Magnetische Messungen im Ries und dessen Umgebung / von Karl Hausmann; mit 8 Tafeln.

Contributors

Haussmann, Karl, 1860-1940. Francis A. Countway Library of Medicine

Publication/Creation

Berlin: Verlag der Königl. Akademie der Wissenschaften, 1904.

Persistent URL

https://wellcomecollection.org/works/pqmqg6hs

License and attribution

This material has been provided by This material has been provided by the Francis A. Countway Library of Medicine, through the Medical Heritage Library. The original may be consulted at the Francis A. Countway Library of Medicine, Harvard Medical School. where the originals may be consulted. This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

MAGNETISCHE MESSUNGEN IM RIES UND DESSEN UMGEBUNG.

VON

PROF. KARL HAUSSMANN

IN AACHEN.

AUS DEM ANHANG ZU DEN ABHANDLUNGEN DER KÖNIGL, PREUSS. AKADEMIE DER WISSENSCHAFTEN VOM JAHRE 1904.

MIT 8 TAFELN.

BERLIN 1904.

VERLAG DER KÖNIGL. AKADEMIE DER WISSENSCHAFTEN.

IN COMMISSION BEI GEORG REIMER.

Mit bestem grusse d. V.

MAGNETISCHE MESSUNGEN IM RIES UND DESSEN UMGEBUNG.

VON

PROF. KARL HAUSSMANN

IN AACHEN.

AUS DEM ANHANG ZU DEN ABHANDLUNGEN DER KÖNIGL. PREUSS. AKADEMIE DER WISSENSCHAFTEN VOM JAHRE 1904.

MIT 8 TAFELN.

BERLIN 1904.

VERLAG DER KÖNIGL. AKADEMIE DER WISSENSCHAFTEN.

IN COMMISSION BEI GEORG REIMER.

Vorgelegt von Hrn. von Bezold in der Sitzung der phys.-math. Classe am 14. April 1904 [Sitzungsberichte 1904 St. XXV S. 805].

Zum Druck verordnet am 5. Mai, ausgegeben am 1. December 1904.

I. Abschnitt.

Verlauf. Instrumente. Basisstationen. Messungsmethoden.

Verlauf. Die Anregung zur magnetischen Vermessung des Ries gab Hr. Geheimer Bergrat Prof. Dr. Branco in Berlin. Das Kgl. württembergische Statistische Landesamt in Stuttgart stellte das ganze Instrumentarium der magnetischen Landesaufnahme für diese Arbeit gütigst zur Verfügung und der Referent dieser Behörde, Hr. Prof. Dr. August Schmidt, übernahm freundlichst die Leitung der Basisstation bei Kornthal. Durch das Entgegenkommen des Hrn. Geheimen Oberregierungsrates Prof. Dr. von Bezold und des Hrn. Prof. Dr. Adolf Schmidt, und durch die Mithilfe des Hrn. Dr. Edler konnten die Aufzeichnungen des Potsdamer magnetischen Observatoriums zum Vergleiche und zur Ergänzung der Kornthaler Registrierungen herangezogen werden. Für die freundliche Mitteilung der Koordinatenwerte trigonometrischer Signale sei den Beamten des Kgl. bayerischen und des Kgl. württembergischen Katasterbureaus bestens Dank gesagt.

Die Arbeit sollte eine Aufklärung der magnetischen Verhältnisse des Rieskessels geben. Da das Ries sich aber als kein für sich abgeschlossenes magnetisches Störungsgebiet erwies, wurde die Aufgabe mit dem schon früher gefaßten Plane verflochten, das ganze im Osten Württembergs beginnende magnetische Störungsgebiet weiter zu verfolgen, s. W¹, S. 156.

Die erste, zugleich die Hauptaufgabe war, ein Netz von Stationen zu schaffen, das der lokalen Untersuchung als Grundlage dienen konnte. Die Stationen waren dazu mit der Genauigkeit einer magnetischen Landesaufnahme zu messen, sie mußten stets zugänglich und leicht auffindbar sein.

W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

Da die Steuerblätter und Flurkarten nicht zur Hand waren, dagegen meist die Karte des Deutschen Reiches 1:100 000 zur Verfügung stand, wurde für jeden Standpunkt im Felde eine Skizze mit Einschreitmaßen gegen feste Gegenstände angefertigt; nachträglich konnten, mit der Erlaubnis des Kgl. bayerischen Katasterbureaus, diese Skizzen aus Planabdrücken umgezeichnet und vervollständigt werden, sie sind alle im Maßstab 1:5000 gezeichnet und mit Nord nach oben orientiert. Als durchschnittliche Entfernung der Punkte wurde 4km gewählt, es konnten dann 3-4 Stationen täglich erledigt werden, wobei Hr. Markscheider Rausch, der mich begleitete, das Protokoll der Feldaufnahmen führte. Die Auswahl der Standpunkte außerhalb Württembergs konnte ohne viele Rücksicht auf geodätische Verhältnisse getroffen werden, da die unterirdisch vermarkten trigonometrischen Bodenpunkte im Ries nicht benutzt werden konnten, ihre Aufdeckung wäre für die vorliegende Arbeit zu umständlich und kostbillig gewesen; andererseits konnten die Standpunkte fast alle durch Rückwärtsschnitte gegen trigonometrisch bestimmte Türme festgelegt werden. Wo Lamontsche Stationen aus den Jahren 1849-1854 aus der allgemeinen Lagebeschreibung auffindbar waren und sich noch brauchbar zeigten, wurden sie berücksichtigt. Sonst wurde nur auf geologische Verhältnisse Rücksicht genommen, möglichst eingehend auch der Bruchrand des Rieskessels untersucht, wobei die von Hrn. Geheimrat Branco und Hrn. Privatdozent Dr. von Knebel freundlichst gemachten geologischen Angaben benutzt werden konnten. Bei der Erweiterung des Messungsgebietes wurden auch einige Stationen am Donauabbruch genommen. Im übrigen aber war zum voraus ein fester Plan nicht aufzustellen; der Fortgang der Messungen sollte vielmehr durch die Ergebnisse einer vorläufigen Berechnung der Inklination und der Horizontalintensität im Felde selbst sich finden. Die Messung ergab alsbald, daß die Störungen nicht groß seien, auch daß sie wenig zu wechseln scheinen, daß also für die gestellte Aufgabe eine Lokalmessung wahrscheinlich gar nicht nötig sei; deshalb wurden sogleich gerade geologisch gestörte Stellen in das Hauptnetz einbezogen. An einigen Stellen konnte an benachbarten, aber in der Höhe möglichst verschiedenen Punkten gemessen werden; aber weder die Oberflächengesteine noch ganze Bergkuppen haben starke magnetische Einwirkungen gezeigt.

Die durch Rückwärtseinschneiden bestimmten Standpunkte wurden mit einer dem Karteneingang entsprechend verzerrt gezeichneten Kreisteilung in die Karten eingetragen, wobei der Umstand nützlich war, daß die Theodolitablesungen nahezu den Richtungswinkeln selbst entsprachen. Nachträglich wurden aber noch fast für alle Standpunkte die geodätischen und die
geographischen Koordinaten berechnet. Damit und zugleich mit den Handskizzen dürfte die Möglichkeit der Wiederauffindung für immer gesichert
sein. Auf württembergischem Gebiete wurden durchweg trigonometrische
Bodensignale als Standpunkte gewählt; diese Punkte sind alle sichtbar
und dauernd vermarkt.

In dem geologisch stark gestörten Ries mit seiner alten Triangulierung (eine Neumessung ist jetzt im Werke) schien es fraglich zu sein, ob die für die Deklinationsmessung nötigen Azimute auf geodätischem Wege genügend scharf bestimmt werden können. Der zur Verfügung stehende Magnettheodolit war aber seiner früheren Bestimmung gemäß zur Messung von Sonnenazimuten nicht vollständig eingerichtet, er besitzt keinen Höhenkreis, sondern nur einen Sonnenspiegel. Von letzterem ist möglichst oft Gebrauch gemacht worden, um zu sehen, was mit dem Sonnenspiegel, zugleich mit einer guten Taschenuhr, erreicht werden kann, wenn unmittelbare oder telephonische Uhrvergleiche nur gelegentlich, Zeitbestimmungen aus Höhen gar nicht, aus Azimuten aber nur selten möglich sind. Die Übereinstimmung der aus der Triangulierung und der aus den Sonnenpeilungen abgeleiteten Azimute läßt hier mehrfach zu wünschen übrig; dennoch sind alle Beobachtungen aufgeführt, schon um nicht einen Teil der Messungen zu unterdrücken.

Die Art der Messung und der Berechnung ist die gleiche wie die bei der magnetischen Aufnahme Württembergs und Hohenzollerns. Die Deklination wurde in beiden Magnetlagen, die Inklination mit 2 Nadeln bei jedesmaligem Ummagnetisieren, die Horizontalintensität im Felde durch Ablenkungen mit 4 Magneten gemessen. Dazu kamen in regelmäßigen Zeitabschnitten die absoluten Messungen auf der Basisstation bei Kornthal. Wo bei der Berechnung eine Messung nicht verwendet wurde, ist dies angegeben; wenn eine Messung wiederholt wurde, ist sie bei der Berechnung mit der Wiederholung vereinigt. Das ganze Verfahren ist beschrieben in der Veröffentlichung des Kgl. Statistischen Landesamtes in Stuttgart »Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0«. Die vielfachen Hinweise auf diese Schrift erfolgen unter der Abkürzung »W«.

Die Arbeit ist, trotz der notwendig gewordenen Kürzung, so gehalten, daß sie einen Beitrag zur magnetischen Landesaufnahme Württembergs und Bayerns liefert.

Die Aufnahme fiel in eine magnetisch ziemlich ruhige Zeit; dagegen war die Witterung wenig geeignet: Regen, starker Wind, Gewitter und rascher Temperaturwechsel erschwerten die Messung. Bei Regen können die Ablenkungsmagnete nicht frei an der Luft liegen, auch kann die Inklinationsmessung schlecht werden, bei starkem Winde kommt die Deklinations-, manchmal auch die Inklinationsnadel, nicht zur Ruhe; leichter Wind ist dagegen bei Pinnenaufhängung besser als Windstille.

Die Messungszeit war durch verschiedene Umstände beschränkt und die erweiterte Aufgabe zwang zu möglichst raschem Arbeiten im Felde; eine Grenze liegt aber in der Erlangung kleiner Schwingungen für Deklinations- und Inklinationsnadeln und eines genähert stationären Wärmezustandes der Ablenkungsmagnete. Vom 2. bis 25. August 1902 wurden auf der Basisstation bei Kornthal absolute Messungen an 3 Tagen ausgeführt und im Felde 54 Stationen, worunter einige doppelt, vermessen. Die mittleren Fehler sind im Mittel für die Deklination und für die Inklination etwa 1', für die Horizontalintensität $4\,\gamma$. Die Ausarbeitung erfolgte in den Ferien von 1903. Die Messung im Felde war je kurz nach 7 Uhr abends abzubrechen, da nachher der Wechsel der Registrierbogen in Kornthal stattfand. Die im Jahre 1900 gemachten guten Erfahrungen über die Unveränderlichkeit der Aufstellung der Variationsinstrumente auf der Basisstation bestätigten sich diesmal leider nicht, es scheint, daß die Fundierung schlecht geworden ist.

Von äußeren störenden Einflüssen im Vermessungsgebiet sind die Elektrizitätswerke in Nördlingen, Dillingen und Donauwörth zu nennen; verdeckte Eisenmassen aus dem dreißigjährigen Kriege in jener schlachtenreichen Gegend waren wohl so weit oxydiert, daß sie nicht mehr zu fürchten waren.

Die Schreibung der Ortsnamen wurde nach der benutzten Karte des Deutschen Reiches vorgenommen.

Recht schwierig war es, Instrumententräger zu bekommen, manchmal mußte die ganze Ausrüstung selbst getragen werden.

Instrumente. Die vom Kgl. Statistischen Landesamt in Stuttgart zur Verfügung gestellten Instrumente: Variometer für Deklination und Horizontalintensität und Thermograph, Magnettheodolit mit Inklinatorium, Schwingungskasten und Zubehör, auch eisenfreier Schirm, sind in W¹, S. 4—21 genannt; sie haben seit ihrer Verwendung bei der magnetischen Landesaufnahme Württembergs keine Veränderung erfahren. Auch die Uhren sind dieselben wie in W, S. 9 angegebenen, also 1. ein Schiffschronometer mit ¹/2 Sekundenschlag auf der Basisstation, 2. eine Taschenuhr mit Chronometerwerk aber ¹/5 Sekundenschlag für den Feldgebrauch, dann die Uhr des Magnetographs und eine Taschenuhr zur Übertragung der Zeit vom Schiffschronometer zum Magnetograph.

Die Uhrvergleiche konnten in Stuttgart bei Hrn. Hofuhrmacher Kutter vorgenommen werden, dessen Hauptpendeluhr durch die Zeitbestimmungen des Geodätischen Instituts der Kgl. Technischen Hochschule kontrolliert ist. Die Uhrstände waren:

Hiernach scheint die Taschenuhr auch beim Feldgebrauche ihren sonstigen gleichmäßigen Gang bewahrt zu haben. Eine Untersuchung über diesen Gang hat weiter ergeben:

```
Uhr getragen, Zurückbleiben in 1<sup>h</sup> um 0.085,

» gelegt,

» 1<sup>h</sup> » 0.156.
```

Danach sind die Uhrstände bei den Beobachtungen berechnet worden. Ein öfterer Uhrvergleich wäre, der Sonnenazimute wegen, wohl erwünscht gewesen; er ließ sich aber weder direkt noch telephonisch durchführen. Immerhin war aus geodätischen Richtungsmessungen einiger Anhalt zu erwarten, auch war der Gang der Taschenuhr als ganz vorzüglich bekannt und zudem ist im Störungsgebiete die Deklination nicht das wichtigste Element.

Der Gang der Magnetographenuhr wurde dadurch ausgeschaltet, daß beim Auswechseln der Bogen jedesmal das Ende der alten und der Anfang der neuen Registrierung auf den Stand des Schiffschronometers bezogen wurde.

Basisstationen und Vermessungsgebiet. Die Reduktion der magnetischen Beobachtungen auf denselben Stand sollte mittels der Re-

W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

gistrierungen der Basisstation bei Kornthal erfolgen. Die Anordnung war in allen Teilen so, wie sie in W, S. 3—8 beschrieben ist. Die Bestimmung der Skalenwerte wurde durch Hrn. Prof. Dr. Schmidt und den Verfasser am 1. und 14. August 1902 durchgeführt; aber nur die letztere ist vollständig gelungen; sie genügt aber für die ganze Aufnahmezeit. Mit den gleichen Bezeichnungen wie in W, S. 4 und den Abmessungen $A_1 = (176.7 - 0.3 + 0.1)^{\text{cm}}$, $e = 2^{\text{cm}}0$, $f = 172^{\text{cm}}0$, und dem Torsionsverhältnis $\Theta = 0.0166$ (s. S. 21) erhält man für den reduzierten Abstand:

$$A_0 = 174^{\text{cm}}5$$

und damit für die Empfindlichkeit des Deklinationsvariometers, bezogen auf 1^{mm}:

$$\epsilon = 1.001$$
.

Ferner ergab sich
$$D_1D_2 = 125^{mm}2$$
, $J_1J_2 = 128^{mm}0$, $n_1 = \frac{1}{4}(51.7 + 50.3 + 49.1 + 50.3)$, $n' = \frac{1}{4}(56.6 + 64.2 + 59.8 + 64.0)$, $n_2 = \frac{1}{4}(50.2 + 49.0 + 50.8 + 51.8)$

und für den Näherungswert H=0.202: $\epsilon'=\frac{^{1}\!/_{2}(n_{1}+n_{2})}{n'}\cdot\frac{\epsilon}{\rho}\cdot H=4.80\,\gamma$; die Empfindlichkeit des Horizontalintensitätsvariometers, bezogen auf 1^{mm} , ist also:

$$\epsilon' = 4.80 \, \gamma$$

die Umrechnung für logarithmische Rechnung ergibt die Reduktionsformeln auf den Basiswert n'20:

$$\begin{array}{ll} \lg \sin \phi_0 = \lg \sin \phi + 0.000 \, 104 \, (n' - n'_{20}) \\ \lg T_0 &= \lg T & + 0.000 \, 052 \, (n' - n'_{20}). \end{array}$$

Der früher ermittelte Temperaturkoeffizient 7.3 γ des H-Variometers ist beibehalten worden, s. W, S. 8.

Die Registrierkurve für H in Kornthal zeigt aber zum Teil auffällige Besonderheiten und Sprünge, die später als Folgen der Reibung des Magnets im Gehäuse des Variometers erkannt wurden. Die davon betroffenen Registrierungen vom 15. bis 25. August waren unbrauchbar und mußten durch andere ersetzt werden. Das nächstliegende Observatorium ist in München, dann kommt Potsdam.

Die Lage der Observatorien und des Vermessungsgebietes ist:

Magnetisches	Observatorium	Potsdam:	$\phi = 52^\circ$	22'	56"	$\lambda = 0^b$	52"	15.4 e.Gr.	$H = 86^{m}$	über	N.	N.
allined level	manda del	München:	48	8	45	0	46	26.1	529			
		Kornthal:	48	50	4	0	36	29.5	330			*
Mitte des Ve	ermessungsgebie	tes:	48	50		0	42		400-600	H.		-

Die Entfernungen sind:

Kornthal-Potsdam	490km	Kornthal - Mitte	Vermessungsgebiet	110km
Kornthal-München	203	Potsdam	non Recipitation	430
		München	-0.11	100

Da es aber zweifelhaft war, ob in München die lokalen Untersuchungen schon abgeschlossen sind, wurden die Registrierungen des Potsdamer magnetischen Observatoriums benutzt; die Berechnungen sind aber so angeordnet, daß die Münchener Variationen leicht einzuführen sind.

Die erste Vergleichung der Kornthaler mit den Potsdamer Kurven hat ergeben, daß der Magnet des H-Variometers in Kornthal zum erstenmal am 8. August um 7ª, dann wieder am 13. August um 2ª leicht streifte. Am 14. August ist die Aufzeichnung noch richtig; vom 15. bis 17. August fehlt sie; dann sind zunächst noch größere Teile richtig, es zeigen sich aber schon mehrere kleine Sprünge, später werden die Unstetigkeiten größer und die Registrierung von H in Kornthal wird ganz unbrauchbar. Zum genauen Vergleich der Variationen von Kornthal und Potsdam war es nötig zu untersuchen, wie groß die Genauigkeit der Kurvenablesung im vorliegenden Falle überhaupt sei. Die Untersuchung erfolgte an einer ruhigen breiten Registrierkurve mit einer sehr feinen hellen Nebenkurve. An der ersteren 0mm9 breiten, ganz schwarzen Linie war schlecht, an letzterer aber sehr scharf abzulesen. Aus 40 Beobachtungen ergab sich ein mittlerer Fehler für die einzelne Differenz beider Kurvenablesungen von ±0^{mm}07. Bei Verwendung eines Anlegemaßstabes wird der mittlere Fehler der Einstellung an der Basislinie und der Ablesung an der Registrierkurve also jedenfalls unter ±0 mm 1 bleiben, das ist in Potsdam ±0.3 \gamma, in Kornthal ±0.5 \gamma, so daß durch den Ablesefehler allein weniger als ±0.6γ in den Vergleich hineingetragen wird. Es sind aber noch verschiedene andere Umstände zu beachten. Zunächst kommt die verschiedene Dämpfung in Betracht; sie war in Kornthal stark, in Potsdam gering. Die Kornthaler Registrierungen zeigen die kleinen kurzen Wellen von weniger als 1^m Dauer und etwa 1' und 5γ Größe (die bei den Feldbeobachtungen

durch die unruhige stoßweise Bewegung des Magnets bemerklich werden) nicht mehr an; wohl hat an solchen Stellen die glatt durchlaufende Kurve eine etwas hellere Färbung. Bei den Potsdamer Registrierungen zeigt die Kurve solche kleine Wellen noch an. Zum Vergleiche der Potsdamer H-Variationen mit denen von Kornthal wurden die Differenzen zu absolut gleicher Zeit gebildet, mit folgenden Ergebnissen, in denen noch die Ungenauigkeit der Kurvenablesung steckt:

- 1. Ablesung für 1902 August 6 von 0° bis 4° bei magnetisch sehr ruhiger Zeit, Charakter der Kurve = 1. Aus 36 Ablesungen ergab sich der Unterschied der H-Variationen Kornthal-Potsdam mit einem mittleren Fehler von $\pm 0.5 \gamma$.
- 2. Ebenso für August 11 von 4^p bis 5^p 2 bei leicht unruhiger Zeit mit kleinen kurzen Wellen, Charakter der Kurve = 2. Für die gleiche Differenz ergab sich aus 23 Ablesungen ein mittlerer Fehler von $\pm 2\gamma$.
- 3. Ebenso für August 10 von 4°5 bis 7°5 bei unruhiger Zeit mit fortwährenden kleinen, daneben auch größeren Wellen und Ausbiegungen; Charakter der Kurve = 3, von 6^p an = 4. Die Unsicherheit des Übergangs von Potsdam auf Kornthal ergab sich aus 40 Ablesungen zu $\pm 3\gamma$.
- 4. Die Vergleiche der stündlichen Werte vom 5. bis 14. August, je von 6^* bis 8^p ergaben für jeden der 10 Tage Unterschiede von $\pm 3\gamma$ bis $\pm 5\gamma$, im Mittel den mittleren Fehler $\pm 4\gamma$. In diesen Werten steckt noch ein kleiner Betrag der Temperaturnachwirkung in Kornthal, s. W, S. 3 u. 4.

Die Unterschiede von H zu gleicher absoluter Zeit für Potsdam und Kornthal enthalten ein von der verschiedenen geographischen Lage herrührendes periodisches Glied; Kornthal liegt $3^{\circ}52'52''$ südlich und $15^{m}45^{\circ}9$ westlich von Potsdam. Zur Untersuchung dieses Gliedes wurden für Kornthal und für Potsdam die Mittel der stündlichen Werte zu absolut gleicher (Potsdamer) Zeit gebildet für die Zeit August-September 1900, und diese Stundenmittel auf eine Basis aufgetragen, die das Gesamtmittel derselben Zeit sowohl für Potsdam als für Kornthal ist, s. Tafel I. Man erhält dann für mitteleuropäische Zeit als Unterschied Kornthal minus Potsdam in γ :

Der Unterschied 0 stellt sich um 2º5 und um 10º9 ein.

Mit Berücksichtigung dieses periodischen Gliedes $\Delta(\lambda, \phi)$ verringern sich die Unsicherheiten beim Übergang von Kornthaler auf Potsdamer H-Variationen auf

1. $\pm 0.3\gamma$ (Betrag innerhalb der Ablesegenauigkeit). 2. $\pm 2\gamma$. 3. $\pm 2\gamma$. 4. $\pm 3\gamma$.

Das Diagramm der Tafel I ist also geeignet, bei Behandlung der Kornthaler Messungen mit Potsdamer Variationen eine Verbesserung herbeizuführen. Um noch eine größere Sicherheit hierfür zu haben, wurden sämtliche Messungen von H in Kornthal aus dem Jahre 1900 mit Potsdamer Variationen zu absolut gleicher Zeit berechnet, einmal ohne, dann mit Einführung des Korrektionsgliedes aus Tafel I. Man erhält dann für Kornthal:

Mit Kornthaler Variationen		Mit Potsdamer Variationen			
(Basis	= Mittel	1900, AugSe	pt.)		Jahreswert +20 γ) mit Korr. aus Taf. I
1900	Aug. 2,	0º: H = 0.201	26	0.201 22	0.201 18
	. 8,	3	23	23	23
	- 16,		25	29	26
	Sept. 3,	1	28	22	20
	. 15,		24	28	25
	Okt. 4,	4	25	20	23
	. 5,	11.5ª	31	34	30
	. 6,	2P	24	31	29
tlerer F		ttel: H = 0.201 ner Bestimmun	100000000000000000000000000000000000000	0.201 26 ±1 ±5	$.7\gamma$ 0.201 24 ±1.5 γ ±4 γ

Auch hier zeigt es sich, daß man mit der Tafel I bessere Werte erhält. Demgemäß wurde das periodische Glied $\Delta(\lambda,\phi)$ aus der Tafel I entnommen und in die Rechnung eingeführt.

Mitt

Es fragt sich weiter, wie die Tafel I für das Vermessungsgebiet verwendet werden soll. Das Gebiet ist nach Länge und Breite etwa $^{1}\!/_{2}^{\circ}$ groß, seine Mitte liegt in gleicher Breite mit Kornthal, aber 6^{m} östlich davon; gegen Potsdam liegt es $3^{1}\!/_{2}^{\circ}$ südlich und 10^{m} westlich. Es wurde angenommen, daß für das ganze Vermessungsgebiet $^{2}\!/_{3}$ der Beträge aus Tafel I in Rechnung zu setzen seien. Wenn man bei der Benutzung von Kornthaler Variationen im Vermessungsgebiet das entsprechende Glied $\Delta(\lambda,\phi)$ berücksichtigen will, so hat man H zu verändern von 6^{a} bis 9^{a} um $+0.6\gamma$, von 11^{a} bis 1^{p} um -1γ . Diese Korrektionen, je um 1γ , liegen aber innerhalb der Messungsgenauigkeit, ihre Einführung hat nur Berechtigung, wenn

man wie hier einen Vergleich der Resultate bei Benutzung von Kornthaler und von Potsdamer Variationen anstrebt. Dies ist bei den Doppelrechnungen auf S. 47—91 geschehen: In 8 Fällen ist der Unterschied 0γ , in 5 Fällen 1γ , in je 3 Fällen 2γ , 3γ und 6γ , in 4 Fällen 4γ , in 2 Fällen 5γ ; insgesamt zeigt sich bei Benutzung der Kornthaler und der Potsdamer Variationen in 28 Fällen ein mittlerer Unterschied in den Werten H von $\pm 3\gamma$.

Da Münchener stündliche Werte, je von 11^a bis 6^p , zur Verfügung standen, so wurde auch ein Vergleich mit diesen angestellt, wobei allerdings ein Zeitunterschied von 6^m bestehen blieb. Für 2. August und 5. bis 13. August 1902 ergab sich für den Übergang von Kornthaler auf Münchener Werte eine Unsicherheit von $\pm 2.5 \gamma$.

Die Variationskurven der Deklination in Kornthal vom 2. bis 25. August 1902 zeigten keine Auffälligkeiten; dennoch wurden sie mit Potsdamer und Münchener Werten verglichen. Die Werte von Potsdam um 8a, 1p und das Tagesmittel (s. Mitteil, aus d. Markscheiderwesen, Neue Folge, Heft 5) geben gegen die Kornthaler Werte durchweg gleichbleibende Differenzen. Die Tagesmittel stimmen innerhalb 0:5 überein. Auch der Vergleich mit den Münchener stündlichen Werten (bei 6^m Zeitunterschied) je von 11ª bis 6º zeigt eine gute und durchlaufende Übereinstimmung; die Werte stimmen innerhalb 1' überein. Wenn man nur die gegen das Mittagsmaximum symmetrischen Stundenwerte nimmt, so liegen die Maximaldifferenzen zwischen 0:7 und 1:1. Jedenfalls geht aus diesen Untersuchungen hervor, daß die Registrierung von D in Kornthal richtig ist, und daß der Basiswert über die ganze Zeit unverändert geblieben ist. An mehreren Tagen fehlt die Registrierung von D in Kornthal. Für die Deklinationsmessungen wurden die fehlenden Variationen dann von Potsdam abgeleitet durch eine Reduktion, die aus den benachbarten Stundenwerten vor und nach dem fehlenden Stück sich ergab; für die Messungen von H wurde die Änderung in D den Bochumer Aufzeichnungen entnommen, wenn die Deklinationskurve in Kornthal fehlt.

Die Tafel II zeigt den Unterschied des Verlaufs der Deklination in Potsdam und Kornthal aus den Stundenmitteln der Zeit August-September 1900. Nach dem vorstehenden günstigen Ergebnis für die Registrierung von D in Kornthal braucht man auf diese Tafel nicht einzugehen. Wohl aber war die Frage, ob das Vermessungsgebiet mit 6^m Längenunterschied gegen Kornthal schon eine bemerkbare Änderung im täg-

lichen Gange der D-Variation habe. Das Glied $\Delta(\lambda, \phi)$ zwischen dem Vermessungsgebiete und Kornthal wird nach Tafel II:

Der normale tägliche Gang kann also zwischen 9° bis 12° und 2° bis 5° wohl berücksichtigt werden. Im vorliegenden Falle, wo die Messung der Deklination nicht in erster Linie stand, wurde mit Rücksicht auf die geringere Genauigkeit dieses Elementes auf die Korrektion verzichtet.

Bei diesen Erwägungen darf nicht außer acht gelassen werden, daß die Variationen im magnetischen Störungsgebiete vielleicht ganz anders verlaufen, als es angenommen wird, daß also Abweichungen vorhanden sein können, die die periodischen Glieder weit überwiegen. Die mit Kornthal gut übereinstimmende Änderung der Elemente in den Punkten Nr. 21 und 34 zwischen 1900 und 1902 läßt zwar einen ziemlich normalen Verlauf möglich erscheinen.

Der Papiereingang der Registrierbogen in Kornthal brauchte aus den in W, S. 4 und 5 angegebenen Gründen nicht berücksichtigt zu werden, auch der der Potsdamer Bogen nicht; dieser bewegte sich fast durchaus in den Grenzen 1.3 bis 1.4 Prozent.

Eine unerklärte Erscheinung liegt in der Kornthaler Registrierung von D und von H. Beide Variometer stehen auf derselben Steinplatte und registrieren aus verschiedenen Entfernungen auf dieselbe Walze. Die Basislinien bleiben vollständig parallel und haben einen stetigen Verlauf; dennoch zeigen die Vergleiche mit Potsdam, übereinstimmend mit den absoluten Messungen, daß der Basiswert von H vom 2. bis 14. August 1902 um $19\gamma = 4^{\text{mm}}0$ gesunken ist, während der Basiswert von D unverändert bleibt.

Messung und Berechnung der Deklination. Die Bestimmung der Richtung der magnetischen Achse des Deklinationsmagnets geschah in 2 oder 3, manchmal auch in mehreren Sätzen in der in W¹, S. 18 beschriebenen Weise; jeder Satz hat 4 Einstellungen in Lage I und ebensoviel in Lage II bei umgekehrter Einstellungsrichtung, und die Magneteinstellungen wurden wenn möglich zwischen die Mireneinstellungen genommen. Das Okular, das eine gute Führung hat, wurde diesmal verschoben bis zur Abgabe scharfer Bilder, s. W, S. 14. Der Spiegel des Deklinationsmagnets

W = Die erdmagnetischen Elemente in Württemberg und Hohenzollern für 1901.0.

war verstellt, früher betrug seine Schiefe horizontal 52', vertikal 43' (s. Terr. Magn. Juni 1902), jetzt war sie nur noch 2' und 8'. Statt des etwas verbrauchten Saphirhütchens war ein neues Achathütchen eingesetzt; es erwies sich aber als so schlecht, daß es schon nach einmaligem Gebrauche, am 2. August, wieder gegen das alte Saphirhütchen vertauscht worden ist.

Geodätische Azimutbestimmung. In Bayern wie in Württemberg liegt den trigonometrischen Werten ein Soldnersches Koordinatensystem zugrunde, dort mit dem Nullpunkte München, nördlicher Frauenturm, hier mit Sternwarte Tübingen als Anfangspunkt. Die +x-Achse geht nach Nord, sie ist in Bayern um 14.4, in Württemberg um 15.6 nach Ost verdreht; die +y-Achse geht in Bayern nach West, in Württemberg nach Ost. Die Richtungswinkel wurden der Einheitlichkeit wegen, entgegen dem bayerischen Gebrauche, durchweg von Nord über Ost gezählt. Die Koordinatenwerte sind in Württemberg in Metern, in Bayern in Ruten (1 bayer. Rute = 2.91 859 164) angegeben und in die Rechnung eingeführt. Als Aufstellungspunkte sind in Württemberg trigonometrisch bestimmte Signale, in Bayern beliebige Punkte genommen. Die Berechnung der Richtungswinkel α erfolgte in der bekannten Weise, ausgehend von der Ebene, aus gegebenen Koordinaten:

$$\begin{split} \operatorname{tg} \alpha_0 &= \frac{y_1 - y}{x_1 - x} \; \operatorname{und} \; \alpha = \alpha_0 + \frac{x_1 - x}{2R^2} \; y \; \cos^2 \alpha \cdot \rho + \frac{y_1^2}{4R^2} \sin \; 2\alpha \cdot \rho \\ &\quad + \frac{(x_1 - x) \, (y_1 - y)}{6R^2} \cos \; 2\alpha \cdot \rho \, . \end{split}$$

Das 3. Korrektionsglied kann hier vernachlässigt werden, für Bayern kam auch das 1. Glied nicht mehr in Betracht.

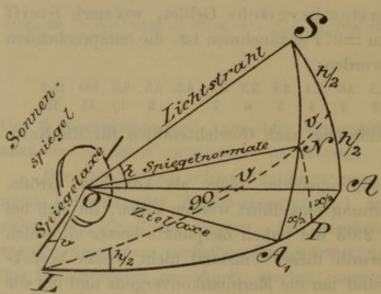
Für die bayerischen Stationen waren die Standpunktskoordinaten nicht bekannt, die Richtungswinkel mußten aus den Rückwärtsschnitten abgeleitet werden. Das geschah in verschiedener Art. Meist wurden aus einem einfachen Rückwärtsschnitte Näherungskoordinaten des Standpunktes gerechnet; hierbei unterstützte mich Hr. Markscheiderkandidat Janus. Reichten diese Werte zur Mittelbildung der Richtung des Kreisnullpunktes nicht aus, so erfolgte eine rechnerische Koordinatenausgleichung. Oder aber wurden genäherte Richtungswinkel aus Sonnenazimuten oder aus den Deklinationsmessungen selbst abgeleitet und hieraus Näherungskoordinaten berechnet. In einzelnen Fällen wurden die genäherten

Koordinaten direkt der Karte 1:25 000, selbst 1:100 000 entnommen. Zur Auffindung der Richtungsverbesserungen und Ausgleichung der Koordinaten sind die Fehlergleichungen aufzustellen:

$$v = z + d\phi + 1 = z + \frac{\sin \phi}{s} \rho dx - \frac{\cos \phi}{s} \rho dy + 1 = z + a dx - b dy + 1.$$

Die Rechenarbeit ist nicht besonders groß, da man die Richtungskoeffizienten meist nur einmal aufzustellen braucht und die aus den Normalgleichungen sich ergebenden dx und dy sofort zur Aufstellung neuer Absolutglieder in den Fehlergleichungen benutzen kann, bis die fortgesetzten Ausgleichungen das Resultat mit der nötigen Schärfe ergeben; dann erst sind die ausgeglichenen Koordinaten auszurechnen. Die Richtungen wurden dann aber mit den ausgeglichenen Koordinaten noch einmal einzeln abgeleitet und nach der Entfernung der Zielpunkte mit Gewichten belegt. Es wurde ein mittlerer Einstellungsfehler von 0:2, s. W, S. 14, und ein mittlerer Koordinatenfehler von $\Delta x = \Delta y = \pm 0.1$ Ruten $= \pm 0^m$ 3 angenommen, dann erhält man zum Ausgleiche der Widersprüche der gemessenen gegen die berechneten Richtungen die Gewichtszahlen:

Entfernung in km: 1.1 1.4 2.0 3.0 3.9 4.8 5.7 6.6 7.8 9.2 11.0 13.9 18.0 30.8 Gewicht der Visur: 0.3 0.5 1 2 3 4 5 6 7 8 9 10 11 12.


Es sind hier auch für das württembergische Gebiet, wo nach Steiff der mittlere Koordinatenfehler zu ±0.1 anzunehmen ist, die entsprechenden Gewichtszahlen aufgestellt worden:

Entfernung in km: 0.5 0.7 1.0 1.5 2.0 2.4 2.8 3.3 3.8 4.6 5.5 6.9 9.0 15.3 Gewicht der Visur: 0.3 0.5 1 2 3 4 5 6 7 8 9 10 11 12.

Danach sind Maßstäbe mit Bezifferung nach Gewichtszahlen für die Karte 1:100 000 angefertigt worden.

Eigentlich hätte der Einstellungsfehler nicht als konstante Größe, sondern als Funktion der Entfernung eingeführt werden sollen, da sich bei dem großen Mittelfadenabstand 2:03 die nahen Zielpunkte besser einstellen ließen als die fernen. Doch wurde dieser Umstand nicht weiter berücksichtigt. Die Richtungswinkel sind um die Meridiankonvergenz und um die Verdrehung der x-Achse zu vergrößern, damit man die Azimute erhält. Zur Berechnung der Meridiankonvergenzen dienten Tabellen, die nach der hier genügend genauen Formel $\mathbf{m}' = \frac{\mathbf{y}}{\mathbf{R}} \operatorname{tg} \boldsymbol{\phi} \cdot \boldsymbol{\rho}'$ berechnet wurden; \mathbf{m} hat das Vorzeichen von \mathbf{y} in Württemberg, das entgegengesetzte in Bayern.

Astronomische Azimutbestimmung. Zur Probe, Unterstützung oder zum Ersatze geodätischer Richtungsmessungen wurden Sonnenazimute bestimmt. Bis zu 30° Höhe konnte die Sonne direkt angezielt werden, sonst war der Sonnenspiegel nötig. Die Fehler der Ziel- und Kippachse waren bei dem nicht durchschlagbaren Fernrohr genügend klein, dagegen erwies sich die Empfindlichkeit und Standfestigkeit der Reitlibelle als ungenügend. Bei Verwendung des Sonnenspiegels steht das Fernrohr genähert horizontal; man stellt die Libelle auf die Spiegelachse und setzt den Spiegel zwischen der Beobachtung um; auch wird man die Sonne vor- und rückwärts anzielen. Durch das Umsetzen wird man die Fehler der dabei bewegten Teile nahezu unschädlich machen können; aber der Fehler, der aus der schiefen Stellung der Spiegelachse gegen die Zielachse, also aus einer Verdrehung der Spiegelstützen herrührt, wird weder durch das Umsetzen noch durch das Anzielen vor- und rückwärts beseitigt. Denken wir uns den Spiegel für sich richtig, also seine Drehachse als Zylinder mit Mantellinien parallel zur Spiegelebene, auch diese Drehachse horizontal gestellt, sondern wir also die durch das Umlegen herausfallenden Fehler ab. Die Drehachse des Spiegels stehe aber nicht senkrecht zur Zielachse des

Fernrohrs, sondern weiche um einen kleinen Winkel v von dieser senkrechten Stellung ab. Es werde ein Punkt von der Höhe h rückwärts angezielt. Dann projiziert sich S nicht senkrecht nach A, sondern schief nach A_1 , und dem Fehler v der Spiegelachse entspricht der Azimutfehler $A_1A = x$. Die Vertikalebene durch die Spiegelnormale gibt ein rechtwinkliges Dreieck mit der Hypo-

tenuse LN = 90 - v und der Kathete LP nahezu $= 90 - x/_2$. Also ist genähert

$$\operatorname{tg} x/_{2} = \frac{\operatorname{tg} v}{\cos h/_{2}}, \ x = \frac{2 v}{\cos h/_{2}}.$$

Bei dieser Anzielung rückwärts ist die Neigung der Spiegelnormalen = $h/_2$, des Spiegels selbst = $90^{\circ} + h/_2$. Bei der Anzielung von S vorwärts hat der Spiegel die Neigung $180^{\circ} - h/_2$, die Normale $90^{\circ} - h/_2$. Hier wird der Fehler

$$tg y/_2 = \frac{tg v}{\sin h/_2} \qquad y = \frac{2 v}{\sin h/_2}.$$

Der aus dem Spiegelfehler v hervorgehende Azimutfehler wird also im Mittel aus der Anzielung rück- und vorwärts:

$$\Delta a = \left(\frac{1}{\cos h/_2} + \frac{1}{\sin h/_2}\right) \cdot v = 2\sqrt{2} \frac{\sin (45 + h/_2)}{\sin h} \cdot v = f(h) \cdot v.$$

Man findet:

für h = 20° 35° 45° 55° 60° 900 50° 3.16 3.05 2.96 f(h) = 6.785.65 4.90 4.38 3.99 3.70 3.47 3.29 2.90 2.84 2.83.

Zur Bestimmung von v können die Messungen auf den Stationen Nr. 3° und 38 dienen, wo Sonnenazimute mit und ohne Sonnenspiegel bestimmt wurden; man erhält v = +0.12 und = +0.15. Eine bessere Bestimmung bei gut bekannten Azimuten und genauer Zeit erfolgte auf der Basisstation am 3. September 1902; sie ergab v = +0.3 und dieser Wert ist in Ermangelung öfterer guter Bestimmungen für die ganze Messungszeit eingeführt worden.

Die Sonnenpeilungen mit dem Spiegel erfolgten so: Anzielung des austretenden Sonnenrandes vorwärts (oder rückwärts), dann rückwärts (oder vorwärts); Umsetzen von Spiegel und Libelle; Anzielung des andern (oder desselben) Sonnenrandes in umgekehrter Weise. Die Ablesung der Zeit geschah auf volle Sekunden beim Durchgang durch jeden der 2 Mittelfäden.

Zur Berechnung wurden die Angaben im Berliner Nautischen Jahrbuche benutzt. Um die Ortszeit t aus der abgelesenen M. E. Z. zu erhalten, mußte der Längenunterschied der Standpunkte gegen λ₁₅ bestimmt werden. Dies ist zunächst graphisch geschehen durch Eintrag der Stationen in die Blätter Nr. 577, 593, 594 und 608 des Deutschen Reiches 1:100 000 mittels einer verzerrten Kreisteilung auf Pauspapier. Die benutzten Karten haben Eingänge in Ost-West von 1.6 bis 1.9 Prozent, in der Nord-Süd-Richtung von 0.8 bis 1.1 Prozent, alle aber die Eingangsdifferenz (p—q) Prozent = 0.8 Prozent. Die Verzerrung des Richtungswinkels ergibt sich aus

$$d\alpha' = \frac{1}{2} \frac{\mathbf{p} - \mathbf{q}}{100} \cdot \sin 2\alpha \cdot \rho'.$$

Der Eintrag in die Karten konnte dann mit einer Genauigkeit von ± 0.05 in der Breite und ± 0.3 in der Länge erfolgen. Der Längenfehler ist innerhalb des Zeitfehlers der Uhrablesung; es erweist sich, daß die versuchte graphische Behandlung genügt.

Dennoch wurden die geographischen Koordinaten aus den geodätischen besonders gerechnet.

Der Nullpunkt für Bayern wurde angenommen zu:

$$\phi = 48^{\circ} 8' 20'' \quad \lambda = 0^{h} 46^{m} 18^{s} 07 \text{ e. Gr.} = 29^{\circ} 14! 285 \text{ ö. F.}$$

Dann wurden mit Benutzung der Soldnerschen Formeln in Lamont, Magnetische Ortsbestimmungen I, S. 19, folgende Ausdrücke aufgestellt, die den Breitenunterschied in Bogenminuten, den Längenunterschied in Zeitsekunden geben, wenn x und y in Ruten gegeben sind:

$$\phi = 48^{\circ} \, 8!333 + (1 + a) \, (\text{Nlg } 7.19783) \, \text{x} \\ - 3.18 \cdot 10^{-10} \cdot \text{y}^2 \\ - 3.67 \cdot 10^{-16} \cdot \text{xy}^2$$

$$\lambda_{15} - \lambda = 0^{h} 13^{m} 41^{s}93 + \frac{(N \lg 7.79814)}{\cos \phi} \cdot y + 4.064 \cdot 10^{-16} y^{3}.$$

Die letzten Glieder bringen für das Vermessungsgebiet keine merkbaren Größen mehr.

