.
 Trismus 106, 133.
 Trochlearis 93.
 — Kern 94.
 — Lähmung 141, 156.
 Trophische Zentren 21.
 — Störungen 21, 22, 37.
 Tuberculum acustinum 91, 96, 125.
 Tuberkl. des Gehirns 106.
 Tumor cerebelli 149, 152, 154.
 — cerebri 106, 118, 144, 168 ff., 177, 184,
 — extra- und intramedullaris 42. [196.]

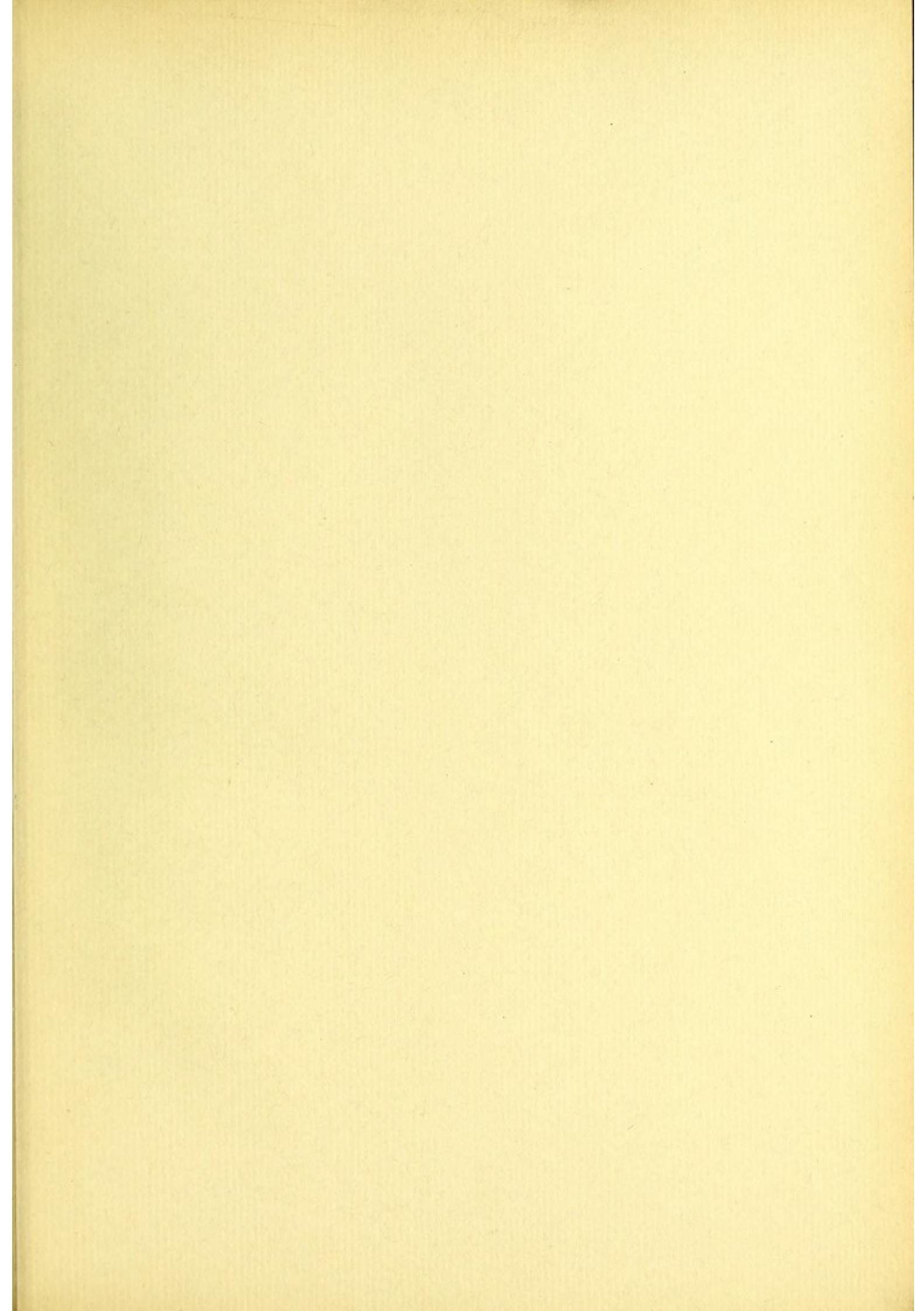
U.

Unterschenkeltypus der radicul. Lähmung 58.