Für die württembergischen Stationen wurde von den Berechnungen Hammers, »Über die geographischen Längen in Stuttgart«, Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 1901, ausgegangen. Aus dem dort angegebenen Hauptpunkte:

Solitüde:
$$\phi = 48^{\circ}47'14".7 \quad \lambda = 36^{\circ}20".20$$
 e. Gr.

berechnet sich:

Tübingen Sternwarte:
$$\phi = 48^{\circ}31'13".1$$
 $\lambda = 0^{\circ}36"$ 12 $".1$ e. Gr.

Diese Werte wurden in Bohnenbergers Formeln zur Berechnung geographischer Koordinaten eingeführt. Der Pfeiler der Basisstation Kornthal wurde direkt von Solitüde aus gerechnet:

Pfeiler Kornthal:
$$\phi = 48^{\circ} 50' 5".1 \quad \lambda = 0^{h} 36^{m} 29".5 \text{ e. Gr.} = 26^{\circ} 47".12 \text{ ö. F.}$$

Durch diese Werte dürfte ein genügender Zusammenschluß der geographischen Koordinaten im Vermessungsgebiete erreicht worden sein.

Die Übereinstimmung der astronomisch gemessenen mit den geodätisch abgeleiteten Azimuten ist mehrfach wenig befriedigend; der Unterschied ist in 11 von 24 Fällen innerhalb 1', in 6 Fällen noch unter 2', in 5 Fällen zwischen 2' und 3', in einem Falle 3:2 und in einem anderen, allerdings geodätisch gar nicht kontrollierbaren, sogar 4:2. Diese Abweichungen sind nicht allein auf den Uhrgang, dessen Einfluß durch

$$da' = \frac{1}{4} \frac{\operatorname{tg} a}{\operatorname{tg} t} \cdot dt^{\operatorname{Sek.}}$$

ausgedrückt ist, zu schieben; sie fallen zum Teil auch der Triangulierung zur Last; jedenfalls aber liegt die Ursache auch in instrumentellen Unvollkommenheiten.

Zur Reduktion der Deklinationswerte auf denselben Stand wurde eine Basis D₀ gewählt, 10^{mm} unter der registrierten Basislinie. Die Tagesmittel der stündlichen Werte (zu Potsdamer Zeit) ergaben sich zu:

1902 Aug. 4	$D = D_0 + 6.7$	1902 Aug. 11-	$D = D_0 + 6!4$
5	7.3	12	7.1
6	7.5	13	6.9
- 7	7.0	18	7.3
8	7.1	22	6.2
9	7.9	23	7.0
10	6.9	24	6.8

Also mittlere Deklination in Kornthal aus den stündlichen Werten von 1902 Aug. 4 bis 24: $D_m = D_0 + 7.0$.

Der mittlere Fehler der Deklinationswerte wurde zu $\pm 1!0$ geschätzt. Messung und Berechnung der Inklination. Die Messung geschah in der in W, S.19—21 beschriebenen Weise; man hat auch hier für Nadel II das Korrektionsglied $\Delta i = -1!0$. Ebenfalls schien es gerechtfertigt, alle Werte auf einen mittleren Stand zu reduzieren. Dem Mittelwert von H in Kornthal entspricht bei den Potsdamer Variationen der Ordinatenwert n' = 101.0 (s. S. 25). Der Mittelwert der Vertikalintensität wurde nach verschiedenen Versuchen auf folgende Art aufgestellt: Alle Ablesungen der Wage in Potsdam während der Inklinationsmessungen wurden vom täglichen Gang befreit nach Lüdeling, Ergebn. 10 jähr. magn. Beob. in Potsdam, S. 371; dann wurde das Mittel gebildet; es ist n'' = 123.55°. Nun ist, ebenfalls nach Lüdeling, S. 338, das Augustmittel um $8.3\gamma = 2.6$ ° zu klein, also entspricht genähert dem Jahresmittel die Ordinate n'' = 126.2. Allerdings ist auf die Temperaturschwankungen in Potsdam dabei keine Rücksicht

genommen, das ist hier aber auch nicht nötig. Die Reduktion der Inklination auf den Mittelwert ergibt sich aus

$$dJ = \frac{\rho}{J} (-\cos J \cdot dZ + \sin J \cdot dH).$$

Als Mittelwerte sind die Näherungswerte für Kornthal zu nehmen: H = 0.2018 und $J = 64^{\circ}2'$. Ferner wird $dZ = (n'' - 126.2) \cdot 3.2 \gamma = \Delta n'' \cdot 3.2 \gamma$, und $dH = (n' - 101.0) \cdot 3.16 \gamma = \Delta n' \cdot 3.16 \gamma$.

Mit diesen Werten erhält man:

$$dJ = 0.746 (-0.140 \cdot \Delta n'' + 0.284 \cdot \Delta n')$$

oder genähert $dJ = \frac{1}{10} (2\Delta n' - \Delta n'')$.

Diese genäherte Reduktionsformel gilt für Kornthal und das ganze Vermessungsgebiet.

Als mittlerer Fehler einer Inklinationsmessung mit 2 Nadeln ergibt sich aus den Differenzen Nadel II — Nadel I für 60 Messungen:

$$m = \pm \sqrt{\frac{11300}{60}} = \pm 1.4$$

ein unerwartet hoher Betrag; der frühere Fehler bei demselben Instrument war nur ± 0.5 . Läßt man aber nur 3 Beobachtungen, darunter eine von Kornthal, weg, so wird $m = \pm 1.2$; scheidet man noch 2 weitere Fälle aus, so wird $m = \pm 1.0$. Der gefundene Wert ± 1.4 dürfte demnach etwas zu hoch ausgefallen sein; man wird annehmen dürfen, daß der mittlere Fehler der Inklinationsmessung hier nicht größer ist als ± 1.2 .

Messung und Berechnung der Horizontalintensität. Die Temperaturkoeffizienten der Magnete sind den früheren Bestimmungen entnommen worden; der Wert 7.3γ für den Magnet des H-Variometers in Kornthal aus der Ermittlung von 1900, s. W¹, S. 7 und 8; für die Ablenkungsmagnete die Ende 1900 in Potsdam gefundenen Werte, s. W, S. 51.

$$\begin{array}{c} \text{Magnet I:} \\ \lg\sin\phi_{15} = \lg\sin\phi_{t} + 31.9_{0} \ (t-15) + 0.11 \ (t-15)^{2} \quad \lg T_{15} = \lg T_{t} - 15.8_{7} \ (t-15) + 0.01 \ (t-15)^{2}. \\ \text{Magnet II:} \\ \lg\sin\phi_{15} = \lg\sin\phi_{t} + 30.2_{2} \ (t-15) + 0.12 \ (t-15)^{2} \quad \lg T_{15} = \lg T_{t} - 14.8_{3} \ (t-15) - 0.04 \ (t-15)^{2}. \\ \text{Deflektor I:} \\ \lg\sin\phi_{15} = \lg\sin\phi_{t} + 31.4_{5} \ (t-15) + 0.20 \ (t-15)^{2}. \\ \text{Deflektor II:} \\ \lg\sin\phi_{15} = \lg\sin\phi_{t} + 32.5_{8} \ (t-15) + 0.10 \ (t-15)^{2}. \end{array}$$

W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

Die Magnete hatten ihre Momente nur wenig verändert, man kann annehmen, daß dann auch ihre Temperaturkoeffizienten nur wenig anders geworden sind. Die Registrierungen wurden wieder auf 20°, die Ablenkungen auf 15° reduziert.

Auch die in Potsdam 1½ Jahre früher bestimmten Konstanten, s. W, S. 55, für absolute Messungen, sind beibehalten worden:

Magnet I: lgC = 9.95164, Magnet II: lgC = 9.94746,

da diese Werte von der Magnetisierung unabhängig sein sollen, und da die Vorrichtungen für Ablenkungen und für Schwingungen unverändert geblieben sind. Nur die Stellung des Spiegels für den Deklinationsmagnet ist geändert worden, s. S. 13; nach Liznar, »Verteilung der erdmagnetischen Kraft in Österreich-Ungarn«, S. 14, müßten dann die Werte von lg C um 2 Einheiten der 5. Stelle verkleinert werden, doch ist diese Änderung nicht vorgenommen worden.

Die Basiswerte H_{20} in Kornthal wurden auf eine Linie bezogen, 10^{mm} über der registrierten Deklinationsbasis. Im Vertrauen auf die vorzüglichen Erfahrungen von 1900 wurde in Kornthal nur dreimal gemessen, aber diesmal hielt das H-Variometer nicht seinen Stand: der Basiswert hat vom 2. bis 14. August um 19γ abgenommen. Die Änderung scheint ziemlich gleichmäßig vor sich gegangen zu sein, wie aus dem Vergleich der Werte für H, die mit Kornthaler und mit Potsdamer Variationen berechnet wurden, hervorgeht.

Die Anordnung der Messungen in Kornthal wurde gegen die von 1900 etwas abgeändert. Da die Momente der Magnete beim Messen meist abnehmen, wurden die Ablenkungen direkt nach den Schwingungen nicht zur Bildung von lgc benutzt. Vielmehr wurden für lgc besondere Ablenkungen, zeitlich möglichst weit nach den absoluten Messungen, vorgenommen; dieses Verfahren scheint keinen Vorteil gebracht zu haben.

Zur Reduktion der Schwingungen waren Skalenwerts- und Torsionsbestimmungen nötig. Für das Torsionsverhältnis wurde gefunden:

$$\begin{array}{c} \text{Magnet I:} \\ \text{Aug. 14.} \\ \theta = \frac{4^\circ 30}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257; \quad \theta = \frac{4^\circ 29}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257; \quad \theta = \frac{4^\circ 25}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 255; \\ \theta = \frac{4^\circ 28}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257; \quad \theta = \frac{4^\circ 28}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257; \\ \theta = \frac{4^\circ 28}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257; \quad \theta = \frac{4^\circ 30}{360^\circ}, \, {}^1\!/_{\!2} \lg{(1+\theta)} = 0.00\ 257. \end{array}$$

Für den Skalenwert:

1902 Aug. 2. Aug. 25.
Magnet I:
$$1^p = 2.85 - 0.03$$
 (wegen Torsion) $1^p = 2.81 - 0.03$
Magnet II: $1^p = 2.79 - 0.03$ $1^p = 2.64 - 0.03$.

Wie schon angegeben, S. 8 und 9, ist ein Teil der Kornthaler Registrierung unbrauchbar; deshalb wurden, und zwar für alle Messungen, die Potsdamer Aufzeichnungen der H-Variationen benutzt. Doch wurden auch die Berechnungen mit den brauchbaren Kornthaler Werten durchgeführt. Den auf S. 8 angegebenen Reduktionsformeln für Kornthal entsprechen für Potsdam (Empfindlichkeit $\epsilon' = 3.16\gamma$) die folgenden:

$$\lg \sin \phi_0 = \lg \sin \phi_{15} + 0.000068 (n' - n'_{100})$$

$$\lg T_0 = \lg T_{15} + 0.000034 (n' - n'_{100}).$$

Die Basiswerte H₁₀₀ in Potsdam sind für 1902:

- 1. Aug. 2: $H_{100} = 0.18870$,
- 2. Aug. 4—12, 14—16, 23: $H_{100} = 0.18871$,
- 3. Aug. 13, 17, 20—22: $H_{100} = 0.18872$,
- 4. Aug. 18—19, 23—25: $H_{100} = 0.18873$.

Die Korrektionen auf den gleichen Stand beziehen sich alle auf den 2. Basiswert 0.18871.

Für die absoluten Messungen wurden dieselben Bezeichnungen gewählt, wie in W, S. 54 und 55 angegeben und gerechnet:

$$\lg C = \frac{1}{2} \lg \sin \phi_0 + \lg T_0 + \frac{1}{2} \lg (1 + \theta) + \lg H
= S + \lg H.$$

Berechnung der Basiswerte von H aus den Kornthaler absoluten Messungen, mit Benutzung der Kornthaler und der Potsdamer Registrierungen, aus den Werten S. 39:

Magnet	T	1902	Ano	9
magnet	An	1002	raug.	and a

Variationen von Kornthal,	von Potsdam	Variationen von Kornthal,	von Potsdam
Nr. 1: $\lg \sin \phi_0 = 9.87476$	9.87 477	Nr. 2: $\lg T_0 = 0.70687$	0.70 690
Nr. 4: 9.87 445	9.87 459	Nr. 3: 0.70 686	0.70 694
Mittel: $\lg \sin \phi_0 = 9.87460$	9.87 468	$\lg T_0 = 0.70686$	0.70 692

Variationen von Kornthal: lg H = 9.30 491, H = 0.20 180

Variationen von Potsdam:

Magnet II. 1902 Aug. 2.

Variationen von Kornthal,	von Potsdam	Variationen von Kornthal,	von Potsdam
Nr. 5: $\lg \sin \phi_0 = 9.87475$	9.87 489	Nr. 6: lg T ₀ = 0.70 256	0.70 262
Nr. 8: 9.87 458	9.87 478	Nr. 7: 0.70 263	0.70 271
Mittel: $\lg \sin \phi_0 = 9.87466$	9.87 484	$\lg T_0 = 0.70 \ 260$	0.70 266

Variationen von Kornthal: $\lg H = 9.30496, H = 0.20182$

Variationen von Potsdam: $\lg H = 9.30481, H = 0.20175$ $\Delta(\lambda, \phi) =$ = 0.20174

Mittel: 1902 Aug. 2: Variationen Kornthal H₂₀ = 0.20 181, Variationen Potsdam H₁₀₀ Basiskorr. = H100 = 0.20175

Magnet I. 1902 Aug. 14.

Variationen von Kornthal,	von Potsdam	Variationen von Kornthal,	von Potsdam
Nr. 15: $\lg \sin \phi_0 = 9.87497$	9.87 463	Nr. 16: $\lg T_0 = 0.70701$	0.70 684
Nr. 18: 9.87 492	9.87 459	Nr. 17: 0.70 710	0.70 693
Mittel: $\lg \sin \phi_0 = 9.87494$	9.87 461	$\lg T_0 = 0.70706$	0.70 688

Variationen von Kornthal:

Variationen von Potsdam: $\lg H = 9.30454, H = 0.20162$ $\lg H = 9.30488, H = 0.20178$ $\Delta(\lambda, \phi) =$ H = 0.20177

Magnet II. 1902 Aug. 14.

Variationen von Kornthal,	von Potsdam	Variationen von Korntha	l, von Potsdam
Nr. 19: $\lg \sin \phi_0 = 9.87479$	9.87 443	Nr. 20: $\lg T_0 = 0.70302$	0.70 284
Nr. 22: 9.87 474	9.87 432	Nr. 21: 0.70 295	0.70 276
Mittel: $\lg \sin \phi_0 = 9.87476$	9.87 438	$\lg T_0 = 0.70299$	0.70 280

Variationen von Kornthal: $\lg H = 9.30452, H = 0.20161$

Variationen von Potsdam: $\lg H = 9.30490, H = 0.20179$ $\Delta(\lambda, \phi) = -2$ H = 0.20177

Mittel: 1902 Aug. 14: Variationen Kornthal $H_{20} = 0.20$ 162, Variationen Potsdam $H_{100} = 0.20$ 177.

Magnet I. 1902 Aug. 25. Magnet II. 1902 Aug. 25. Variationen von Potsdam Variationen von Potsdam Nr. 29: $\lg \sin \phi_0 = 9.87438$ Nr. 30: $\lg T_0 = 0.70679$ Nr. 33: $\lg \sin \phi_0 = 9.87423$ Nr. 34: $\lg T_0 = 0.70285$ Nr. 32: 9.87 418 Nr. 31: 0.70 681 9.87 435 Nr. 35: 0.70 278 Nr.36: Mittel: $\lg \sin \phi_0 = 9.87428$ $\lg \sin \phi_0 = 9.87429$ $\lg T_0 = 0.70680$ $\lg T_0 = 0.70282$ $\lg H = 9.30493, H = 0.20180$ $\lg H = 9.30515, H$ = 0.20190 $\Delta(\lambda, \phi) =$ $\Delta(\lambda, \phi) =$ = 0.20186= 0.20176

> Mittel: 1902 Aug. 25: Potsdam H₁₀₀ Basiskorr. = = 0.20179H₁₀₀

Berechnung von H und lgc mit Kornthaler Variationen. Man erhält:

1902 Aug. 2, 195 Basiswert
$$H_{20} = 0.20 181$$

• 14, 8.5 • $H_{20} = 0.20 162$

In 11.8 Tagen nimmt der Basiswert um 19γ , in 1 Tag um 1.6γ ab. Bei der Annahme einer gleichmäßigen Änderung, die durch die Doppelrechnung der Stationen S. 47-91 bestätigt wird, erhält man, je für den Mittag gerechnet, folgende Basiswerte:

1902 Aug. 2	$H_{20} = 0.20181$	1902 Aug. 6 H ₂₀	= 0.20174	1902 Aug. 11	$H_{20} = 0.20166$
3	179	7	173	12	164
4	178	8	171	13	163
5	176	9	169	14	161
		10	168		

Aus den stündlichen Werten (bei Potsdamer Zeit) aller vollständigen und auf $\tau=20^{\circ}$ reduzierten Registrierungen in Kornthal erhält man damit die Tagesmittel:

Das auf die Mitte, 1902 Aug. 9, bezogene Mittel ist:

Kornthal, mittlere Horizontalintensität H = 0.20180.

Für 1900 Septr. 1 hat sich die mittlere Horizontalintensität in Kornthal ergeben zu (s. W, S. 77):

$$H = 0.20126$$

In 1.95 Jahren hat also H in Kornthal zugenommen um 54γ. Zur Berechnung von lgc für Ablenkungen hat man:

Aus diesen Endwerten von lgc leitet man die Zwischenwerte ab; dann sind die H der Feldstationen zu rechnen und ist die Basiskorrektion anzubringen, zuletzt sind noch die mittleren Werte für die H zu bilden.

Alle diese Reduktionen sind hier gleich in die Interpolationswerte von lgc aufgenommen, so daß die resultierenden H alle der mittleren Horizontalintensität in Kornthal H = 0.20180 entsprechen. Man erhält, je für den Mittag, und zugleich für den ganzen Messungstag gültig, die Zwischenwerte von lgc:

	Magnet I	Magnet II	Deflektor I	Deflektor II
1902 Aug. 2	$\lg c = 9.17936$	$\lg c = 9.17959$	$\lg e = 9.22011$	$\lg c = 9.24047$
3	940	960	013	051
4	945	961	015	055
11 5	950	963	017	059
6	954	964	018	062
7	958	965	020	066
8	963	966	022	070
114 115 9	968	967	024	074
10	972	968	026	078
11	977	969	028	082
12	982	970	030	086
13	986	972	032	090
14	991	973	034	094

Berechnung von lgc mit Potsdamer Variationen. Die Kornthaler Messungen ergaben:

1902 Aug. 2 Basiswert
$$H_{100} = 0.20$$
 175, Gewicht 2, wegen Charakter der Registrierkurve 2—3

14
0.20 177, 3, 2
25
0.20 179, 1, 3 3—4

Mittel: Basiswert $H_{100} = 0.20$ 177 $\pm 1\gamma$.

Der Kornthaler Mittelwert $H=0.20\,180$ entspricht der Basisverschiebung von n'=100 auf n'=100.95; hier wurde aber nicht die Basis geändert, sondern der Wert von lg c dem Kornthaler Mittelwerte angepaßt und die Korrektion wegen der Basisänderung in Potsdam erst an H selbst vorgenommen. Man hat dann:

1902 Aug. 14, 0P9-1P1: 1902 Aug. 14, 10%-10%:
H = 0.20 180

$$\Delta(\lambda, \phi) = +3$$
 $\Delta(\lambda, \phi) = +4$
H = 0.20 183
 $\Delta(\lambda, \phi) = +4$
H = 0.20 184

1902 Aug. 25, 10*9 und 0?0: 1902 Aug. 25, 2?0-2?1:
H = 0.20 180

$$\Delta(\lambda, \phi) = +4$$

H = 0.20 184
 $\Delta(\lambda, \phi) = +2$
H = 0.20 182

Magnet I
 Magnet II
 Deflektor I
 Deflektor II

 Nr. 29:
$$\lg \sin \phi_0 = 9.87 \ 438$$
 Nr. 33: $9.87 \ 423$
 Nr. 37: $\lg \sin \phi_0 = 9.91 \ 516$
 Nr. 38: $9.93 \ 584$
 $\lg c$
 $= 9.17 \ 939$
 $9.17 \ 924$
 $\lg c$
 $= 9.22 \ 012$
 $9.24 \ 080$

Die Interpolation zwischen diesen Endwerten ergibt, je für den Mittag berechnet, lg c zu:

		Magnet I	Magnet II	Deflektor I	Deflektor II
1902 Aug.	. 2 1	g c = 9.17952	$\lg c = 9.17974$	$\lg c = 9.22026$	$\lg c = 9.24062$
(MEDIAN)	3	952	971	024	062
	4	953	968	022	062
	5	953	965	020	062
	6	954	962	018	062
	7	954	958	016	062
· nonth	8	954	955	014	062
	9	955	952	011	062
	10	955	949	009	062
	11	956	946	007	062
	12	956	943	005	062
	13	957	940	003	062
	14	957	937	001	062
	14	954	936	001	062
	15	953	935	002	064
	16	951	934	003	065
	17	950	933	004	067
	18	949	932	005	069
	19	947	931	006	070
	20	946	929	007	072
	21	944	928	008	073
	22	943	927	009	075
	23	942	926	010	077
	24 .	940	925	011	078
	25	939	924	012	088

Als mittlerer Fehler der Messung der Horizontalintensität mit Benutzung der Potsdamer Variationen ergibt sich im Mittel

$$m = \pm \sqrt{\frac{1020}{57}} = \pm 4.2\gamma.$$

II. Abschnitt.

Absolute magnetische Messungen auf der Basisstation bei Kornthal.

1. Deklinationsmessungen auf dem Pfeiler.

Nr. 10. 1902 Aug. 2. Wind und Regen.

Nr.	Ein- stellung	Fa- den	Uhrangabe	Kreis- ablesung	Va- riat.	Magnet- ablesung red. auf n ₀	The real part of the second
	B. S. L.	m m m	Δu = +0.4	108° 26:0 209 1.5 244 34.95	M.	C Sont	Die Azimute vom Pfeiler nach der Miren sind, s. W ¹ S. 6: Burgholzhof, A. T. B: 107°50!3
1 2 3 4	H. I oben	m l m ₁ m _r	4P 0™0 0.7 1.1 1.6	256 43.1 348 46.8 349 2.0 4.0 14.8	9.4	349° 11'3	Kornthal ↑ ≡ K: 168 13.25 Solitūde, Pfeiler ≡ S: 208 26.75 Leonbergerwarte, A. T. ≡ L: 243 59.9 Höfingen ↑ ≡ H: 256 8.45 Bemerkung: Der erste Halbsatz der Deklina
5 6 7 8	II oben	l m1 m, r	3.2 4.2 4.5 5.0	348 41.6 55.2 57.0 67.0	9.1	349 4.3 349° 7:8	tionsmessung scheint schlecht zu sein.
9 10 11 12	I oben	r m _r m ₁	4P 6.2 6.7 7.0 7.6	349 6.2 - 348 55.4 53.2 41.6	8.9	349° 3.0	S. 35.1 L. 35.1 H. 34.8 $A_0 = -0^{\circ}35!1 \pm 0!1$ $(M) = 349 5.7 \pm 2.1$
13 14 15 16	II oben	r m, m1	9.5 10.0 10.8 11.6	349 6.6 348 55.8 54.8 44.6	8.7	349 4.2 349 3.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	H. L. S. B.	11.0	E DA J	256 43.4 244 35.0 209 2.2 108 25.4		100 m	amphasized on product

¹ W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

Nr. 26. 1902 Aug. 14.

Nr. 40. 1902 Aug. 25. Regen und leichter Wind.

Nr.	Ein- stel- lung	Fa- den	Uhrangabe	Kreis- ablesung	Va- riat.	o biocomore	Nr.	Ein- stel- lung		Uhrangabe	Kreis- ablesung	Va- riat.	Magnet- ablesung red.auf no
13–16 S.	II ob.	r-l l-r r-l m	$\Delta u = +1\%0$ $0^p 10.0-12\%5$ $14.3-15.7$ $0^p 17.5-18.8$ $20.2-21.7$	350 22.8 350 19.2 350 21.7 210 26.15	10.1 10.5 10.7 10.8	350° 29!9 350 33.3 350 31.6 350 29.9 350 32.5 350 31.2		II ob.	r-l	2P48.0-49.1	350 34.8 350 36.7	11.6	350 50.9 350 48.1
L. H. K. 17-20 21-24 25-28 29-32	I ob.	r-l l-r	32.0-33.6 0°35.5-38.1	245 59.00 258 7.60 170 12.85 350 26.3 350 16.2 350 24.4 350 15.0	11.1 11.1 11.2 11.3	350 27.3 350 32.2 350 35.6	13-16 17-20 21-24	I ob.	l-r	2°52.3—53.3	350 40.2 350 43.0 350 33.6 170 33.55	11.2	350 51.6 350 49.8 350 54.2 350 45.3 350 49.8
	1		00.0	1000		350 31.0		B.	1	1914, 30 5	110 10.3		18

Azimut des Kreisnullpunktes = Ao.

 $A_0 = -1^{\circ}59!3 \pm 0!1$ $(M) = 350 31.5 \pm 0.3$

 $\begin{array}{lll} M &= 348^{\circ}32!2 \\ D_{0} &= 11\ 27.8 \pm 0.3. \end{array}$ Mittl. Dekl. $D = 11^{\circ}34.8$

Bemerkung: Bei Nr. 27 kleine Störung.

Azimut des Kreisnullpunktes = Ao.

 $A_0 = -2^{\circ} 20!1 \pm 0!1$ $(M) = 350 \ 50.2 \pm 0.4$

 $M = 348^{\circ}30!1$ $D_0 = 11 29.9$. Mittl. Dekl. $D = 11^{\circ}36!9$

Nr. 41. 1902 Sept. 3.

Nr.	Ein- stel- lung	Fa- den	Uhrangabe	Kreis- ablesung	Va- riat.	Magnet- ablesung red. auf n ₀
1-4 5-8	I oben II oben	l-r r-l	$\begin{array}{c} \Delta u = -0^{m}2 \\ 10^{a}47.7 - 50^{m}0 \\ 52.2 - 54.1 \end{array}$	350° 26:2 350° 21.2	8.0 8.1	350°34'2 350 29.3 350 31.8
9-12 13-16	II oben I oben	l-r r-l	10°54.7—56.5 58.5—60.2	350 22.7 350 26.0	8.3 8.4	350 31.0 350 34.4 350 32.7
17—20 21—24	I oben II oben	l-r r-l	11° 1.5— 3.2 4.7— 6.7	350 26.2 350 19.1	8.7 8.7	350 34.9 350 27.8 350 31.4
25—28 29—32	II oben I oben	l-r r-l	11° 7.7— 9.3 11.6—13.2	350 19.9 350 24.6	8.8 8.9	350 28.7 350 33.5 350 31.1
18.	B. K. S. L. H.	m m m m		109 50.0 170 13.1 210 26.6 245 59.8 258 8.25		100 HAG

Azimut des Kreisnullpunktes = Ao.

 $A_0 = -1^{\circ}59!8 \pm 0!1$

 $(M) = 350 \ 31.8 \pm 0.4$

 $\begin{array}{lll} M &= 348^{\circ}\,32.0 \\ D_0 &= 11\ 28.0 \pm 0.4. \end{array}$ Mittl. Dekl. $D = 11^{\circ}\,35.0$

Messung des Azimutes mit dem Sonnenspiegel:

Aus I und II: $A_0 = -1^{\circ}58!5$ - III - IV: = -1 59.1 astr. $A_0 = -1^{\circ}58!8$ geod. $A_0 = -1$ 59.8

Spiegelkorr. = -1.0 bei h = 48%

10-1-1	Sprogen	110 1100		
Nr.	Ein- stel- lung	Fa- den	Uhrangabe	Kreis- ablesung
Ia	r. 0	m ₁	$\Delta u = -11.5$ $0^p 30^m 34.5$ 44	4° 19:9
Ib	v. 0	m _r m _l m _r	32 41 49	185 11.4
Ha	v. 0	m_1	34 11	186 33.5
IIb	r. 0	m _r m _l m _r	35 35 44	7 2.2
IIIa	r. 0	m_1	36 31	6 34.9
Шь	v. 0	m _r m ₁ m _r	38 7 16	187 15.6
IVa	v. 0	m_1	39 26 34	188 31.6
IVb	r. O	m _r m _l m _r	0 41 18 26	9 11.4
34	H. S.	m	$\Delta u = -11.5$	258 8.2 210 26.7
	K.			170 12.9
43000	В.	10/1/20		109 50.1

Zusammenstellung.

Datum:	Basiswert:	Anzahl der Sätze, = Gewicht:
1902 Aug. 2	D ₀ = 11°29:4	2
- 14	27.8	4
* 25	29.9	3
Sept. 3	28.0	4

Mittel: Basiswert $D_0 = 11^{\circ}28.6 \pm 0.5$ $\Sigma p = 13$

Die einzelnen Bestimmungen stimmen schlecht überein, doch läßt sich erkennen, daß der Basiswert sich in der ganzen Beobachtungszeit nicht geändert hat. Schärfer und für alle einzelnen Tage hat das auch der Vergleich der stündlichen Werte der Registrierung von Kornthal mit der von München und von Potsdam ergeben; vgl. S. 12.

Der Wert der mittleren Deklination ist:

Kornthal, 1902 Aug. 15: D = 11°35.6. Aus W¹, S. 59, 1900 Sept. 1: D = 11°44.5.

In 1.96 Jahren hat also eine Abnahme der Deklination um 8:9 stattgefunden.

2. Inklinationsmessungen auf dem Pfeiler.

Nr. 9. 1902 Aug. 2. Wind und Regen. Einstellung am Horizontalkreis 258°27°. $\Delta u = +0^m4$.

Nr.	Kreis	Be- zeich-	1		Bezeio	hnun	g	370		Mit	ttel			+ B		riat. sdam	A NEW YORK THE PARTY OF THE PAR
		nung		unt	en	В	3 unt	ten	Αυ	inten	Bu	inten		2	H.	Z.	nisoR six quebelistElli
				ob.	unt.		ob.	unt.							n'	·n"	Nadel I:
I 1	0	a		22 ^p 22.5	23P 23.5	64°	2 ^p	0.5P 0	63°	45!5	64°	1:8	63°	53:6	103.3	128.0	3º3 - 3º10 u. 3º12 - 3º18
2	W	a		9.5 9.5	10 10.5		9.5	30 30.5	64	19.8	63	59.2	64	9.5	103.7	7	Variationen:
3	W	i		23.5 23.5	25 25		28	29 29	63	48,5	63	56.8	63	52.6	104.1	100	I: $\Delta n' = +2.9 \Delta n'' = +1.9$ II: $= +3.0 = +2.9$
4	0	i	64	9 8.5	7	63 2	19.5	27.5 27.5	64	15.8	63	57.2	64	6.5	104.4	128.2	Mittel: $\Delta n' = +3.0$ $\Delta n'' = +2.0$
	1			0.0				27.0					64	0.6		128.1 126.2	Nadel 1 == 64°0:6
															100000000000000000000000000000000000000	+1.9	» II = 64 3.9
11 5	0	a	63	17 17.5	15.5 16.0	64 1		15.5 15.5	63	33.0	64	32.5	64	2.8	104.0	128.4	$\begin{array}{rcl} Mittel &= 64 \ 2.2 \\ dJ &= +0.4 \\ J &= 64^{\circ}2.6 \end{array}$
6	W	a	64		28 28	63	5.5 7.5	9 9.5	64	55.0	63	15.8	64	5.4	104.3		10 20 10 Minera 0 8 -
7	W	i	63	15.5 15	17 17.5	64 1	9	21 21	63	32.5	64	40.2	64	6.4	104.2		Nadel II: 3º22 - 3º29 u. 3º31 - 3º37
8	0	i	65	1.5	0	63	5 5	4 3.5	65	1.2	63	8.8	64	5.0	103.5	128.4	
					13			0.0					64 Δi	$\frac{4.9}{-1.0}$	104.0 101.0	128.4 126.2	and the Valley of the State of
													64			+2.2	- with the mind.

W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

Nr. 25. 1902 Aug. 14. Regen. Einstellung am Horizontalkreis 260° 16°7. $\Delta u = +0$ °4.

Nr. 39. 1902 Aug. 25. Regen und leichter Wind. Einstellung am Horizontalkreis 260° 19P. $\Delta u = +0.5.$

Nr.	Kreis	Be- zeich- nung		Mit	-			+ B	Real Property lies	dam	Uhr- angabe	Nr.	Kreis	Be- zeich- nung	_	77.0	Bu			+ B	Var Pots H.	dam	Uhr- angabe
11 2 3 4	o W W o	a i	63 6 63 4	60.0 43.0	63 63	60.5 49.5 59.2	63 63 64	60.5 46.2 15.8	97.8 97.9 98.0 97.8 101.0	120.0	d) more	11 2 3 4	o w w o	a a i i	64	20.5	63	54.0 4.5 56.0	64 63 64	7.2	101.5 101.3		2º 15 ^m 2º 24 ^m
II 5 6 7 8	O W W O	a i	64 4 63 3	19.8 37.0	63 64	38.0 8.2 37.0 14.0	63 64 64 Δi	59.0 7.0 3.9 4.4 -1.0	98.0 98.0	120.4 120.2 126.2	100	II 5 6 7 8	O W W O	a i	64 63	50.2	63 64	37.2 9.8 37.0 8.5	64 64 63 64	0.0 8.9 58.2 3.9 -1.0	101.4 101.1 101.0 101.2 101.0 +0.2	120.0 119.7 126.2	2º 28 ^m 2º 37 ^m

Nadel I = 64° 2:2 Variationen: II = 64 3.4 I: $\Delta n' = -3.2$ $\Delta n'' = -6.2$ II: =-3.0=-6.0Mittel = 64° 2:8 = -0.1dJ Mittel: $\Delta n' = -3.1$ $\Delta u^* = -6.1$ $= 64^{\circ}2!7$

Variationen: Nadel I = 64° 1:2 - II = 64 2.9 $\Delta n' = +0.2$ $\Delta n'' = -6.5$ Mittel = 64°2'.0 dJ

Nr. 42. 1902 Sept. 3. Einstellung am Horizontalkreis 260°11°. $\Delta u = -0^{m}2$.

Nr.	Kreis	Be- zeich-	Mit	ttel	A + B		riat. sdam	Uhr-	
		nung	A unten	B unten	2	H.	Z.	angabe	
	1250	Della?			C. N. 10	n'	n"	IN IN	
I 1 2 3	O W W	a a	63° 45:8 64 22.8 63 36.5	63°56:8 63 58.8 63 53.8	63°51:3 64 10.8 63 45.2	93.1 93.6	114.7	11*22m	
4	O	i	64 19.0	63 53.8 64 4.0	63 59.7	93.4	114.5	11*36m	
II 5 6	o W	a	63 49.0 64 57.2	64 39.5 63 3.5	64 14.2 64 0.4	93.4 94.0	114.4	11*39m	
7 8	W	i	63 44.0 64 48.5	64 43.0 63 15.5	64 13.5 64 2.0	94.2 94.0	114.2	11*53m	
				the state	64 7.5 Δi –1.0 64 6.5	93.7 101.0 —7.3	114.2 126.2 —11.8		

Variationen: Mittel I u. II: 64°3:1 = -0.3 $\Delta n' = -7.3 \quad \Delta n'' = -11.8.$ $= 64^{\circ} 2!8$

Zusammenstellung. Mittlere Inklination:

1902 Aug. 2 J = 64° 2.6 2.7 · 14 2.7 2.8 Septr. 3 Mittel J = 64°2:7

= +0.7

 $=64^{\circ}2!7$

Das ist die mittlere Inklination in Kornthal für 1902 Aug. 15. Die früheren Bestimmungen hatten ergeben, s. W1, S. 60:

Kornthal, 1900 Sept. 1: mittl. J = 64°5!7.

In 1.96 Jahren hat also die Inklination um 3:0 abgenommen.

W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

3. Intensitätsmessungen auf dem Pfeiler.

Nr. 1. Magnet I. Ablenkungen. 1902 Aug. 2.

Nr.	Ein- stel-	Fa-	Uhrangabe	Kreis-	Magnet-	Kreis:	1	Variation	en
Nr.	lung	den	Omangaoe	ablesung	temp.	Mittel	Dekl.	ornth.	Potsd Int.
	v	m	$\Delta u = +0.4$ $0^{\text{m}} \cdot 0.5$	349° 2:0	120				
1 2	v ₁	m ₁	4.1	37 3.2	100		13.6	τ=19°95	
la 2a		m _r m _l	5.1 6.0 6.6	6.6 2.8 5.6	21:4	37° 4:6	13.6	18.2	97.5
3 4	v ₂	m _r m _l m,	8.8 9.5	29.6 31.2	21.3	37 30.4	14.0	18.8	98.1
5	V ₃	mı	11.7	300 45.1	21.7	37 17.5 300 46.0	13.8	19.1	98.5
6 7	V ₄	m _r m ₁	12.4 15.7	46.9 45.8	21.1	300 40.0	14.1	19.1	95.5
8	350	mr	16.5	49.2	21.4	300 47.6	14.4	19.5	99.5
8a 7a		m _e m _l	17.7 18.7	48.4 47.2	21.45	300 46.8	14.2	18.9 —0.1	98.4
	v	m	21.8	348 53.6	7 130		14.5	18.8 = \tau_{20}	

Nr. 4. Magnet I. Ablenkungen. 1902 Aug. 2.

N	Ein-	Fa-	Uhrangabe	Kreis-	Magnet-	Kreis:	201	Variation	en
Nr.	stel- lung den Uhrangabe a		ablesung	temp.	Mittel	Dekl.	ornth. Int.	Potsd. Int.	
ALC:	v	m	$\Delta u = +0.4$ 1P 2.0	349° 15!4			15.3	τ = 19 <u>°</u> 95	
$1-2 \\ 3-4$	v ₁ v ₂	l-r l-r	4.3- 5.2 6.6- 7.3	37 21.7 37 51.2	18°7 18.7	37°21!7 37 51.2	15.2 15.3	20.4 21.1	102.7 103.0
	Of my					37 36.45			
$\frac{5-6}{7-8}$	V ₃ V ₄	l-r l-r	9.8-10.5 12.1-12.8	300 57.6 300 58.6	18.4 18.3	300 57.6 300 58.6	15.6 15.7	31.3 21.6	104.2 104.4
		Social			18.5	300 58.1	15.65	21.1 —0.1	103.6
mah.	v	m	16.7	349 14.6	W- W	19	15.9	21.0 = n'20	

Nr. 2. Magnet I. Schwingungen. 1902 Aug. 2. Uhr: Stand +0.4. Gang voreilend in 24h um 0.2. 1p = 2.82.

1-61	: Fadendur	chgang: 101	-161		für	Variati von	
2h = 3º25	t = 20.5	2h = 296	t = 20.7	100 Schw	vingungen	Kornth.	Potsd
Ob		Ob		8 ⁿ	n	τ=19995	
28m 46:3	31m 19:2	37 ^m 16.5	39 ^m 49 ^s 4	30.2	30:2	20.0	100.1
29 1.8 16.9	35.0 50.0	32.1 47.2	40 5.3 20.2	30.3 30.3	30.3 30.2	20.2	100.6
32.2	32 5.4	38 2.9	35.9	30.7	30.5	20.5	100.8
47.4 30 3.0 18.2	20.4 36.1 51.1	17.7 33.4 48.4	51.0 41 6.5 21.3	30.3 30.4 30.2	30.6 30.4 30.2	20.5 20.7	101.4 102.0
33.5 48.9	33 6.8 21.9	39 4.0 19.0	37.0 52.1	30.5 30.1	30.2 30.2	20.7	102.6
31 4.1	37.2	34.6	42 7.6	30.5	30.4	20.7	103.0
t = 20°9	52.3 $2h = 298$	t = 20%	22.6 $2h = 2P2$	30.35	30.32	20.5 —0.1	101.5 = n'
			A.W.	t = 20.7	2h = 2.7	$=n'_{\tau=20}$	

Bemerkung: Westwind.

Berechnung.

(Mit Kornth. u. Potsd. H. -Variat.) $2(\phi) = 96^{\circ}30!7$ $(\phi) = 48 \ 15.35$ $\Delta \delta = -0.2$ $A\Delta \phi^2 = -0.03$ $\phi = 48^{\circ}15!1$ $\log \sin \phi = 9.87 \ 278$ $\Delta t_{15} = +210$ $\log \sin \phi_{15} = 9.87 \ 488$

Variationen:

Kornthal Potsdam $n'_{20} = -12 \quad n'_{100} = -11$ $\lg \sin \phi_0 = 9.87 \, 476 \quad 9.87 \, 477$

Bemerkung: Regen. Westwind.

Berechnung.

 $2(\phi) = 96^{\circ}38!35$ $\phi = 48 \ 19.0$

 $\begin{array}{ll} \lg\sin\phi &= 9.87\,322 \\ \Delta t_{15} &= & +113 \\ \lg\sin\phi_{15} = 9.87\,435 \end{array}$

Variationen:

Kornthal Potsdam $n'_{20} = +10$ $n'_{100} = +24$ $\log \sin \phi_0 = 9.87 445$ 9.87 459

Bemerkung: Starker Westwind.

Berechnung.

Die Magnettemperatur in der Mitte der Schwingungen ist stets mit doppeltem Gewichte eingeführt. Der Uhrgang kommt nicht in Betracht.

 $\begin{array}{l} \lg{(T)} = 0.70\,786 \\ \Delta\,2h = -11 \\ \hline \lg{T} = 0.70\,775 \\ \Delta t_{15} = -90 \\ \hline \lg{T}_{15} = 0.70\,685 \end{array}$

Variationen:

Kornthal Potsdam $n'_{20} = +2 n'_{100} = +5 0.70 687$ 0.70 690

1-61	: Fadendure	chgang: 101	-161	Zeit		Variati von		
2h = 393	t = 20.3	2h = 2!65	t = 20°1	100 Schw	ingungen	Kornth.	Potsd.	Bemerkung: Regen. Westwind.
Ob		Op		8 ^z	n	τ=19°95	THE REAL PROPERTY.	Berechnung.
44m 35.8	47m 8:8	53m 652	55 ^m 39:1	30:4	30:3	20.7	103.0	$\lg(T) = 0.70774$
51.1 45 6.2	24.3 39.2	21.5 36.4	54.5 56 9.6	30.4 30.2	30.2 30.4	20.8	103.1 103.3	$\frac{\Delta^{2h}}{\lg T} = 0.70763$
21.9 37.0	54.9 48 10.0	52.1 54 7.2	25.1 40.1	30.2	30.2	20.9	104.0	$\frac{\Delta t_{15}}{\lg T_{15} = 0.70682} = -81$
52.4 46 7.3 23.2	25.5 40.7 56.1	22.7 37.5 53.4	55.9 57 10.8 26.4	30.3 30.2 30.2	30.4 30.1 30.3	21.5	104.7	Variationen:
38.2 53.9	49 11.2 26.2	55 8.3 23.9	41.2 56.0	30.1 30.0	30.0 29.8	20.2	103.3	Kornthal Potsdan n' ₂₀ = +4 n' ₁₀₀ = +
27.2	42.2	13	58 12.0	30.22	30.18	20.8	103.6	$\lg T_0 = 0.70686$ 0.706
t = 20°.2	2h = 2P8	t = 19.7	2h = 2P15	T=5		-0.1	36.0	
Nr. 5.	Magnet II.	Ablenkun	gen. 1902		2h = 2P7 Nr. 8.	20.7 Magne	et II.	Ablenkungen. 1902 Aug. 2.
Ein- Nr. stel-	UHF-	Iag- Kreis:			Nr. Ein	1000	Ma	

N	Ein-	Uhr-	Mag-	Kreis:	1	Variatione	n		Ein-	1 1000	Mag-	Kreis:	1	Variatione	n
Nr.	stel- lung	angabe	net- temp.	Mittel	Dekl.	Int.	Potsd. Int.	Nr.	stel- lung	angahe	net- temp.	Mittel	Dekl.	Int.	Potsd. Int.
	v	$\Delta u = +0^{m}4$ 1P 17.0		349° 14:8	15.7	τ = 19°95		2000	v	$\Delta u = +0^{m}4$ $2^{p} 34^{m}7$		348° 53:6	14.1	τ = 19 <u>°</u> 95	
$\frac{1-2}{3-4}$	$v_1 \\ v_2$	22.7-23.7 26.1-28.0	17:9 17.8	37 55.9 37 23.0 37 39.5	15.9 15.9	22.2 22.2	105.3 105.4	$\frac{1-2}{3-4}$	1000	37.0-38.4 40.3-42.2	20.5 21.0		13.8 13.6	20.4 20.4	103.1 103.5
5-6 7-8		30.3-31.0 32.8-33.6	17.7	300 23.9 301 21.9	15.8 15.6	21.9 21.7	105.0 104.4	5-6 7-8	922	43.8-46.0 47.5-48.5	21.0 21.0	36 58.3 37 20.9	13.6	20.4 20.3	103.4 103.6
	v	35.8	17.8	300 52.9 349 14.0	-5333	22.0 0.1 21.9	105.0 = n'	20.00	v	50.8	20.9	37 9.6 348 53.6		20.4 0.1 20.3	103.4 = n'
	D	erkung: Wes				=""_=20	MAI IS		10	Remerkung: V				=n' ₇₌₂₀	No. A

		Berechnung.	
$\frac{2(\phi)}{\phi}$	= 96° 46!6 = 48 23.2	Vor	iationen:
The same of the same of	= 9.87 369	Wounthal.	Potsdam
Δt_{15}	= +86		+20 n' ₁₀₀ = +34
le sin d.	= 9.87455	$\log \sin \phi_* = 9.8$	87 475 9.87 489

$2(\phi)$	= 96° 29:8 = 48 14.6		Variat	tione	n:
φ $\lg \sin \phi$		Korn	thal		Potsdam
Δt_{15}	= +182		=	+3	$n'_{100} = +23$
$\lg \sin \phi_1$	$_{15} = 9.87455$	$\lg\sin\phi_0$:	= 9.87	458	9.87 478

Nr. 6. Magnet II. Schwingungen. 1902 Aug. 2. Uhr wie bei Nr. 2. $1^p = 2.76$.

ranginalan		Variatio	für		-161	chgang: 101	: Fadendure	1-61
Bemerkung:	Potsd.	Kornth.	vingungen	100 Schw	t = 1990	$2h = 2^{p}6$	t = 18.0	2h = 390
Ber $\lg(T)$ $\Delta 2h$ $\lg T$ Δt_{15} $\lg T_{15}$ Vari Korntha	105.0 104.5 103.8 103.6 103.6 103.7 104.0	$\tau = 19995$ 22.4 22.0 21.4 21.4 21.3 21.3	24.8 24.9 24.9 24.8 24.7 25.0 25.0 24.9 24.8 24.8	24.6 24.7 24.8 24.9 24.9 24.8 25.0 25.0 25.0 24.9	55 ^m 37:0 52.2 56 7.3 22.4 37.5 52.9 57 8.0 23.1 38.2 53.3	1P 53 ^m 5.4 20.6 35.8 51.0 54 6.1 21.2 36.5 51.7 55 6.9 22.0	47 ^m 12*2 27.3 42.4 57.6 48 12.8 27.9 43.0 58.2 49 13.4 28.5	1P 44 ^m 40 ^t 8 55.9 45 11.0 26.1 41.2 56.4 46 11.5 26.7 41.9 57.1
$n'_{20} = $ $lg T_0 = 0.70$	104.0 = n'	$ \begin{array}{c} 21.6 \\ -0.1 \\ \hline 21.5 \\ = n'_{\tau == 20} \end{array} $	24.86	24.86 T = 5	58 8.4 $2h = 2!35$	t = 19:7	43.5 2h = 2P7	t = 18°.7

Westwind. Regen. echnung. = 0.70317 = -11= 0.70306= -58= 0.70248iationen: Potsdam +8 n'₁₀₀ = +14 0.70 262

Nr. 7. Magnet II. Schwingungen. 1902 Aug. 2. Uhr wie bei Nr. 2. 1p = 2.76.

1-61	: Fadendure	chgang: 101	-161		für	Variation von l		1-61: Federal group:
2h = 3?5	t = 21.5	2h = 296	t = 21:9	100 Schw	vingungen	Kornth.	Potsd.	Bemerkung: Westwind. Regen.
$\begin{array}{c} 2^p \\ 16^m 52!0 \\ 17 7.0 \\ 22.2 \\ 37.4 \\ 52.6 \\ 18 7.8 \\ 23.0 \\ 38.1 \\ 53.2 \\ 19 8.3 \\ \\ t = 2\rlap{R}7 \end{array}$	19 ^m 23 ⁸ .4 38.7 53.9 20 9.0 24.1 39.3 54.5 21 9.7 24.9 40.0 55.2 2h = 2°.8	$\begin{array}{c} 2^{p} \\ 25^{m} 17^{5}4 \\ 32.3 \\ 47.6 \\ 26 2.9 \\ 18.0 \\ 33.2 \\ 48.4 \\ 27 3.6 \\ 18.5 \\ 33.9 \\ \hline t = 2290 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25:4 25.3 25.4 25.5 25.4 25.4 25.4 25.5 25.3 25.6 25.42	25.8 25.7 25.5 25.6 25.8 25.7 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	$\tau = 1995$ 21.3 21.0 20.7 20.5 20.5 20.8 -0.1 20.7 $= n'$	104.0 104.0 103.9 103.4 103.3 103.0 103.0	$\begin{array}{c} \text{Berechnung.} \\ \lg{(T)} = 0.70\ 374 \\ \Delta 2h = -12 \\ \hline \lg{T} = 0.70\ 362 \\ \Delta t_{15} = -103 \\ \lg{T}_{15} = 0.70\ 259 \\ \hline \\ \text{Variationen:} \\ \text{Kornthal} \qquad \text{Potsdam} \\ n'_{20} = +4 \\ \ln'_{100} = +12 \\ \lg'{T}_0 = 0.70\ 263 \\ \hline \end{array}$

Magnet I. Ablenkungen. 1902 Aug. 14. Nr. 15.

Magnet I. Ablenkungen. 1902 Aug. 14. Nr. 18.

Nr.	Ein- stel-		Mag- net-	Kreis:		Variation	en	Nr.	Ein- stel-	Uhr-	Mag- net-	Kreis:	1	Variation	en
INT.	lung	angabe	temp.	Mittel	Dekl.	Cornth. Int.	Potsd. Int.	INI.	lung	angabe	temp.	Mittel		Int.	Potsd. Int.
	v	Δu=+0.4 7ª 6.3		350°26!0	3.6	τ=14º6			200	$\Delta u = +0^{m}4$			-	τ=14°45	
1-4 5-8		17.2-19.2 20.7-22.5		301 42.1	3.6	30.6 30.6	98.7 98.6	$^{1-4}_{5-8}$	v ₄ v ₃	8a14.2-15.6 17.4-18.7	15.5 14.8	301 24.9	3.6	30.1 30.1	97.8 97.6
9-12 13-16	$v_1 \\ v_2$	23.8-25.3 26.9-28.6	13.1 12.7 12.7	301 41.7 38 45.6 39 13.8 38 59.7	3.5 3.5	30.6 30.6 30.6	98.6 98.6 98.6	9-12 13-16	92	20.8-23.0 24.4-26.0		301 24.5 38 41.6 38 12.6 38 27.1	3.7	30.0 30.0 30.05	97.6 97.5 97.6
ANIA P	A PE		12.1	30 33.1		-8.2 -8.2 22.4 $=n'_{\tau==20}$	= n'	THE P	v	29.6		349 14.8		-8.45 21.6	= n'
obachtete gelassen,	v ₁ u. weil	Das zuerst v ₂ wurde w die Magnette	reg- mp.	Δt_{15}	<i>b</i> = = =	= 9.87 543 = -73	5	2	(φ) =	nnung. = 97° 2:6		Var Kornthal	riatio	nen: Pot	sdam
Lufttemp.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$\lg \sin \Delta t_{15}$	φ =	= 48 31.2 $= 9.87 459$ $= +16$ $= 9.87 475$	n' ₂₀ lg sin	$\phi_0 = 9.8$	+17	n' ₁₀₀ = 9.5	= -16 87 459

Nr. 16. Magnet I. Schwingungen. 1902 Aug. 14. Uhr: Stand +0.4; Gang voreilend in 24h um 151. 1p = 2082.

1-61	: Fadendur	chgang: 101	-161	Zeit fü	The second second	Variation von		Shippen and the state of the st
2h = 3?5	t = 14.5	2h = 298	t = 15.5	100 Schwing	gungen	Kornth.	Potsd.	25 - 30-55 1 - 4300 - 26 - 2
7 ^a 38 ^m 9.0 24.1 39.4 54.7 39 10.1 25.3 40.5 55.9 40 11.3 26.4 t = 15.5	40 ^m 41.8 57.1 41 12.3 27.5 42.9 58.2 42 13.4 28.5 44.1 59.2 43 14.4 2h = 3.11	7° 46° 38°3 53.6 47 8.9 24.1 39.4 54.7 48 10.0 25.2 40.6 56.0 t = 15°0	49 ^m 11:1 26.3 41.7 56.9 50 12.4 27.5 43.0 58.3 51 13.4 28.7 43.9 2h = 2!25	29.5 29.5 29.4 29.3 29.4 29.5 29.3 29.3 29.6	29!3 29.2 29.4 29.4 29.5 29.3 29.6 29.8 29.3 29.5 29.43 942 h = 299	$\tau = 14\%$ 30.6 30.5 30.5 30.4 30.4 30.4 30.5 -8.2 22.3 = $n'_{\tau} = 20$	98.4 98.4 98.4 98.3 98.1 98.0 98.1 98.3	$\begin{array}{c} \text{Berechnung.} \\ \lg{(T)} = 0.70708 \\ \Delta 2h = -14 \\ \hline \lg{T} = 0.70694 \\ \Delta t_{15} = -5 \\ \hline \lg{T}_{15} = 0.70689 \\ \hline \text{Variationen:} \\ \text{Kornthal} \qquad \begin{array}{c} \text{Potsdam} \\ \text{n'}_{20} = +12 \\ \text{lg T}_{0} = 0.70701 \end{array}$

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.

Nr. 17. Magnet I. Schwingungen. 1902 Aug. 14. Uhr wie bei Nr. 16. 1^p = 2:82.

1-61	: Fadendur	chgang: 101	1-161		für	Variati von		1-01: Paleodor Lyang: 1
2h = 3?45	t = 14:9	2h = 294	t = 14.7	100 Schw	ingungen	Kornth.	Potsd.	THE REAL PROPERTY AND PARTY.
7* 53** 38*3 53.4 54 8.8 24.0 39.2 54.5 55 9.8 25.1 40.3 55.6 t = 14*7	56 ^m 1150 26.3 41.4 56.9 57 12.3 27.4 32.8 58.0 58 13.2 28.4 43.7 2h = 2F6	$\begin{array}{c} 8^{a} \\ 2^{m} & 7.6 \\ 22.9 \\ 38.2 \\ 53.4 \\ 3 & 8.6 \\ 24.0 \\ 39.2 \\ 54.6 \\ 4 & 9.9 \\ 25.0 \\ \end{array}$	4 ^m 40.2 55.9 5 11.0 26.2 41.4 56.9 6 12.0 27.2 42.7 58.0 7 13.2 2h = 1.75	8 29:3 29.5 29.4 29.4 29.5 29.4 29.5 29.6 29.4 T = 5 t = 14:8,	29:2 29.6 29.6 29.3 29.1 29.5 29.2 29.2 29.5 29.6 29.38	$\tau = 14^{\circ}55$ 30.4 30.4 30.4 30.3 30.3 30.3 30.4 -8.3 22.1 = $n_{\tau}^{\prime} = 20$	98.1 98.0 98.0 97.9 97.9 97.8 97.8	$\begin{array}{c} \text{Berechnung.} \\ \lg\left(\Gamma\right) = 0.70707 \\ \underline{\Delta 2 h} = -11 \\ \hline \lg T = 0.70696 \\ \underline{\Delta t_{15}} = +3 \\ \hline \lg T_{15} = 0.70699 \\ \\ \text{Variationen:} \\ \text{Kornthal} & \text{Potsdam} \\ \mathbf{n'}_{20} = +11 \\ \lg \Gamma_0 = 0.70710 & 0.70693 \\ \end{array}$

Nr. 19. Magnet II. Ablenkungen. 1902 Aug. 14. Nr. 22. Magnet II. Ablenkungen. 1902 Aug. 14.

Nr.	Ein- stel-	Uhr-	Mag- net-	Kreis:	1	ariation	en	Nr.	Ein- stel-		Mag- net-	Kieis.		Variation	en
2315	lung	angabe	temp.	Mittel	Dekl.		Potsd. Int.	2.11.	lung	an malua	temp.	Mittel	Dekl.	Tornth.	Potsd Int.
	v	$\Delta u = +0.4$ $8^a 30.2$		350° 20:4		$\tau = 14945$				Δu = +0**4	-	- ARCH		$\tau = 14.4$	
1-4		34.5-36.5		39 7.4		29.9	97.2	1-4		37.8-40 ^m 1		302° 44!5		30.0	96.3
5-8	v ₂	37.7 - 39.2	15.3	38 36.0		30.0	97.0	5-8	V ₃	41.8-44.5	17.1	301 48.6	_	30,0	96.3
				38 51.7	3.8			Carlotte Control				302 16.6	6.15		
9-12		41.7-44.2		301 19.1		30.0	97.0	9-12		46.3-47.9	17.4	38 54.7	6.3	30.0	96.0
13 - 16	V ₄	45.7-47.1	15.5	302 19.6	4.0	29.9	96.8	13-16	V ₁	49.6-51.0	17.8	39 15.1	6.3	30.0	96.0
2100			15.3	301 49.3	3.95	29.95 8.45	97.0	100			17.6	39 4.9	6.3	30.0 —8.5	96.15
100					-	21.5						THE REAL PROPERTY.		21.5	
100	-					=n' ₇₌₂₀			v	53.2		350 41.2	6.6		
		В	erechn	ung.							Berec	hnung.			

Berechnung. Variationen: $2(\phi) = 97^{\circ} 2!4$ $=48\ 30.9$ Kornthal Potsdam $n'_{20} = +16 \quad n'_{100} = -20$ $\lg \sin \phi_0 = 9.87 \ 479 \quad 9.87 \ 443$ $\lg\sin\phi = 9.87\,456$ $\Delta t_{15} = +7$ $\lg \sin \phi_{15} = 9.87 \ 463$

Nr. 20. Magnet II. Schwingungen. 1902 Aug. 14. Uhr wie bei Nr. 16. 1p = 2.76.

1-61	: Fadendur	chgang: 101	-161		für	Variati von		1-61: Fahodurdysop 1
2h = 3.55	t = 15:00	2h = 298	t = 17.3	100 Schw	vingungen	Kornth.	Potsd.	The second second
8 ^a 54 ^m 10!3 25.3 40.5 55.9 55 10.9 26.0 41.1 56.2 56 11.3 26.7 t = 17?0	56 ^m 41 ^p .7 56.9 57 12.2 27.1 42.3 57.7 58 12.8 27.9 43.1 58.2 59 13.3 2h = 3P0	9* 2***35:3 50.4 3 5.5 20.7 36.1 51.2 4 6.3 21.3 36.6 51.9 t = 19:0	5 ^m 6!9 22.0 37.1 52.4 6 7.4 22.9 38.0 53.0 7 8.0 23.3 38.3 2h = 2l3		25:2 25.1 24.9 25.3 25.1 25.2 25.2 25.2 25.1 24.9 25.1 25.11	$\begin{split} \tau &= 14?4 \\ 29.9 \\ 29.9 \\ 29.9 \\ 29.9 \\ 29.9 \\ 29.9 \\ -8.5 \\ \hline 21.4 \\ = n'_{\tau} = 20 \end{split}$	96.7 96.7 96.6 96.6 96.6 96.6 96.6 96.6	$\begin{array}{c} \text{Berechnung.} \\ \lg(T) = 0.70\ 339 \\ \Delta 2h = -13 \\ \hline \lg T = 0.70\ 326 \\ \Delta t_{15} = -31 \\ \hline \lg T_{15} = 0.70\ 295 \\ \hline \text{Variationen:} \\ \text{Kornthal} & \text{Potsdam} \\ n'_{20} = +7 & n'_{100} = -11 \\ \lg T_0 = 0.70\ 302 & 0.70\ 284 \\ \hline \end{array}$

Nr. 21. Magnet II. Schwingungen. 1902 Aug. 14. Uhr wie bei Nr. 16. 1P = 2°76.

1-61	: Fadendur	chgang: 101	-161	Zeit für	Variationen von H.	popularitation 13-1				
2h = 3?5	t = 18°2	2h = 295	t = 18:9	100 Schwingungen	Kornth. Potsd.					
9 ^a 13 ^m 48 ^a 1 14 3.2 18.4 33.5 48.9 15 4.0 19.0 34.2 49.4 16 4.6	16 ^m 19 ⁿ 9 34.9 50.0 17 5.1 20.3 35.4 50.8 18 5.8 21.1 36.2 51.4	9 ^a 22 ^m 13.7 28.4 43.9 58.9 23 14.1 29.1 44.4 59.4 24 14.8 29.9	24 ^m 45 ^s 1 25 0.0 15.4 30.4 55.8 26 0.6 16.0 31.0 46.2 27 1.3 16.4	8 ^m 25.6 25.1 25.2 25.1 25.5 25.4 25.4 25.3 25.2 25.5 25.1 25.2 25.4 25.2 25.4 25.2 25.4 25.2 25.4 25.1 25.3 25.1 25.3 25.1	$ \begin{array}{c cccc} \tau = 14\% & \\ 29.8 & 96.8 \\ 29.8 & 96.7 \\ 29.8 & 96.5 \\ 29.8 & 96.3 \\ 29.8 & 96.3 \\ 29.8 & 96.3 \\ 30.0 & 96.3 \\ 29.8 & 96.3 \\ \end{array} $	$\begin{array}{c} \text{Berechnung.} \\ 2(\text{T}) &= 0.70353 \\ \Delta 2 \text{h} &= & -10 \\ \hline \text{lg T} &= 0.70343 \\ \Delta t_{15} &= & -55 \\ \hline \text{lg T}_{15} &= 0.70288 \\ \hline \\ \text{Variationen:} \\ \text{Kornthal} & \text{Potsdam} \\ \text{n'}_{26} &= & +7 \\ \text{lg T}_{0} &= 0.70295 & 0.70276 \\ \hline \end{array}$				
t = 1897	2h = 2º7	t = 1990	2h = 1995	T = 5.0528 t = 18.7, $2h = 2.65$	-8.5 21.3 $= n'_{\tau = 20}$	- 1 000- 00 1 000-1				

Nr. 29. Magnet I. Ablenkungen. 1902 Aug. 25.

Nr. 32. Magnet I. Ablenkungen. 1902 Aug. 25.

Nr.	Ein- stel- lung	Uhrangabe	Mag- net- temp.	Kreis: Mittel	Variation Kornth.		Nr.	Ein- stel- lung	Uhrangabe	Mag- net- temp.	Mittel	Variat Kornth. Dekl.	
daniel c		$\Delta u = +0.5$				100	1000		$\Delta u = +0.5$			Sus >	
1	v	10ª 45.6	1 300	350° 28:0	7.7	176							
1-4 5-8	v ₁	48.0-49.4 50.7-51.8	17.2	38 36.6 39 8.4	7.7	92.1 92.5	1-4	V ₄	11°42.9-44.0 45.2-46.0	1890 17.9	302° 8:0 302 7.0	10.2	94.8
3-0	V ₂	30.7-31.0	11.4			92.5	3-0	V ₃	45.2-40.0	11.0			34.3
1 19 19			1000	38 52.5	7.7						302 7.5	10.3	
9-12	V ₃	53.9-54.8	17.7	301 55.6	7.8	92.5	9-12	V ₉	47.6-48.5	18.0	39 7.0	10.5	95.0
13-16		56.0-56.8	17.4	302 0.8	8.0	92.5	13-16	V ₁	49.6-50.5	17.9	38 35.2	10.7	95.1
1000			17.4	301 58.2	7.9	92.45				18.0	38 51.1	10.6	94.95

Bemerkung: Leichter Nordwestwind. Zeitweise Regen.

Bemerkung: Nordwestwind.

Nr. 30. Magnet I. Schwingungen. 1902 Aug. 25. Uhr: Stand +0"1; Gang voreilend in 24h um 1:1. 1p = 2078

1-61	: Fadendur	chgang: 1	01-161	Zeit für	Variat. von H.	
2h = 3!45	t = 17:9	2h = 298	5 t = 18.6	100 Schwingungen	The second second second	erkung: Leichter Wind, Regen.
11* 5 ^m 15:0 30.3 45.8 6 1.6 16.2 31.6 46.9 7 2.1 17.5 32.9	7 ^m 48 ^s 1 8 3.4 18.8 34.0 49.3 9 4.8 20.0 35.3 50.5 10 5.9 21.1	11 ^a 13 ^m 45.3 14 0.5 15.9 31.0 46.4 15 1.8 17.0 32.3 47.5 16 3.0	33.7 48.8 17 4.0 19.4 34.9 50.2 18 5.3 20.6 36.0 51.3	8 ^m 30.83 30.82 30.2 30.3 30.1 30.0 30.0 30.0 30.2 30.1 30.2 30.1 30.2 30.1 30.1 30.2 30.0 30.0 30.1 30.1 30.1 30.1	94.1 94.0 94.2 94.2 94.0 94.0 94.0 94.0	$\begin{array}{ll} \text{Berechnung.} \\ \lg{(T)} = 0.70768 \\ \Delta 2 \text{h} = -14 \\ \lg{T} = 0.70754 \\ \Delta t_{15} = -55 \\ \lg{T}_{15} = 0.70699 \\ n'_{100} = -20 \\ \lg{T}_{0} = 0.70679 \\ \end{array}$
t = 18.5	2h = 3905	t = 18.9	2h = 2!55	T = 5!1012 t = 18!5, 2h = 2!98	THE PERSON NAMED IN	

Nr. 31. Magnet I. Schwingungen. 1902 Aug. 25. Uhr wie bei Nr. 30. 1p = 2.78.

1-6	1: Fadendur	chgang: 101-	-161	Zeit		Variat. von H.	1-61: Lidenburgers
2h = 3945	t = 18.7	2h = 2P85	t = 19:3	100 Schw	ingungen	Potsd.	Bemerkung: Stärkerer Wind
11^{4} $23^{m} 11!9$ 27.1 42.4 57.8 $24 12.2$ 28.4 43.9 59.3 $25 14.3$ 29.6 $t = 19:2$	25 ^m 45 ^s 1 26 0.3 15.7 31.0 46.3 27 1.5 16.8 32.1 47.4 28 2.8 18.0 2h = 3°P0	11 ^a 31 ^m 42!3 57.5 32 12.9 28.0 43.4 58.8 33 14.0 29.3 44.6 34 0.0 t = 19:2	34 ^m 15 ⁸ 3 30.5 45.8 35 1.3 16.4 31.7 47.2 36 2.3 17.8 33.0 48.4 2h = 2 ^p 45	8 30.4 30.4 30.5 30.2 30.2 30.4 30.1 30.0 30.3 30.4 30.29 T = 5	30.2 30.2 30.1 30.3 30.1 30.2 30.4 30.2 30.4 30.2 30.2	94.3 94.3 94.4 94.6 94.5 94.4 94.5 94.5	Berechnung. $lg(T) = 0.70779$ $\Delta 2h = -14$ $lg T = 0.70765$ $\Delta t_{15} = -65$ $lg T_{15} = 0.70700$ $n'_{100} = -19$ $lg T_0 = 0.70681$

Nr. 36. Magnet II. Ablenkungen. 1902 Aug. 25.

N	Ein-	TT	Mag-	Kreis:	Vari	at.
Nr.	stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. Dekl.	Potsd. Int.
100		$\Delta u = +0.5$				
1-4	V ₁	11*54.7-55.6	1894	38° 59!4	10.9	94.9
5-8	V ₂	57 4-58.2	18.2	38 38.0	10.9	94.5
				38 48.7	10.9	
9-12	V ₃	0P 0.8- 4.4	18.6	301 32.8	11.0	94.0
13-16	V ₄	6.2- 7.1	18.6	302 35.8	11.2	95.0
	100		18.4	302 4.3	11.1	94.65

Nr. 33. Magnet II. Ablenkungen. 1902 Aug. 25.

Nr.	Em-	Uhrangabe	Mag- net-	Kreis:	Variat.	
INI.	lung	Onrangabe	temp.	Mittel	Kornth. Dekl.	Potsd. Int.
		$\Delta \mathbf{u} = +0.5$				
1-4 5-8	V4	0° 55.5-56"4	1897	302°52!6	12.9	97.9
5-8	V ₃	57.7-58.9	18.4	301 49.6	12.9	97.9
				302 21.1	12.9	
$9-12 \\ 13-16$	V ₂	1 ^p 1.6- 2.5	18.2	38 50.2	12.9	97.6
13-16	v ₁	3.9- 4.8	18.6	39 16.0	12.9	98.0
	100		18.5	39 3.1	12.9	97.85

 $\begin{array}{ll} \lg \sin \phi &= 9.87\ 355 \\ \Delta t_{15} &= & +104 \end{array}$ Bemerkung: Wind und Regen. Berechnung. $\begin{array}{l} \lg \sin \phi_{15} = 9.87 \ 459 \\ \mathbf{n'}_{100} = -36 \end{array}$ $2(\phi) = 96^{\circ}44!4$ =48 21.9 $\lg \sin \phi_0 = 9.87423$

Bemerkung: Regen und Wind. Berechnung. $2(\phi) = 96^{\circ} 42!0$ $\phi = 48 \ 20.8$

 $\begin{array}{ll} \lg \sin \phi &= 9.87\,343 \\ \Delta t_{15} &= & +107 \\ \lg \sin \phi_{15} &= 9.87\,450 \\ \end{bmatrix}$ n'₁₀₀ = -15 $\lg \sin \phi_0 = 9.87 \ 435$

Nr. 34. Magnet II. Schwingungen. 1902 Aug. 25. Uhr wie bei Nr. 30. 1P = 2.61.

1-6	1: Fadendure	chgang: 101-	-161	Zeit		Variat.
2h = 3.5	t = 1990	2h = 2º7	t = 1996	100 Schw	ingungen	Potsd.
O _b	O SHIP SHE	OP		81	n	
16 ^m 27.9 43.2 58.2 17 13.5 28.7 44.0 59.0 18 14.3 29.3 44.5	18 ^m 59.5 19 15.0 29.9 45.1 20 0.3 15.4 30.7 45.8 21 0.9 16.1	24 ^m 53.4 25 8.6 23.5 39.0 54.0 26 9.3 24.2 39.5 54.7 27 10.0	27 ^m 24*9 40.1 55.2 28 10.6 25.7 40.9 56.0 29 11.1 26.3 41.6	25% 25.4 25.3 25.5 25.3 25.3 25.2 25.2 25.4 25.5	25:4 25.1 25.3 25.5 25.4 25.5 25.3 25.3 25.4 25.5	95.0 94.9 94.9 95.1 95.5 95.6 95.9
t = 19°5	31.1 $2h = 298$	t = 19:9	26.5 $2h = 2P2$	25.36	25.37	95.4
- 2010		1 - 10.0	-11-515	t = 50 t = 19.5, 50		4

rkung: Wind und Regen. Berechnung. $\begin{array}{lll} \lg \left(T \right) = 0.70\ 361 \\ \Delta 2h & = & -12 \\ \lg T & = 0.70\ 349 \\ \Delta t_{15} & = & -68 \\ \lg T_{15} = 0.70\ 281 \\ p' & = & -16 \end{array}$ $\frac{n'_{100}}{\log T_0} = \frac{-16}{0.70285}$

Nr. 35. Magnet II. Schwingungen. 1902 Aug. 25. Uhr wie bei Nr. 30. 1^p = 2.61.

1-6	1: Fadendur	chgang: 101-	Zeit	Variat. von H.		
2h = 3P5	t = 19.5	2h = 2P7	t = 1999	100 Schw	Potsd.	
0P 35 ^m 15.7 31.1 46.1 36 1.4 16.3 31.6 46.8 37 2.0 17.0 32.3	37 ^m 47.4 38 2.7 17.7 33.0 48.1 39 3.3 18.3 33.6 48.7 40 4.0	0 ^p 43 ^m 41*2 56.6 44 11.5 26.9 41.9 57.1 45 12.4 27.5 42.5 57.9	46 ^m 13:0 28:1 43:3 58:6 47 13:4 28:9 43:8 59:0 48 14:2 29:4	25.5 25.5 25.4 25.5 25.6 25.5 25.6 25.5 25.5 25.5 25.5	25:6 25.4 25.6 25.6 25.3 25.6 25.5 25.4 25.5 25.4	97.4 97.4 97.3 97.0 97.0 97.1 97.3
t = 1999	$ \begin{array}{c} 19.1 \\ 2h = 2P9 \end{array} $	t = 19:8	44.4 2h = 2P2	25.52 T = 5	25.49 3.0550 2h = 2P8	97.2

Bemerkung: Wind und Regen.

 $\lg(T) = 0.70372$ $\Delta 2h = -12$ $\lg T = 0.70360$ $\Delta t_{15} = -72$ $\lg T_{15} = 0.70288$ $\frac{n'_{100}}{\lg T_0} = \frac{-10}{0.70278}$

Nr. 11. Deflektor I. 1902 Aug. 2.

N.	Ein- stel-	F. J.	Uhrangabe	Kreis-	Mag- net-	Kreis:	1	Variatione	n
Nr.	lung	raden	Cirangaoc	ablesung	temp.	Mittel	Dekl.	ornth. Int.	Potsd. Int.
		HE COLO	$\Delta u = +0^{m}4$	War ago				$\tau = 20^{\circ}2$	
1 2 3	0	m ₁ m _r	4P 45 ^m 4 46.4	293°49!8 52.2	17:3		7.0	18.6	101.4
3 4		m _l m _r	46.9 47.3	49.8 51.6	17.3	293° 50:8			
4 5		m ₁	47.9	49.4	17.3		6.8	18.3	101.0
6		m _r	48.4	52.2	11.0		6.9		
7 8 9	W	m ₁ m _r	50.0 50.8	44 18.2 19.2	17.3		6.7	18.3	100.9
10		m ₁ m _r	51.4 51.9	18.0 20.2	17.3	44 19.3	197		
11		m ₁	52.4	19.2	17.3		6.5	18.1	100.5
12		mr	52.6	20.8	17.3		6.6	18.3	100.95
			100000000000000000000000000000000000000		27.0			+0.3	

Bemerkung: Ein halber Satz zu An-fang weggelassen, wegen rascher Än-derung der Magnettemperatur.

Berechnung. $2(\phi) = 110^{\circ} 28.5$ (ϕ) = 55 14.25 $\Delta \delta$ = -0.15 = -0.15 $\phi = 55 14.1$ $\lg\sin\phi = 9.91\,461$ $\Delta t_{15} = +73$ $\lg \sin \phi_{15} = 9.91534$

Variationen:

 $\begin{array}{ccc} & \text{Kornthal} & \text{Potsdam} \\ \text{n'}_{20} & = & -15 & \text{n'}_{100} = +6 \\ \text{lg} \sin \phi_0 = 9.91519 & 9.91540 \end{array}$

Nr. 12. Deflektor II. 1902 Aug. 2.

 $= n'_{\tau = 20}$

Nr.	Ein- stel-	Faden	Uhrangabe	Kreis-	Mag- net-	Kreis:	1	ariatione	n
INI.	lung	raden	Olirangabe	ablesung	temp.	Mittel	Dekl.	ornth. Int.	Potsd Int.
And			$\Delta u = +0.4$					$\tau = 20$ °2	
1	W	mı	4P 5576	48° 33™0	17.5		200		
2		m,	56.6	30.0	17.0		6.4	18.0	100.7
1 2 3 4 5 6 7 8	Philadelphia	m ₁	57.3	27.8	17.4		300		
4 5		m _r	57.6 58.1	31.2 30.8		48°31:1			
6		m _l m _r	58.6	34.2	17.3				
7		m ₁	59.0	30.0	47.0		6.2	18.2	100.9
8		m,	59.4	31.8	17.2		6.3		
9	0	m ₁	5P 1.3	289 41.2		21-6 1 5			
10		mr	1.8	40.4	17.1	17-61	6.3	18.2	101.0
11	300	m ₁	2.4	39.2	17.1				
12 13		m,	2.7	40.0	11.1	289 39.6			
13	-	m ₁	3.4	38.6	17.1	200 30.0			
14	Die of the last	mr	3.7	39.6			0.1	100	****
15 16	2000	m ₁	4.3	38.2	17.0		6.1	17.8	100.0
10	9-	mr	4.6	40.0	17.2	10	6.2	18,05 +0.3	100.6
	10.0	-	- Ja-			6 6		18.35	
	v	m	8.4	349 2.0		126 6	6.0	$=n'_{\tau=20}$	

Bemerkung: Regen und Wind.

Berechnung. $\lg\sin\phi_{15} = 9.93\,572$

Variationen:

Kornthal Potsdam $n'_{20} = -17 \quad n'_{100} = +4$ $\log \sin \phi_0 = 9.93555 \quad 9.93576$

Nr. 13. Magnet I.	Ablenkungen	. 1902 Aug. 2.	Nr.	14.	Magnet II.	Able	nkungen.	1902 Aug	. 2.
Ein- Uhr-	Mag- Kreis:	Variationen	201	Ein-	Uhr-	Mag-	Kreis:	Variation	nen
Nr. stel- lung angabe	net- Mittel	Kornth. Potsd.	Nr.	stel- lung	angabe	net-	Mittel	Kornth.	Potsd.
	temp.	Dekl. Int. Int.	-	rung	A OMA	temp.		Dekl. Int.	Int.
$\Delta u = +0.4$	The state of the s	τ = 20°2	222		$\Delta u = +0.4$			τ=20?2	
1-6 v, 12.2-14.5	1797 37 11.9	The second secon			5P36.4-38m2			5.5 19.2	102.5
7-12 v ₂ 16.5-18.6	17.4 37 40.7	The second secon	7-12	V3	39.4-41.1	16.5			102.9
10 10 00 0 00 0	37 26.3	Contract of the Contract of th	12 10	J.	100 115	10.1	300 35.6	10.13	100 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 300 33.9 16.8 300 40.2	5.6 18.4 101.5 5.4 18.5 101.4	13-18 19-24	V ₂		16.4 16.4			102.4
1200 0 TH	17.2 300 37.1		15	100		16.5		5.4 19.25	102.5
	1 100	+0.3	100		49.5		349 12.0	+0.4 5.4 19.65	
150	130	=n' ₇₌₂₀	100		10.0		343 12.0	=n'_{\tau=2}	0
Bemerkung: Regen. Wind.			Bemer	kung:	Regen. Wind.		1000		
Berechnung.		iationen:			echnung.			ationen:	
$2 (\phi) = 96^{\circ} 49.2$ $\phi = 48 24.7$	Korntha.)			Kornthal		sdam
$ \phi = 48 24.7 \lg \sin \phi_{15} = 9.87 457 $	$\lim_{n \to \infty} g = 0.8$	-14 $n'_{100} = +9$ 9.87466			= 48 20.2 = 9.87 471	lg sir	$\phi_0 = 9.8$	-4 n' ₁₀₀ = 9.8	87 488
- A not some former			amic		Senare	700			
Nr. 23. Def	lektor I. 1902	Aug. 14.	_	Nı	. 24. Deflek	tor I	I. 1902	Aug. 14.	
Nr. Stel- Uhr-	Mag- Kreis:	Variationen	The second second second	Ein- stel-	Uhr-	Mag-	The state of the s	Variation	nen
lung angabe	net- temp. Mittel	Kornth. Potsd.	The second secon	lung	angabe	net- temp.	Mittel	Kornth. Dekl. Int.	Potsd. Int.
$\Delta u = +0^{m}4$	The same of the sa	τ = 14°4			$\Delta u = +0^m 4$	B		τ = 14%	
10a 25m0								200 788	300
	1890 295 27.7		1-6	166	10°44.7-47°3				96.7
7-12 W 38.5-42.2	18.4 45 46.7 18.2	8.0 30.1 96.6 30.05 96.45	7-12	0	49.7-52.2	18.2	291 12.0	8.3 30.1	96.7
Variationers		-8.5	100		212			-8.5	980
makes Today	H TO SEE	21.55		v	54.8		350 33.4	Name and Address of the Owner, when the Owner, when the Owner, where the Owner, which is the Owner, whic	200
Powerbonne	li da	=n' _{T=20}		Dan			Vani	$=n'_{\tau=2}$	0
Berechnung.	Korntha	iationen: l Potsdam			echnung.		Kornthal	ationen:	sdam
$2(\phi)$ = 110°19:0 ϕ = 55 9.6		+16 n' ₁₀₀ = -24	2(¢)	$= 118^{\circ} 45!5$ = 59 22.7				
$\lg \sin \phi_{15} = 9.91\ 524$	$\lg\sin\phi_0 = 9.9$	1 540 9.91 500	lg si	n \phi_{15}	= 9.93583	lg sir	$\phi_0 = 9.9$	3 600 9.9	93 561
V V V		1000 1 11	circle .		Keek-	100	colff and	1000 1	176
Nr. 27. Magnet I.					Magnet II.			1902 Aug.	
Nr. Stel-	Mag- Kreis:	Variationen		Ein- stel-	Uhr-	Mag- net-	The state of the s	Variation	
lung angabe	temp Mittel	Kornth. Potsd. Dekl. Int. Int.		lung	angabe	temp.	Mittel	Kornth. Dekl. Int.	Potsd. Int.
$\Delta u = +1$ ^m 0		$\tau = 14.6$			Δu = +1 ^m 0	a Ba		τ=14°68	1
1-4 v ₁ 0P46.5-47.9			1-4	V4	1º 0.7- 2º1				100.0
5-8 v ₂ 49.8-51.0			5-8	V ₃	4.2- 5.8		301 38.8		100.0
9-12 v ₃ 53.0-54.7	38 36.6 21.0 301 55.8		9-12	v	7.7- 9.1	20.3	302 4.1 38 20.0	-	100.0
13-16 v ₄ 56.1-57.4		11.2 30.5 99.6	13-16	v ₂ v ₁	10.7-12.1	20.3	38 50.0	11.2 30.8	100.0
	19.7 302 1.2	The state of the s		1		20.1	38 35.0		100.0
olehen G.	22	-8.2 22.2	1 080	v	15.8		350 17.4	-8.2 11.1 22.5	ST.
the state of	100	$=n'_{\tau=20}$		231	000			$=n'_{\tau=2}$	0
Berechnung.	Vari	ationen:		Bere	chnung.		Vari	ationen:	81
$2(\phi) = 96^{\circ}35!4$	Korntha	l Potsdam	2(\$		= 96°30!9		Kornthal		tsdam
$\phi = 48 \ 17.7$ $\log \sin \phi = 9.87.460$	n'20 = 0 S	$+23 \text{ n'}_{100} = -5$	φ		=4815.3 $=9.87437$	n'20	4 = 98	+26 11'10	00 = 0
$\lg \sin \phi_{15} = 9.87 \ 460$	$\lg\sin\phi_0 = 9.8$	87 483 9.87 455	ig si	η φ15	= 9.87 437	ig sin	$\phi_0 = 9.8$	101 9.0	87 437

Nr. 37. Deflektor I. 1902 Aug. 25.

Nr. 38. Deflektor II. 1902 Aug. 25.

	Ein-	771	Mag-	Kreis:	Variationen		
Nr.	stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. Dekl.	Potsd. Int.	
$^{1-6}_{7-12}$	o W	$\Delta u = +0.5$ $1^{p} 54.7 - 56.3$ $58.3 - 60.4$	17:4 17.4 17.4	295° 33:9 45 56.1	13.0 13.1	100.7 100.7	

N	Ein- stel-	Y71 1	Mag-	Kreis:	Variationen		
Nr.	lung	Uhrangabe	net- temp.	Mittel	Kornth. Dekl.	Potsd. Int.	
1-6 7-12	WO	$\Delta u = +0.5$ $2^{p} 3.2 - 4.6$ $6.5 - 8.2$ 10.1	17% 17.6	50° 9:1 291 19.4 350 39.0	13.0 12.9 12.7	100.7 100.7 100.7	

Berechnung.

 $\begin{array}{lll} 2(\phi) & = 110^{\circ} 22^{\circ} 22^{\circ} 22^{\circ} \\ \phi & = 55 & 11.15 \\ \lg \sin \phi_{15} = 9.91 & 511 \end{array}$

 $\lg \sin \phi_0 = 9.91516$

Berechnung.

 $\begin{array}{cccc} 2(\phi) & = 118^{\circ}49!7 \\ (\phi) & = 59 & 24.85 \\ \Delta \delta & = & +0.05 \\ \hline \phi & = 59^{\circ}24!9 \end{array}$

 $\begin{array}{rcl} \lg \sin \phi & = & 9.93 \ 494 \\ \Delta t_{15} & = & +85 \\ \lg \sin \phi_{15} & = & 9.93 \ 579 \\ n'_{100} & = & +5 \end{array}$

 $\lg \sin \phi_0 = 9.93584$

Zusammenstellung.

	100				Mag	net I								Mag	net I	I		
Datum	Nr. der	lg s	in ϕ_0		7 :	Nr. der	lg	T_0	7	Nr. der	lg si	ϕ_0	1	7	Nr. der	lg	To	7-1
1 20	Beob.	Variat. Kornth.		riat.	Zeit	Beob.	Variat. Kornth.	Variat. Potsd.	Zeit	Beob.	Variat. Kornth.	Varia Pots	at.	Zeit	Beob.	Variat. Kornth.	Variat. Potsd.	Zei
1902	32.0		100						1 1				1			100 - 100	HI TO SEL	
Aug. 2		9.87 476				1000000	0.70687	bedreife distributed at	The second second		9.87 475			125		0.70 256		
		9.87 44 9.87 44				3	0.70 686	0.70 694	0P8		9.87 458 9.87 467			2P7 5P7	7	0.70 263	0.70 271	284
Aug. 14		9.87 497					0.70 701				9.87 479			8.7		0.70 302		
		9.87 495 9.87 485				17	0.70 710	0.70 693	8:0		9.87 474 9.87 464			9.7 1PO	21	0.70 295	0.70 276	943
Aug. 25	29	-			10.9	30		0.70 679				9.87 4		OPO			0.70 285	
	32	1	9.87	418	11:8	31		0.70 681	11:5	36		9.87	135	190	35		0.70 278	OP7
			D	eflek	tor I.								Defl	lekto	r II.			
Aug. 2		9.91 519							1		9.93 555 9.93 600							11
Aug. 14 Aug. 25		9.91 540		516					13	38		9.93						

III. Abschnitt.

Feldmessung.