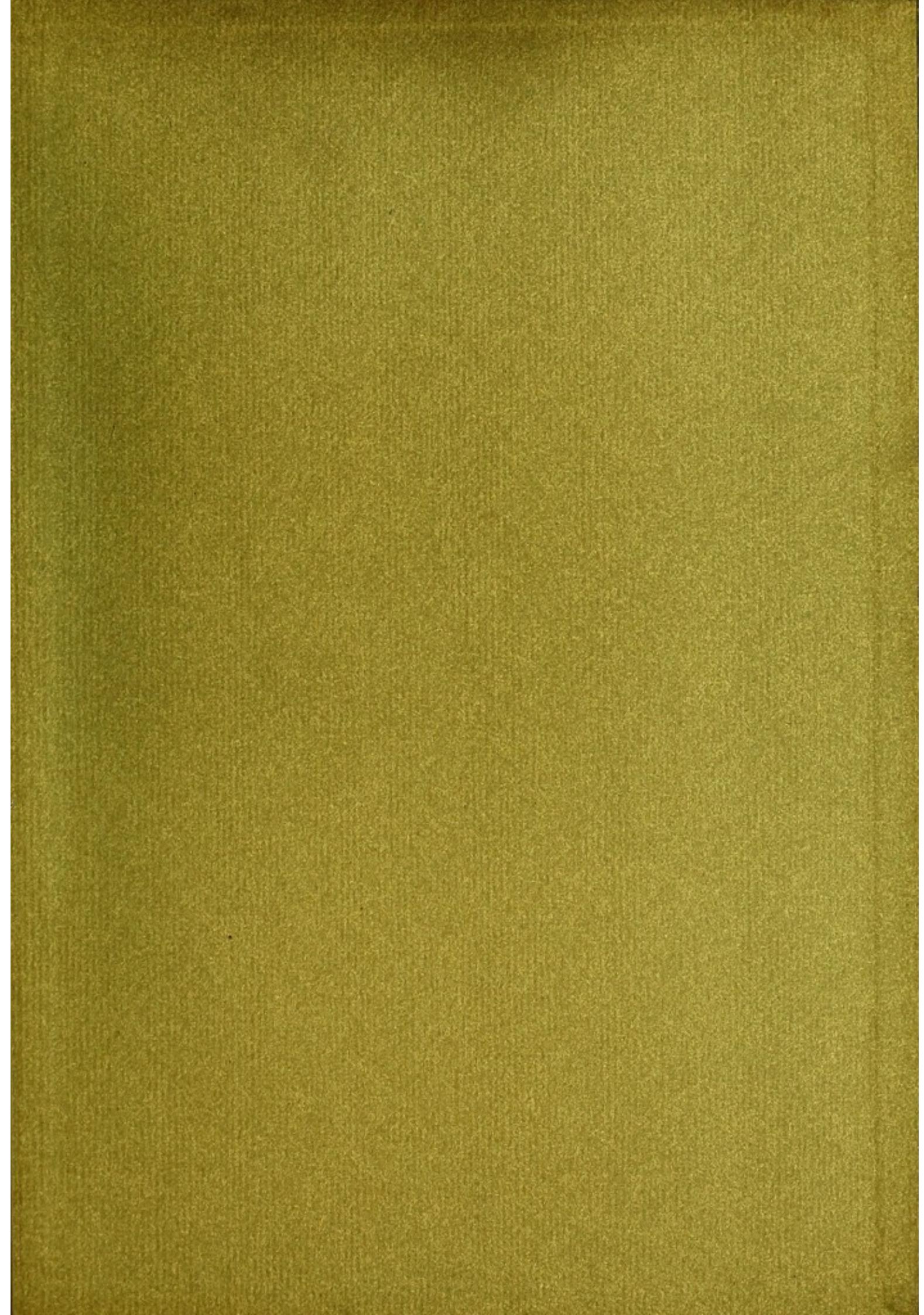
V.