Koordinatenverzeichnis.

Punkte der bayerischen Landesvermessung.

Nullpunkt: München, nördl. Frauenturm. $\phi=48^{\circ}$ 8' 20". $\lambda=0^{\rm h}$ 46" 18:1 e. Gr. +x-Achse nach Nord, +y-Achse nach West. $\lambda=0^{\rm h}$ 46" 18:1 e. Gr. $=29^{\rm o}$ 14:285 ö. F.

Angaben in Ruten. 1 bayer. Rute = 2^{m} 91 859 164.

			2 7 MA ALL RELIANDS		
Tron	x	у		x	у
Alerheim 5	+27 138.54	+24 033.66	Franchisen +	+31 857.37	+27 967.97
Altentrüdingen 5	35 387.52	23 959.46	Fremdingen & Fremdingen, Kl.	32 013.76	27 959.31
Amerbach &	28 676.95	21 982.07	Fünfstetten 5	26 553.49	20 365.54
Amerdingen 5	22 565.15	27 450.26			
Amerdingen, Kap.	22 388.07	27 380.07	Gammesfeld 5	25 397.64	13 003.52
Appetshofen &	26 020.26	24 349.36	Geishardt 5	21 549.00	24 556.20
Auernheim 5	31 650.69	19 278.58	Goldburghausen 5	28 109.13	28 830.72
Aufhausen 5 ö. G.	23 443.83	27 809.08	Goßheim 5	26 523.37	21 458.17
Auhausen 5	33 276.59	23 905.63	Gräfensteinberg 5	38 689.10	19 066.37
			Großelfingen 5	26 788.58	25 458.24
Baldingen 5	27 615.07	27 670.68	Großsorheim 5	25 015.56	23 442.50
Balgheim 5	25 475 34	25 802.81	Gunzenhausen, Ansb. T.	37 318.05	20 456.37
Belzheim 5	31 580.27	26 199.56	Hainsfahrt A	31 435.81	23 833.93
Benzenzimmern 5	28 857.75	28 520.60	Harburg, Schloßt.	24 765.18	22 293.44
Berg 5	22 703.35	20 095.85	Haundorf 5	39 557.58	20 013.68
Bergstetten 5	25 366.04	19 027.70	Hausen &	32 470.57	26 533.58
Birkhausen 5	29 186.69	27 108.41	Herblingen 5	31 347.08	27 005.28
Bissingen 5	22 109.39	24 030.97	Herkheim 5	26 249.50	27 348.36
Blindheim 5	18 924.93	24 119.75	Heroldingen 5	25 803.38	23 422.80
Blosenau &	25 693.36	15 978.10	Heuberg 5	30 271.56	25 721.52
Bollstadt 5	23 659.02	26 975.55	Hochaltingen 5	31 647.80	26 875.33
Buchdorf 5	24 676.55	18 817.74	Hochstein 5	22 219.65	24 679.26
Bühl 💍 n. ö. G.	26 656.26	23 049.80	Hohenaltheim 5	24 746,80	26 118.91
Deggingen, Kl.	24 381.01	24 902.83	Hohentrüdingen 5	32 988.23	21 947.71
Deiningen 5	27 684.01	25 219.25	Holheim 5	26 295.22	28 047.23
Deisenhofen 5	18 457.21	26 127.17	Hoppingen 5	25 354.08	23 091.66
Diemantstein 5	22 342.11	25 786.28	Hürnheim 5	25 291.89	27 287.35
Dillingen, Hofturm	16 860.34	27 264.79	Huisheim 5	26 231.00	21 835.46
Döckingen 5	30 304.34	20 398.55	To the second	95 000 00	18 771.85
Donaualtheim 5	17 604.69	27 432.48	Itzing 5	25 909.69	
Donauwörth &	22 224.39	20 060.04	Kleinsorheim 5	24 912.81	24 315.51
Donauwörth, Kl.	22 222.85	20 147.78	Klosterzimmern 5	28 267.88	25 544.74
Dürrenzimmern 5	29 325.70	25 635.98	Laub A	29 295.01	23 036.16
Eglingen &	22 188.14	28 631.78	Laubenzedel &	38 366.56	20 595.73
	31 691.82	25 459.99		16 579.75	28 961.36
Ehingen 5	28 317.37	27 626.98	Läuingen 5	28 250.24	26 100.26
Enkingen 5	26 379.02	25 139.24			
Erlingshofen 5	20 813.47	21 701.32	Maihingen 5	30 271.34	26 938.10
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Maihingen, Kl.	30 285.39	27 142.60
Faimingen 5	16 341.38	29 495.42	Marktoffingen 5	30 241.77	27 706.93
Fessenheim 5	27 913.47	23 913.02	Marktoff., Kreuzkap.	30 277.83	27 738.71
Flotzheim 5	26 694.05	19 104.10	Marktoff., Ulrichskap.	30 298.50	27.695.26

	x	у		x	У
Mauren &	+23 648.51	+22 755.07	Schmähingen 5	+25 615.48	+26 647.61
Möttingen 5	25 780.48	24 955.97	Schopflohe, kath. 5	32 249.22	27 306.06
Monheim 5	26 891.92	17 999.35	Schopflohe, prot. 5	32 260.43	27 368.27
Monheim, St. Peter	26 984.06	17 925.56	Schrattenhofen & ö. G.	26 073.92	23 343.17
Monheim, Torturm	26 867.54	18 035.25	Schwenningen 5	19 833.14	23 220.56
Mündling 5	25 350.50	20 828.67	Sonderheim 5	14 816.13	23 768.73
Münster 5	20 721.29	21 769.50	Sternbach, Türmchen	22 892.89	26 975.01
Munningen 5	29 983.94	24 351.67			
	78312130		Tagmersheim 5	26 067.73	15 117.91
Nähermemmingen 5	26 807.30	28 288.07	Tapfheim 5	20 422.14	22 564.09
Nördlingen 5	27 322.35	27 277.89	Trendel 5	30 036.10	22 053.60
Nörd. Deininger Tor	27 362.31	27 128.99	Unterglauheim 5	19 606.22	24 450.94
Nörd., Pulverturm	27 485.00	27 281.24	Unterreimlingen 5	26 266.46	26 757.67
Nörd., Reiml. Tor	27 244.36	27 185.08	Unterringingen & ö. G.	22 604.06	26 154.85
Nörd., Wasserturm	27 322.02	27 407.94	Unterwurmbach 5	36 994.44	21 157.69
Nußbühl 5	27 183.13	19 536.13		200000000000000000000000000000000000000	
Oberreimlingen 5	26 002.14	26 608.15	Wald 5	37 983.01	21 599.14
Öttingen, prot. 5	31 228.11	24 284.87	Wallerstein 5	28 700.55	27 744.61
Otting 5	28 090.04	19 324.37	Wassertrüdingen 5	34 481.82	24 406.95
Otting o	20 000.04	10 024.01	Wechingen, nördl. 5	29 015.73	24 048.67
Pfäfflingen 5	28 888.29	25 658.80	Wechingen, südl. 5	28 667.22	24 022.73
D 1 W M	0410104	0001000	Wemding 5, nordl. T.	28 170.90	21 318.75
Rauhe Wanne, Turm	24 101.04	26 843.29	Wemding, Amerb. Tor	28 226.52	21 340.90
Riedlingen 5	21 964.08	20 836.79	Wemding, Kapuz. Tor	28 091.36	21 383.56
Rögling 5	27 119.36	15 664.36	Wemding, Wallfahrt 5	28 342.28	21 760.54
Rudelstetten & n. G.	27 440.08	23 388.38	Wörnitzostheim 5	26 758.04	23 404.45
Rühlingstetten 5	32 371.90	29 086.16	Wörnitzstein 5	22 761.05	21 570.71
St. Michael 5	22 911.46	25 431.82	Wörnitzstein, Kap.	22 705.11	21 407.29
Schabringen 5	17 967.16	28 216.46	Wolferstadt 5	29 144.82	20 035.04
Schaffhausen 5	23 868.18	23 577.25	Wolpertsstetten 5	20 052.08	24 187.30
Schloß Höchstädt	18 124.34	25 253.73	Zipplingen 5	30 122.30	29 263.26
Delilon Hochstade	TOTATION	20 200.10	zappinigen O	00 122.00	20 200,20

Punkte der württembergischen Landesvermessung.

Nullpunkt: Tübingen, Sternwarte. $\phi = 48^{\circ} 50' 5!1$. +x-Achse nach Nord. +y-Achse nach Ost. Angaben in Metern. $\lambda = 0^{h} 36^{m} 2955$ e. Gr. = 26° 47!12 ö. F.

6

	x	у	T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x	у
Auernheim 5	+24 036.96	+91 777.25	Nördlingen 5	+37 807.93	+105 486.03
Ballmertshofen 5	17 753.71	97 271.94	Nordhausen 5	48 182.64	97 666.66
Benzenzimmern 5	42 166.53	101 712.79	Oberwilflingen 5	45 689.82	100 640.75
Denzenzimmern O	42 100.55	101 /12.79	Ohmenheim 5	29 362.90	95 489.55
Dattenhausen &	16 444.62	98 495.38	Committee of the Commit		
Dirgenheim 5	42 198.11	99 552.07	Pflaumloch 5	37 803.34	101 753.58
Dischingen 5	20 575.85	96 497.55	Trochtelfingen 5	36 792.05	98 943.43
Elchingen 5	31 185.87	89 217.73	Unterwilflingen 5	45 428.50	101 550.57
Goldburghausen 5	39 952.59	100 880.55	Utzmemmingen 5	35 376.35	101 992.00
		100000000000000000000000000000000000000	Walxheim 5	47 991.67	92 973.17
Itzlingen 5	42 976.70	96 990.51	Wössingen 5	43 567.05	98 598.21
Jagstheim 5	41 997.83	97 700.03	Zipplingen 5	45 783.28	99 423.23
T	99 595 04	00 000 00	Zöbingen 5	46 100.99	93 504.07
Katzenstein 5	23 527.04	98 639.20	Zöbingen, Kap.	46 530.51	93 601.53
Kerkingen &	43 463.49	95 870.51	Burgholzhof, Turm	33 276.95	10 569.20
Kirchheim &	40 831.03	98 749.42	Höfingen 5	33 014.51	- 2 559.92
Kirchheim, Kl.	40 592.92	98 747.65	Kornthal &	34 673.69	+ 5 367.90
Kösingen 5	27 347.22	99 882,22	Leonbergerwarte	31 425.32	- 1 928.84
Neresheim 5	26 873.48	94 396.26	Solitude	29 699.98	+ 2 462.32
Neresheim, Kl.	27 058.64	95 035.98	Basisstation, Pfeiler	34 964.17	+ 5 307.01

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.

Nr. 1. 1902 August 4. Sonnenschein.

Standpunkt am östlichen Rand der Straße nach Unterreimlingen, beim Abgange des Fußwegs, 58^m von der Straßenkreuzung.

x = +26 724.3, y = +26 393.2, H = 427^m.

	200				
Sta	nd	punk	t	im	Löß.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
10.71 10.60 10.60 10.70 10.70 11.84 10.84	O vorwärts O rückwärts O rückwärts O vorwärts Nördlingen Klosterzimmern Deiningen Großelfingen Balgheim Oberreimlingen Unterreimlingen	$\Delta u = +30.7$ $8^{a} 45^{m} 13.5$ $49 6.5$ $52 14$ $55 11$	106° 30:7 287 21.3 288 41.1 109 25.3 304 23.8 29 8.0 51 4.7 86 24.2 155 1.4 196 54.6 218 51.9	THE REAL PROPERTY OF THE PARTY	
1-4	I oben	9ª 18.7—21 ^m 5	350 9.8 9.7	2.9	350° 12!7
5-8	II oben	24.0-25.6	8.0 7.8	3.0	10.9 350 11.8
9-12	II oben	9ª 27.0—29.4	350 8.9 9.4	3.1	350 12.3
13-16	I oben	31.0-32.7	10.1 6.8	3.3	11.7 350 12.0

Foro	nace	//	
		N. O.	To.
The Re	10		0/
	Sono	A	

				_
Azimut			punktes =	= A ₀ .
		-1°		
		elkorr.		
212	Ao	$= -1^{\circ}$	6:9	
Geod:		-0°	20:5 Ge	w. 2
	K.		20.1	4
	D.		20.6	3
	G.		20.2	3 2
	B.		19.5	3
	0.		19.8	1
	U.		20.2	1
11 400	α_0	$= -0^{\circ}$	20:1 Σp:	= 16
1	A - a	= -		
100	Ao	$=-1^{\circ}$	7:3 ±0	!2
	(M)	= 350	11.9 ± 0	.1
H 52	M	$= 349^{\circ}$	4:6	GHLE
	Do	= 10	55.4	
mittl. I		= 11	2.4	

Nadel	Kreis	Be- zeich-	Mi	ttel	A+B	Var	iat.	Uhr-	
Nadel Kreis		nung	A unten	B unten	2	H. Z.		angabe	
I 1 2 3	0 W W	a a	63°49:8 64 24.5 63 51.5	64° 4!0 64 3.5 64 1.2	63° 56!9 64 14.0 63 56.4	94.3 94.3 94.1	124.6	9* 43	
4	Ö	i	64 21.2	64 1.8	64 11.5 64 4.7	94.0		59	
II 5 6 7 8	O W W O	a a i i	63 41.5 64 50.2 63 43.0 64 50.8	64 47.5 63 11.2 64 47.5 63 10.8	64 14.5 64 0.7 64 15.2 64 0.8	94.0 94.0 93.8 93.8	124.0	10° 3	
	191	15.00	BER EN	101 B 1	64 7.8 Δi –1.0 64 6.8	94.0 101.0 —7.0	124.3 126.2 —1.9	125	

$$\Delta n' = -7.0 \quad \Delta n'' = -1.9$$
Nadel I = 64° 4:7

II = 6.8

Mittel = 64° 5:8

dJ = -1.2

J = 64° 4:6

* A - a = Meridiankonvergenz und Verdrehung der x-Achse.

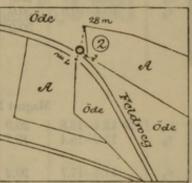
Magnet I.

Ein-	TT	Magnet-	Kreis:	Variat.		
stel- lung	Uhrangabe	temp.	Mittel	Kornth. Dekl.	Potsd. Int.	
v	10ª 22m2	10000	350° 5!0	5.8		
V ₁	25.9-26.4	20.2	38 21.1	6.0	93.9	
V ₂	27.6-28.2	20.2	38 46.8	6.2	93.9	
		A REPORT	38 34.0	6.1		
v ₃	29.7-30.4	19.8	301 42.2	6.3	93.9	
V ₄	32.4-32.8	19.9	301 38.9	6.5	93.9	
# 15 E		20.0	301 40.6	6.4	93.9 100.0	
39.53		AS BANK	Appro . well	(Spring)	-6.1	

2(\phi)	=	96°	53:4
(b)	=	48	26.7
Δδ	=	_	0.15
$A\Delta\phi^2$	=	-	0.03
φ	=	48°	26!5
$\lg\sin\phi$	= 5	9.87	406
Δt_{15}			-162
$\lg\sin\phi_{15}$			
n'100	=		-41
$\lg \sin \phi_0$	= 5	9.87	527
lgc	=	9.17	953
lg H	= 5	9.30	426
THE REAL PROPERTY.			

Magnet II.

Ein- stel-	Uhrangabe	Magnet-	Kreis:	Vai	riat.	$2 (\phi) = 97^{\circ} 4.8$ $(\phi) = 48 32.4$	
lung	Omangaoe	temp.	Mittel	Kornth. Dekl.	Potsd. Int.	$\begin{array}{ccc} \Delta \delta & = & 0.0 \\ \Delta \Delta \phi^2 & = & -0.16 \end{array}$	
V ₄ V ₃	10 ^a 35.7-36 ^a 4 37.6-37.8	19:2 18.6	301°59:9 301 9 6	6.8	93.9 93.7	$\phi = 48^{\circ}32!2$	
.3			301 34.8	6.8		$\begin{array}{ccc} \lg \sin \phi &= 9.87 \ 470 \\ \Delta t_{15} &= & +120 \end{array}$	
$v_2 \\ v_1$	39.6-40.3 42.4-44.9	18.9 18.9	38 23.6 38 55.5	6.8	93.6 93.6		
v	44.0	18.9	38 39.6 350 9.0	6.8	93.7 100.0		
		Deflektor I			-6.3	lg H = 9.30 421	
o W	10 ^a 49.5-50.0 52.1-52.4	19.2 19.8	294 47.2 45 23.6	7.1 7.2	93.9 93.9	$2 (\phi) = 110^{\circ}36!4$ $\phi = 55 \ 18.2$	
		19.5	1 1 1 1 1 1		93.9 100.0	$\frac{\lg \sin \phi_{15} = 9.91 \ 643}{\lg c = 9.22 \ 022}$	
- 1					-6.1	$\lg H = 9.30420$	Zusammenstellung H = 0.20 149
		Deflektor I				A CONTRACT OF THE PARTY OF THE	147
W	10 ^a 55.6-56.2 57.8-59.5	19.2 19.1	49 39.8 290 35.1	7.6 7.6	94.0 94.2	$ \begin{array}{ccc} 2 (\phi) & = 119^{\circ} & 4.7 \\ \phi & = 59 & 32.4 \end{array} $	146 145
		19.15	- 2		94.1 100.0	$\frac{\lg \sin \phi_{15} = 9.93685}{\lg e = 9.24062}$	$H = 0.20 147 \pm \Delta(\lambda, \phi) = -3$
					-5.9	lg H = 9.30 417	H = 0.20144


Nr. 2. 1902 Aug. 4. Sonnenschein.

Standpunkt in einer Öde des Reimlinger Bergs an einem Feldwege zwischen Unterreimlingen und Herkheim.

 $x = +26\ 201.4$, $y = +27\ 043.2$, $H = 500^{m}$.

Standpunkt im jüngeren tertiären Süßwasserkalk.

Nr.	Einstellung Uhrangabe		Kreisablesung (Mittel der äuß. u. der inn. Fäden)		Magnet- ablesung red. auf n ₀
		$\Delta u = +3333$			
1-4	I oben	0° 46.6-48°9	350° 20:8 20.2	12.0	350°32!5
5-8	II oben	51.9-53.8	350 18.4	12.2	350 30.3
	Nördlingen		17.8 348 47.2		350 31.4
	Großelfingen		70 16.3		
	Enkingen		85 15.7 94 26.1		
	Appetshofen Möttingen		101 59.3		
	Großsorheim		108 49.0		
	Rauhe Wanne		175 10.7		
	Herkheim		279 33.9		
	Nähermemmingen		296 33.2		
	Baldingen		336 39.7		
9-12	I oben	1º 12.6-15.5	350 18.7 18.9	12.7	350 31.5
13-16	II oben	17.3-18.6	350 17.6	12.8	350 30.3
	The state of the s		17.4	12.0	
	Nördlingen	20 120 121	348 46.8	November 1	350 30.9
	O rückwärts	2 ^p 46 ^m 42 ^s	56 19.9	NEWS CO.	
	O vorwärts	49 26	237 10.3	and a	
	O vorwärts	50 41	238 18.2	10.00	
	O rückwärts Nördlingen	52 22	58 43.2 348 47.15	12 11 11	

Azimut des Kreisnullpunktes: astr: $-1^{\circ}20!7$ Spiegelkorr. -1.1 $A_0 = -1^{\circ}21!8$ Geod: No. $-0^{\circ}36!9$ Gew. 2 G. E. 35.8 4 E. 35.4 5 A. 35.2 7 M. 35.2 5 G. S. 35.3 9 R. 36.9 6 H. 37.1 0.5 Na. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8$ $\Sigma p = 45$ $A - a = -48.3$ $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350$ 31.2 ± 0.2 M $= 349^{\circ}$ 7:1 D ₀ = 10 52.9 mittl.Dekl.D = 10 59.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Azimut des Kreisnullp	unktes:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
G. E. 35.8 4 E. 35.4 5 A. 35.2 7 M. 35.2 5 G. S. 35.3 9 R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $ a_0 = -0^{\circ}35!8 \Sigma p = 45 $ $ A - a = -48.3 $ $ A_0 = -1^{\circ}24!1 \pm 0!2 $ (M) $= 350 \ 31.2 \pm 0.2$ $ M = 349^{\circ} 7!1 $ $ D_0 = 10 \ 52.9$		
G. E. 35.8 4 E. 35.4 5 A. 35.2 7 M. 35.2 5 G. S. 35.3 9 R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $ a_0 = -0^{\circ}35!8 \Sigma p = 45 $ $ A - a = -48.3 $ $ A_0 = -1^{\circ}24!1 \pm 0!2 $ (M) $= 350 \ 31.2 \pm 0.2$ $ M = 349^{\circ} 7!1 $ $ D_0 = 10 \ 52.9$	Geod: No0° 36!9	Gew. 2
R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		
R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		5
R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		7
R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		5
R. 36.9 6 H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) $= 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		9
H. 37.1 0.5 Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ $A - a = -48.3$ $A_0 = -1^{\circ}24!1 \pm 0!2$ $(M) = 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		
Nā. 36.3 3 B. 36.0 4 $a_0 = -0^{\circ}35!8$ Σp = 45 A - a = -48.3 $A_0 = -1^{\circ}24!1 \pm 0!2$ (M) = 350 31.2 ±0.2 M = 349° 7!1 $D_0 = 10$ 52.9		
B. 36.0 4 $a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ $A - a = -48.3$ $A_0 = -1^{\circ}24!1 \pm 0!2$ $(M) = 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		
$a_0 = -0^{\circ}35!8 \ \Sigma p = 45$ $A - a = -48.3$ $A_0 = -1^{\circ}24!1 \pm 0!2$ $(M) = 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		
$A-a = -48.3$ $A_0 = -1^{\circ}24!1 \pm 0!2$ $(M) = 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$	000000	
$A_0 = -1^{\circ}24!1 \pm 0!2$ $(M) = 350 \ 31.2 \pm 0.2$ $M = 349^{\circ} \ 7!1$ $D_0 = 10 \ 52.9$		2p = 45
$\begin{array}{ccc} (\text{M}) &= 350 \ 31.2 \pm 0.2 \\ \hline \text{M} &= 349^{\circ} \ 7!1 \\ \text{D}_{0} &= 10 \ 52.9 \end{array}$		
$\begin{array}{rcl} \text{(M)} &= 350 \ 31.2 \pm 0.2 \\ \hline \text{M} &= 349^{\circ} \ 7.1 \\ \text{D}_{0} &= 10 \ 52.9 \end{array}$		
$M = 349^{\circ} 7!1$ $D_0 = 10 52.9$	$(M) = 350 \ 31.2$:	±0.2
$D_0 = 10 52.9$		

N. 1.1 W		Be- zeich-	ACKTOOD.		A+B	Vai	riat.	Uhr-	
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angab	
1 1 2	O W	a a	63°55!5 64 23.5	64° 3:0 64 4.2	63° 59:2 64 13.8	100.0 100.2		1º 24	
3 4	W	i i	63 53.0 64 23.0	64 1.0 64 5.2	63 57.0 64 14.1	100.2 100.2	123.0	36	
					64 6.0			1 48	
II 5 6	o W	a	63 40.8 64 55.2	64 39.5 63 15.5	64 10.2 64 5.4	100.2 100.2	100.1	1P 40	
7 8	W	i	63 41.0 64 59.2	64 37.8 63 17.5	64 9.4 64 8.4	100.0	123.1	54	
					64 8.4 Δi –1.0	100.1 101.0	123.0 126.2		
					64 7.4	-0.9	-3.2	A ME	

$$\Delta n' = -0.9 \quad \Delta n'' = -3.2$$
Nadel I = 64°6'.0

II = 7.4

Mittel = 64°6'.7

dJ = +0.1

J = 64°6'.8

Magnet I.

Ein-	771	Magnet-	Kreis:	Variat.		
stel- lung	der Unrangabe temp Mittal	Mittel	Kornth. D.	Potsd. H.		
v	1p 59m3	STOLET	350° 19:4	12.8		
V ₁	2P 1.6- 2.6	20.7	38 28.2	12.8	100.1	
V ₂	4.4- 6.3	21.0	38 55.3	12.7	100.1	
10000			38 41.7	12.8		
V ₃	8.1- 8.7	19.3	301 55.6	12.6	100.4	
V4	10.4-10.8	20.0	301 54.2	12.6	100.6	
		20.25	301 54.9	12.6	100.3	
No.				10000	100.0	
			*00000	1	+0.3	

Magnet II.

v ₄ v ₃	2º 13.4-13.8 15.0-15.4	20.9 19.7	302 23.9 301 25.8	12.6 12.6	100.9
	11 1		301 54.9	12.6	
v ₂ v ₁	17.3-17.7 19.5-20.0	20.4 21.7	38 33.1 39 1.5	12.6 12.6	101.4 101.8
1000	COC'15	20.7	38 47.3	12.6	101.3 100.0
	MINERAL TO				+1.3

$$\begin{array}{cccc} 2 \left(\phi \right) &= 96^{\circ}52!4 \\ \phi &= 48 & 26.0 \\ \lg \sin \phi_{15} = 5.87 & 577 \\ \mathsf{n'}_{100} &= +9 \\ \lg \sin \phi_{0} = 9.87 & 586 \\ \lg c &= 9.17 & 968 \\ \lg H &= 9.30 & 382 \\ \end{array}$$

 $\begin{array}{ll} 2 \left(\phi \right) & = 118^{\circ}35!0 \\ \phi & = 59 \ 17.5 \\ \lg \sin \phi_{15} = 9.93 \ 664 \end{array}$

= 9.24 062= 9.30 386

lg c

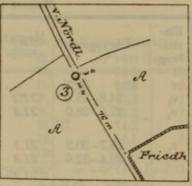
lg H

Deflektor I.

0 W	2º 25.0-25.4 27.2-27.6	22.4 22.2	295 16.6 45 25.6	12.4 12.4	101.7 101.6	$2(\phi)$ = 110°9:0 ϕ = 55 4.5
The same	2.30	22.3	10000		101.6	$\frac{\lg \sin \phi_{15} = 9.91 \ 616}{\lg c} = 9.22 \ 022$
19	100		373.00		+1.6	$\frac{\lg c}{\lg H} = 9.30395$

Deflektor II.

W	2P 29.7-30.2 32.4-32.9	21.8 21.8	49 36.4 291 1.4	12.1 12.1	101.5 101.9
	DV-100	21.8	1000		101.7
	0.54 DE 20				100.0
	BHS OF MC		2		+1.7


Zu	ammenstellung:
H	= 0.20141
	129
	135
	131
H	$= 0.20134 \pm 3\gamma$
$\Delta(\lambda,$	(b) = -1
H	= 0.20 133

Nr. 3. 1902 Aug. 4. Bedeckter Himmel.

Standpunkt am Westrande des Feldwegs am Berggäßle bei Nördlingen, 76^m von der nordwestlichen Ecke des Friedhofs und 130^m vom unteren Endpunkte des Feldwegs entfernt. Im Diluviallehm. Siehe auch S. 92—93.

$$x = +27216.3$$
, $y = 27496.8$, $H = 440^{m}$.

		THE PARTY OF			
Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n _o
11-73	Till along	$\Delta u = +0.5$	100 S L	N K	27 90
1-4	I oben	4º 11.4-13 ^m 4	350°18:2 19.8	8.4	350° 27:4
5-8	II oben	15.6-17.3	350 19.6 19.5	8.3	350 27.8
					350 27.6
	Holheim		211 19.2		
	Nähermemmingen		243 6.9		
	Goldburghausen		304 14.4 336 53.2		
	Baldingen Wallerstein		350 58.3		
	Birkhausen		11 36.3		
	Ehingen		24 55.2		
	Löpsinger Tor		54 36.4		
	Nördlingen		64 36.4	19.68	
	Deininger Tor		68 48.5		
	Reimlinger Tor		85 18.9		
9-12	II oben	4º 32.0-33.9	350 16.3 17.7	7.8	350 24.8
13-16	I oben	35.6-37.5	350 21.5	7.7	350 29.2
			21.6		350 27.0
- 51	120= 1 13				330 27.0
17-20	I oben	6P 0.5- 2.3	350 24.1	6.0	350 29.6
21-24	II oben	3.7- 5.1	23.2 350 20.1		
21-24	II oben	5.7- 5.1	20.0	6.0	350 26.0
			20.0		350 27.8
	Nördlingen		64 36.4	10	
25-28	II oben	6P 9.8-11.4	350 19.8 19.7	6.0	350 25.7
29 - 32	I oben	13.3-14.9	350 22.6	6.0	350 28.5
			22.4	III III	350 27.1
	100 M		La Land and	all the same	000 27.1

Azimut des	Kreisnullpu	inktes:
H.	-0°27!4	Gew. 2
Nä.	26.8	
G.	26.9	4
Ba.	27.0	
W.	27.1	
Bi.	27.2	100000000000000000000000000000000000000
E.	26.9	10
L.	27.1	0.3
Nö.	26.9	
D.	27.4	
R.	27.3	0.3
do :	$= -0^{\circ}27!0$	$\Sigma p = 27$
Α-α:		•
Ao :	$= -1^{\circ}16!2$	±0:1
(M) :	$=350\ 27.4$	±0.2
M :	= 349° 11:2	
D :	= 10 48.8	
ittl.Dekl.D _m	= 10 55.8	

Nadel	Kreis	Be- zeich-	Mi	Mittel A + B Var		Var	iat.	Uhr-
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3 4	o W W o	a a i i	63° 51:2 64 26.0 63 49.5 64 21.5	63°59:0 64 6.5 63 57.5 64 3.2	63° 55:1 64 16.2 63 53.5 64 12.4 64 4.3	102.7 102.5 102.1 101.8	126.6	4P 45
II 5 6 7 8	0 W W 0	a a i i	63 37.0 64 55.8 63 40.2 65 1.8	64 37.0 63 18.8 64 42.2 63 17.2	64 7.0 64 7.3 64 11.2 64 9.5 64 8.7 Δi -1.0 64 7.7	101.5 101.9 101.8 102.1 102.0 101.0	126.6 126.2 +0.4	5P 3

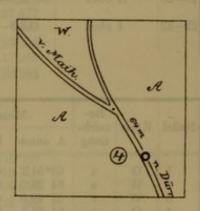
$$\Delta n' = +1.0 \quad \Delta n' = +0.4$$
Nadel I = 64°4'.3

• II = 7.7

Mittel = 64°6'.0

dJ = +0.2

J = 64°6'.2


Magnet I.

Ein-		Magnet-	Kreis:	Va	riat.	0000=14	
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	$2(\phi) = 96^{\circ}27!4$ $(\phi) = 48\ 13.7$ $\Delta \delta = +0.05$	
v	5P 22 ^m 5	0.00	350° 22:3	6.5	177	$A\Delta\phi^2 = -0.03$	
v ₁	24.8-25.4 27.5-28.0	21°2 21.4	38 23.8 38 49.6	6.5	101.9 101.8	$\phi = 48^{\circ}13!7$	
V ₂	27.0-20.0	21.1	38 36.7	6.4	101.0	$\begin{array}{ccc} \lg \sin \phi &= 9.87 \ 263 \\ \Delta t_{15} &= & +203 \end{array}$	
V ₃	29.7-30.2	21.1	302 11.2	6.4	101.7	$\frac{1}{\lg\sin\phi_{15}} = 9.87\ 466$	
V ₄	32.4-32.6	21.3	302 7.5	6.3	101.7	$n'_{100} = +12$	
		21.25	302 9.3	6.3	101.8	$\lg \sin \phi_0 = 9.87478$	
13055			3052540		100.0	$\lg c = 9.17953$	
See. 2			to and		+1.8	$\lg H = 9.30475$	
		Magnet II.				Open .	
v ₄	5P 35.3-35.8 37.5-37.8	21.5 20.7	302 33.0 301 35.4	6.2	100.9 100.9	$2(\phi) = 96^{\circ}41.9$ $\phi = 48 \ 20.7$	
v ₃	51.5-51.5	20.7	302 4.2	6.2	100.9	$ \phi = 48 \ 20.7 \lg \sin \phi_{15} = 9.87 \ 518 $	
	40.3-40.9	20.8	38 30.2	6.1	101.1	$n'_{100} = +7$	
v ₂ v ₁	42.5-43.0	20.7	39 2.0	6.1	101.1	$\lg \sin \phi_0 = 9.87525$	
		20.7	38 46.2	6.1	101.0	$\lg c = 9.17968$	
0			1000		100.0	$\lg H = 9.30.443$	
911	110		0=0 00=		+1.0	ALTE STATE	
v	44.2		350 23.5	6.1		STATE OF THE STATE	
-		Deflektor 1					
o W	5P 47.0-47.6 49.3-49.7	21.1 20.9	295 22.7 45 26.7	6.1	101.3 101.3	$2(\phi) = 110^{\circ}4!0$ $\phi = 55 2.0$	
**	49.5-49.7	21.0	45 20.7	0.1	101.3	$\lg \sin \phi_{15} = 9.91\ 550$	
3-1		22.0	0 20 20		100.0	lg c = 9.22 022	3-16 1 obes
-			10 TO 10 TO 10		+1.3	lg H = 9.30 463	Zusammenstellung:
		Deflektor 1	II.		2000 3	AND PROPERTY.	H = 0.20 172 157
W	5P 54.6-55.5	21.0	49 37.7	6.1	101.4	$2(\phi) = 118^{\circ}29!9$	166
0	57.6-58.2	21.1	291 7.8	6.1	101.4	$\phi = 59 \ 15.0$	152
		21.05	B 70 70		101.4	$\lg \sin \phi_{15} = 9.93 \ 620$	H = 0.20 162 ±5
			The same of the sa		100.0	$\lg c = 9.24062$	$\frac{\Delta(\lambda,\phi) = +2}{1100000000000000000000000000000000000$
1111		0000	1034 12 35		+1.4	$\lg H = 9.30432$	H = 0.20164

Nr. 4. 1902 Aug. 5. Bedeckter Himmel, gegen den Schluß Regen. Standpunkt am östlichen Rand der Straße von Dürrenzimmern nach Maihingen, 64^m vor der Wegkreuzung an den Seewiesen. Im Löß.

x = +29660.6, y = +25921.6, H = 428^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
100	Δu = +0.6	274 1275		1111	
1-4	I oben	7*11.2-12**6	350° 19:7 19.2	3.3	350°22!7
5-8	II oben	14.0-15.3	350 17.1 17.2	3.1	350 20.3
	Corporation to the contract of		7.000		350 21.5
	Öttingen, prot. K.		46 28.4		
	Hohentrüdingen		50 17.6		
	Dürrenzimmern		139 46.7		
	Pfäfflingen		161 26.6		
	Nördlingen Meilden VI		210 21.2		
	Maihingen, Kl.		297 20.0		
	Maihingen Heuberg		301 13.9 18 22.1	1 3 3 3	

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf Nr.
9-12	II oben	7*26.8-28**7	350° 17:4 21.1	3.0	350° 22:2
13-16	I oben	29.9-31.4	350 23.3 20.8	3.2	350 25.2 350 23.7
17-20	I oben	7° 40.0-41.0	350 21.6 23.7	3.1	350 25.7
21-24	II oben	42.6-43.7	350 15.8 16.4	3.0	350 19.1 350 22.4
25-28	I oben	7*45.5-46.5	350 25.4 25.6	2.9	350 28.4
29-32	II oben	47.7-48.7	350 18.4 17.6	2.8	350 20.8
March 1		The state of the s			350 24.6

zimut des	Kreisnullp	unktes:
Ö.	-0°14:0	Gew. 6
Ho.	14.0	10
D.	14.1	0.5
P.	14.2	
N.	14.2	7
M. Kl.	14.2	
M.	14.1	3
He.	14.0	1
a ₀ =	$= -0^{\circ} 14!1$	$\Sigma p = 31$
	= -46.5	10 11 1
	= -1° 0:6	
(M) =	$=350\ 23.0$	±0.7
M =	= 349° 22:4	
Do =	= 10 37.6	
tl.Dekl.D. =	= 10 44.6	

Na	lab	Kreis	Be- zeich-	Mi	ttel	A + B	Var	iat.	Uhr.
INa	del	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I	1 2 3 4	O W W O	a a i i	63°50:0 64 11.2 63 47.8 64 10.0	63°55:8 63 55.2 63 50.5 63 56.5	63°52!9 64 3.2 63 49.2 64 3.2 63 57.1	101.2 100.8 100.5 100.0	128.1	7ª 54 66
п	5678	O W W O	a a i i	63 29.8 64 48.5 63 33.5 64 52.0	64 28.5 63 10.8 64 32.0 63 6.5	63 59.2 63 59.6 64 2.8 63 59.2 63 60.2 Δi -1.0	99.5 99.1 99.1 98.6 99.9 101.0	128.5 128.3 126.2	8ª 10 22
						63 59.2	-1.1	+2.1	196

 $\Delta n' = -1.1$ $\Delta n'' = +2.1$ Nadel I = 63°57!1 - II = 59.2 Mittel = 63°58!2 dJ = -0.4 J = 63°57!8

mitt

Magnet. I.

Ein-		Magnet-	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	
v	8ª 30™0		350° 23:8	3.2		$\tau = 20^{\circ}_{\cdot}3$	
$v_1 \\ v_2$	33.6-34.2 35.7-36.8	18°.8 19.0	38 26.2 38 49.7	3.2	97.9 97.7	17.7 17.7	
	38.3-38.6	18.0	38 38.0	3.2	97.5	17.7	
v ₃ · v ₄	40.2-40.5	18.3	302 0.9	3.5	97.5	17.6	
EX)		18.5	302 2.0	3.4	97.7 100.0	17.7 +0.5	
the q	THE THE				-2.3	18.2	

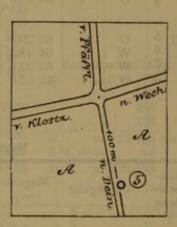
$2(\phi)$	=	96°36:0
φ	=	48 17.9
$\lg \sin \phi_{15}$	=	9.87 423

_						2.018
- 100	201-	Mag	net II.			NA 34
v ₄ v ₃	8* 42.7–43.6 45.2–45.8	19.0 18.0	302 25.6 301 24.7 301 55.2	3.6 3.6 3.6	97.0 96.6	$\tau = 20$,25 17.4 17.2
v ₂ v ₁	48.3-48.5 50.2-50.5	18.4 18.3	38 31.8 38 58.6	3.6	96.4 96.2	17.1 17.1
		18.4	38 45.2	3.6	96.6 100.0	17.2 +0.4
v	53.0		350 20.0	3.6	-3.4	17.6

Deflektor I.

Ein-	Th.	Mag-	Kreis:	Variationen				
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.		
		1000				τ == 20°25		
0	8ª 56.1-57.0	18.3	295° 11:5	3.7	96.1	16.8		
W	58 7-59.1	18.2	45 26.0	3.7	95.9	16.8		
200		18.25			96.0	16.8		
	201				100.0	+0.4		
700	0.177-70				-4.0	17.2		
		Defle	ktor II.					
W	94 1.9- 2.2	18.0	49 46.4	3.8	95.5	16.6		
0	3.6- 4.1	17.9	291 2.0	3.8	95.5	16.4		
-		17.95	The same of the same of	LEC IV	95.5	16.5		
	AND VALUE OF	100			100.0	+0.4		
				ELE DI	-4.5	16.9		

Zusammenstellung:


Variat.: Potsdam	Kornthal
H = 0.20205	H = 0.20205
181	182
204	203
193	193
$H = 0.20196 \pm 6\gamma$	$H = 0.20196 \pm 6\gamma$
$\Delta(\lambda, \phi) = -1$	$\Delta(\lambda, \phi) = +1$
H = 0.20195	H = 0.20197

Nr. 5. 1902 Aug. 5. Bedeckter Himmel; gegen den Schluß Gewitter mit heftigem Wind und Regen.