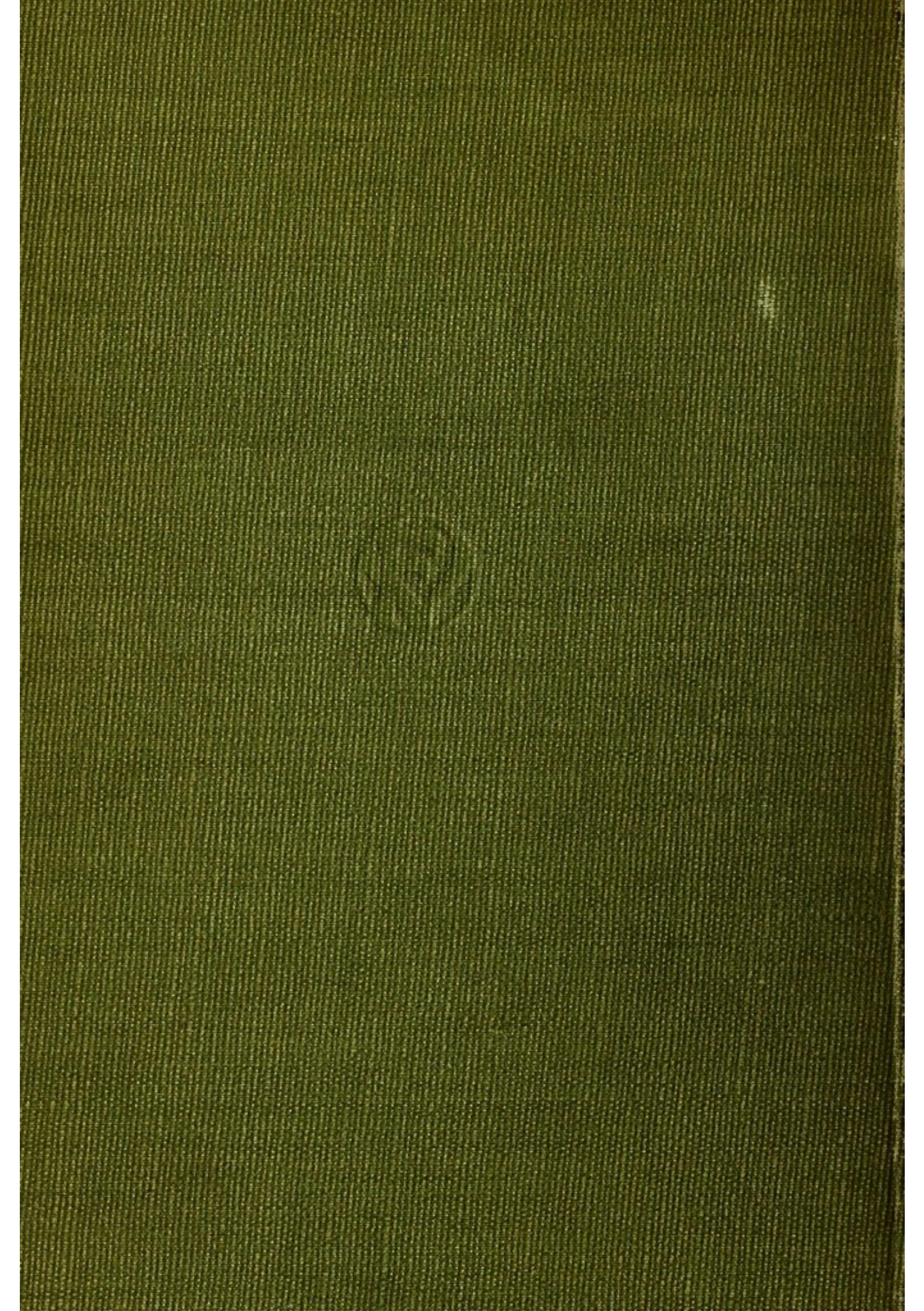
Vagus 88.
 — Kerne 88 ff.
 — Funktion 111.

Vagus, Lähmung 111.
 Vasomotorische Zentren und Bahnen
 — Störungen 23 ff., 39 ff., 70. [22 ff.]
 Vertigo, siehe Schwindel.
 Vestibularis 90, 126.
 — Läsionen 154.
 — Funktion 126.
 Vestibularisanfälle 155.
 Vibrationsgefühl 17, 32.
 Vierhügel 109.
Villigers Tabellen zur radicul. mot. Innervation 48—50.
Voltolinische Krankheit 154.
 Vorderarmtypus der radicul. Lähmung 55.


W.

Wahrnehmungszentren 160.
 Weberscher Versuch 127.
 Webersche Lähmung 104, 109, 143.
 Wernickesches Phänomen 183.
 Wernickesches Zentrum 186.
Westphal-Edingerscher Kern 138, 181.
 Wirbelsäule, Topogr. Beziehungen zum Rückenmark 80.
 — Verletzungen 35 ff.
 Witzelsucht 194.
 Worthblindheit 184, 187.
 Wortstummheit 189.
 Worttaubheit 189.
 Wurzelfelder 47.
 Wurzelschmerzen 33, 106.
 Wurzelzellen 14.


Z.


(Siehe auch C.)

Zehenphänomen 28.
 Zentrale Gliose 32.
 — Schmerzen 196.
 Zentralwindungen 158 ff., 198.
 Zirbeldrüsentumoren 109.
 Zona cornu-commissuralis 10.
 — septo-marginalis 10.
 Zwangsbewegungen 156.
 Zwangshaltungen 60, 156.
 Zwangslachen 196.
 Zwangswinen 196.