Standpunkt bei Klosterzimmern, im Mittelfeld, am Ostrande der Straße von Pfäfflingen nach Deiningen, $100^{\rm m}$ von der Straßenkreuzung entfernt. Im Löß.

$$x = +28332.0, y = +25423.9, H = 425^{m}.$$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf no	200
		$\Delta u = +0$ ^m 6	1700	THE R. P.	14617	
1-4	I oben	11°21.6-23°4	350° 21:6 21.0	9.4	350°30!7	
5-8	II oben	24.8-26.4	350 17.8	9.7	350 27.1	
		200	17.1		350 28.9	1
	Klosterzimmern	-	242 39.75	29, 1	000 20.0	
	Löpsingen	principle - plante	263 41.9			
-	Zipplingen	THE STREET	295 35.8			
97	Birkhausen	200	297 29.8	200		
1	Maihingen	No. of the last of	322 36.6	311		
7.50	Pfäfflingen	Dil - Some St	337 42.2			
100	Dürrenzimmern	N. H.	348 32.7	100		
112-1	Heuberg	PA - HA	351 52.2			
	Ehingen	The same of the sa	359 58.6	P- 1		
	Munningen		33 34.8			
	Alerheim	Market St.	131 14.5			
	Deiningen	(6)2	163 4.2	10		
9-12	II oben	11°41.0-43.8	350 16.7 16.8	10.5	350 27.3	
13-16	I oben	45.4-46.6	350 18.5	11.0	350 29.7	mi
-			18.9	11.0	350 28.5	
17-20	II oben	11*48.8-51.0	350 16.8			
			16.6	11.2	350 27.9	
1-24	I oben	52.9-54.5	350 16.9	11.4	350 27.1	
			14.5	11.4		
		1000	1 10000		350 27.5	

Azimut des Kreisnullpunktes:

L.	-0°35!2	Gew. 1
Z.	35.9	9
Ma.	35.7	7
E.	35.6	8
Mu.	35.6	5
A.	35.9	4
D.	35.8	1
a ₀ =	-0°35!7	$\Sigma p = 35$
	-45.5	
A0 =	-1°21:2:	±0:1
- W	350 28.3 :	
M =	349° 7:1	1
	10 52.9	
l. Dekl. D =		

Nadel	Kreis	Be- zeich-	-	Mi	ttel		A+	В	Va	riat.	Uhr-	his I make			
Madel	Acreis	nung		nten	В	unten	2	100	H.	Z.	angabe	PER SCHEE			
I 1	0	a	630			58!8	63°51		94.2	-	1P 2	$\Delta n'$	= -6.	3 Δn" =	-1.6
2 3	WW	a i	64 63		63	53.8 52.0	64 7 63 46		94.4	124.6	7		Nadel :	$I = 63^{\circ}58$	8:0
4	0	i	64			55.0	64 7		94.4	1	12	The same of the sa	- I	I = 58	3.0
	-	11.			-	0010	63 58				1.0		Mittel		
II 5	0	a	63 3			26.2	63 58	.1	95.0	beauti	OP 15		dJ	= -1	
6	W	a	64			12.8	63 59		95.2	124.7	-		J	$=63^{\circ}57$	1:3
7 8	WO	i	63 3		63	30.0 8.5	64 0 64 1		95.1 95.0	124.1	27	-mit87			
0		13	04.	04.0	0.5	0.0	63 59		94.7	124.6	21	100000			
	89/		1				$\Delta i - 1$		101.0	126.2		16.00			
			Ma				63 58	.8	-6.3	-1.6					
Magnet I.															
Ein- stel-	Uhrang		Mag- net-	Kre Mit			ariation								
lung	121		temp.	MAIL	tel	Kornth. D.	Potsd. H.	1	1.						
v	OP :	31 ^m 3		350°	15!5	13.7		τ=	2003		2	2(φ) =	= 96°8	37:6	
v ₁	33.6-	35.0	21.4	38	21.0	13.7	96.0		6.6		d	5 =	= 48 1	8.7	
v ₂	37.4-	37.7	22.0		50.9	13.9	96.2	1	6.9		1	$g \sin \phi_{15} =$	= 9.87	542	
-	40.3-	10.7	21.6	38 3		13.8	00.0	1	70			Potsdam		Kornth	
V ₃	42.5-				1.7	14.0	96.2 96.8		7.0	n'ı				n'20 = -	
	-		21.85			14.0	96.3		6.9			9.87 517		9.87 5	
						0.00	100.0		0.5			= 9.17 953 = 9.30 436		$\frac{9.179}{9.304}$	
1		W. I					-3.7	1	7.4	ıg	п =	9.50 450		9.50 4	55
4		01 19	Mag	gnet l	II.				9004		0	(1)	000	no n	
V4	OP 46.4-	46.6		302 5		14.0	97.2		2004 7.5		d		$= 96^{\circ}4$ = 48.2		
V ₃	48.0-	48.4		301 2		14.0	97.2	1	7.5			$\sin \phi_{15} =$			
1	-0.1			301 3		14.0				n'ı				n'20 = -	19
v ₂ v ₁	50.4- 52.2-		21.7 21.3	38 2		14.1	97.2 97.4		7.6			9.87 581		9.87 5	
'1	02.2		21.65	38 4		14.1	97.2		7.6		c =	9.17 965		9.17 9	
		- 11		-			100.0		0.6	lg	H =	9.30 394		9.30 3	92
		55.0		350	105	14.1	-2.8	1	8.2						
v 1		33.0		ektor		14.1		1							
1					1			T=	2004		2	(φ) =	= 109° 5	9!2	
w	OP 57.6-			295 2		14.3	98.1		8.3		φ		54 5	9.6	
VV	61.2-		22.5 22.35	45 2	20.7	14.3	98.4	_	8.5		lg	$\sin \phi_{15} =$	9.91	575	
			22.00		34		100.0		0.6	lg		9.22 020		9.22 0	
							-1.8	_	9.0	lg	H =	9.30 457		9.30 4	52
			Defle	ktor	II.				-						
w	1P 3.9-	43	22.9	49 3	201	14.4	98.8	T=	20°5 8.6		00000		= 118°		
ö	6.8-			291	7.0	14.6	99.0		9.0		o d	$g \sin \phi_{15} =$	= 59		
			22.75				98.9		8.8						-0
							100.0	+	_	lg lg		9.24 062 9.30 417		9.24 0	
					1		-1.1	1	9.6	.9.			etallun		
										Vaniat	: Potsd	lam	stenun	Kornth	al
									Н		0.20 15		Н	= 0.20	
									-		13	5			134
											16				161
									77	-	14		TI	0.00	142
									H	$(\lambda, \phi) =$	0.20 15		$\Delta(\lambda,$		148 ± 6 -1
									H		0.20 14		H H	= 0.20	and the second
									11	-	COMPUTATION AND ADDRESS.	The state of the s	4.4	Used U	

350 23.2

350 20.6

350 23.2

350 21.9

mitt

8.8

8.7

17 - 20

21 - 24

II oben

I oben

Nr. 6. 1902 Aug. 5. Leichter Regen.

Standpunkt am Westrande des Feldweges bei der Brückleswiese 100^m nördlich von der Kreuzung mit der Straße von Deiningen nach Alerheim. Im Moor.

Nr.	Einstellung	Uhrangabe Kreisablesung (Mittel der äuß. u. der inn. Fäden)		Variat.	Magnet- ablesung red. auf no	
		$\Delta u = +0.6$				
1-4	I oben	4º 27.6-29 ⁿ 4	350° 14:0 16.0	9.8	350°24:8	
5-8	II oben	31.0-32.2	350 10.5 10.0	9.7	350 20.0	
	Deiningen		294 55.4	1439	350 22.4	
	Fessenheim		35 23.9	1000		
	Amerbach		59 55.8	1000		
	Wallfahrt		68 9.6			
	Wemding		74 4.0			
	Wemding, Kap.		74 10.7	7,000		
	Alerheim Deggingen VI		115 14.5 191 0.6	STATE OF		
	Deggingen, Kl. Rauhe Wanne		218 20.2	100		
	Schmähingen		234 13.6	2007		
	Großelfingen		246 1.2	100		
	Nördlingen		270 59.4	100		
9-12	II oben	4P 47.9-49.2	350 11.8 12.1	9.3	350 21.3	
3 - 16	I oben	53.2-54.2	350 16.2	8.9	350 25.1	
			16.2	0.0	350 23.1	

A	wi
WE.	Grabon
a E	WE.
400	W S
r. Dein.	n ellow

Azimut des	Kreisnull	pun	ktes:
------------	-----------	-----	-------

difference area	*** Cromanip	CELLINE CO.
Dei.	-0°18:3	Gew. 1
Am.	18.3	7
We.	18.3	7 8
Al.	18.3	0.5
Deg.	17.9	8 9 7 7
R. W.	19.5	9
S.	18.0	7
N.	18.0	7
a ₀ =	-0°18:4	$\Sigma p = 47$
A-a =	-43.5	THE OT
	-1° 1'9	
(M) =	350 22.5	±0.4
	349° 20:6	
Do =	10 39.4	
L Dekl D =	: 10 46.4	

Nadel Kreis		V	Be-	Mi	ttel	A + B	Var	iat.	Uhr-
		zeich- nung	A unten	B unten	2	н. Z.		angabe	
	1 2 3 4	O W W O	a a i i	63°51:2 64 21.2 63 50.8 64 19.0	64° 1:8 64 1.0 63 59.2 63 58 5	63°56:5 64 11.1 63 55.0 64 8.8 64 2.8	103.9 103.9 103.8 103.3	129.7	5º 7
	5 6 7 8	0 W W	a a i i	63 37.0 64 52.8 63 39.2 64 57.2	64 33.0 63 17.5 64 38.0 63 16.8	64 5.0 64 5.2 64 8.6 64 7.0	103.3 103.4 103.5 103.1	128.9	5P 21
						64 6.4 Δi –1.6 64 5.4	103.5 101.0 +2.5	129.3 126.2 +3.1	

$\Delta n' = +2.$	5 Δn"	= +3.1
Nadel	$I = 64^{\circ}$	2:8
- 1	1=	5.4
Mittel	$= 64^{\circ}$	4:1
dJ	= +	0.2
J	$= 64^{\circ}$	4:3

Magnet I

4P 56.3-57.5

59.2-60.3

350 11.8

350 15.1

11.9

13.8

Ein-	TIL	Magnet-	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
v	5p 40 ^m 5		350° 16:1	7.0		τ=21°	
v ₁	44.8-46.1	27.2	38 21.4	7.0	102.9	19.0	
V ₂	48.3-48.5	21.0	38 52.4	6.8	102.5	19.0	
			38 36.9	6.9			
V ₃	50.3-50.7	20.0	301 49.5	6.7	102.9	19.2	
V4	51.7-50.3	20.0	301 52.0	6.7	103.1	19.2	
	110000000000000000000000000000000000000	20.55	301 50.7	6.7	102.9	19.1	
	The state of				100.0	+1.7	
	10000		120 1 100 CO		+2.9	20.8	

$$\begin{array}{ll} 2\,(\phi) &= 96^{\circ}\,46!2 \\ \phi &= 48\ 23.2 \\ \lg\sin\phi_{15} = 9.87\ 550 \end{array}$$

Variat.: Potsdam	Kornthal
n' ₁₀₀ = +20	$n'_{20} = +8$
$\lg \sin \phi_0 = 9.87\ 570$	9.87 558
$\lg c = 9.17953$	9.17 950
lg H = 9.30 383	9.30 392

M			

							- chiefman St
Ein- stel-	Uhrangabe	Mag- net-	Kreis:	1	riation		dis. Einstellung Uhrangsbo (1986-14)
lung		temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	(94) - 991-21 W 1000-4 1 1-
V ₄	5P 55.4-56°0	19:8	302° 17:4	6.7	103.1	τ=21°1 19.3	$2(\phi) = 96^{\circ}58!4$
V ₃	56.8-57.4	19.0	301 19.0		102.9	19.2	$\phi = 48\ 29.4$
	-		301 48.2	100 000		1	$\lg \sin \phi_{15} = 9.87571$
V_2	59.0-59.4	19.1	38 33.3		102.8	19.1	Variat.: Potsdam Kornthal
v ₁	60.7-61.4	19.2	38 59.9		102.6	19.1	n' ₁₀₀ = +20 n' ₂₀ = +9
		19.3	38 46.6	6.35	102.9	19.2	$\lg \sin \phi_0 = 9.87591 \qquad 9.87580$
207	P. B. S. 45.73				+2.9	+1.7	$\lg c = 9.17965 \qquad 9.17963$
v	6p 4.8		350 15.3	6.3	+2.0	20.5	$\lg H = 9.30374$ 9.30383
		Defl	ektor I.				PAGE TO SERVICE OF THE PAGE AND ADDRESS OF THE PAGE AN
0	6P 8.0- 8.6		294 57.2		102.7	19.3	$2(\phi) = 110^{\circ}34.0$
W	11.0-12.0	19.4	45 31.2	6.1	102.7	19.3	$\phi = 55 \ 16.9$
100		19.3			102.7	19.3	$\lg \sin \phi_{15} = 9.91 \ 624$
				1	100.0	+1.7	$\lg c = 9.22020 \qquad 9.22017$
			-	skill	+2.7	21.0	$lg H = 9.30 378 \qquad 9.30 383$
			ektor II.				
W	6P 14.7-15.2		49 45.6		102.6	19.5	$2(\phi) = 118^{\circ}55!0$
0	17.0-17.4	19.3	290 50.6	6.1	102.8	19.5	$\phi = 59 \ 27.5$
	11 - 62 CH	19.25		1 60	102.7	19.5 +1.7	
	1.00 = 11				+2.7	21.2	
	\$395 alt 10 mm	Missel		1		-	Zusammenstellung:
							Variat.: Potsdam Kornthal
							H = 0.20 130 $H = 0.20 134$
							125 130
							127 130
							133 134
							$H = 0.20 \ 129 \pm 2\gamma$ $H = 0.20 \ 132 \pm \Delta(\lambda, \phi) = +2$ $\Delta(\lambda, \phi) = 0$

Nr. 7. 1902 Aug. 6. Sonnenschein bei leicht bedecktem Himmel. Standpunkt in der Mitte der Kuppe des Steinberges (Spitzberg). Im jüngeren tertiären Süßwasserkalk.

x = +26332.6, y = +23937.4, H = 494^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	Azimut des Kreisnullpunktes: astr: $-1^{\circ}10!2$ Spiegelkorr. -1.3 $A_0 = -1^{\circ}11!5$
3.0	O vorwärts O rückwärts O rückwärts	$\Delta u = +36.2$ 7. 38^m 7.0 41 6.5 43 5.5	93° 27:85 273 60.0 274 17.45	4 10 10	N 181	Geod: D0°28!7 Gew. 6 Ap. 28.7 1 N. 29.2 8 D. 29.2 4
2.00	O vorwärts Deggingen, Kl. Appetshofen	45 25.5	95 47.75 206 48.0 233 18.6		Political Control	Al. 28.9 1 W. 28.8 1 B. 28.7 2 G. 29.6 3
13-10	Enkingen Nördlingen Großelfingen		272 41.6 286 59.4 287 10.4		D 48 150	$a_0 = -0^{\circ}29.0 \Sigma p = 26$ $A-a = -42.8$ $A_0 = -1^{\circ}11.8 \pm 0.2$
1-3	Deiningen Alerheim Wörnitzostheim Bühl		317 0.0 353 40.3 51 52.9 70 26.7		The Tal	$A_0 = -111.3 \pm 0.2$ $(M) = 350 \ 25.1 \pm 0.3$ $M = 349^{\circ}13.3$ $D_0 = 10 \ 46.7$
	Großsorheim		159 53.8		1935 13	mittl, Dekl. D = 10 53.7

= 0.20 132

= 0.20131

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
1-4	I oben	8ª 1.3-3 ^m 2	350° 23:3 23.6	3.2	350° 26!6
5-8	II oben	4.8- 6.2	350 20.0 19.5	3.2	350 23.0 350 24.8
9-12	I oben	8ª 8.5- 9.7	350 24.6 24.3	3.1	350 27.5
13-16	II oben	11.0-12.1	350 20.8 20.6	3.0	350 23.7 350 25.6
17-20	I oben	8* 14.5-15.6	350 23.7 23.6	3.1	350 26.7
21-24	II oben	16.7-18.1	350 19.3 20.3	3.1	350 22.9 350 24.8

Nadal	Vasia	Be-	Mi	ttel	A+B	Var	iat.	Uhr-		
radel	Nadel	Areis	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63°46!5	63° 53!0	63° 49!7	96.8		8ª 27		
2	W	a	64 17.5	63 59.5	64 8.5	96.6				
3	W	i	63 45.8	63 50.2	63 48.0	96.6	125.0	-		
4	0	i	64 11.5	63 56.8	64 4.2	96.4		40		
					63 57.6					
II 5	0	a	63 27.8	64 31.0	63 59.4	96.2		8ª 43		
6	W	a	64 50.2	63 12.0	64 1.1	96.0	125.0			
7	W	i	63 30.5	64 35.2	64 2.9	95.9	125.0	1		
8	0	i	64 49.2	63 7.2	63 58.2	95.7		54		
					63 60.4	96.3	125.0			
					Δi -1.0	101.0	126.2	1 September 1		
					63 59.4	-4.7	-1.2	1		

 $\Delta n' = -4.7$ $\Delta n'' = -1.2$ Nadel $I = 63^{\circ}57!6$ • II = 59.4 Mittel = 63°58!5 dJ = -0.8J = 63°57!7

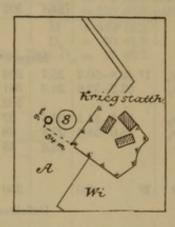
Magnet I.

	Ein-	Tibaaaaba	Mag-	Kreis:	V	ariation	nen	No. 27 1900 Aug C Superhaland by Sell
	stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	specialists who paper solvents as highway
1	v	9ª 2 ^m 9		350° 20!7	4.0		τ == 20°,7	$2(\phi) = 96^{\circ}38.0$
	v ₁	7.3- 7.5	1890	38 26.6	4.0	95.6	15.4	$\phi = 48 \ 18.8$
	V ₂	9.3- 9.6	18.3	38 51.1	4.2	95.4	15.3	$\lg \sin \phi_{15} = 9.87 430$
1		E.C. vestor	Andrea .	38 38.8	4.15		100	Variat.: Potsdam Kornthal
	V_3	12.2-12.6	18.6	301 59.4	4.3	95.3	15.2	$n'_{100} = -32$ $n'_{20} = -38$
	V ₄	14.1-14.4	18.8	302 2.3	4.5	95.1	15.1	$\lg \sin \phi_0 = 9.87 398 \qquad \qquad 9.87 392$
п			18.4	302 0.8	4.4	95.3	15.2	$\lg c = 9.17954 \qquad 9.17954$
-1		100				100.0	+1.1	lg H = 9.30 556 9.30 562
						-4.7	16.3	A) CO II INTERNATION CO
			Ma	gnet II.				The Little as smarter to
п	V ₄	9ª 21.4-21.6	19.0	302 29.3	4.7	94.9	14.9	$2(\phi) = 96^{\circ}40!3$
	V ₃	23.2-24.0	19.1	301 31.9	4.9	94.9	14.8	$\phi = 48\ 20.1$
1				302 0.6	4.8			$\lg \sin \phi_{15} = 9.87458$
-	v_2	28.2-28.5	19.3	38 27.4	5.0	94.8	14.7	$n'_{100} = -35$ $n'_{20} = -43$
-	v ₁	29.7-30.1	18.6	38 54.4	5.1	94.8	14.8	$\lg \sin \phi_0 = 9.87 \ 423 \qquad \qquad 9.87 \ 415$
ı	13		19.0	38 40.9	5.05	94.9	14.8	$\lg c = 9.17962$ 9.17 964
-1				-		100.0	+1.1	$\lg H = 9.30539$ 9.30549
						-5.1	15.9	HOME THE REAL PROPERTY AND ADDRESS OF THE PERSON.
1	v	33.4		350 18.1	5.1		-	An all the selections of the

Deflektor I.

Ein-		Mag-	Kreis:	Variationen		nen		
stel- Uhrangabe lung	net- temp.	Mittel	Kornth. D.	Potsd. H.	Korath. H.	TO PERSONAL PROPERTY.		
^	03 07 0 00mc	1007	20742210			τ=20°7		9°58!4 64 59.3
o W	9ª 37.9-39º6 42.1-42.8	19:7 20.3	295°22!9 45 21.3	5.6	94.9 91.5	14.7	$\lg\sin\phi_{15} = 9$	
	15 (b)	20.0			94.7	14.7 +1.1	Variat.: Potsdam lg c = 9.22 018	Kornth 9.22 01
15250 =	15250 =	-			-5.3	15.8	$\lg H = 9.30562$	9.30 57
		Defl	ektor II.					
W	9ª 45.5-45.7		49 34.6	5.9	94.4	146	$2(\phi) = 11$	18° 17:8
0	48.1-48.5	20.2	291 16.8	6.0	94.4	14.4		9 8.8
	The state of the s	20.25			94.4	14.5	$\lg\sin\phi_{15} = 9$.93 546
	The same				100.0	+1.1	lg c = 9.24 062	9.24 06
					-5.6	15.6	lg H = 9.30554	9.30 56

Zusammenstellung:


Variat.: Potsdam	Kornthal	
H = 0.20210	H = 0.20212	
202	206	
212	216	
209	212	
$H = 0.20208 \pm 2\gamma$	$H = 0.20 211 \pm 2$	27
$\Delta(\lambda, \phi) = -1$	$\Delta(\lambda, \phi) = 0$	200
H = 0.20207	H = 0.20211	

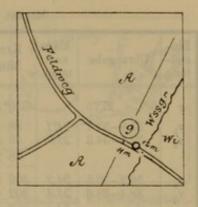
Nr. S. 1902. Aug. 6. Sonnenschein.

Standpunkt auf einem Acker im Bergle westlich vom Kriegsstatthof, etwa 2^m 5 tiefer als die Kuppe. Im Diluvialsand.

 $x = +27 \ 126.7$, $y = +22 \ 544.2$, $H = 420^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
	O vorwärts O rückwärts O rückwärts O vorwärts Wörnitzostheim Wemding Huisheim Heroldingen Kriegsstatthof,	$\Delta u = +36.8$ 0^{p} 21^{m} 28.0 22 56.5 24 51.0 26 33.5	0° 7!5 180 53.75 182 43.5 3 28.8 247 19.1 50 4.9 142 9.9 214 5.8	Sanne Call	TO HE SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN COL
1-4	Fahne I oben	0P 41.0-43.7	89 17.2 350 16.9 18.4	14.3	350°31!9
5-8	II oben	46.4-47.5	350 10.8 8.5	14.4	350 24.0 350 28.0
9-12		OP 49.4-50.5	350 17.4 16.9	14.5	350 31.6
13-16	I oben	51.6-52.9	350 13.5 11.8	14.6	350 27.2 350 29.4
17-20		OP 54.0-55.0	350 15.6 16.1	14.6	350 30.4
21-24	II oben	56.5-57.8	350 10.3 9.0	14.7	350 24.4 350 27.4

Azimut des Kreisnullpunktes: astr: -1°8'3


Spiegelkorr. -0.9 -1°9:2 $A_0 =$ -0°31!1 Gew. 2 Geod: Wö. 30.9 We. 31.1 Hu. 30.8 He. $= -0^{\circ}30!9 \Sigma p = 11$ -40.3 $A_0 = -1^{\circ}11!2 \pm 0!1$ (M) = 350 28.3 ±0.6 M = 349° 17:1 $D_0 = 10 42.9$ mittl. Dekl. D = 10 49.9

	No.	Be-		Mittel		1.0	V	riat.	***	I-maistact		
Nadel	Kreis	zeich-	-			$\frac{A+B}{2}$	-	1	Uhr- angabe	Carry roots		
		nung	A ui	Carrier Street	unten		H.	Z.		ment Ment		
I 1 2 3	0 W	a	63°4		3°51:2	63° 48!7	102.2		1P 5	$\Delta n' = +2$	$2.0 \Delta n'' = -3$.4
3	W	a	64 1		3 56.0 3 46.5	64 5.7 63 44.7	103.2 103.3		100		$I = 63^{\circ}55!6$	
4	0	i	64 1		3 56.5	64 3.5	103.0		14		II = 57.8	
	Latings .	121	72.30	DESCRIPTION OF THE PERSON OF T		63 55.6	_	10.00		Mittel dJ	= 63°56!7 = $+0.7$	
II 1	0 W	a	63 2		30.0 3 9.8	63 58.0			1P 16	J	= 63°57!4	
II 1 2 3	W	a i	64 4		3 9.8 4 32.0	63 59.6 64 0.2		100 1		Constitute		
4	0	i	64		3 1.5	63 57.4	103.0		27	TON END		
			1	10		63 58.8 Δi –1.0			100	(100 EVE		
			12 = 1	onis 3		63 57.8			155 1	35.16		
	200		Ma	ignet I.	SC Dulla		1	alon along	100 1			
Ein-	4000	-		- 10		No. of all		1				
stel-	Uhrang		Mag- net-	Kreis		Variation						
lung	(2020)		temp.	Mitte	Kornt D.	h. Potsd. H.	Kornth. H.					
v	1P	31.8		350° 13	3:5 15.0		τ=21 <u>°</u> 6			$2(\phi) = 95$	9017	
v,	37.5-		24.7	37 43			20.3	3000		$\phi = 47$	49.9	
V ₂	39.5-		24.7	38 22	2.5 15.0	-	20.2			$\lg\sin\phi_{15} = 9.8$	7 314	
	49.0	199	24.7	38 3 302 20	3.2 15.0		10.0	The same		: Potsdam	Kornthal	
V ₃ V ₄	42.0-		25.0	302 27		The second second	19.9		800	= +21	$n'_{20} = +26$	
			24.8	302 23			20.1		$g \sin \phi_0$	= 9.87 335 = $9.17 954$	9.87 340 9.17 954	
UFT		11		3 0.74		100.0	+2.4			= 9.30 619	9.30 614	
91		1/2 1			and a la	+3.1	22.5	1000	W Lang		racia lan table	
- 1	10 100	50.01		gnet II.		1 2000	100	12 TA2		974) 05	0.2710	
V ₄ V ₃	1º 49.8- 52.2-		25.7 25.3	303 4 301 51	1.9 14.6 1.8 14.6		19.9 20.1	1000		$ \begin{array}{rcl} 2(\phi) & = 95 \\ \phi & = 47 \end{array} $	°37!0 '48.4	
-3	A SECTION			302 28		- CONTROL OF		wilding.		$\lg\sin\phi_{15} = 9.8$		
V ₂			25.5	37 56		CONTRACTOR OF THE PARTY OF THE	20.1	1	1'100	= +23	n'20 = +26	-16
v ₁	58.0-		25.8 25.6	38 14	4.5 14.6 5.4 14.6		20.2	1	$g \sin \phi_0$	= 9.87331	9.87 334	
			20.0	30 0	7,4 14.0	100.0	+2.4	100.00		= 9.17 962	9.17 964	
	-					+3.4	22.5	11 A)	gH	= 9.30 631	9.30 630	
v	2P	0.0			3.3 14.6			FRE CO				
1		1	Def	lektor I	. ,	1 3	τ=21°8	2.82 2				
0		- 2.8	25.8		2.0 14.4	104.0	20.3	LOI TH		$2(\phi) = 10$	8° 48:2	
W	5.0-	- 5.4	25.75 25.75	44 50	0.2 14.4		20.5	B. 199		$ \phi = 5 \\ \lg \sin \phi_{15} = 9. $	4 24.1	
		nthy	25.75		1 65	104.1	20.4 +2.7	1	ge	= 9.22018	9.22 018	
		200			100	+4.1	23.1		gH	= 9.30 615	9.30 611	
(News				lektor II				271 48		THE RESERVE	The state of the s	
	2P 8.2-		25.8	48 46			20.4	AL DES			6° 55!6 8 27.8	
0	10.5-	-12.2	25.9	291 50	0.6 14.3	104.7	20.2	10108		$ \phi = 50 $ $ \lg \sin \phi_{15} = 9.5 $		
1			-		1000	100.0	+2.7	1	ge	= 9.24062	9.24 962	
- wh						+4.7	23.0		gH	= 9.30604	9.30 605	
										Zusammenstell		
									at.: Po		Kornthal	7
								Н	=0.20	239 H 245	$= 0.20 \ 23'$	
										237	23	5
								Lat		235	233	
								H	= 0.20	239 ±2 y H	= 0.20 23	
								$\Delta(\lambda,\phi)$		-2 \ \Darksquare \	$\lambda, \phi) = 0$	0

Nr. 9. 1902 Aug. 6. Sonnenschein.

Standpunkt am Ostrande eines Feldwegs südlich des Weilerholzes bei Speckbrodi, in den hinteren Riedwiesen, zwischen einem Wassergraben und der Grenze von Acker und Wiese. Im Diluvialsand am Rande des Moors. $x = +28078.9, y = +22984.2, H = 414^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
	Lasterro M.	$\Delta u = +37.2$			The Public
	⊙ rückwärts	3p 52m 6!5	72°50!3		5 66 6
	O vorwärts	54 5.5	253 17.55		L 00 %
	O vorwarts	55 35.5	254 18.5		1 10 4
9	O rückwärts	57 21.5	74 38.5		
	Wallfahrt		78 32.8		
100	Amerbacher Tor		85 33.4		
	Wemding		87 32.0		
1	Kapuzinerkloster		90 14.9		
	Wörnitzpostheim Rudelstetten		198 20.4 213 1.1		
1000	Alerheim		228 49.8		1 43 0
	Fessenheim		260 35.5		23 12
4-03	Deiningen		260 40.1		
2	Nördlingen		260 41.8		
1-4	I oben	4º 18.7-21.0	350 31.5 32.8	9.0	350° 41:2
5-8	II oben	22.3-23.5	350 30.9	9.0	350 38.8
			286	0.0	350 40.0
1-11	- 1 Day			1	330 40.0
9-12	II oben	4º 24.8-26.0	350 37.3	8.8	350 47.7
10 10	I oben	28.8-29.7	40.5 350 29.8	The state of	
13-16	1 oben	28.8-29.7	27.6	8.6	350 37.3
10000	But Wall		21.0	171	350 42.5
17-20	I oben	4P 41.0-42.0	350 31.7	- Wald	070 100
2. 20	Joen	1110 1210	32.8	8.1	350 40.3
21 - 24	II oben	43.9-44.9	350 28.8	8.1	350 36.3
	HILESO PIE		27.6	O.A	350 38.3
	Danney : 1860		State Barrier	File Jan	550 56.5
25 - 28	II oben	4P 46.3-47.5	350 36.8	8.0	350 45.8
90 00	T	E00 505	38.8 350 31.0		
29-32	I oben	50.8-52.5	30.2	8.0	350 38.6
1 - 7 6	1 30 3 3 1 1 1 1 1 1		30.2	THE REAL PROPERTY.	350 42.2

Azimut des Kreisnullpunktes:

		-1°21!3 elkorr1.4	
GREET	A_0	$=-1^{\circ}22!7$	
Geod:	Wa.	-0°41!5	(
	Am.	41.3	
	We.	41.7	

eod:	Wa.	-0°41:5	Gew. 3
	Am.	41.3	4
	We.	41.7	4
	Wö.	41.5	3
	Al.	41.5	
	D.	41.3	6
	N.	41.3	
	a_0	= -0°41'4	$\Sigma p = 32$
		= -41.1	
	Ao	$= -1^{\circ}22!5$	±0:1
	(M)	=350 40.8	±0.8
	M	- 349° 18'3	

$$D_0 = 10 41.7$$

mittl. Dekl. $D_m = 10 48.7$

N. 3.1	V	Be- zeich-	Mi	ttel	A + B	Var	iat.	Uhr-	
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe	
I 1	0	a	63°39!2	63°50!5	63° 44:8	105.6		5º 0	
2	W	a	64 13.2	63 51.2	64 2.2	103.9	126.5		
3	W	i	63 36.8	63 45.8	63 41.3	103.4	120.0	1	
4	0	i	64 12.2	63 51.2	64 1.7	103.8		11	
					63 52.5				
II 1	0	a	63 27.5	64 24.2	63 55.8	103.9		5P13	
3	W	a	64 45.0	63 6.5	63 55.8	104.2	126.5		
3	W	i	63 30.0	64 29.8	63 59.9	105.1	120.0		
4	0	i	64 46.2	63 4.0	63 55.1	105.2		23	
					63 56.7	104.4	126.5	I The first	
					Δi -1.0	101.0	126.2	65	
					63 55.7	+3.4	+0.3		

$$\begin{array}{cccc} \Delta n' = +3.4 & \Delta n'' = +0.3 \\ \text{Nadel I} = 63^{\circ}52!5 \\ & \text{II} = & 55.7 \\ \hline \text{Mittel} & = 63^{\circ}54!1 \\ \text{dJ} & = & +0.6 \\ \hline \text{J} & = 63^{\circ}54!7 \\ \end{array}$$

Magnet I.

Ein-	TT1 1	Mag-	Kreis:	Variationen				
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. Kornth. H. H.			
v	5p 27.5	The s	350° 32:1	6.7		τ=23°28		
v ₁ v ₂	31.8-32.2 33.9-34.3	24°.1 23.9	38 2.2 38 39.7	6.7 6.7	104.1 104.1	16.7 16.6		
		4919	38 21.0	6.7				
V ₃ V ₄	36.2-36.5	24.2	302 50.5	6.6	104.1	16.5		
V ₄	38.4-38.6	24.4	302 46.2 302 48.4	6.6	104.1	16.4		
	long the private	22.1	002 10.1		100.0	+4.95		
					+4.1	21.5		

$$\begin{array}{ll} 2\,(\phi) & = 95^{\circ}\,32!6 \\ \phi & = 47 \;\; 46.3 \\ \lg\sin\,\phi_{15} = 9.87 \; 250 \end{array}$$

Variat.: Potsdam	Kornthal
n' ₁₀₀ = +28	n'20 = +16
$\lg \sin \phi_0 = 9.87\ 278$	9.87 266
$\lg c = 9.17954$	9.17 954
$\lg H = 9.30676$	9.30 688

Magnet II.

v ₄ v ₃	5° 42.4-42.7 44.5-45.4	24.3 24.4	303 20.0 302 15.2	6.5 6.4	104.0 104.0	τ=23°3 16.4 16.3
			302 47.6	6.45		
v ₂ v ₁	48.6-49.0 50.5-51.4	24.5 24.0	38 13.5 38 31.5	6.4 6.3	104.0 104.0	16.3 16.3
100	100-02	24.3	38 22.5	6.35	104.0	16.3 +5.0
v	53.5		350 33.3	6.3	+4.0	21.3

$$\begin{array}{ll} 2\,(\phi) & = \,95^{\circ}\,34!9 \\ \phi & = \,47\,\,47.2 \\ \lg\,\sin\,\phi_{15} = 9.87\,\,252 \end{array}$$

n'100	= +27	n'20 = +16
lg sin	$\phi_0 = 9.87\ 279$	9.87 268
lg c	= 9.17962	9.17 964
lg H	= 9.30 683	9.30 696

Deflektor I.

o W	5º56.2-56.6 58.6-59.0	23.2 23.5	295	58.3 59.8	6.3 6.3	104.1	τ=23°,4 16.3 16.1
"	30.0-39.0	23.35	44	0.60	0.5	104.1	16.2 +5.2
	1000					+4.1	21.4

$$\begin{array}{ll} 2\,(\phi) &= 109^{\circ} \ 1.5 \\ \phi &= 54 \ 30.8 \\ \lg \sin \phi_{15} = 9.91 \ 352 \end{array}$$

 $\begin{array}{ll} \lg c &= 9.22\,018 \\ \lg H &= 9.30\,638 ^{\bullet} \end{array} \quad \begin{array}{ll} 9.22\,018 \\ 9.30\,651 ^{\bullet} \end{array}$

Deflektor II.

	w	6P	1.4-2.6 4.7-6.1	23.5 23.9	49 292	3.0	6.3 6.3	104.2 104.2	τ=23°,5 16.2 16.2	$2(\phi) = 116^{\circ} 59!4$ $\phi = 58 \ 29.7$
ı				23.7	1000			104.2	16.2	$\lg \sin \phi_{15} = 9.93366$
ı								100.0	+5.3	$\lg c = 9.24062$ 9.24062
ı					1			+4.2	21.5	lg H = 9.30 668 9.30 680

Zusammenstellung:

^{*} Gewicht nur 1/2, weil Magnettemp. unsieher.

Nr. 10. 1902 Aug. 7. Sonnenschein.

Standpunkt in einem Acker zwischen 2 Feldwegen und einem Steinbruch am Südostabhang des Wennenberges, etwa 80^m vom Gipfel entfernt und etwa 10^m tiefer, 12^m vom Waldrande. Im jüngeren tertiären Süßwasserkalk auf Granit.

x = +27302.4, y = +23738.1, $H = 460^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
Day of the last of	O vorwärts O rückwärts O rückwärts O vorwärts Rudelstetten Bühl Wörnitzostheim Großsorheim Deggingen Appetshofen Enkingen Alerheim	$\begin{array}{c} \Delta u = +39\% \\ 6^a 40^m 8\% \\ 42 16.0 \\ 43 46.0 \\ 46 9.0 \end{array}$	83° 0!7 263 22.5 264 11.6 84 39.4 69 4.4 133 45.0 149 2.7 173 12.1 202 18.3 206 2.4 237 10.9 241 33.1	THE REAL PROPERTY OF THE PARTY	THE REAL PROPERTY OF THE PARTY
1-4	I oben	6ª 59.8-61.4	350 31.9 33.5	3.7	350°36!4
5-8	II oben	7* 3.5- 4.6	350 28.5 26.4	3.4	350 30.8 350 33.6
9-12	II oben	7ª 6.1- 7.3	350 27.8 25.2	3.2	350 29.7
13-16	I oben	8.4- 9.6	350 35.6 35.8	3.2	350 38.9 350 34.3

Wenne	nberg		z Br
Wald			
	3.02-	2.025 2.025 4.020	1

Azimut des Kreisnullpunktes: astr: -1°14'8

		-1.7	
	A_0	$=-1^{\circ}16!5$	
Geod:	B.	-0°33!7 Gew.	2
	W.	33.1	1
	G.	34.0	6
	D.	34.0	8
	Ap.	32.9	3
	E.	33.9	4
	_		-

$a_0 = A-a =$	$-0^{\circ}33!8 \Sigma p = -42.5$
	10100 010

$$A_0 = -1^{\circ} 16.3 \pm 0.2$$

 $(M) = 350 34.0 \pm 0.4$

 $M = 349^{\circ}17!7$ $D_0 = 10 42.3$ mittl. Dekl. D = 10 49.3

Nadel		Kreis	Be- zeich-	Mi	ttel	A + B	Va	riat.	Uhr-
		Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I	1	0	a	63°43!5	63°52!8	63°48:1	102.8		7* 17
	2	W	a	64 15.2	63 56.2	64 5.7	102.8		-
	3	W	i	63 45.8	63 52.2	63 49.0	102.8	125.6	
	4	0	i	64 10.0	63 54.0	64 2.0	102.6		26
			777			63 56.2			daga
II	5	0	a	63 27.5	64 28.5	63 58.0	102.6		7ª 30
	6	W	a	64 49.0	63 9.8	63 59.4	102.6		19 110 V
	7	W	i	63 31.0	64 33.5	64 2.3	102.6	125.6	- Panta
	8	0	i	64 50.2	63 4.8	63 57.5	102.5		38
			787 3		-	63 59.3	102.7	125.6	-
			11/		- Hanny	Δi -1.0	101.0	126.2	10 174
	-				Signal	63 58.3	+1.7	-0.6	od od

$$\Delta n' = +1.7$$
 $\Delta n'' = -0.6$

Nadel I = 63°56!2

- II = 58.3

Mittel = 63°57!2

dJ = +0.4

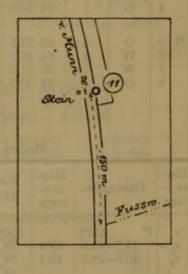
J = 63°57!6

Magnet I.

Ein- stel-	Illiannah	Mag-	Kreis:	Variationen			
lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
v	7ª 42 ^m 8		350°30:2			τ=23°6	
v ₁	44.7-45.0	1991	38 38.3	3.0	102.5	16.3	
V ₂	46.8-48.5	19.1	38 57.7	3.0	102.3	16.3	
			38 48.0	3.0			
V ₃	50.2-50.4	19.5	302 17.0	3.0	102.3	16.3	
V ₄	51.8-52.0	19.5	302 18.1	2.8	102.3	16.1	
		19.3	302 17.6	2.9	102.3	16.25	
	11000000				100.0	+5.45	
	The state of the s				+2.3	21.7	

 $2(\phi) = 96^{\circ}30!4$ $\phi = 48 \ 15.2$ $\lg \sin \phi_{15} = 9.87 \ 418$

Variat.: Potsdam	Kornthal
$n'_{100} = +16$	n'20 = +18
$\lg \sin \phi_0 = 9.87434$	9.87 436
lg c = 9.17 954	9.17 958
lg H = 9.30 520	9.30 522


Magnet II.

Ein- stel-	***	Mag- net-	Kreis:	V	ariation	nen	uniquely in curve Achre pulselon 2 l'eldere Sidnelabbang des Weinsenberges, etwa 107
lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	ta 117 tiefer, 12° von Waldende, In jünger
v ₄ v ₃	7* 54.7-55 ^m 2 56.8-57.3	19:3 19.7	302° 43:9 301 44.9	2.8 2.8	102.3 102.3	τ=23°5 16.2 16.1	$2(\phi) = 96^{\circ}26!8$ $\phi = 48 \ 13.2$
		19.8	302 14.4 38 25.4	2.8	102.3	101	$\lg \sin \phi_{15} = 9.87 403$ Variat.: Potsdam Kornthal
v ₂ v ₁	59.3-59.6 61.4-61.6	20.2	38 57.1	2.8	102.3	16.1 16.2	$n'_{100} = +16$ $n'_{20} = +16$
Yest	migtined Sea	19.75	38 41.2	2.8	102.3	16.15 +5.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
v	8* 3.6		350 31.2	2.8	+2.3	21.5	$\frac{\lg e}{\lg H} = 9.30540 \qquad \frac{9.30546}{9.30546}$
		Det	flektor I.				
o W	8ª 6.4- 6.6 9.0- 9.4	20.3 20.5	295 34.0 45 20.9	2.8 2.8	102.0 102.0	$\tau = 23.4$ 16.1 16.1	$\begin{array}{ccc} 2(\phi) &= 109^{\circ}46!9 \\ \phi &= 54 \ 53.4 \\ \lg \sin \phi_{15} &= 9.91 \ 454 \end{array}$
	0.85-0.7	20.4	39, 3		102.0 100.0	16.1 +5.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	LEGITAL =	De	flektor II.	1	+2.0	21.3	TIE OCK A IN-A SE NO mode I A-
W	8* 11.7-12.1 14.2-14.9	20.4 19.7 20.05	49 33.4 291 21.5	2.9 2.9	102.0 102.0	16.1 16.1	$\begin{array}{ccc} 2(\phi) & = 118^{\circ}11!9 \\ \phi & = 59 & 6.0 \\ \lg \sin \phi_{15} = 9.93519 \end{array}$
	= 10 42.3 = 10 40.3	1 Test	(in)or	.02 03	+2.0	+5.2 21.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
							Zusammenstellung: Variat.: Potsdam Kornthal
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Nr. 11. 1902 Aug. 7. Gewitter; nach der Deklinationsmessung Abbruch der Messungen wegen Unwetters; nachher Neuaufstellung.

Standpunkt am Ostrand der Straße von Wechingen nach Munningen, an der höchsten Stelle, etwa 150^m vom Abgange eines Fußwegs entfernt. Im Löß. $x = +29\,030.1$, $y = +24\,187.8$, $H = 420^m$.

Nr.	Einstellung	Uhrangal	Kreisablesun (Mittel der auf u. der inn, Fäde	Variat.	Magnet- ablesung red. auf n ₀	
		$\Delta u = +39$	0.0000000000000000000000000000000000000		T Van	
	O vorwärts	10ª 21 ^m 3	CONTRACTOR OF THE PARTY OF THE	-		
	O rückwärts Ol rückwärts	23 10 24 4		370 30		
	O vorwärts		5.0 134 34.7			
	Wechingen, nördl.		95 50.4			
	Wechingen, südl.		155 28.9	450		
	Klosterzimmern		240 37.7			
	Nördlingen		241 1.5	100		
	Pfäfflingen		264 26.6	100		
	Dürrenzimmern		281 29.3 350 13.0	100		
	Munningen Hainsfarth		8 19.4	24 000		
	Laub		76 59.9	100		

199

 $= 0.20202 \pm 3\gamma$

= 0.20203

197

H

H

 $\Delta(\lambda, \phi) =$

 $= 0.20200 \pm 3\gamma$

= 0.20199

 $\Delta(\lambda, \phi) =$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n _o
1-4	I oben	10*33.9-35**2	350°18!5 18.4	7.3	350°25!7
5-8	II oben	36.2-36.9	350 13.8 13.2	7.4	350 20.9 350 23.3
9-12	II oben	10°37.7-39.6	350 17.2 17.7	7.6	350 25.0
13-16	I oben	46.6-47.8	350 11.1 9.4	7.8	350 18.0 350 21.5
17-20	I oben	10°48.8-50.0	350 15.0 15.6	7.9	350 23.2
21-24	II oben	51.3-52.5	350 11.3 10.1	8.1	350 18.8 350 21.0

Bemerkung: Nach Nr. 12 neue Pinne.
Azimut des Kreisnullpunktes:
astr: -0°38'6
Spiegelkorr1.0
$A_0 = -0^{\circ}39!6$
Geod: W.s. +0°3'0 Gew. 0.5
N. 3.0 8
P. 3.1 3
D. 2.9 3
D. 2.9 3 M. 2.2 2 H. 2.8 7 L. 2.9 2
Н. 2.8 7
L. 2.9 2
$a_0 = +0^{\circ} 2!9 \Sigma p = 25$
A-a = -43.3
$A_0 = -0^{\circ}40!4 \pm 0!1$
$(M) = 350 \ 21.9 \pm 0.7$
M = 349°41.5
$D_0 = 10 \ 18.5$
mittl. Dekl. D = 10 25.5

Nedal	Vanie	dal Vasia	Ein- stel-	Mi	ttel	A + B	Va	riat.	Uhr-
Nadel Kreis	Kreis	lung	A unten	B unten	2	H.	Z.	angabe	
11	0	a	63°46:0	63° 55!8	63°50:9	99.9		0P32	
2 3	W	a i	64 18.0 63 47.8	63 58.8 63 54.2	64 8.4 63 51.0	100.1 100.4	122.9		
4	0	i	64 38.2	63 58.0	64 18.1	100.5		43	
П 5	0	a	63 27.2	64 34.8	64 1.0	100.4		0P46	
6 7	W	a	64 55.0 63 31.0	63 9.5 64 38.0	64 2.2 64 4.5	100.4 100.3	123.1		
8	0	i	64 62.8	63 9.5	64 6.1	100.3	123.0	58	
			- 1000		Δi —1.0	101.0	126.2		
130 6			100		64 2.4	-0.7	-3.2		

$\Delta n'$	=-0.7	$\Delta n''$	= -3.2
	Nadel I	= 64° =	
	Mittel dJ	= 64° = +	
	J	$= 64^{\circ}$	2:4

N	Ia	gn	et	I.

Ein-		Magnet- Kreis:		V	ariatio	nen	delicity of the August State of the latest
stel- lung Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	Polster und for von Alegang nives	
v	11° 50°2	100	350° 28:4	10.0		$\tau = 23^{\circ}_{\cdot}3$	$2(\phi) = 96^{\circ}43!2$
v ₁ v ₂	55.2-55.5 56.6-57.0	16.0 16.4	38 36.3 38 58.1	10.1 10.1	100.4 100.4	16.3 16.3	$ \phi = 48 \ 21.6 \lg \sin \phi_{15} = 9.87 \ 396 $
. 1	160		38 47.2	10.1		T 200 100	Variat.: Potsdam Korntha
v ₃ v ₄	58.7-59.3 60.6-61.1	16.5 16.5	302 3.5 302 4.6	10.1	100.5 100.5	16.3 16.5	$\frac{n'_{100}}{\lg \sin \phi_0} = \frac{+3}{9.87399}$ $\frac{n'_{20} = +}{9.874}$
14		16.35	302 4.0	10.1	100.4 100.0	16.35 +5.05	$\begin{array}{ccc} \lg c &= 9.17\ 954 & & 9.17\ 9 & & 9.30\ 555 & & & 9.30\ 56 & & & & & \end{array}$
	profilerative and	Truster.	838 03		+0.4	21.4	One of the last of
		Mag	net II.				
v ₄ v ₃	0 ^p 6.5- 6.7 8.2- 9.5	18.0 17.6	302 37.5 301 34.6 302 6.0	10.4 10.8	100.9 100.9	16.6 16.6	$\begin{array}{ccc} 2 (\phi) & = 96^{\circ} 40!4 \\ \phi & = 48 20.1 \\ \lg \sin \phi_{15} = 9.87 427 \end{array}$
v ₂ v ₁	11.0-11.4 13.2-13.5	17.8 18.5	38 32.3 38 60.5	10.8 10.8	100.5 100.3	16.5 16.4	$\frac{n'_{100}}{\lg \sin \phi_0 = 9.87 431} = \frac{n'_{20} = +1}{9.87 431}$
-20	- 7.52 GRE -	18.0	38 46.4	10.8	100.6	16.5 5.0	$\frac{\lg c}{\lg H} = 9.17959 \qquad 9.1790$ $\frac{9.1796}{9.30528}$
v	15.8	Sin and	350 27.2	10.8	+0.6	21.5	3.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Deflektor I.

Ein-	171 T	Mag- net- temp.	Kreis: Mittel	Variationen			
stel- lung	Uhrangabe			Kornth. D.	Potsd. H.	Kornth. H.	
o W	0° 18.3-18° 6 20.2-20.4	1891 18.5	295° 30:3 45 22.4	11.0 11.0	100.0 100.4	τ=23°3 16.5 16.5	
6		18.3		AN OR	100.2 100.0	16.5 +5.0	
2					+0.2	21.5	

$$\begin{array}{lll} 2\,(\phi) & = 109^{\circ}52!1 \\ \phi & = 54 \ 56.0 \\ \lg \sin \phi_{15} = 9.91 \ 407 \end{array}$$

Variat.: Potsdam	Kornthal
$\lg c = 9.22016$	9.22 020
lg H = 9.30 608	9.30 597

Deflektor II.

WO	0 ^p 23.3—23.5 25.3—25.5	19.2 19.5	49 37.4 291 22.9	11.2 11.4	100.5 100.5	16.5 16.5
13	2201	19.35	default		100.5 100.0	(2000)
	30-00				+0.5	21.5

$$\begin{array}{cccc} 2(\phi) &= 118^{\circ}14!5 \\ \phi &= 59 & 7.2 \\ \lg\sin\phi_{15} = 9.93 & 504 \\ \lg c &= 9.24 & 062 \\ \lg H &= 9.30 & 555 & 9.30 & 546 \end{array}$$

Zusammenstellung:

Va	riat.: Potsdam		Kornthal
H	=0.20209	H	$= 0.20 \ 205$
	197		194
	234		229
100	209		205
H	$= 0.20\ 212\ \pm 8\gamma$	H	$= 0.20 \ 208 \pm 7 \ \gamma$
$\Delta(\lambda, \epsilon)$		Name and Address of the Owner, where	$(\phi) = -1$
H	$=0.20\ 209$	H	$= 0.20\ 207$

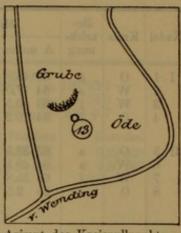
Nr. 12. 1902 Aug. 7. Bedeckter Himmel.

Standpunkt auf einem Acker im Steinfeld, 35^m von der Straße von Laub nach Polsing und 67^m vom Abgang eines Feldwegs entfernt. Im Diluvialsand.

$$x = +29444.3$$
, $y = +22736.0$, $H = 424$ ^m.

Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)		Magnet- ablesung red. auf no	
O STORES	$\Delta u = +0^m 7$		10 10		
I oben	3º 16.5-17 ^m 7	350°23!7 23.8	9.9	350° 33:7	
II oben	20.6-22.5	350 24.4	9.8	350 34.8	
	100	25.0		350 34.2	
Trendel	(6)0 24 550	49 40.2	613	1 E 27 E 20	
The second secon	1. 9	THE PERSON NAMED IN	1 14		
The second second	Di Des Mi		3.0		
Pfäfflingen	- 4/9	259 49.6	()		
II aban	9p 97 4 90 0	250 245	1 39		
11 oben	3º 21.4-28.8		9.6	350 33.9	
I oben	30.0-31.4	350 24.0	94-	350 32.6	
		22.4	3.4	350 33.2	
	I oben II oben Trendel Amerbach Wallfahrt Laub Pfäfflingen II oben	Δu = +0 ^m .7 I oben 3 ^p 16.5-17 ^m .7 II oben 20.6-22.5 Trendel Amerbach Wallfahrt Laub Pfäfflingen II oben 3 ^p 27.4-28.8	Linstellung Uhrangabe (Mittel der äuß. u. der inn. Fäden) Δu = +0 ^m .7 I oben II oben 3 ^p 16.5-17 ^m .7 350°23.7 23.8 350 24.4 25.5 25.5 Trendel Amerbach Wallfahrt Laub Pfäfflingen 136 6.5 II oben 3 ^p 27.4-28.8 350 24.5 1 oben 30.0-31.4 350 24.0	Color	

imut d	les Kreisni	ullpunkt	es:
T.	-0°3	5:9 Gew	
A.	36	6.1	2
W.	36	6.3	3
L.		6.0	0.5
P.		5.8	7
a_0	= -0°36	6:0 Σp =	15
	a = -40		19 1
Ao	= -1°16	6:7 ±0:1	17
(M)	=350 33	3.7 ± 0.5	
M	= 349°17	7:0	
Do	= 10 43	3.0	
Dekl	D- 10 50	0.0.	


Nadel	Kreis	Be- zeich-		Mittel			A + B	Va	riat.	Uhr-	2001 AND SM
Nauei	Kieis	nung	A u	nten B	3 ur	nten	2	II.	Z.	angabe	altern Kullmerinderstein, in eine
I 1	0	a	63°				63°53!5		-	3º 38	$\Delta n' = +1.1$ $\Delta'' n = -0.2$
I 1 2 3 4	W	a	64				64 7.4		125.8	XI.	Nadel I = 64° 0:4
3	W	i	63				63 50.5 64 10.4			47	* II = 3.6
1 *	-	(6.7)	0.4	13.2	7.4		64 0.4		1	41	Mittel = 64° 2'0
II 5	0	a	63 :	225 6	34 5	-	64 5.4	_		3º 50	dJ = +0.3
II 5 6 7 8	w	a	64	49.5	33 1	11.2	64 0.3		0	3, 30	J = 64° 2!3
7	W	i	63	35.8	34 3	35.2	64 5.5	102.1	126.3	1 1 1 1 1 1 1	STORT ALL MAN WAT ARREST
8	0	i	65	2.5	33 1		64 7.0			60	200 mm 200 mm
			100/	8011			64 4.6 Δi –1.0	102.1	126.0		Control Control
		Total a	In The	-			$\frac{\Delta 1 - 1.0}{64}$		126.2 —0.2		Holderine
	- 131	-	M	agnet I.		1	01 0.0	T	-0.2	1	Magazina W
T2:-	007-		-25								
Ein- stel-	Uhrang	gabe	Mag- net-	Kreis Mitte			ariation	2000			
lung	1 2 1		temp.	Mitte	1	Kornth. D.	Potsd. H.	Kornth. H.			
v	4P	4.º6	19719	350° 25	5:0	8.5		τ=23°3			$2(\phi) = 96^{\circ}18.6$
v ₁			21.8	38 20	0.8	8.5	102.1	15.8			$\phi = 48 \ 9.4$
v ₂	8.2-		21.8	38 48	8.5	8.5	102.3	15.8			$\lg \sin \phi_{15} = 9.87434$
	0.0		040	38 34		8.5				Varia	t.: Potsdam Kornthal
V ₃	9.9-		21.8 21.6	302 15 302 16		8.4 8.2	102.3	15.8 15.8		n'100	= +16 n' ₂₀ = +8
V4	15.0-		21.75	302 16		8.3	102.3	15.8		lg sin	$\phi_0 = 9.87 \ 450$ 9.87 442
		96		002 1	-		100.0	+5.0		-	= 9.17954 9.17958
		62 7		Object.	1		+2.3	20.8		lg H	= 9.30 504 9.30 516
- 1	4º 15.5-	15.7	Ma 21.7	gnet II. 302 41		8.2	102.5	15.7			$2(\phi) = 96^{\circ}23.0$
v ₄ v ₃	17.4-		21.8	301 44		8.1	102.5	15.7			$\phi = 48 \ 11.2$
3	2003			302 12		8.15					$\log \sin \phi_{15} = 9.97448$
v ₂	19.4-		21.8	38 21	1.5	8.0	102.4	15.9		n' ₁₀₀	= +16 n' ₂₀ = +9
v ₁	21.6-		22.3	38 50		7.9	102.4	15.9			$\phi_0 = 9.97 \ 464$ $9.97 \ 457$
		-116	21.9	38 33	5.9	7.95	102.4	15.9 +5.0		lg c	= 9.17959 9.17 965
		100			82		+2.4	20.9		lg H	$= 9.30495 \qquad 9.30508$
v		24.6	1967	350 27	7.2	7.9	1				
			Defi	ektor I	I.						
	4P27.4-		21.5	291 2		7.9	102.9	15.9			$2(\phi) = 118^{\circ} 8!7$
W	30.8-		22.0	49 3	1.3	7.8	102.9	15.9			$\phi = 59 \ 4.3$
			21.75		774		102.9	15.9 +5.0		-	$\lg \sin \phi_{15} = 9.93563$
34		1			9		+2.9	20.9		lg c lg H	= 9.24062 $= 9.30479$ 9.30494
			De	flektor I				45 10		ig ii	= 3.30 475 3.30 404
W	4P33.8-		22.5	45 17		7.7	103.0	15.9			$2(\phi) = 109^{\circ}34!9$
0	36.8-		21.9	295 45		7.6	103.2	15.9			$\phi'' = 54 \ 47.5$
			22.2				103.1	15.9		: MINTER	$\lg \sin \phi_{15} = 9.91 \ 461$
				19 80 4			+3.1	+5.0 20.9		lg c	= 9.22 016 9.22 020 = 9.30 534 9.30 550
'					- 1		1 70.1	2010		lg H	
									1	ED E PO	Zusammenstellung:
										iat.: Po	
									H	=0.20	$\begin{array}{ccc} 185 & H & = 0.20191 \\ 181 & 187 & \end{array}$
											174 181
											200 207
									H		$185 \pm 5 \gamma$ H = 0.20 191 ±5
									$\Delta(\lambda,\phi)$		$+2$ $\Delta(\lambda,\phi) = 0$
									H	= 0.20	187 H = 0.20191

Nr. 13. 1902 Aug. 8. Sonnenschein.

Standpunkt auf dem Siechenberg nordöstlich von Wemding, am Rande eines alten Kalksteinbruchs, in einer Öde. Im normalen Schwammkalk.

x = +28354.9, y = +21251.0, H = 505^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
1-4 5-8	I oben	$\Delta u = +4250$ $7^{\text{a}} 4.3 - 6^{\text{m}}2$ $9.1-10.4$	350° 23!9 24.8 350 23.6	4.7	350° 29:1 350° 28.1
7	Gosheim Huisheim Wemding Kapuzinertorturm		23.5 186 59.4 195 55.5 200 45.5 207 15.3	4.5	350 28.6
	Amerbacher Tor Wallfahrt Alerheim Wechingen, südl.		215 32.9 269 8.5 246 55.8 276 58.1	76606 22 34	Variation Post
9-12 13-16		7* 19.1–20.3 21.6–22.6	350 24.6 23.8 350 23.1 23.0	4.2	350 28.4 350 27.0
	O vorwärts O rückwärts O rückwärts O vorwärts Wallfahrt Wemding Alerheim	8 ^a 44 ^m 26:5 46 37.5 47 56.0 49 22.5	107 37.6 288 4.1 289 0.6 109 23.2 269 8.3 200 46.0 246 55.8	120	350 27.7

Azimut	des	Kreisnullpunktes:
net	-	_10 8'8

-		~ ~		F		
Town all	astr:		-10	8:8		
	Spies	gelk	orr.	-1.2		
	Ao	=	-1°	10:0	100	
Geod .:	G.		-0°	32:3	Gew	. 4
THE PERSON NAMED IN	H.			32.3		5
Sant Sant	Am.			33.4		0.2
14520	Wa.			33.4		0.5
120	Al.			32.4		7
1 65	We.			32.3		7
	a_0	=	-0	32:4	$\Sigma p =$	24
Ballon L	A-a	=		-38.0		
100	Ao	=	-1°	10:4	±0:1	1
Call Control	(M)	= 3	350	28.2	± 0.5	
0.000	M	= 3	349°	17:8	77.77	
19 Charles	Do					
mittl. D						

Uhr-	iat.	Var	A+B	ttel	Mi	Be- zeich-	Kreis	I.b.	
angab	Z.	H.	2	B unten	A unten	nung	Kreis	Nadel	
7ª 26		100.6	63°50.2	63°54!5	63° 45!8	a	0	1	
5 6	207.0	100.5	64 5.8	63 56.0	64 15.5	a	W	2	
The same	125.3	100.5	63 47.2	63 50.5	63 44.0	i	W	3	
38		100.5	64 5.8	63 58.2	64 13.5	i	0	4	
P 2			63 57.2						
7* 42		100.3	64 2.2	64 32.0	63 32.5	a	0	5	
9-01		100.0	64 0.1	63 9.2	64 51.0	a	W	6	
- 5.	125.3	99.8	64 2.7	64 33.0	63 32.5	in	W	7	
54		99.7	64 0.6	63 4.8	64 56.5	i	0	8	
Too le	125.3	100.2	64 1.4						
	126.2	101.0	Δi -1.0						
	-0.9	-0.8	64 0.4			100			

$$\Delta n' = -0.8$$
 $\Delta n'' = -0.9$
Nadel I = 63° 57!2
II = 60.4
Mittel = 63° 58!8
dJ = -0.1
J = 63° 58!7
Nadel II = 7° 42-54°

Magnet I.

Ein-	110010'0	Magnet-	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	
v	7ª 59m0	orthotopesso)	350° 24:2	3.6		τ = 22°1	
v ₁	8ª 2.4- 3.1	17.9	38 28.2	3.6	99.6	17.9	
V ₂	6.0- 6.3	18.0	38 56.5	3.4	99.5	17.9	
150			38 42.4	3.5			
V ₃	7.9- 8.3	17.4	302 5.5	3.4	99.4	17.9	
V ₄	10.6-11.0	17.7	302 8.5	3.4	99.4	17.9	
162 10	1 (02.0 m)	17.75	302 7.0	3.4	99.5	17.9	
0	=(0,A)		(6	Agen	100.0	+3.2	
10	1020m		1 02.0 mm	H	-0.5	21.1	

$$\begin{array}{ll} 2(\phi) & = 96^{\circ}35!4 \\ \phi & = 48\ 17.7 \\ \lg\sin\phi_{15} = 9.87\ 396 \end{array}$$

Variat.: Potsdam	Kornthal			
$n'_{100} = -3$	n'20 = +11			
$\lg \sin \phi_0 = 9.87393$	9.87 407			
$\lg c = 9.17954$	9.17 963			
$\lg H = 9.30561$	9.30 556			

208

+1

 $= 0.20206 \pm 2\gamma$

= 0.20207

210

H

 $\Delta(\lambda, \phi) =$

 $=0.20208 \pm 2\gamma$

= 0.20 207

H

 $\Delta(\lambda, \phi) =$

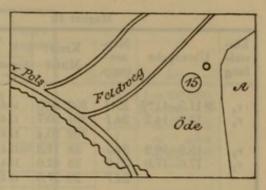
	Nr. 846	Ma	ignet II.		Variate	-	The Miles of the Party of the P
Ein-	Thumasha	Mag-	Kreis:	V	ariation	nen	Magled Kings or and American in contrast of the No.
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	
v ₄	8ª 14.2-14 ^m 5 16.3-16.5	17º7 17.7	302°34:1 301 34.3	3.4	99.3	τ = 22°1 17.8 17.7	$2(\phi) = 96^{\circ}39!7$
v ₃	The same of		302 4.2	3.4		-	$\lg \sin \phi_{15} = 9.87 \ 420$
v ₂ v ₁	19.0-19.4 21.1-21.4	18.1 18.3	38 30.8 38 57.0	3.4	99.0	17.6 17.4	
	Rund	17.95	38 43.9	3.4	99.1 100.0	17.6 +3.2	$\log \sin \phi_{-} = 9.87.414$ 9.87.498
v	26.6		350 24.2	3.4	-0.9	20.8	$\frac{\lg e}{\lg H} = 9.30541 \qquad \frac{9.37500}{9.30538}$
	-	Det	lektor I.	100		HE	Spligetter - St
O W	8ª 26.4-26.6	18.6	295 25.4		98.7	7=2200 17.4	$2(\phi) = 110^{\circ}4.1$
W	28.8-29.1	18.6	45 29.5	3.4	98.7 98.7	17.4	$\lg \sin \phi_{15} = 9.91 \ 470$
	H III a	194-1		138	100.0 —1.3	+3.0	
	130400		lektor II.				AND AN ESPACE THE PARTY OF
W O	8* 32.3-32.6 34.6-35.0	19.1 18.9	49 37.4 291 17.2	3.4	98.5 98.5	17.2 17.2	ϕ = 59 10.1
3-18	Sept 18	19.0	boot me	1828	98.5 100.0	17.2 +3.0	
	10 180	100		Te al	-1.5	20.2	lg H = 9.30557 9.30553
							Zusammenstellung: Variat.: Potsdam Kornthal
							Variat.: Potsdam H = 0.20 212 203 H = 0.20 210 201
							208 206

Nr. 14. 1902 Aug. 8. Sonnenschein.

Standpunkt auf einem Ödestreifen zwischen Ackerland nördlich der Straße von Wemding nach Wolferstadt, 45^m von der Waldecke und 3^m von 2 freiliegenden Kalksteinblöcken entfernt.

x = +28920, y = +20475, H = 568^m. Standpunkt im normalen Schwammkalk.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	100
1-4 5-8	O vorwärts O rückwärts O rückwärts O vorwärts Döckingen Wolferstadt I oben	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130° 15!7 310 38!7 311 55.2 132 29.7 3 41.0 63 39.6 350 21.0 20.4 350 20.2 19.4	5.6	350° 26:3 350° 25.5 350° 25.9	Azimut des Kreisnullpunktes: astr: -1° 5:6 Spiegelkorr. -1.0 $A_{0} = -1^{\circ}$ 6:6 $(M) = 350^{\circ}26:2 \pm 0:4$ $M = 349^{\circ}19:6$ $D_{0} = 10 \ 40.4$ mittl. Dekl. $D = 10 \ 47.4$
9-12	II oben	10° 36.8-37.8	350 20.8 20.7	5.9	350 26.7	-122.07 927.02
13-16	I oben	39.6-40.7	350 20.7 20.1	6.0	350 26.4 350 26.6	STORY BRIDE


NT 1.1	W.	Be-		Mit	ttel		A+B	V.	ariat.	Uhr-	
Nadel	Kreis	zeich- nung	A u	nten	Bu	nten	2	H.	Z.	angabe	The same of the same
T 1	0	a	63°4	19'8	630	53:5	63°51:6	91.7		10° 47	$\Delta n' = -9.3 \Delta n' = -5.1$
I 1 2 3 4	W	a	64		63	56.8	64 6.8	91.7	1014		Nadel I = 63°58!9
3	W	i	63 4			50.8	63 48.2	91.6	121.4		• II = 61.8
4	0	1	64	18.0	64	0.0	64 9.0 63 58.9	91.7	17/563	56	Mittel = 63° 60:4
П 5	0		63 5	20.9	64	37.2	64 3.2	91.7		10° 59	dJ = -1.4
6	w	a	64 3		63	7.5	64 0.0	91.7		10 33	J = 63°59:0
II 5 6 7 8	W	i	63 3	31.2		38.5	64 4.8	91.7	120.8	1.10	40 10.70
8	0	i	65	0.2	63	5.8	64 3.0 64 2.8	91.5	121.1	11* 11	To Designer
3	22,000,00		110	(8.0)		Hal	Δi -1.0	101.0	126.2		ASS. 230
	But						64 1.8	-9.3	-5.1		enticipal des Residentique beaut
	Zamile	DESCRIPTION	Ma	agnet	I.	1	13	Don't	88 J		
Ein-	200	39	Mag-	Kr	eis:	1	Variation	en	2 4		
stel- lung	Uhrang		net- temp.		ttel	Kornth	. Potsd.	Kornth.	901		
rung			temp.	No.		D.	Н.	H			
1000	1ª	15 ^m 6	200		22:2	7.6	1 2 2 3	T=2199	240		$2(\phi) = 96^{\circ}9!4$
v ₁			23°3 24.0		14.2	7.7	91.4	12.1			$\phi = 48 \ 4.6$
v ₂	40.0-	-25.0	24.0		35.9 25.1	7.9	91.2	12.1	- 50		$\lg \sin \phi_{15} = 9.87 \ 427$
v ₃	27.3-	-27.6	22.5		17.3	8.0	91.2	12.1		Variat.:	Potsdam Kornthal n'20 = -52
V ₄	29.1-		22.8	302	14.1	8.0	91.1	12.1			$= 9.87 \ 367$ $= 9.87 \ 375$
		- National	23.15	302	15.7	8.0	91.2	12.1		g c	= 9.17 954 9.17 963
46		are a	H			0 - 90	_8.8	+2.9 15.0		gH	= 9.30 587 9.30 588
10		-	Ma	gnet	II.	- 31	1				
v4 1	1°31.6-	-31.9	24.3	-	42.1	8.2	91.3	12.0			$2(\phi) = 96^{\circ}14!2$
V ₃	33.4-	-33.7	22.6	301	42.1	8.2	91.3	11.6	PLATE.		$\phi = 48 \ 6.9$
74	205	200	22.0		12.1	8.2	100	1,56	1 - 2 - 1		$\lg \sin \phi_{15} = 9.87 \ 458$
V ₂ V ₁	36.5- 38.5-		23.6 24.2		12.4 40.1	8.2 8.2	90.1	11.7 11.7	1	1'100	$=$ -63 $n'_{20} = -56$
1	- 1		23.7		26.3	8.2	90.7	11.7		$g \sin \varphi_0$	= 9.87 395 = 9.17 955 9.17 966
					100	1000	100.0	+2,9	200	0	= 9.30 560 9.30 564
v		41.1		350	16.6	8.2	-9.3	14.6	rale mer		
0 18			Doff	ektor		0.2	1 1	collegio	20145010		
0 1	1* 44.0-	44.4	25.0		40.3	8.4	90.4	12.0	12 101		$2(\phi) = 109^{\circ} 17!5$
w		-47.7	25.7		57.8	8.6	90.8	12.1	The second of		$\phi = 54 \ 38.9$
			25.35				90.6	12.0	ALTERNATION OF THE PARTY OF THE		$\lg \sin \phi_{15} = 9.91495$
1		1					100.0 —9.4	+2.9 14.9	1	g c g H	= 9.22 014 9.22 022 = 9.30 583 9.30 580
13		d	Def	lektor	II	ARE .	3/4	14.9	1 444 17	gn	= 3.30 363 9.30 380
w 1	1°50.6-	-51.31	26.4		57.6	8.9	91.0	12.0	Simon.		$2(\phi) = 117^{\circ}20.0$
0	55.2-	-55.7	25.3		37.6	8.9	90.4	11.7	88 des		$\phi = 58 \ 40.0$
		-00	25.85				90.7	11.8	37 TE		$\lg \sin \phi_{15} = 9.93520$
							-9.3	+2.9		g c g H	= 9.24062 $9.24070= 9.30605 9.30605$
100		00-					-3.5	14.7	00.00	gn	Zusammenstellung:
									Varia	at.: Pot	
H = 0.20224 $H = 0.20225$											
										No.	211 213 222 221
											232 232
										= 0.20	$222 \pm 5 \gamma$ H = $0.20 223 \pm 5 \gamma$
									$\Delta(\lambda, \phi)$	=	-3 $\Delta(\lambda, \phi) = -1$
									H	= 0.20	219 H = 0.20 222

Nr. 15. 1902 Aug. 8. Sonnenschein.

Standpunkt südöstlich von Polsing in der Öde am Biberich, am Abhang des Berges östlich der Straße von Wemding nach Polsing. Im tertiären Süßwasserkalk.

x = +29800.4, y = +21458.0, H = 468^m.

Nr.	Ein- stellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
W. W. W.	O vorw. O rückw. O rückw. O vorw. Trendel Polsing Ursheim	$\begin{array}{c} \Delta u = +42 \% \\ 1^p 58^m 6\% \\ 59 35.5 \\ 2^p 0 42.0 \\ 2 6.5 \end{array}$	40°11'3 220 45.4 222 0.3 42 26.1 292 8.7 300 29.1 351 53.9	2000日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	100 AND 100 AN
1-4 5-8	I oben	2 ^p 9.7-10.9 12.5-13.9	350 22.0 21.8 350 21.9 21.9	12.1	350°34:0 350 34.0
9–12 13–16		2°14.4-15.4 17.9-19.1	350 22.3 22.3 350 21.9 22.9	12.1	350 34.0 350 34.4 350 34.5 350 34.4

Azimut des Kreisnullpunktes:

Azimu	t des	171	eisn	unpun	iktes:
	astr: Spieg				
	Ao	=	-1°	16:1	
Geod:	a_0	=	-0°	33:5	
	A-a	=	-	-38.4	
	Ao	=	-1°	11:9	
Annahme:	Ao	=	-19	16:1	
	(M)	=	350	34.2	±0!2
	M			18:1	00001
	Do			41.9	
mittl. Dekl.	D	=	10	48.9	

Nac	101	Kreis	Be- zeich-	Mi	ttel	A+B	Var	riat.	Uhr-
Nac	lei	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I	1	0	a	63° 43:2	63°56!8	63°50:0	99.0		2P25
	2	W	a	64 21.2	63 56.2	64 8.7	99.5	121.5	1 - 2
	3	W	i	63 44.2	63 55.5	63 49.8	99.6	121.5	-03
	4	0	i	64 19.2	63 57.5	64 8.3	99.9		36
						63 59.2			100
II	5	0	a	63 33.8	64 35.8	64 4.8	100.0		2P39
	6	W	a	64 48.0	63 8.5	63 58.3	100.4	122.0	1000000
	7	W	i	63 37.0	64 37.8	64 7.4	100.6	122.0	100-
	8	0	i	64 58.5	63 4.2	64 1.3	100.7		52
						64 3.0	100.0	121.8	10
						Δi -1.0	101.0	126.2	The Park
						64 2.0	-1.0	-4.4	100

$$\begin{array}{cccc} \Delta n' = -1.0 & \Delta n' = -4.4 \\ \text{Nadel I} = 63^{\circ}59!2 \\ & \text{II} = 64 & 2.0 \\ \hline \text{Mittel} & = 64^{\circ} & 0!6 \\ \Delta J & = & +0.2 \\ \hline J & = 64^{\circ} & 0!8 \\ \end{array}$$

Magnet I.

Ein-	CONTRACTOR OF THE PARTY OF THE		Charles and the Control of the Contr	B R Peis		Kreis:	Variationen		
stel- lung	U	hrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Korntb.		
v	2P	59 ^m 5	7.0	350° 24'.6	11.8		τ == 22°,6		
v ₁	31	2.2-2.5	25.2	38 6.5	11.7	100.9	17.2		
V ₂		4.2-4.6	25.1	38 39.2	11.7	101.0	17.4		
82-			-	38 22.8	11.7				
v ₃		6.5-6.8	25.4	302 28.8	11.6	101.1	17.2		
V ₄		8.4-8.6	25.6	302 30.3	11.6	101.3	17.2		
13-1			25.3	302 29.6	11.6	101.1	17.25 +3.95		
						+1.1	21.2		

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.

Bemerkung: In Kornthal ist T ganz unsieher.

 $\begin{array}{ll} 2\,(\phi) & = 95^{\circ}\,53!2 \\ \phi & = 47\ 56.6 \\ \lg\,\sin\,\phi_{15} = 9.87\ 409 \end{array}$

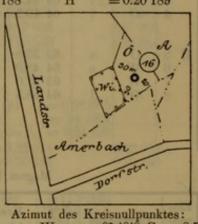
Variat.: Potsdam	Kornthal
$n'_{100} = +8$	$n'_{20} = +12$
$\lg \sin \phi_0 = 9.87 417$	9.87 421
$\lg e = 9.17954$	9.17 963
lg H = 9.30 537	9.30 542

200				•	90
M	20	-	at.	38	"
AAAA.	Sh ji	ш	Ct	ж.	ш

Ein- stel-	Uhuangaha	Mag-	Kreis:	V	ariation	ien
lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.
		53 Ly	7/			τ== 22°7
V4	3º11.5-11.7	25.1	302°50!0	11.6	101.1	17.3
V ₃	13.9-14.2	24.1	301 50.7	11.6	101.1	17.1
			302 20.4	11.6		The same of
v_2	15.8-16.2	24.5	38 11.3	11.4	101.0	17.1
v ₁	17.6-17.8	25.0	38 42.6	11.4	101.0	17.2
		24.7	38 27.0	11.4	101.0	17.2
			Strainle F.		100.0	+4.1
v	20.5		350 24.4	11.4	+1.0	21.3
in all	111-12	De	flektor I.	*****		1
	15191	De	nektor 1.			τ=22°,8
0	3P22.9-24.3	24.4	295 41.7	11.3	101.5	17.0
W	25.6-26.0	24.7	45 9.8	11.1	101.5	17.0
		24.55			101.5	17.0
					100.0	+4.3
	and Dollar				+1.5	21.3
		Def	ektor II.			
W	3P29.6-29.8	24.9	49 17.0	11.0	101.4	16.8
0	32.2-32.4	24.9	291 39.4	11.0	101.4	17.0
		24.9		100	101.4	16.9
					100.0	+4.3
					+1.4	21.2

	$ \begin{array}{ccc} 2(\phi) & = 96 \\ \phi & = 48 \end{array} $	6:6
	$\phi = 48$	3.0
	$\lg\sin\phi_{15} = 9.8$	87 445
Varia	at.: Potsdam	Kornthal
n'100	= +7	$n'_{20} = +14$
lg sin	$\phi_0 = 9.87452$	9.87 459
lg c	= 9.17955	9.87 459 9.17 966
lg H	= 9.30503	9.30 507
	9/4) - 100	0 9011
	$ \begin{array}{ccc} 2(\phi) & = 109 \\ \phi & = 54 \end{array} $	43.9
	$\lg \sin \phi_{15} = 9.9$	1511
lg c		
lg H	= 9.30493	9.30 497
	$ \begin{array}{ccc} 2(\phi) & = 117 \\ \phi & = 58 \end{array} $	°37!6
	$\lg\sin\phi_{15} = 9.9$	3 553
lg c	= 9.24062	9.24 070
lg H	$= 9.24\ 062$ = $9.30\ 499$	9.30 505

Zusammenstellung:


	RESIDENTIAL CONTRACTOR OF THE PERSON OF THE	TO COLUMN T
V	ariat.: Potsdam	Kornthal
H	$= 0.20 \ 201$	H = 0.20203
	185	187
	180	182
	183	186
H	$= 0.20 \ 187 \pm 5 \gamma$	$H = 0.20189 \pm 5\gamma$
$\Delta(\lambda,$	$ \phi = +1$	$\Delta(\lambda, \phi) = 0$
H	=0.20188	H = 0.20189

Nr. 16. 1902 Aug. 8. Regen.

Standpunkt auf einer kleinen Kuppe bei Amerbach, in einer Öde des Bichelfeldes. Im jüngeren Granit.

x = +28741.9, y = +21952.4, $H = 453^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
		$\Delta u = +0.7$		461	
1-4	I oben	6º 51.7-52º6	350° 26:2 27,8	6.3	350° 33!3
5-8	II oben	53.7-54.8	350 24.2 22.8	6.4	350 29.9
74		desirable and expension	22.0		350 31.6
9-12	II oben	6º 56.2-57.0	350 26,0 26,1	6.4	350 32.4
13-16	I oben	58.5-59.4	350 25.7 27.0	6.4	350 32.8
1		select Poreduce			350 32.6
512	Wallfahrt		155 0.8	10 10	
38	Amerbach	A SHIRL OF PARTY	205 12.6		
80	Laub Alerheim	48710 =	297 42.3		
1	Nördlingen	1000 mm	233 3.2 255 43.8	Se 50	
	Munningen		298 2.0	12 53	

1	1	
zimut des	Kreisnullp	unktes:
W.		Gew. 0.5
Am.	40.0	
L.	40.0	3 7
Al.	39.7	
N.	39.2	10
M.	39.8	
a ₀ =	-0°39!6	$\Sigma p = 28$
A-a=	-39.3	
	-1° 18:9	±0:2
(M) =	350 32.1	±0.5
M =	349° 13:2	
D ₀ =	10 46.8	
l Dekl D -	10 53 8	

Nadel	Kreis	Be- zeich-	Mi	ttel	A + B	Vai	riat.	Uhr-
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63°50!2	64° 2:0	63°56!1	102.5	2.02.5-	6P 11
2	W	a	64 15.5	63 54.0	64 4.8	102.6		-
3	W	i	63 52.0	63 57.8	63 54.9	102.7	126.2	Un
4	0	i	64 12.0	63 52.8	64 2.4	102.9		20
					63 59.6			
II 5	0	a	63 30.8	64 31.2	64 1.0	102.9		6P 25
6	W	a	64 49.0	63 13.0	64 1.0	103.0	1.011	0
7	W	i	63 35.0	64 34.8	64 4.9	103.2	126.0	
8	0	i	64 53.5	63 9.0	64 1.3	103.7		37
					64 2.0	103.0	126.1	
					$\Delta i = 1.0$	101.0	126.2	
					64 1.0	+2.0	-0.1	

	= +2				0.1
	Nadel		63°:		
10.7	Mittel dJ		/		
-	J	=	64°	0:7	

Deflektor I.

Ein- stel- lung	Uhrangabe	Map- net- temp.	Kreis: Mittel	Variationen		
				Kornth. D.	Potsd. H.	Kornth.
o w	6P 43.0-43 ^m 2 45.2-45.8	1990 18.9	295°31!6 45 27.0	6.3 6.3	104.5 104.5	τ=23°8 17.3 17.3
		18.95			104 5 100.0	17.3 +5.8
		- Bles		-	+4.5	23.1

Bemerkung: In Kornthal fehlt die Kurve für τ; sie ist nachkonstruiert, also τ unsieher.

$$2 (\phi) = 109^{\circ}55!4$$

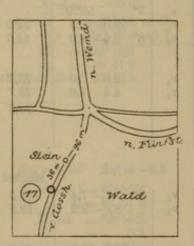
 $\phi = 54 \ 57.7$
 $\log \sin \phi_{15} = 9.91 \ 442$
Variat.: Potsdam Kornthal
 $n'_{100} = +31$ $n'_{20} = +32$

$$n'_{100} = +31$$
 Rornthal $n'_{20} = +32$ $\log \sin \phi_0 = 9.91473$ $\log c = 9.22014$ $\log H = 9.30541$ 9.30548

= 9.30538

lg H

Zusammenstellung:


Nr. 17. 1902 Aug. 9. Regen und Wind, zeitweise aufheiternd.

Standpunkt am Westrande der Straße von Wemding nach Goßheim, im Walde, $96^{\rm m}$ von der Straßenkreuzung entfernt. Im Diluvialsand. $x = +27\ 260$, $y = +21\ 340$, $H = 455^{\rm m}$.

+4.5

23.0

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Magnet- ablesung red. auf no
	Mire	$\Delta u = +44.8$	14° 47:2	THE REAL PROPERTY.
1-4	I oben	7ª 42.4-43 ^m 7	350 29.3 31.6 3.8	350°34!2
5-8	II oben	45.0-46.3	350 30.1 28.1	350 33.0 350 33.6
9-12	II oben	7ª 46.6-48.5	350 28.8 29.1	THE REAL PROPERTY.
13–16	I oben	49.8-51.5	350 31.3 31.7 3.8	350 35.3 350 34.0

9.30 542

Bemerkung: Mire = Spitze des hohen Markungssteins am Wege.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	Naded Keets with A contract
	Mire o vorwärts rückwärts rückwärts vorwärts vorwärts vorwärts rückwärts rückwärts vorwärts rückwärts vorwärts vorwärts vorwärts Mire	9 ^a 9 ^m 55:0 12 58.5 27 4.0 29 21.0 30 25.5 31 24.0 9 ^a 33 40.0 35 31.0 36 30.0 38 23.0	14° 47:2 113 51.1 294 31.8 298 44.5 299 20.1 119 39.4 119 12.2 119 46.6 300 13.0 301 13.0 121 45.1 14 47.25	100000000000000000000000000000000000000	40 02 60 40 040 00 40 950 00 40 050 00 40 00 40 40 00 40	Azimut des Kreisnullpunktes: astr: $-1^{\circ}15.2$ Gew. 2 $15.2 \cdot 1$ $14.8 \cdot 2$ Mittel: $-1^{\circ}15.1$ Spiegelkorr. -1.1 $A_0 = -1^{\circ}16.2$ $(M) = 350 \ 33.8 \pm 0.2$ $M = 349^{\circ}17.6$ $D_0 = 10 \ 42.4$ mittl.Dekl. $D = 10 \ 49.4$

Nadel	Kreis	Be- zeich-	Mi	ttel	A + B	Var	riat.	Uhr-
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63°43!2	63°51!5	63° 47!3	96.5		8ª 43
2	W	a	64 15.2	63 53.8	64 4.5	96.4	125.6	103
3	W	i	63 42.0	63 57.2	63 49.6	96.1	120.0	
4	0	i	64 17.2	63 48.0	64 2.6	96.0		55
7					63 56.0			100
II 5	0	a	63 28.0	64 31.8	63 59.9	96.0		8ª 58
6	W	a	64 46.5	63 6.5	63 56.5	96.2	125.0	18.5
7	W	n i e	63 30.5	64 34.2	64 2.4	96.8	120.0	100
8	0	i	64 55.2	63 3.5	63 59.4	97.3		9ª 7
03					63 59.5	96.4	125.3	
					Δi —1.0	101.0	126.2	
		done.			63 58.5	-4.6	-0.9	1

Δn' =	= -4.0	δ Δ	n" = -	-0.9
N	adel I		3°56!6	
M	littel J	-	3°57! -0.	
J	900	= 6	3°56!	4

Magnet I.

Ein-	The	Magnet-	Kreis:	Variat.		
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	
v	7ª 55™0		350° 24!4	3.8		
v ₁	59.0-59.5	14.5	38 38.7	3.8	99.3	
V ₂	8ª 0.6- 1.0	14.5	39 12.3	3.8	99.1	
	3		38 55.5	3.8		
v ₃	2.8- 3.0	13.7	302 5.9	3.8	99.0	
V ₄	4.4- 4.6	13.7	302 11.8	3.8	99.0	
		14.1	302 8.9	3.8	99.1	
				1 2 2 2 2 2 2	100.0	
	The same				-0.9	

Bemerkung: Temp. 7 in Kornthal fehlt und kann nieht genügend seharf abgeleitet werden.

$$\begin{array}{cccc} 2 \left(\phi \right) & = 96^{\circ}46.6 \\ \phi & = 48 & 23.2 \\ \lg \sin \phi_{15} = 9.87 & 340 \\ n'_{100} & = & -6 \\ \lg \sin \phi_{0} & = 9.87 & 334 \\ \lg c & = 9.17 & 955 \\ \lg H & = 9.30 & 621 \\ \end{array}$$

Magnet II.

		0			
V ₄ V ₃	8ª 7.1- 7.4 8.7- 9.2	14.3 13.8	302 40.1 301 38.8	3.7	98.8 98.5
			302 9.4	3.7	
v ₂ v ₁	10.6-11.1 12.3-12.5	13.7 14.8	38 47.8 39 7.4	3.7 3.7	98.5 98.4
	Alime -	14.15	38 57.6	3.7	98.5 100.0
	The second		0.68,00		-1.5

$$\begin{array}{cccc} 2(\phi) & = 96^{\circ}48!2 \\ \phi & = 48 & 23.9 \\ \lg \sin \phi_{15} & = 9.87 & 351 \\ n'_{100} & = & -10 \\ \lg \sin \phi_{0} & = 9.87 & 341 \\ \lg c & = 9.17 & 952 \\ \lg H & = 9.30 & 611 \\ \end{array}$$

Deflektor I.

Ein- stel-	Theresh	Mag- net-	Kreis:	Va	riat.	Marie Van Verlande	
lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	SANTEN LINES.	
o w	8* 16.7-17**0 18.3-19.6	14.2 14.4 14.3	295° 20:6 45 39.6	3.8	97.9 97.7 97.8 100.0 —2.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	De	eflektor	II.				
Wo	8* 24.4-24.7 26.6-27.0	14.3 14.4 14.35	49 56.4 291 11.6	3.8	97.6 97.5 97.5 100.0 —2.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zusammenstellung: H = 0.20 240 235 243 242 H = 0.20 240 $\pm 2 \gamma$ $\Delta(\lambda, \phi) = -1$
	Nr. 18 und 18	a 10	no Ana Q	Staif	or Was	turind	$\frac{\Delta(x, \phi) = -1}{H = 0.20239}$

Standpunkt 18 (Messung von D) auf dem höchsten Punkte des Flachsbergs östlich von Goßheim, etwa 200^m südlich von der Kapelle, in einer Öde. Standpunkt 18^a (Messung von J und H) vor Wind geschützter Punkt am Ostabhange, etwa 60^m östlich von Nr. 18 und 15^m tiefer.

Nr. 18:
$$x = +26489.9$$
, $y = +21274.0$, $H = 525^{m}$
18a: $+26490$ $+21250$ 510

Standpunkte im Breccienkalk des mittleren weißen Jura.

Nr. 18.

		THI MG			
Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel d. äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red.aufn ₀
1-4	I oben	$\Delta u = +0.77$ $10^{\circ}52.2 - 53.6$	22.3	8.0	350° 30!3
5-8	II oben	55.4-57.2	350 23.7 23.5	8.1	350 31.7 350 31.0
-	Huisheim Bühl Goßheim	1 THE P. LEWIS CO.	245 49.4 275 55.3 280 52.9		-
0 10	Alerheim Wörnitzostheim		283 48.0 277 45.1	THE REAL PROPERTY.	THE R. L.
9-12	II oben	11°12.7-14.5	350 21.9 21.6	9.3	350 31.1
13-16	I oben	16.4-17.4	350 21.4 20.9	9.4	350 30.6 350 30.8

Nadel	Vasia	Ein- stel-	Mi	ttel	A+B	Va	riat.	Uhr-
Nadel	Kreis	lung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63° 40:8	63° 46!0	63° 43!4	95.0	199	11ª 25
2 3	W	a	64 15.8	63 58.5	64 7.2	95.1	119.6	10000
	W	i	63 41.5	63 44.2	63 42.8	95.6	119.0	
4	0	i	64 15.5	63 59.0	64 7.2	96.0		34
20					63 55.4			
II 5	0	a	63 29.5	64 31.0	64 0.2	96.0		11ª 37
6	W	a	64 44.8	63 5.8	63 55.3	96.5	1100	
7	W	i	63 31.0	64 32.8	64 1.9	96.6	119.3	
8	0	i	64 48.5	63 1.8	63 55.2	97.1	100	49
1-					63 58.2	96.0	119.4	
13.					Δi -1.0	101.0	126.2	
					63 57.2	-5.0	-6.8	

Azimut des Kreisnullpunktes: H. -0°34!6 Gew. 1 34.2 34.7 33.7 B. G. 0.2 W. 34.7 $= -0^{\circ} 34!2 \Sigma p = 17$ = -38.0A-a = $A_0 = -1^{\circ}12!2 \pm 0!2$ $(M) = 350 \ 30.9 \pm 0.1$ $\begin{array}{ccc} \overline{M} & = 349^{\circ}\,18!7 \\ D_{o} & = 10\,\,41.3 \\ \text{mittl. Dekl. D} & = 10\,\,48.3 \end{array}$

$\Delta n' = -5.0$)	Δn"	=-	6.8
Nadel I		-		
Mittel	=	63°		
J			56:0	

Magnet I.

Ein-	771	Mag-	Kreis:	V	ariation	nen
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.
v	11ª 56 ^m 0		350° 20:4	11.8	1612	τ == 19°5
v ₁	11*59.3-60.0	1697	38 15.6	12.0	96.9	20.2
v ₂	0º 1.5- 1.8	17.4	38 47.2	12.0	96.9	20.4
	Black		38 31.4	12.0		
V ₂	4.0- 4.3	18.3	302 3.7	12.4	97.2	20.7
V ₃ V ₄	5.7- 6.0	18.8	302 13.3	12.6	97.5	20.8
	THE OLD P.	17.8	302 8.5	12.5	97.1	20.5
	Property of the Property of th				100.0	-0.8
					-2.9	19.7

2(\phi)	=	96° 22:9	
φ	=	48 11.1	
$\lg\sin\phi_{15}$	=	9.87 323	

Variat.: Potsdam	Kornthal
$n'_{100} = -20$	$n'_{20} = -3$
$\lg \sin \phi_0 = 9.87303$	9.87 320
$\lg c = 9.17955$	9.17 968
$\lg H = 9.30652$	9.30 648

Magnet II.

			0			
NAME OF	P 9.7-10.2	20.1	302 41.1	12.8	97.5	21.0
v ₃	11.5-11.6	19.0	301 38.8	13.0	97.5	21.0
v ₂	13.0-13.4	18.0	38 19.2	13.2	97.5	21.1
v ₁	14.7-15.2	15.6	38 51.1	13.2	97.7	21.3
		18.2	38 35.2	13.2	97.5	21.1 -0.8
7						20.3
v	17.6		350 16.2	13.4	-2.5	20.8

$\frac{2}{\phi}(\phi)$		25:2 12.6
$\lg\sin\phi_{15}$	-	

n'100	=	-17	n'20 = +3
lg sin	$b_0 = 9.87$	331	9.87 351
lg c	= 9.17	952	9.17 967
lg H	= 9.30	621	9.30 616

Deflektor I.

0 W	0P 20.6-20.8 22.5-22.7		295 13.6 45 33.3	13.6 13.7	98.1 98.1	21.1 21.1
	238	14.6			98.1	21.1
	1.65				100.0	-0.8
	126		10000		-1.9	20.3

$2(\phi)$	= 110° 19!7
ф	= 55 9.9
$\lg \sin \phi_{15}$	= 9.91412

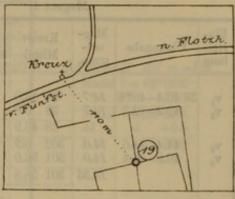
	-S 715	
lg e	= 9.22 011	9.22 024
lg H	= $9.30 612$	9.30 609

Deflektor II.

WO	0 ^p 25.0-25.6 27.4-27.6		49 43.4 290 58.5	13.8 13.9	97.9 97.5	21.3 21.5
	ENSOISE	13.95	O. Onless 20		97.7 100.0	21.4 -0.8
	14-10				-2.3	20.6

$$2(\phi)$$
 = 118° 44.9
 ϕ = 59 22.4
 $\lg \sin \phi_{15}$ = 9.93 441

n'100	= -16	n'20 = +6
lg sin d	$b_0 = 9.93425$	9.93 447
lg e	= 9.24062	9.24 074
lg H	= 9.30 637	9.30 627


Zusammenstellung:

Va	riat.: Potsdam		Kornthal
H	=0.20254	H	= 0.20252
	240		238
	236		234
-	247		243
H	$=0.20244\pm4\gamma$	H	$= 0.20242 \pm 4\gamma$
$\Delta(\lambda,$	ϕ) = -3		$\phi) = -1$
H	= 0.20241	H	= 0.20241

Nr. 19. 1902 Aug. 9. Regen.

Standpunkt auf einer niederen Kuppe südlich der Straße von Fünfstetten nach Flotzheim, im Ackerland, $110^{\rm m}$ von einem Holzkreuz an der Straße entfernt. Im weißen Jura, grauer Kalk mit Mergel. $x = +26\,610.0$, $y = +19\,823.3$, $H = 520^{\rm m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
	Shirt of	$\Delta u = +0.7$	Toronto Toronto		Desire Ton
1-4	I oben	2р 38.5-39т7	350°21:4 22.8	12.3	350° 34!4
5-8	II oben	40.7—41.7	350 20.4 22.2	12.1	350 33.4 350 33.9
No. of the last of	Fünfstetten Deiningen Nußbühl Flotzheim	-therease	264 40.4 281 52.8 27 14.2 83 57.5		AMI GA
9-12	II oben	2º 47.3-48.6	350 24.6 23.6	12.0	350 36.1
13-16	I oben	49.9-51.2	350 21.8 20.1	11.9	350 32.9 350 34.5

Azimut de	s Kreisnull	ounktes:
Fü.	-0°37!3	Gew. 0.5
D.	37.4	
N.	37.3	
Fl.	37.3	1
	$= -0^{\circ}37!4$ = $-35!4$	$\Sigma p = 12$
	$= -1^{\circ}12!8$ = 350 34.2	
M	= 349°21!4	
	= 10 38.6	
ittl Dekl D	= 10 45.6	

Madal		Vacia	Be-	Mi	ttel	A + B	Var	riat.	Uhr-
Nadel	iei	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I	1	0	a	63° 43!2	63°48!8	63° 46:0	103.2		2P 57
	2	W	a	64 14.2	63 58.2	64 6.2	103.4		1
	3	W	i	63 43.0	63 45.5	63 44.3	103.0	123.6	1000
	4	0	i	64 10.8	63 58.2	64 4.5	102.5		3P 6
				3777		63 55.2		a Marie	mad !
II		0	a	63 28.2	64 28.0	63 58.1	102.8		3P 8
	6	W	a	64 46.2	63 11.8	63 59.0	102.5	1010	12 11020
	7	W	i//	63 31.5	64 9.2	63 50.3	101.0	124.2	
	8	0	ig	64 54.2	63 16.2	64 5.2	98.2		19
					-	63 58.2	102.0	123.9	
						$\Delta i = 1.0$	101.0	126.2	
						63 57.2	+1.0	-2.3	10 60

$$\Delta n' = +1.0 \quad \Delta n'' = -2.3$$
Nadel I = 63°55:2

II = 57.2

Mittel = 63°56:2

dJ = +0.4

J = 63°56:6

Deflektor I.

Ein- stel- lung	Thomas	Magnet-	Kreis:	Variationen			
	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
			1 × 60 %			τ=19%	
0	3P 26.3-26.6	14:6	295°13!5	10.6	99.5	21.3	
W	28.6-29.1	14.6	45 35.8	10.6	100.1	20.9	
	801	-14.6		302	99.8	21.1	
	730001				100.0	-0.9	
	- 320 325			200	-0.2	20.2	

2(\phi)	=	110°22!3
φ	=	55 11.2
$\lg\sin\phi_{15}$	=	9.91 423

·8 ···· 715 - ··	
Variat.: Potsdam	Kornthal
$n'_{100} = -1$	$n'_{20} = +2$
$\lg \sin \phi_0 = 9.91422$	9.91 425
$\lg c = 9.22011$	9.22 024
le H = 9.30 589	9.30 599

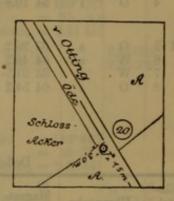
		Defle	ktor II.			
W	3P 31.3-31.6 33.6-33.7	15.0 14.5	49 42.6	10.4	100.6 100.5	20.7
	00.0 00.1	14.75	-		100.6	20.9
	1				+0.6	20.0

Magnet I.

Ein-	Themaka	Mag-	Kreis:	v	ariation	en	dream and diese sordered hoppy abilities des	
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	or State with a la seign for pro-	
v ₁ v ₂	3º 40.4-40º6 42.2-42.3 44.4-44.6	14.7 14.7	38°33:0 39 0.8 38 46.9 302 0.7	10.1 10.1 10.1	101.0 101.0	τ=1904 20.6 20.6 20.6	$2(\phi) = 96^{\circ}48!1$ $\phi = 48 24.1$ $\log \sin \phi_{15} = 9.87 359$ Variat.: Potsdam Kornthal	
v ₃	46.0-46.4	14.0	301 56.9 301 58.8	10.0	100.5	20.8	$\frac{n'_{100}}{\lg \sin \phi_0 = 9.87365} = \frac{n'_{20} = -3}{9.87356}$	
1	at laurgilla color		and L	9.5	+0.9	-0.9 19.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Ma	gnet II.					
v ₄ v ₃	3º 49.2-49.4 50.7-51.2	14.7 13.6	302 29.7 301 30.0 301 59.8	10.0 10.0	100.4 101.0	21.0 21.0	$\begin{array}{cccc} 2 (\phi) & = & 96^{\circ} 54!6 \\ \phi & = & 48 & 27.1 \\ \lg \sin \phi_{15} & = & 9.87 & 377 \end{array}$	
$\begin{matrix}v_2\\v_1\end{matrix}$	52.6-52.9 54.1-54.4	13.5 13.3	38 39.3 39 9.6	9.9 9.9	101.2 101.1	20.7 20.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1	10 313 MUS	13.8	38 54.4	9.9	100.9	20.9 —0.9	$\begin{array}{ccc} \lg c &= 9.17 \ 952 & 9.17 \ 967 \\ \lg H &= 9.30 \ 569 & 0.30 \ 590 \end{array}$	

+0.9

20.0


Zusammenstellung:

Variat.: Potsdam	Kornthal
H = 0.20225	H = 0.20230
235	242
225	236
216	225
$H = 0.20 225 \pm 4 \gamma$	$H = 0.20233 \pm 4\gamma$
$\Delta(\lambda, \phi) = +2$	$\Delta(\lambda, \phi) = 0$
H = 0.20227	H = 0.20233

Nr. 20. 1902 Aug. 9. Sonnenschein, kräftiger Wind. Standpunkt auf einem Ödestreifen westlich am Wege von Otting zum Kohlblatten Schlag, 3^m von der oberen Grenze des Schloßackers entfernt. Im Diluviallehm.

x = +27952, y = +19167, H = 520^m

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Magnet- ablesung red. auf no	
		$\Delta u = 45.9$			
	Otting		311°54:1	Since!	
1-4	I oben	6p 33.8-34 ^m 6	350 24.9 23.5	8.6	350° 32!8
5-8	II oben	35.9-36.8	350 23.8	8.6	350 32.8
Taylor of the Park		stitt: Ponday	24.6		350 32.8
9-12	II oben	6р 37.3-38.2	350 24.6 23.7	8.7	350 32.9
13-16	I oben	39.3-40.3	350 22.7	8.7	350 31.5
			22.8		350 32.2
	O direkt O • O •	6P 45 ^m 10.5 46 8.0	285 54.4 286 37.3	004 4	
1704	0	47 6.5 47 35.5	286 15.7 286 53.2	1002	
0204	Otting	10 00.00 H	311 53.9	The last	

		Be-	-	Mitte	ı		A+B	V:	riat.	Uhr-	Sonal Samebery b	
Nadel	Kreis	zeich- nung	A un	nten E	3 ur	nten	2	H.	Z.	angabe	window, a.W S. 12	
I 1 2	0	a	63° 4				63°51!4	102.9	11100	5º 30	$\Delta n' = +1.9 \Delta$	n'' = -1.0
2	W	a	64				64 5.0	102.5	125.3		Nadel I = 63	
3 4	W	i	63 4				63 46.5 64 3.7	102.6		39	- II =	58.2
*	0	-	01	1.5	00 .		63 56.6	7	1000	90		3°57!4
II 5	0	a	63 5	209	64 5	Charles of the last of the las	64 0.0	-	-	5P 41	$\frac{dJ}{J} = 6$	+0.5
	w	a	64			7.2	63 58.5	103.4	10000	3. 41	J = 6.	3°57!9
6 7	W	i	63 5	29.2	64	17.0	63 53.6	103.3	125.0		- Fill Sylven modell	
8	0	i	64 5	53.5	63		64 4.7	104.2		50	Secretary	
	Dar		10				63 59.2		125.2	100	William .	
	8.01		1 3				$\Delta i = 1.0$ 63 58.2		126.2 —1.0			
	E01	10.5	Ma	gnet I.		200 000	00 00.2	1 +1.0	1 -1.0	0.0	2.4-	
Ein-	dr act	77.7	Mag-	Kreis	- 57	v	ariation	en	00,008			
stel-	Uhran		net-	Mitte		200 LPD	Potsd.		1			
lung	ALL DE	nex al	temp.	Ditte		D.	H.	H.	EX 331			
v	5P	56m1	31.	350°2	4:6	8.3		τ=19°4	35 201		$2(\phi) = 96^{\circ}47!8$	
v,	5P 58.1-	-59.1	1394	38 3	5.2	8.3	104.3	23.7	F 789		$\phi = 48 \ 23.9$	
V2	6p 0.6-	- 1.0	13.4		1.4	8.3	104.5	23.9	100 BAS		$\lg \sin \phi_{15} = 9.87\ 323$	
040	0.7	0.1	10.0	38 4		8.3	****	00.4	1	Variat.:		ornthal
V ₃		- 3.1	13.2 13.2	302 301 5	1.7	8.3 8.3	105.0 104.6	23.6 23.6	n'	100		= +29
V4	0.0-	0.2	13.3		0.5	8.3	104.6	23.7	lg	$\sin \phi_0 =$	= 9.87 354	9.87 352
			20.0	002	0.0		100.0	-0.9				9.17 968
					3		+4.6	22.8	Ig	H =	= 9.30 601	9.30 616
			Ma	gnet II								
		- 8.6	13.4	302 2		8.2	104.7	23.9	250 /		$2(\phi) = 96^{\circ}55!4$	
v ₃	9.8-	-10.3	13.1	301 3		8.2	104.7	24.0	1110		$\phi = 48\ 27.5$	
	12.6-	190	13.1	301 5 38 3		8.2	105.1	24.1	n'	B-02 11	$\lg \sin \phi_{15} = 9.87 \ 362$ = +34 n'.	20 = +33
v ₂ v ₁	14.6-		13.0	39 1		8.2	105.1	24.3		100	= 9.87 396	9.87 395
-1	100		13.15	38 5		8.2	105.0	24.1	le	c = c	= 9.17 952	9.17 967
		130				17 11	100.0	-0.9	_ ~			9.30 572
10.11				0-0			+5.0	23.2	10.5	201 6	0.00 10 0	70/13
v		16.4		350 2		8.2		Ni G	1000			
0 1	CD 10 0	1001		lektor !					10		9/4) 11/09/910	
w	6 ^p 19.2- 21.6-		13.0 13.1	295 1 45 3		8.4	105.9	24.7	- 30		$2 (\phi) = 110^{\circ} 22!8$ $\phi = 55 11.4$	
	21.0-	22.0	13.05	10 0	0.4	0.78	106.0	24.8	30		$\lg \sin \phi_{15} = 9.91\ 377$	
350		Mary .	10.00				100.0	-0.9	lo	c =	= 9.22 011	9.22 024
							+6.0	23.9	lg		= 9.30 593	9.30 606
			Def	lektor l	II.							
	6 ^p 24.5-		13.2		8.5	8.4	106.6	25.0			$2(\phi) = 118^{\circ}44.0$	
0	26.8-	27.2	13.1	291	4.5	8.4	106.7	24.9	Store St.		$\phi = 59 22.0$	
			13.15				106.6	24.9 -0.9				
		0.000					+6.6	24.0			= 9.24 062 = 9.30 606	9.24 074 9.30 620
1		3 25 4	- 34				H.E.	4.505	-8	10/10	Zusammenstellung:	100 1 17
									Varia	t.: Pot		ornthal
										= 0.20	230 H =	: 0.20 238
											210	217
											227 233	233 240
									H			: 0.20 232 ±
									$\Delta(\lambda, \phi)$		$+2$ $\Delta(\lambda, \phi) =$	
										= 0.20		0.20 232

Nr. 21. 1902 Aug. 11. Bedeckter Himmel.

Standpunkt: Signal Senselberg bei Geislingen. Der Punkt ist schon 1900 gemessen worden, s. W S. 123, Station Nr. 17. Im braunen Jura, Eisensandstein.

x = +47 433.4, y = +101 064.7, H = 495^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Magnet- ablesung red. auf n ₀
1-4	I oben	$\Delta u = +0.8$ $7^{\text{a}} 0.7 - 3.5$	350°21!8 21.9 3.0	350°24'8
5-8	II oben	5.7- 6.8	350 19.5 18.3 2.8	350 21.7 350 23.3
9-12	II oben	7.4- 8.4	350 20.0 19.9 2.7	350 22.7
13-16	I oben	9.5-10.6	350 20.8 21.8	350 24.3 350 23.5
-	Nördlingen Unterwilflingen Oberwilflingen Zipplingen Geislingen Wössingen		157 35.4 168 38.5 195 56.1 227 7.5 303 58.2 214 48.3	1 0 83 1 0 4 1 0 4 1 0 6

Azimut des	Kreisnullpunk	tes:
N.	-2°15!8 Ge	w. 11
U.	15.9	
0.	16.0	3 2
Z.	16.3	4
G.	16.3	0.5
W.	15.9	8
ao	$= -2^{\circ}15!9 \Sigma p$	=28
	= +1 2.6	
Ao :	$= -1^{\circ} 13!3 \pm 0$	11
(M) :	$= 350 \ 23.4 \pm 0$.1
M :	= 349° 10!1	- 1
Do :	= 10 49.9	
ittl. Dekl. D	= 10 56.9	

Nadel		V	Be-	Mi	ttel	A+B	Var	riat.	Uhr-
Ivac	iei	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I	1 2 3	O W	a a	63°48!2 64 21.2	64° 2:0 64 0.0	63° 55:1 64 10.6	101.0 101.3		7ª 21
	3 4	W	i	63 47.0 64 21.8	63 56.5 64 3.2	63 51.8 64 12.5	101.5 101.8	123.6	30
		STEEL STEEL		200	100	64 2.5			T. Vi
п	5	0 W	a	63 32.8 64 50.0	64 34.8 63 12.5	64 3.8	101.9	123.7	7* 33
	7 8	W	i	63 34.5 64 58.5	64 38.8 63 9.2	64 6.6 64 3.8	101.9	100000000000000000000000000000000000000	44
						64 3.9 Δi –1.0	101.6 101.0	123.6 126.2	Daniel 27
					nl la	64 2.9	+0.6	-2.6	

$$\Delta n' = +0.6$$
 $\Delta n'' = -2.6$
Nadel I = 64° 2:5

II = 2.9

Mittel = 64° 2:7

dJ = +0.4

J = 64° 3:1

Magnet I.

Ein-	TT - 104,781	Magnet-	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	
v	7ª 48 ^m 2	200 15.	350° 22:6	3.6	0.00	τ=16 <u>°</u> 9	
v ₁ v ₂	50.6-51.4 52.6-53.7	11:0 11.0	38 50.8 39 15.0	3.7	102.3 102.2	27.8 27.7	
2 85	2020-001	11.0	39 2.9	3.7			
v ₃	55.2-56.1	10.8	301 34.0	3.9	102.0	27.7	
V ₄	57.2-57.4	10.8	301 41.8	3.9	102.1	27.8	
CONT. SE		10.9	301 37.9	3.9	102.2	27.7	
755	E (8.00mm)				+2.2	-4.7 23.0	

$2(\phi)$	=	970	25:0
φ	=	48	42.4
$\lg \sin \phi_{15}$	=	9.87	454

Varia	t.: Potsda	m	1
n'100	= +	-15	1
lg sin	$b_0 = 9.874$	69	2
	= 9.179		
lg H	= 9.304	87	

Kornthal $n'_{20} = +31$ $9.87 \ 485$ $9.17 \ 977$ $9.30 \ 492$

Magnet. II.	
TATALETIC DE LA	۰


Ein-	1	Mag-	Kreis:	V	ariation	nen	Nation Niete American Resident St.
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	0.00 POL 40 CO-40 P D C E E
v ₄ v ₃	7* 59.4-59.6 8* 1.6- 1.8	10.9 10.9	302°16:3 301 7.9 301 42.1	3·9 3.9 3.9	102.2 102.2	τ=16°,8 27.8 27.8	$ \begin{array}{rcl} 2 (\phi) & = & 97^{\circ} 23.6 \\ \phi & = & 48 & 41.7 \\ \lg \sin \phi_{15} & = & 9.87 & 457 \end{array} $
$\begin{matrix}v_2\\v_1\end{matrix}$	4.0- 4.3 5.0- 6.0	11.0 11.2 11.0	38 52.2 39 19.2 39 5.7	4.1 4.3 4.2	101.9 101.6 102.0	27.7 27.7 27.75	Variat.: Potsdam Kornthal $n'_{100} = +14$ $n'_{20} = +30$ $1g \sin \phi_0 = 9.87471$ 9.87487
v	8.2		350 18.2	4.5	+2.0	-4.85 22.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1	Det	lektor I.	1		τ=16°7	The same of the same of the same of
0 W	8ª 10.0-10.4 12.2-12.5	11.5 11.5	294 55.2 46 0.8	4.1 4.1	101.4 101.6	27.6 27.8	$2(\phi) = 111^{\circ} 5.6$ $\phi = 55 32.8$
		11.5			101.5 100.0 +1.5	27.7 —5.0 22.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Def	lektor II.	100	+1.0	20.1	18 11 = 5.50 461
wo	8* 14.6-15.1 17.2-17.5	11.7	50 12.7 290 33.9	4.1	101.6 101.8	27.8 27.4	$ \begin{array}{ccc} 2 (\phi) & = 119^{\circ} 38!8 \\ \phi & = 59 49.3 \\ 0.03565 \end{array} $
	latinus.	11.6		ine to	101.7 100.0 +1.7	27.6 5.0 22.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	201 01.0 110 11.0	20				10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccc} & & & & & & & \\ & \text{Variat.: Potsdam} & & & & & & \\ \text{H} & = 0.20178 & & \text{H} & = 0.20180 \end{array}$
							172 175 176 177 179

Nr. 22. 1902 Aug. 11. Wind und Regen.

Standpunkt südlich von Fremdingen, im VollocherAcker, an einem Zufahrtswege zur Straße nach Minderoffingen, 35^m von einem Kreuz, 25^m von einem Bildstock an der Straße entfernt. Im Keuper.

$$x = +31805.1$$
, $y = +28062.0$, $H = 466$ ^m.

Nr.	Einstellung	stellung Uhrangabe Kreisablesung (Mittel der äuß. u. der inn. Fäden)		Variat.	Magnet- ablesung red. auf n ₀
1-4	I oben	$\Delta u = +0^{m}8$ $9^{*} 53.6 - 55^{m}3$	350°20!9 22.8	6.7	350°28!5
5-8	II oben	56.5-57.5	350 20.8 20.3	6.9	350 27.5 350 28.0
9-12		10ª 0.8- 2.6	350 19.1 20.2	7.2	350 26.8
13-16	10000	4.6- 5.7	350 20.7 20.3	7.4	350 27.9 350 27.4
10 10 10 10 10 10	Fremdingen, Kl. Fremdingen Schopflohe, pr. Hochaltingen Maihingen, Kl. Marktoffingen, U. Marktoffingen	1017F	26 38.0 61 22.5 57 8.8 97 58.6 149 14.9 166 44.3 167 37.4		550 27.4

 $\Delta(\lambda, \phi) =$

= 0.20179

H

H

 $= 0.20 \ 176 \pm 1 \gamma$

= 0.20175

 $\Delta(\lambda, \phi) = -1$

The state of the s	
-0°25!3	Gew. 0.2
25.3	0.5
24.8	2
25.5	2
25.4	4
25.2	
$= -0^{\circ}25!2$	$\Sigma p = 13$
= -50.4	
$= -1^{\circ}15!6$	±0:1
$=350\ 27.7$	±0.3
= 349°12!1	
= 10 47.9	
= 1054.9	
	$ \begin{array}{r} 25.3 \\ 24.8 \\ 25.5 \\ 25.4 \\ 25.2 \\ = -0^{\circ}25:2 \\ = -50.4 \\ = -1^{\circ}15:6 \\ = 350 \ 27.7 \\ = 349^{\circ}12:1 \\ = 10 \ 47.9 \end{array} $

		Ein-		Mittel		A + B	V	ariat.	Uhr-	A Storgald			
Nadel	Kreis	stel- lung	A u	nten B u		2	H.	Z.	angabe	Mary Mary Mary			
I 1	0	a	63°			63° 57:0			10ª 52	$\Delta n' = -4.6 \Delta n''$	= -5.1		
2 3	W	a	64			64 10.2		1011		Nadel I = 64°	3:4		
4	W	i	63 64			63 55.7 64 10.5			61		5.4		
*	0	-/-	04	19.0		64 3.4		70.00	01	Mittel = 64°			
II 5	0		63	245 64	-	64 5.7	_	ale I	11ª 3	The state of the s	0.4		
II 5 6	w	a	64			64 3.6		A District	11 3	$J = 64^{\circ}$	4:0		
7 8	W	i	63			64 8.6			1	0. 0.11			
8	0	i	65	3.8 63		64 7.9		THE RESERVE OF THE PARTY OF THE	14	THE RESERVE TO SHARE			
	1 TO 6	200	25	100		64 6.4			1913				
						$\frac{\Delta i - 1.0}{64}$		_	1	(86) 28 (
	1 . 10	1	1	74-14	12	04 5.4	-4.6	-5.1	231	analogodi .			
	Magnet I. Ein- Mag- Kreis. Variationen												
Ein-	YTL	818 19	Mag-	Kreis:	. V	ariation	en	100					
stel-	Uhran	gabe	net- temp.	Mittel	Kornth.	Potsd.	Kornth.	NA TO					
lung	181 (R. H.		temp.	100.0 m	D.	H.	H.	14-					
	10ª 19.1-	1075	14:2	38° 40:6	8.0	97.0	τ=1696 26.6			$2(\phi) = 97^{\circ}16:2$			
v ₁ v ₂		-21.0	14.2	39 13.0	8.2	97.2	26.5	25 1 3		$\phi = 48 \ 38.0$			
.2	20			38 56.8	8.1			100		$\lg\sin\phi_{15} = 9.87\ 495$			
v ₃	23.5-	-23.6	13.2	301 38.2	8.2	97.1	26.5	_		Potsdam Korr			
V ₄	25.0-	-25.4	13.4	301 43.0	8.4	97.1	26.4		100		= +13		
		22000	13.75	301 40.6	8.3	97.1	26.5	lg le	$\sin \phi_0 =$		87 482 17 977		
		22 114		make pri	S.Drine	100.0	-5.2				30 495		
1		4- 1	H	STITE	ki-	-2.9	21.3	16	; H =	= 9.50 450 9.6	30 495		
				gnet II.									
	10° 27.6-		14.7	302 13.6	8.4	96.8 96.6	26.3			$2 (\phi) = 97^{\circ} 19.2$ $\phi = 48 39.3$			
v ₃	29.4-	-29.5	13.1	301 9.8 301 41.7	8.4	90.0	26.1			$\phi = 48 39.3$ $\lg \sin \phi_{15} = 9.87 509$			
v ₂	31.4.	-31.5	13.3	38 48.3	8.3	96.1	26.0	n	100 =		=+9		
v ₁		-33.3	13.5	39 13.5	8.1	95.9	25.9	10	100 r sin d =		87 518		
	-		13.65	39 0.9	8.2	96.4	26.1		c =	= 9.17 946 9.1	17 969		
11 11				4		100.0	-5.2			= 9.30 462 9.3	30 451		
		25 9	100	250 100	0.1	-3.6	20.9	The same of	ALTER AND				
v		35.3		350 19.2	8.1	1		San San S					
		20		lektor I.		. 352		L. Jenel		the set of deciding			
w	10°37.6-		13.6	294 53.8	8.3 8.2	95.6	26.0	R VOSSION IS		$2(\phi)$ = 111° 0!5 ϕ = 55 30.2			
W	59.0-	-40.6	13.55	45 54.3	8.2	95.6 95.6	26.0	1100		$\phi = 55 \ 30.2$ $\lg \sin \phi_{15} = 9.91 \ 555$			
		2/1	10.00		magan	100.0	-5.2	10	c =		22 028		
		0			The same	-4.4	20.8	lg	H :		30 465		
		1	Defl	ektor II.		***	- Agent	-	2.0				
W	10°42.6-	-43.2	14.0	50 4.4	8.1	95.4	25.9			$2(\phi) = 119^{\circ}25!8$			
0		-45.3	14.0	290 38.6	8.1	95.3	25.9	No. of		$\phi = 59 \ 42.9$			
9.44	8 8358 ·	0-	14.0		-	95.4	25.9	TE 18		$\lg \sin \phi_{15} = 9.93595$	5-4000		
1						100.0	-5.2	lg			24 082		
20		-			-	-4.6	20.7	lg lg	H =	= 9.30 498 9.3	30 480		
										Zusammenstellung:			
									at: Pot				
								H	=0.20		20 181		
										166 175	· 161 167		
										183	174		
								H			20 171 ±3 y		
								$\Delta(\lambda, \phi)$		-3 $\Delta(\lambda, \phi) =$	0		
							1111	H	=0.20		20 171		

Nr. 23. 1902 Aug. 11. Regen bei kräftigem Winde.

Standpunkt am Ostrande eines Feldweges an den Bergäckern nordwestlich von Belzheim, unweit eines Kreuzes, auf der Wasserscheide. Im tertiären Süßwasserkalk.

x = +31852.8, y = +26391.3, $H = 493^{m}$.

Nr.	Einstellung	Einstellung Uhrangabe Kreisablesun (Mittel der äu u. der inn. Fäd		Variat.	Magnet- ablesung red. auf n ₀
100	Bergelin Indian	$\Delta u = +0^m9$	Vall last	0.163	0.0 0.0
1-4	I oben	2º 19.3-21 ^m 0	350°19:1 19.5	10.3	350° 29!6
5-8	II oben	23.3-24.4	350 18.9 18.3	10.2	350 28.8
					350 29.2
9-12	II oben	24.8-26.2	350 18.4 18.4	10.1	350 28.5
13-16	I oben	28.3-29.4	350 20.3 19.7	10.0	350 30.0
		Pickmah.	100		350 29.2
-	Ehingen Belzheim Nördlingen Marktoffingen Herblingen	ALC: U	100 16.2 145 20.2 191 32.4 219 42.1 230 59.0		1000
田台	Hochaltingen Hausen	NO SE	247 30.3 347 28.2	1000	

Azimut	des	Kreisnul	nunktee
ALGIIII W	uco	ALI CISHUL	punktes:

E.	-0°27!7 Gew.	2
B.	27.8	0.5
N.	28.0	10
M.	27.8	6
He.	27.5	2
Ho.	27.6	1
Ha.	26.6	1
a_0	$= -0^{\circ}27.8 \Sigma p =$	22
	= -47.4	
Ao	$= -1^{\circ}15!2 \pm 0!1$	
(M)	$= 350 29.2 \pm 0.1$	
M	= 349°14:0	4
D	- 10 46 0	

 $D_0 = 10 46.0$ mittl. Dekl. D = 10 53.0

Nadel	Tr.	Ein- stel-	Mi	ttel	A + B	Var	iat.	Uhr-
	Kreis	lung	A unten	B unten	2	H.	Z.	angabe
I 1 2	o w	a	63°49!8 64 21.8	64° 0:0 63 57.8	63°54!9 64 9.8	99.4 99.2	122.0	2º 40
3 4	w	i	63 48.0 64 22.0	63 55.5 64 3.2	63 51.7 64 12.6 64 2.3	99.1 99.3	122.0	51
II 5 6 7 8	O W W	a a i i	63 34.0 64 51.5 63 34.8 65 1.5	64 34.0 63 16.0 64 37.5 63 13.0	64 4.0 64 3.8 64 6.2 64 7.2	99.4 99.6 99.6 99.9	122.5	2P 52
100	201	M	1	CONTRACTOR OF THE PARTY OF THE	64 5.3 Δi –1.0 64 4.3	99.4 101.0 —1.6	122.3 126.2 —3.9	4400

$$\Delta n' = -1.6 \quad \Delta n'' = -3.9$$
Nadel I = 64° 2!3

II = 4.3

Mittel = 64° 3!3

dJ = +0.1

J = 64° 3!4

Magnet I.

Ein- stel-	Thomas	Mag-	Kreis:	Variationen			
lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	
3/100	THE PARTY OF	1000	The same	No.		τ=16°6	
v ₁	3º 11.2-11.6	10.0	38°50:0	9.7	101.0	28.4	
V ₂	13.4-13.8	10.1	39 21.2	9.7	101.2	28.5	
	0000		39 5.6	W 100		60.00	
v ₃	15.1-15.5	9.7	301 30.4	9.7	101.6	28.4	
V ₄	16.5-16.8	9.6	301 33.6	9.7	101.6	28.3	
1000		9.85	301 32.0	9.7	101.4	28.4	
			10.	No. of Lot	100.0	-5.2	
100	42.8				+1.4	23.2	

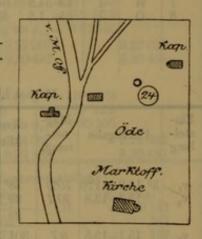
 $2(\phi)$ = 97°33!6 ϕ = 48 46.8 $\log \sin \phi_{15} = 9.87 471$

 Variat.: Potsdam
 Kornthal

 $n'_{100} = +10$ $n'_{20} = +33$
 $\lg \sin \phi_0 = 9.87 \, 481$ $9.87 \, 504$
 $\lg c = 9.17 \, 956$ $9.17 \, 977$
 $\lg H = 9.30 \, 475$ $9.30 \, 473$

Magnet II.

		11	Della Control		-		A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
Ein- stel-	Thomas	Mag- net-	Kreis:	V.	ariation	en	to Belibein, unweit more Kreune der der
lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	. 5.105.00 to 4.00 00 to 4.20 00 1.30
v ₄ v ₃	3º 20.0-20 ^m 2 21.6-21.9	10°.1 9.5	302° 6:4 301 1.8 301 34.1		101.6 101.5	τ=1696 28.3 28.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{matrix}v_2\\v_1\end{matrix}$	23.6-23.9 25.4-25.7	9.6 9.4 9.85	38 58.6 39 23.9 39 11.3		101.6 101.4 101.5 100.0	27.9 27.7 28.0 —5.2	Variat.: Potsdam Kornthal $n'_{100} = +10$ $n'_{20} = +29$ $\lg \sin \phi_0 = 9.87508$ 9.87527 $\lg c = 9.17946$ 9.17969
	anglumies X a	ab tom	S - A	E OEB	+1.5	22.8	lg H = 9.30 438 9.30 442
		Def	lektor I.				
o W	3º 30.6-31.0 33.2-33.4	10.1 9.3	294 42.1 46 6.0	9.4 9.3	100.9 100.5	27.7 27.6	$2(\phi) = 111^{\circ}23!9$ $\phi = 55 41.9$
	270	9.6	Bles &	2,000	100.7 100.0	27.6 —5.2	$ \lg \sin \phi_{15} = 9.91539 \lg c = 9.22007 9.22028 $
	30.00				+0.7	22.4	lg H = 9.30 463 9.30 464
		Defle	ektor II.				
	1 200 mm			1		T=16%	M. (E.C. Separate of the separ
W	3º 36.3-36.5 38.8-39.2	9.7 9.5	50 22.4 290 23.5		100.4 100.6	27.9 27.9	$2(\phi) = 119^{\circ}58!9$ $\phi = 59 59.4$
	10.01 DE	9.6			100.5	27.9	$\lg \sin \phi_{15} = 9.93576$
	0.83 01 ==		. String		100.0	-5.3	$\lg c = 9.24062 \qquad 9.22082$
			-	-	+0.5	22.6	$\lg H = 9.30483$ 9.30479


Zusammenstellung:

Vari	at.: Potsdam	Kornthal			
H	= 0.20172	H	=0.20171		
	155		157		
	166		167		
	176		174		
H			$= 0.20168 \pm 5 \gamma$		
$\Delta(\lambda,\phi)$	= +1	$\Delta(\lambda$	$,\phi)=0$		
H	= 0.20169	H	=0.20168		

Nr. 24. 1902 Aug. 11. Bedeckter Himmel.

Standpunkt auf der Kuppe zwischen Ulrichs- und Kreuzkapelle bei Marktoffingen, in Öde (Lamontsche Station). Im oberen Süßwasserkalk auf Granit. $x = +30\ 292.5$, $y = +27\ 706.9$, $H = 488^m$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
		$\Delta u = +0^m9$	- 11		
1-4	I oben	5º 35.6-36º6	350° 17:4 18.1	6.6	350° 24:4
5-8	II oben	38.3-39.5	350 14.9 14.9	6.6	350 21.5
		maharati - melan	7		350 22.9
9-12	II oben	5 ^p 39.6-41.0	350 16.2 16.0	6.7	350 22.8
13-16	I oben	43.3-44.5	350 17.3 16.6	6.6	350 23.6
811		574 68.8 = 1	10.0	2.14	350 23.2

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Magnet- ariat. Ablesung red. auf no
	Hochaltingen Maihingen, Kl.	2(6)2	31°53!6 91 4.7 91 56.0	
	Maihingen Dürrenzimmern Birkhausen		115 22.8 151 55.9	141 18
	Nördlingen Zipplingen Marktoffingen		172 8.3 264 7.1 180 26.4	
	Kreuzkapelle Ulrichskapelle		245 38.5 62 58.9	100

Azin	ut des	Kreis	nullpu	inktes	:
	H.	-0	21:6	Gew.	4
	Mai.		21.4		1
	D.		21.3		6
	B.		21.3		2
	N.		21.5		7
	Z.		21.5		4
	a0	$= -0^{\circ}$	21:4	$\Sigma p = 1$	24
	A-a	= -	-49.7		
	Ao :	$= -1^{\circ}$	11:11	±0:1	
	(M)	=350	23.1	±0.2	
	M	$=349^{\circ}$	12:0	-	
	Do	= 10	48.0		
nittl. I	Dekl. D				

Nadel	Kreis	Be- zeich-	Mi	ttel	A+B	Va	riat.	Uhr-
	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1 2	o W	a	63° 40:5 64 27.0	63°57!5 63 54.5	63°49!0 64 10.8	102.0 101.9		5º55
3 4	W	i	63 46.5 64 23.0	63 57.2 63 54.5	63 51.8 64 8.8	101.9	125.4	6p 5
				THE R	64 0.1			
II 5	o W	a	63 30.5 64 57.2	64 30.0 63 16.2	64 0.3 64 6.7	101.9	125.0	6º 7
7 8	W	i	63 33.0 64 59.8	64 35.5 63 14.2	64 4.2 64 7.0	101.9		16
					64 4.5 Δi –1.0	101.9 101.0	125.2 126.2	
					64 3.5	+0.9	-1.0	

$$\begin{array}{cccc} \Delta n' = +0.9 & \Delta n'' = -1.0 \\ & \text{Nadel I} = 64^{\circ} & 0.1 \\ & \text{II} = 64 & 3.5 \\ \hline \text{Mittel} & = 64^{\circ} & 1.8 \\ & \text{dJ} & = & +0.3 \\ \hline \text{J} & = 64^{\circ} & 2.1 \\ \end{array}$$

Magnet I.

Ein-	III	Mag-	Kreis:	v	ariation	nen	11 . 2.20 CT + 22 . DOM . y == +27 . DOM . T
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	No. Besteling Christole died in
v v ₂ v ₁ v ₃ v ₄	6P 21 ^m 3 25.4-25.6 27.5-28.0 29.5-29.8 31.1-31.4	11:0 11:0 11:0 11:0 11:0	350°16:9 39 15.5 38 43.2 38 59.4 301 29.7 301 34.4 301 32.0	6.3 6.2 6.1 6.15 6.1 6.0 6.05	102.7 102.9 103.2 103.4 103.0 100.0	τ=16°,5 29.0 29.1 29.0 29.0 29.0 29.0 -5.3 23.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Ma	gnet II.				
v ₄ v ₃	6º33.5-33.7 35.5-35.7	11.0 10.8	302 4.6 301 2.3 301 33.4	6.2 6.2 6.2	i03.5 103.5	29.2 29.2	$\begin{array}{cccc} 2(\phi) &= 97^{\circ}28!8 \\ \phi &= 48 \ 44.2 \\ \lg \sin \phi_{15} = 9.87 \ 477 \end{array}$
$\begin{matrix}v_2\\v_1\end{matrix}$	37.3-37.5 39.5-40.5	10.7 10.5	38 48.2 39 16.2	6.2 6.2	103.5 103.5	29.1 29.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	10.59.9	10.75	39 2.2	6.2	103.5 100.0 +3.5	29.1 5.3 23.8	$\frac{\lg c}{\lg H} = 9.30445 \qquad \frac{9.17969}{9.30452}$
v	42.4		350 17.5	6.2	+3.5	23.8	DE LANGE

Deflektor I.

Ein- stel- lung	1112	Mag-	Kreis:	Variationen			
	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
o W	6 ^p 45.3-45.4 47.2-47.4	1090 10.1	294° 48:3 45 58.3	6.1 6.1	103.1 103.1	τ=16°,5 29.2 29.4	
11		10.05			103.1 100.0	29.3 —5.3	
100		136			+3.1	24.0	

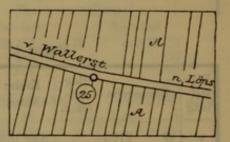
$$\begin{array}{ll} 2\,(\phi) & = 111^{\circ}\,10.0 \\ \phi & = 55 \ 35.0 \\ \lg\sin\phi_{15} = 9.91 \ 493 \end{array}$$

 $\begin{array}{lll} \text{Variat.: Potsdam} & \text{Kornthal} \\ \lg c &= 9.22\ 007 & 9.22\ 028 \\ \lg H &= 9.30\ 493 & 9.30\ 493 \end{array}$

Deflektor II.

W	6P49.5-49.8 51.4-51.6	10.0 9.8	50 15.3 290 25.1	6.2 6.2	103.2 103.4	29.5 29.5
-	-	9,9	Star Log		103.3 100.0	29.5 —5.3
	70.5-514		6 20		+3.3	24.2

Zusammenstellung:


Va	riat.: Potsdam	K	ornthal
H	= 0.20 167	H =	0.20 168
	158		162
	180		180
	177		176
H	$= 0.20170 \pm 5 \gamma$	H =	0.20 172 ±5 y
$\Delta(\lambda, \epsilon)$	$\phi) = +2$	$\Delta(\lambda,\phi)=$	0
H	=0.20172	H =	0.20 172

Nr. 25. 1902 Aug. 12. Sonnenschein.

Standpunkt am Südrand der Straße von Wallerstein nach Löpsingen, etwa 400^m vom Bahnhofe entfernt, auf dem Brühl. Im Löß.

$$x = +28540.0$$
, $y = +27338.2$, $H = 433$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	
	O direkt O	Δu = +52*7 6* 36 ^m 15*0 37 17.5 38 9.5 39 7.5	83° 22:3 84 7.2 84 16.8 83 53.9 292 1.0 304 25.1 348 13.4 20 1.1 65 40.7 112 26.8 177 37.1 232 50.0	2 10 20 20 20 20 20 20 20 20 20 20 20 20 20	ALE	
1-4	I oben	6°51.4-52.6	350 23.0 22.5	3.3	350°26:0	
5-8	II oben	53.7-55.4	350 19.0 18.4	3.3	350 22.0 350 24.0	
9-12	II oben	6*55.6-56.5	350 19.0 19.4	3.3	350 22.5	
13-16	I oben	58.4-59.4	350 21.1 20.0	3.3	350 23.9 350 23.2	

Ao	=	-1°1	6:0		
W.	-			ew.	0.3
M.		27.	1		4
B.		27.	6		1
D.		27.	2		5
A.		28.	.0		9
N.		27.	2		1 5 9 3
E.		27.	5		0.5
ao	= -	-0° 27	5 Σī	0=5	23
A-a	=	-49	0		
Ao	= -	-1° 16	5 ±	0:2	
(M)	=3	50 23.	6 ±	0.4	
M	= 3	49° 7	1		
Do	=	10 52.	9		
	Spicg A ₀ W. M. B. D. A. N. E. A ₀ (M) M D ₀	$\begin{array}{lll} {\rm Spicgelko} \\ {\rm A}_0 & = & \\ {\rm W.} & \\ {\rm M.} & \\ {\rm B.} & \\ {\rm D.} & \\ {\rm A.} & \\ {\rm N.} & \\ {\rm E.} & \\ & \\ {\rm A}_0 & = & \\ & \\ {\rm A}_0 & = & \\ & \\ {\rm (M)} & = & \\ {\rm M} $	$\begin{array}{llll} {\rm Spicgelkorr.} & -1 \\ {\rm A}_0 & = & -1^{\circ}1 \\ {\rm W.} & -0^{\circ}27 \\ {\rm M.} & 27 \\ {\rm B.} & 27 \\ {\rm D.} & 27 \\ {\rm A.} & 28 \\ {\rm N.} & 27 \\ {\rm E.} & 27 \\ {\rm A}_0 & = -0^{\circ}27 \\ {\rm A}_{-a} & = & -49 \\ {\rm A}_0 & = -1^{\circ}16 \\ {\rm (M)} & = 350 \ 23 \\ {\rm M} & = 349^{\circ}7 \\ {\rm D}_0 & = 10 \ 52 \\ \end{array}$	M. 27.1 B. 27.6 D. 27.2 A. 28.0 N. 27.2 E. 27.5 $a_0 = -0^{\circ} 27!5 \Sigma_1$ A - a = -49.0 $A_0 = -1^{\circ} 16!5 \pm 0$	$\begin{array}{lll} {\rm Spicgelkorr.} & -16.0 \\ {\rm A}_0 & = & -1^{\circ}16!0 \\ {\rm W.} & -0^{\circ}27!7 \; {\rm Gew.} \\ {\rm M.} & 27.1 \\ {\rm B.} & 27.6 \\ {\rm D.} & 27.2 \\ {\rm A.} & 28.0 \\ {\rm N.} & 27.2 \\ {\rm E.} & 27.5 \\ \hline {a}_0 & = -0^{\circ}27!5 \; {\rm \Sigma p} = 5 \\ {\rm A} - a = & -49.0 \\ {\rm A}_0 & = -1^{\circ}16!5 \; \pm 0!2 \\ {\rm (M)} & = 350 \; 23.6 \; \pm 0.4 \\ {\rm M} & = 349^{\circ} \; 7!1 \\ {\rm D}_0 & = & 10 \; 52.9 \\ \end{array}$

Variat.

Be-

Mittel

Nadel	Kreis	zeich-		MII		(A) I I I I	A + B	,,,	iriat.	Uhr-	THE PROPERTY OF		
Trauci	Kieis	nung		nten	Bu	nten	2	H.	Z.	angabe	S Dames		
I 1	0	a	630	45!5	64°	1:2	63°53!4	98.3		7* 42	An' -	-3.4 Δn°	05
2 3	W	a	64		63	59.8	64 12.3	98.0	125.9	1	1999		
	W	i		47.0		59.5	63 53.2		120.9	0 00	No.	adel I = 64°	4.9
4	0	i	64	21.8	64	0.0	64 10.9		18,000 00	51		$\frac{11}{11} = 64^{\circ}$	
	-						64 2.5	5		1000	d		
II 5	0	a	63 5	29.5	64	35.2	64 2.4	97.5	The same of	7ª 53	J	= 64°	
II 5 6	W	a	64				64 6.5	97.5	125.5	100		-01	0.0
7	W	i	63 3		64		64 8.5		120.5		10 1		
8	0	1	65	2.5	63		64 6.2			8ª 3	1000		
	7.91		13	-		150	64 5.9		125.7				
	0.81		1.0			100 -	Δi -1.0		126.2	1 1 1 1	Bulleton.		
	1385	100	Mac	gnet I			64 4.9	-3.4	-0.5	000	20010		
- I	0.01	-			-8 1	1/			115				
Ein- stel-	Uhrang	gabe	Mag- net-	Kre			ariation		18 31				
lung	12		temp.	Mit	ttei	Kornth. D.	Potsd. H.	Kornth. H.	03 PI				
1.0			0.0			000	1000000	τ=14°5	1000		974)	079 4910	
CO.	7* 2.9-		99		57:5	3.4	100.2	31.5	170 St. 200			= 97°42!0 = 48 51.0	
V2	5.2-	- 5.6	10.1		30.6	3.2	100.1	31.3	13 37		$\lim_{n \to \infty} \sin \phi_{15} =$		
				-	14.0	3.3	-		No line		: Potsdam		ornthal
v ₃	7.3-		9.2		28.3	3.1	100.0	31.3			= 0		
V ₄	8.6-	8.8	9.2		35.8	3.1	99.9	31.1		* UU	= 9.87510	#17	= +30 .87 540
			9.6	301	32.0	3.1	100.0	31.3		g sm φ ₀	= 9.87 310 = 9.17 956	9	.17 982
						-	0.0	-8.4 22.9	-	w	= 9.30446		.30 442
1		. !	Mac	net !	1	-	0.0	24.8		5 **	- 0.00 110		100 114
1						1	1	T=1494	700				
	7* 11.5-		9.9	302		3.0	99.6	31.1				= 97°39!6	
1,3	13.5-	13.8	10.0		57.9	3.2	99.6	31.0				= 48 49.6	
-		a sale		301	29.8	3.1		10000			$\lg\sin\phi_{15} =$		
V ₂	15.4-		9.7		54.8	3.2	99.5	31.0		100	= -3		= +25
v ₁	17.5-	17.7	9.1		24.1	3.0	99.4	30.9			= 9.87504		.87 532
		100	9.7	39	9.4	3.1	99.5	30.9			= 9.17943		.17 970
1000		1	780				100.0	-8.5	Iş	gH	= 9.30439	9	.30 438
v		20.3		350	19.5	3.0	-0.5	22.4					
7		20.0	Def	lektor		0.0	to a		100				
	7* 27.7-	28.3	9.3		40.1	2.9	99.0	30.9			$2(\phi) =$	= 111°26'8	
W	30.1-		9.2		6.9	2.9	98.9	30.9			ϕ =	: 55 43.4	
100			9.25				99.0	30.9			$\lg \sin \phi_{15} =$	9.91 541	
							100.0	-8.5			= 9.22005		.22 030
					44		-1.0	22.4	lį	gH	= 9.30471	9.	.30 464
W II	78 99 1	99.4		ektor			1 00 5	1 207			9(4)	1900014	
W	7* 33.1- 35.3-		9.4		$\frac{26.2}{25.8}$	2.8	98.7 98.6	30.7			$2(\phi) = \phi$	= 120°0!4 = 60 0.2	
	30.3-	50.0	9.5	200	20.0	2.0	98.7	30.7			φ = $\lg \sin \phi_{15} =$		
		-	0.0				100.0	-8.5	10		= 9.24062		.24 086
							-1.3	22.2			= 9.30493		30 485
		1		ELE I			100000				Zusammer		
									Vari	at.: Po		Korn	thal
									H	= 0.20			.20157
									000		155		155
											170		167
									-	-	180		177
									H		166±6γ		.20164 ±6-
									$\Delta(\lambda, \phi)$)=	-1	$\Delta(\lambda, \phi) =$	+1
											7.00		00 101
									H	=0.20	165		.20165

Nr. 26. 1902 Aug. 12. Regen.

Standpunkt: Sig. Dirgenhaid, östlich von Wössingen, an einem Feldwege.
In Opalinustonen an der Grenze gegen Eisensandstein. $x = +43 \ 417.5^{m}, \ y = 100 \ 136.4^{m}, \ H = 510^{m}.$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	ariat.	Magnet- ablesung red. auf n ₀
	T.D 13.	$\Delta u = +0^m9$	191.19	153	10
1-4	I oben	10ª 6.4- 7.6	350° 20!5 20.7	5.3	350° 25:9
5-8	II oben	9.4-10.4	350 19.9 18.2	5.4	350 24.4
			THE SA	20	350 25.2
9-12	II oben	10° 10.9-12.4	350 19.1 18.9	5.5	350 24.5
13-16	I oben	14.2-15.2	350 20.1 19.9	5.6	350 25.6
-	Zipplingen Oberwilf lingen Nördlingen Benzenzimmern Dirkenheim Kirchheim, Kl. Kirchheim Jagstheim Wössingen	2(d) 2 de nin de laste Pesaltan	345 31.9 14 49.3 138 39.9 130 44.6 207 55.2 208 29.7 210 31.0 242 4.5 277 51.8	2 10	350 25.0

Z.	-2°18:5 Gew.	4
0.	18.4	4
N.	18.6	10
B.	18.7	3
D.	19.0	2
K. KI	. 18.6	6
K.	18.7	2655
J.	18.0	5
W.	18.7	2
ao	$= -2^{\circ}18!5 \Sigma p =$	41
A-a	= +1 2.0	
Ao	$= -1^{\circ} 16!5 \pm 0!1$	
(M)	$=350\ 25.1\pm0.1$	
M	= 349° 8:6	
Do	= 10 51.4	

Uhr-	iat.	Var	A+B	ttel	Mit	Be- zeich-	Kreis	Nadel	
angab	Z.	H.	2	B unten	A unten	nung	Kreis	adei	
11* 15		96.5	63°51!1	63°59!5	63° 42:8	a	0	1	
1000	1000	97.1	64 11.1	63 59.2	64 23.0	a	W	2 3	
-	119.4	97.0	63 47.1	63 53.2	63 41.0	i	W	3	
25		96.6	64 10.3	63 59.8	64 20.8	i	0	4	
			63 59.9					- UV	
11ª 26		96.9	64 3.6	64 34.2	63 33.0	a	0	5	
		97.0	63 59.5	63 10.5	64 48.5	a	W	6	
100	119.2	97.0	64 5.0	64 38.0	63 32.0	i	W	7	
35		97.0	64 1.7	63 7.5	64 56.0	i	0	8	
19	119.3	96.9	64 2.5	4000					
	126.2	101.0	Δi -1.0	all was	PE 1/0 ATT	11-20-60			
	-6.9	-4.1	64 1.5					00	

$$\Delta n' = -4.1$$
 $\Delta n'' = -6.9$
Nadel I = 63°59!9
- II = 61.5
Mittel = 64° 0.7
dJ = -0.1
J = 64° 0.6

Magnet I.

Ein-	Y	Magnet-	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
					-	T=1490	
v ₁	10°29.7-31"5	11:2	38° 49.2	6.0	94.5	30.0	
V ₂	32.9-33.4	11.2	39 27.3	6.2	94.5	30.3	
1000	10000000		39 8.3	6.1		1 30	
v ₃	36.5-36.9	11.8	301 35.0	6.3	95.1	30.5	
V ₄	38.3-38.6	11.4	301 39.6	6.5	95.2	30.6	
-		11.4	301 37.3	6.4	94.8	30.4	
100				7.7	100.0	-9.1	
- 10	The same of the same		CONTRACT OF	71391	-4.8	21.3	

$$2 (\phi) = 97^{\circ}31.0$$

 $\phi = 48 \ 45.3$
 $\lg \sin \phi_{15} = 9.87 \ 503$

Variat.: F	Potsdam	Kornthal		
n'100	-33	n'20	+14	
$\lg \sin \phi_0 =$	9.87 470	9.87 517		
lg c =	9.17 956	9.1	17 982	
lgH =	9.30 486	9.3	30 465	

N					
- IV	10	0.1	\mathbf{n}	100	

	The second second	Ma	ignet II.	Service Market			and the state of t					
Ein- stel-	Uhrangabe	Mag- net-	Kreis:	1000 30	ariation		No. Elementer I Champile Office to					
lung	Cinangaoo	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	STATE OF STREET, STREE					
v ₄ v ₃	10*49.0-49 ^m 3 43.2-43.5	11°.8 12.0	302° 6:8 301 9.6 301 38.2	7.0	95.6 95.3	τ=14.0 31.0 30.7	v_4 verworfen, weil τ unsieher, am Schlusse wiederholt. $2 (\phi) = 97^{\circ}26!0$ $\phi = 48 42.8$ $\lg \sin \phi_{15} = 9.87 498$					
v ₂ v ₁	45.3-45.6 46.7-47.2	12.1 12.0 12.0	38 48.9 39 19.5 39 4.2	6.85 6.8 6.9 6.85	95.4 95.4 95.4	30.8 30.9 30.8	Variat.: Potsdam Kornthal $n'_{100} = -31$ $n'_{20} = +18$					
v	51.5	12.0	350 21.2	NE IN	100.0	-9.1 21.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Deflektor II.											
o w	10a53.8-54.3 56.0-56.3	13.3 12.3 12.8	290 41.4 50 2.9	7.2 7.3	95.8 96.0 95.9 100.0 —4.1	31.3 31.5 31.4 —9.1 22.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		Def	lektor I.				19 10 10 10 X 11 10 1 1 1 1 1 1 1 1 1 1 1					
W o	10*58.5—59.7 60.5—60.7	12.5 11.7 12.1	45 52.8 294 45.0	7.5 7.6	95.9 95.7 95.8 100.0 —4.2	31.5 31.3 31.4 —9.1 22.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
							Variat.: Potsdam H = 0.20 177 H = 0.20 167 172 162 160 193					
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Nr. 27 und 27 a. 1902 Aug. 12. Bedeckter Himmel, starker Wind. Standpunkt 27: Sig. Goldberg, auf der Kuppe des Goldberges bei Goldburghausen. Die Horizontalintensität wurde des Windschutzes wegen in einer alten kleinen Grube, 5^m von Signalstein entfernt, gemessen.

Standpunkt 27 a am Südabhang etwa 200^m südlich und 120^m östlich von Punkt 28, gegen Wind geschützt; hier wurde H nochmals gemessen.

Nr. 27: $x = +38694.2^{m}$, $y = +100585.2^{m}$, $H = 513^{m}$. Nr. 27a: 38500 100700 470^{m} .

Standpunkte im oberen Süßwasserkalk.

Nr. 27.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Magnet- ablesung red. auf n ₀
W 100	Nördlingen Pflaumloch Utzmemmingen Kirchheim Dirkenheim Wössingen Zipplingen Goldburghausen Benzenzimmern	$\Delta u = +0^{m}9$	102° 40:9 129 43.6 159 26.7 321 46.6 346 0.3 340 15.0 353 7.8 15 39.3 20 25.9	

	N.		-29	25:9	Gew	. 8
	P.			24.4		2
	U.			25.5		7
	K.			26.8		5
	D.			26.1		27568
	W.			26.2		8
	Z.			26.3		10
	G.			26.7		1
	B.			26.4		6
Laborat V	a_0	=	-29	26:1	$\Sigma p =$	53
		=		2.2	-	
7.53	Ao	=	-19	23:9	±0!1	
	(M)	=	350	35.0	± 0.1	
15 52	M	=	3499	11:11		7
	Do	=	10	48.9		
ittl. De	ekl. D.	=	10	55.9		

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	
1-4	I oben	3º 54.4-55 ^m 5	350° 24:6 25.7	11.4	350°36!6	
5-8	II oben	56.6-57.9	350 22.5 22.0	11.3	350 33.4 350 35.0	
9-12	II oben	2º 58.4-59.0	350 23.8 24.0	11.3	350 35.2	
13-16	I oben	3р 0.1- 1.1	350 23.6 24.0	11.2	350 35.0	
100		ENG TOWNER	24.0	- 449	350 35.1	

Nadel	Waste	Be- zeich-	Mi	ttel	A + B	Vai	riat.	Uhr-
Nadel Kreis	nung	A unten	B unten	2	H.	Z.	angabe	
I 1	0	a	63° 42:0	63°59!2	63°50!6	102.1		2º 22
2 3	W	a	64 22.5	63 58.2	64 10.4	102.0		1000
3	W	i	63 42.5	63 56.5	63 49.5	102.0	124.6	
4	0	i	64 21.2	64 1.0	64 11.1	102.0		31
					64 0.4			
II 5	0	a	63 31.2	64 38.2	64 4.7	102.0		2º 32
6	W	a	64 46.0	63 5.0	63 55.5	101.9		1
7	W	i	63 36.5	64 42.8	64 9.6	101.7	125.1	
8	0	i	64 54.0	63 0.8	63 57.4	101.6		43
					64 1.8	101.9	124.8	
					Δi -1.0	101.0	126.2	
					64 0.8	+0.9	-1.4	

 $\Delta n' = +0.9 \quad \Delta n'' = -1.4$ Nadel I = 64° 0.4

• II = 0.8

Mittel = 64° 0.6

dJ = +0.3

J = 64° 0.9

Magnet I.

Ein-	TTL	Magnet	Kreis:	Variationen			
stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
v ₁	3° 9.3-10°1	1390	38° 46!6	11.1	102.0	τ=14% 33.4	
v ₂	12.6-13.0	12.5	39 19.5	11.1	101.6	33.2	
			39 3.1	11.1		11 4411	
v ₃	14.8-15.4	12.8	301 44.7	10.9	101.2	33.0	
V ₄	17.0-17.5	12.8	301 47.5	10.7	101.0	33.0	
17.99	10000	12.8	301 46.1	10.8	101.4	33.1	
	10000		- HOY CHILL		100.0	-8.5	
			100000		+1.4	24.6	

 $\begin{array}{ll} 2\,(\phi) & = \ 97^{\circ}\,17!0 \\ \phi & = \ 48\ 38.6 \\ \lg\sin\phi_{15} = 9.87\ 472 \end{array}$

N				_	
- 0	100	COLUMN TO SERVICE	100		

		Titag.	HOU AL.			
V ₄	3º 22.5-24.4	13.8	302 14.7	10.7	101.0	32.9
V ₃	25.8-26.2	12.5	301 14.7	10.6	101.0	32.9
	148		301 44.7	10.65		
V ₂	28.0-28.6	12.2	38 47.1	10.5	101.2	32.9
v ₁	30.1-30.6	72.5	39 22.6	10.4	101.2	32.8
10000	1 3500000000	12.75	39 4.9	10.45	101.1	32.9
	100		-		100.0	-8.5
	P. S.		Townson !		+1.1	24.4
v	34.3		350 26.2	10.3		1900

$2(\phi)$	= 97°	20:2
φ	= 48 3	39.8
lg sin	$\phi_{15} = 9.87$	487

Deflektor I

		270210				
o W	3 ^p 37.0-39.5 41.8-42.3	12.7 12.5	294 53.5 45 55.8	10.2 10.1	101.2 101.4	τ=14°5 32.8 32.7
1000	INTERNAL CONTRACTOR	12.6	The same		101.3	32.7
	(CE) 01 42-				100.0	-8.4
	10.20 01 = 4		rele		+1.3	24.3

Deflektor II.

Ein-		Mag- Kreis	Kreis:	Variationen			
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
w	3º 46.0-46 ^m 5 48.5-51.1	13°1 12.5	50° 14:4 290 32.9	10.0	101.4 101.6	τ=14°,5 32.7 32.7	
	000 000	12.8		-	101.5 100.0	32.7 —8.4	
	The state of the s			700	+1.5	24.3	

Zusammenstellung:

1	Variat.: Potsdam		Kornthal
H	= 0.20171	H	= 0.20166
	160		154
	164		159
	154		149
H	$= 0.20 \ 162 \pm 4 \gamma$	H	$= 0.20 \ 157 \pm 4 \gamma$
$\Delta(\lambda$	$, \phi) = +1$	$\Delta(\lambda,$	$\phi = 0$
H	= 0.20163	H	= 0.20157

Nr. 27a. Magnet I.

		Ma	gnet I.	Springly.	B WA		and the popular substraint and the transfer of the
Ein- stel- lung	Uhrangabe	Mag- net- temp.	Kreis: Mittel	Kornth.		Kornth.	CONTRACTOR SERVICE
v	4º 31º0		350° 24!6	D. 8.6	Н.	H.	No. Exemples of Photograph was do
$v_1 \\ v_2$	34.5-34.8 36.6-36.9	13°.2 13.1	38 46.3 39 20.8	8.6 8.6	101.5 101.3	32.2 32.2	$2\phi = 97^{\circ}16:0$ $\phi = 48 38.0$
- V ₃	38.4-38.6	13.2	39 3.6 301 45.1	8.6	101.3	32.2	$\lg \sin \phi_{15} = 9.87478$ Variat.: Potsdam Kornthal
V ₄	39.6-39.8	13.2	301 50.1 301 47.6	8.5	101.3 101.3 100.0	32.2 32.2 —8.4	$\frac{n'_{100}}{\lg \sin \phi_0} = \frac{+9}{9.87487} \qquad \frac{n'_{20} = +40}{9.87518}$
1	CHE				+1.3	23.8	$\frac{\lg c}{\lg H} = \frac{9.17956}{9.30469} = \frac{9.17982}{9.30464}$
		Mag	gnet II.				
v ₄ v ₃	4º 42.5-42.7 44.3-45.4	13.3 13.0	302 22.2 301 14.3 301 48.2	8.4 8.4 8.4	101.1 101.1	32.3 32.2	$ \begin{array}{rcl} 2 (\phi) & = 97^{\circ} 23.6 \\ \phi & = 48 41.5 \\ \lg \sin \phi_{15} = 9.87 517 \end{array} $
v ₂ v ₁	47.4-47.8 49.5-49.6	13.1 13.1	38 55.2 39 28.4	8.4	101.0 101.0	32.1 32.2	$\frac{n'_{100} = +7}{\lg \sin \phi_0 = 9.87524} \qquad \frac{n'_{20} = +40}{9.87557}$
W		13.1	39 11.8	8.4	101.0 100.0	32.2 —8.4	$\frac{\lg c}{\lg H} = 9.17943 \qquad 9.17970 \\ 9.30413$
			-		+1.0	23.8	
		Defl	ektor I.				
0 W	4º 54.1-55.4 56.8-58.0	13.5 13.1	295 1.2 45 57.7	8.2 8.2	101.0 101.0	32.0 32.0	$ \begin{array}{rcl} 2 (\phi) & = 110^{\circ} 56!5 \\ \phi & = 55 28.2 \end{array} $
0.	880°00-1	13.3		7	101.0	32.0 —8.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1000	Total P			+1.0	23.6	lg H = 9.30 467 9.30 461 Pinne schlecht, Neue Pinne, Satz wiederholt.
_	Jales .	Defl	ektor II.				
w	5 ^p 12.2-12.4 13.9-14.4	13.7 13.7 13.7	50 15.4 290 48.2	7.6 7.6	101.0 101.0	τ=14,6 32.0 32.0 32.0	$\begin{array}{cccc} 2 (\phi) & = 119^{\circ} 27!2 \\ \phi & = 59 43.6 \\ \lg \sin \phi_{15} = 9.93 591 \end{array}$
				1	+1.0	-8.2 23.8	$\begin{array}{ccc} \lg c &= 9.24\ 062 & 9.24\ 086 \\ \lg H &= 9.30\ 464 & 9.30\ 455 \end{array}$

Deflektor I.

Ein-		Mag-			Variationen			
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.		
100000	5°17.6-17".8	Bearing Co.	295°0!2		101.0	τ=14% 31.8		
W	19.5-19.6	13.2	46 2.6	7.4	101.0	31.8		
					+1.0	-8.2 23.6		

Zusammenstellung:

	Variat.: Potsdam		Kornthal
H	= 0.20169	H	= 0.20 167
	146		143
	168 Gew. 1/2		165 Gew. 1/2
	167		163
	160 Gew. 1/2		157 Gew. 1/2
H	$= 0.20 \ 162 \pm 4 \gamma$	H	$= 0.20159 \pm 4 \gamma$
$\Delta(\lambda$	$, \phi) = +2$	$\Delta(\lambda,$	ϕ) = 0
H	= 0.20 164	H	=0.20159

Nr. 28. 1902 Aug. 13. Bedeckter Himmel, mäßiger Wind. Standpunkt auf der nordwestlichen Kuppe des Kreuzberges bei Kleinsorheim in einer Öde. Im Schwammkalk.

x = +24808.8, y = +24497.9, H = 475^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
	0.86	Δu = +0.09	1.1	6.1	1 22 7
	Altheim	They was don't	268° 21:7		
	Schmähingen	saludous charge	291 7.2	5 51	
	Nördlingen	CHES IN STREET	312 40.2	2 151	
	Möttingen	THE SHARE	335 20.1	1 600	
	Appetshofen Kleinsorheim	27L2-	7 33.9 60 53.1	37	
	Rauhe Wanne	1000 - N	253 46.9	0 163	
		70 40 0 41 mg			
1-4	I oben	7ª 40.2-41 º6	350 22.7	3.5	350° 26!5
5-8	II aban	43.6-45.6	23.4 350 21.5	K 13	
5-0	II oben	45.0-45.0	21.9	3.4	350 25.1
		20 49 Sp 1	21.0		350 25.8
9-12	II oben	7ª 46.0-47.2	350 23.8	3.4	350 27.2
		The state of the s	23.8	3.4	0.00 21.2
13-16	I oben	49.7-51.5	350 21.2 23.7	3.4	350 25.8
9			23.1		350 26.5

The same of			
	1	Öde	
A	1	28	
_		(28)	F
	_	1	/
Azimut	des K	reisnull	punktes:

S. N. M. 33.2 6923 33.2 34.5 Ap. 34.4 0.2 34.3 R. 34.4 $= -0^{\circ}33!6 \Sigma p = 30$ -43.7A - a = $\begin{array}{lll} A_0 & = -1^{\circ} 17!3 \pm 0!2 \\ (M) & = 350 \ 26.2 \pm 0.4 \end{array}$ $M = 349^{\circ} 8.9$ $D_0 = 10 51.1$ mittl. Dekl. D = 10 58.1

Nadel		Kreis	Be-	Mi	ttel	A + B	Va	riat.	Uhr-									
		Kreis	nung		zeich- nung										A unten	B unten	2	H.
I	1	0	a	63° 42!2	63°55!5	63° 48!8	94.4		8ª 46									
	2 3	W	a	64 18.5	63 57.2	64 7.8	94.4	124.3	133									
	3	W	i	63 42.2	63 48.8	63 45.5	94.4	124.5	100									
	4	0	i	64 10.5	63 58.5	64 4.5	94.5		55									
						63 56.8												
II	5	0	a	63 30.0	64 29.8	63 59.9	94.5		8ª 56									
	6	W	a	64 45.5	63 8.5	63 57.0	94.5	1011	T.									
	7	W	i	63 31.2	64 34.0	64 2.6	94.6	124.1	1 1 1 1									
	8	0	i	64 55.0	63 1.5	63 58.3	94.5		9ª 5									
						63 59.4	94.5	124.2										
						Δi -1.0	101.0	126.2	100									
						63 58.4	-6.5	-2.0										

$$\Delta n' = -6.5$$
 $\Delta n'' = -2.0$
Nadel I = 63° 56'8
- II = 58.4
Mittel = 63° 57'.6
dJ = -1.1
J = 63° 56'.5

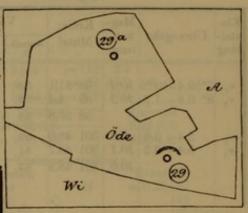
Magnet I.

Ein-		Mag-	Kreis:	V	ariation	ien	equile-Sir 23, Messelle tim d tent if, an instance
ung		net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.	bideleT cab and 701 even dord
	7°59.4-59°5	1001	38°51!1	3.3	96.6	τ=13°,8 31.4	$2(\phi) = 97^{\circ} 9!0$
V ₁ V ₂	8ª 0.8- 1.2	10.2	39 4.4		96.5	31.4	$2(\phi) = 97^{\circ} 9.0$ $\phi = 48 34.5$
-	The state of the s	7111	38 57.8		116	- TOP	$\lg \sin \phi_{15} = 9.87339$
v ₃	2.4- 3.6	9.6	301 49.0		96.4	31.4	Variat.: Potsdam Kornthal
v ₄	5.4- 6.2	10.1	301 48.7		96.3	31.3	$n'_{100} = -24$ $n'_{20} = +21$
	(6)	10.0	301 48.8	3.2	96.4	31.4 -9.4	
	-				-3.6	22.0	lg H = 9.30 642 9.30 626
			Magnet I.			1 3	H Castal A pant
	08140 140	B. T.	I was sale		05.0	T=1397	Pinne war schlecht. Wiederholung mit neuer
V ₁ V ₂	8ª 14.6-14.8 16.4-16.6	9.8	38 42.0 39 11.3		95.9 95.7	31.0	$2(\phi) = 97^{\circ} 5.6$
-	31,60		38 56.6				$2(\phi) = 97^{\circ} 5.6$ $\phi = 48 32.8$
v ₃	18.2-18.6	10.0	301 49.4		95.6	30.9	$\log \sin \phi_{15} = 9.87323$
v ₄	20.4-20.6	10.2	301 52.5		95.4	30.8	$n'_{100} = -30$ $n'_{20} = +14$
	-	10.1	301 51.0	3.05	95.6	30.9	$\lg \sin \phi_0 = 9.87 \ 293 \qquad \qquad 9.87 \ 337$
					100.0	-9.6 21.3	$\frac{\lg c}{\lg H} = 9.17957 \qquad 9.17986 9.30649$
	1	1				21.0	ig ii = 5.50 004 5.50 045
	0000 - 004		Magnet II				
V ₄ V ₃	8 ^a 23.1-23.4 25.2-25.4		302 24.0 301 25.5		95.3 95.3	30.7	$2 (\phi) = 97^{\circ} 4!4$ $\phi = 48 32.0$
3			301 54.8				$\lg \sin \phi_{15} = 9.87\ 349$
v ₂	26.8-27.3	10.8	38 44.2	3.0	95.1	30.6	$n'_{100} = -33$ $n'_{20} = +10$
v ₁	28.7-29.3	11.0	39 14.2		95.1	30.6	$\lg \sin \phi_0 = 9.87316 \qquad \qquad 9.87339$
		11.0	38 59.2	3.0	95.2 100.0	30.6	$\frac{\lg c}{\lg H} = 9.17940 \qquad 9.17972 \\ 9.30633$
					-4.8	-9.6 21.0	$\lg H = 9.30624$ 9.30633
	0.01	F	eflektor I			-	To - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1
0	8*32.3-32.5		295 10.2		95.0	30.6	$2(\phi) = 110^{\circ}47.6$
W		10.8	45 57.8		95.0	30.6	$\phi = 55 \ 23.8$
	TO DE PARTY	10.95		100	95.0	30.6	$\lg \sin \phi_{15} = 9.91 420$
	SECTLO:	1	OTIE	17 17 17	100.0 —5.0	-9.6 21.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Store of	1	O CE DE	H	-0.0	21.0	1911 = 5.50 017 5.50 022
XX	08.26.6 26.0		Deflektor I		1 010	1 20.5	9(4) 110019/0
0	8*36.6-36.9 38.7-39.3		50 4.8 290 51.8		94.9	30.5	$2 (\phi) = 119^{\circ} 13.0$ $\phi = 59 \ 36.5$
		10.9			94.9	30.5	$\lg \sin \phi_{15} = 9.93448$
	200	To the	and the file		100.0	-9.6	$\lg c = 9.24062$ 9.24 090
	TO 10 10 10 10 10 10 10 10 10 10 10 10 10	1 8			-5.1	20.9	$ \log H = 9.30649 \qquad 9.30633 $
							Zusammenstellung:
							Variat.: Potsdam Kornthal

Variat.: Potsdam	Kornthal
$H = 0.20 250 \text{ Gew.}^{1/2}$ $260 \text{ m}^{-1/2}$ 241 238 253	H = $0.20 \frac{242 \text{ Gew.}^{1}/_{2}}{253} \frac{1}{245}$ $\frac{245}{240}$ $\frac{245}{245}$
$\begin{array}{ccc} \overline{H} &= 0.20 \ 247 \pm 4 \ \gamma \\ \text{Basiskorr. } \Delta b = & -1 \\ \underline{\Delta (\lambda, \phi)} = & -1 \\ \overline{H} &= 0.20 \ 245 \end{array}$	$\begin{array}{l} H = 0.20 \ 244 \ \pm 4 \ \gamma \\ \Delta(\lambda, \phi) = +1 \\ H = 0.20 \ 245 \end{array}$

Nr. 29 und 29 a. 1902 Aug. 13. Regen und Wind.

Standpunkt Nr. 29, Messung von J und H, am Südabhang des Rothenbergs bei Schmähingen, wegen Windschutzes in einem alten Kalksteinbruch, etwa $10^{\rm m}$ über der Talsohle.


Standpunkt Nr. 29a, Messung von D, H und J, auf höchster Kuppe des Rothenbergs etwa 125^m nördlich und 70^m westlich von Nr. 29, und etwa 30^m höher.

Nr. 29: x = +25 420, y = +26 270, $H = 435^{m}$ 29a: 25 466.9, 26 293.7, $H = 435^{m}$

Standpunkte im Breccienkalk des mittleren weißen Jura.

Nr. 29.

NT - 3 - 1	Vania	Be-	Mit	ttel	A + B	Vai	riat.	Uhr-					
Nade	Kreis	zeich- nung						A unten	B unten	2	H.	Z.	angab
I 1	0	a	63° 40!5	63° 49!5	63° 45!0	97.0		11* 10					
2 3	W	a	64 17.0	63 57.0	64 7.0	97.2	121.0						
3	W	i	63 39.0	63 46.5	63 42.8	97.1		7.55					
4	0	i	64 18.8	63 58.5	64 8.6	97.2		18					
					63 55.8								
II 5	0	a	63 29.8	64 29.5	63 59.7	97.3		11* 20					
6	W	a	64 43.0	63 5.2	63 54.1	97.4	120.7						
7	W	i	63 31.8	64 36.2	64 4.0	97.5	120.7						
8	0	i	64 36.2	63 4.5	63 50.4	97.6		29					
	-				63 57.0	97.3	120.8						
					Δi -1.0	101.0	126.2						
	17 180				63 56.0	-3.7	-5.4						

$$\begin{array}{cccc} \Delta n' = -3.7 & \Delta n" = -5.4 \\ \text{Nadel I} = 63^{\circ}55.8 \\ & \text{II} = & 56.0 \\ \hline \text{Mittel} & = 63^{\circ}55.9 \\ \text{dJ} & = & -0.2 \\ \hline \text{J} & = 63^{\circ}55.7 \end{array}$$

Magnet I.

Ein-	Transition of the last of the	Mag-	Kreis:	Variationen			
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth H.	
	$\Delta u = +0^{m}9$		0000 =	HAI!		200	
v	11ª 37.5		350° 17:8	10.1		τ=13°	
V ₁	41.4-41.7	15:0	38 17.7	10.3	98.2	32.7	
V ₂	42.9-43.4	15.6	38 51.9	10.5	98.4	32.8	
	8.82		38 34.8	10.4			
V ₃	45.2-46.4	14.1	302 1.3	10.7	98.6	32.9	
V ₄	48.0-48.3	14.6	302 6.1	10.8	98.6	33.0	
	220.000	14.8	302 3.7	10.75	98.4	32.9	
	The state of				100.0	-9.6	
	200000				-1.6	23.3	
		Mag	net II.				
V ₄	11°51.3-51.6	16.2	302 39.9	10.9	99.0	33.1	
V ₃	53.0-53.3	14.3	301 36.6	11.0	99.0	33.3	
	CONTRACTOR OF THE PARTY OF THE	034	302 8.2	10.95			
v_2	55.3-55.6	14.8	38 24.1	11.0	99.3	33.2	
v ₁	57.5-57.7	15.7	38 55.6	11.1	99.2	33.3	
	Indiana R	15.25	38 39.8	11.05	99.1 100.0	33.2 9.6	
	2000000				-0.9	23.6	
v	59.8		350 23.2	11.2	-0.5	20.0	
		Defle	ktor I.				
0	0P 4.0- 4.4		295 30.6	11.3	99.6	33.6	
W	7.1- 7.5	16.4	45 24.6	11.4	100.0	33.6	
	100 mm = 100	16.4			99.8	33.6	
	or Call in		300		100.0	-9.6	
					-0.2	24.0	

$$\begin{array}{ll} 2(\phi) &= 96^{\circ}\,31!1 \\ \phi &= 48\,\,15.3 \\ \lg\sin\phi_{15} = 9.87\,\,274 \end{array}$$

Varia	t.: Pot	tsdam	Kornthal
n'100	=	-11	n'20 = +34
lg sin q	$b_0 = 9.$	87 263	9.87 308
lg c	= 9.	17 957	9.17 986
lg H	= 9.	30 694	9.30 678

$$2(\phi) = 96^{\circ}31.6$$

 $\phi = 48 \ 15.6$
 $\lg \sin \phi_{15} = 9.87 \ 292$

$$\begin{array}{ll} \mathbf{n'}_{100} & = & -6 \\ \lg \sin \phi_0 = 9.87\ 286 \\ \lg c & = 9.17\ 940 \\ \lg H & = 9.30\ 654 \end{array} \qquad \begin{array}{ll} \mathbf{n'}_{20} = +37 \\ 9.87\ 329 \\ 9.17\ 972 \\ \hline 9.30\ 643 \end{array}$$

Deflektor II.

Ein-		Mag-	Kreis:	Variationen			
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth.	
WO	0° 10.3-10° 6 12.5-12.7	16°3 15.0	49° 27!6 291 15.5	11.7 11.8	100.2 100.2	τ=13°7 33.7 33.7	
		15.65		Wall	100.2 100.0	33.7 —9.6	
				HELL	+0.2	24.1	

$$\begin{array}{ccc} 2(\phi) & = 118^{\circ}12!1 \\ \phi & = 59 & 6.0 \\ \lg \sin \phi_{15} = 9.93 \ 374 \end{array}$$

 $\begin{array}{lll} \text{Variat.: Potsdam} & \text{Kornthal} \\ \lg c &= 9.24\,062 & 9.24\,090 \\ \lg H &= 9.30\,687 & 9.30\,673 \end{array}$

Zusammenstellung:

V	ariat.: Potsdam		Kornthal
H	= 0.20274	H	= 0.20267
	255		250
	253		247
	271		264
H	$= 0.20263 \pm 5 \gamma$	H	$= 0.20257 \pm 5 \gamma$
Basiskorr.		$\Delta(\lambda,$	$\phi) = -1$
$\Delta(\lambda,$	$\phi) = -3$	H	= 0.20256
H	= 0.20259		

Nr. 29 a.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
1-	m(b) 0 1-	$\Delta u = +0^{m}9$			
la-4a	I oben	0º 34.8−35 ^m 7	350°16:1 15.0	12.1	350° 27:6
5-8	II oben	29.4-30.7	350 12.6 12.8	12.1	350 24.8
14			12.0		350 26.2
9-12	II oben	31.1-32.2	350 14.1 17.0	12.1	350 27.6
13-16	I oben	33.5-34.5	350 14.4 12.3	12.1	350 25.4
					350 26.5
	Hürnheim		260 38.0		
	Schmähingen Oberreimlingen		293 23.5 330 10.6		
	Nördlingen		332 40.6		
100	Großelfingen		32 55.0		
	Balgheim Hohenaltheim		89 37.6 166 58.5		di smilli

Bemerkung: Der 1. Halbsatz wurde verworfen und durch die Einstellungen 1a-4a ersetzt.

	Hū.		-00	37!2	Gew	. 2
	S.			37.1		0.5
	0.			36.9		1
	N.			37.4		5
	G.			37.2		4
	B.			37.0		0.5
	Ho.			37.0		1
	a_0	_	_()0		$\Sigma p =$	14
	A-a					**
					±0.1	
	A					
	2 /				± 0.2	
			349°	2:3		
	Do _	=	10	57.7		
tl. De	kl. D	=	11	4.7		

Nadel	V	Be- zeich-	Mi	ttel	A + B	Var	riat.	Uhr-
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63°41:8	63°55!8	63° 48!8	102.4		1º 4
2 3	W	a i	64 14.8 63 39.0	63 51.5 63 50.8	64 3.1 63 44.9	102.5 102.6	121.0	100
4	0	i	64 13.2	63 54.8	64 4.0	102.9		13
П 5	0	a	63 26.2	64 33.2	63 55.2 63 59.7	103.0		1P15
6 7	W	a	64 44.2	63 3.0	63 53.6	103.1	121.3	1 10
8	W	i	63 29.5 64 53.0	64 34.2 63 2.2	64 1.7 63 57.6	103.2 103.4		23
		OI -			63 58.2 Δi –1.0	102.9 101.0	121.2 126.2	
					63 57.2	+1.9	-5.0	The same

$$\begin{array}{ccc} \Delta n' = +1.9 & \Delta n'' = -5.0 \\ \text{Nadel I} = 63^{\circ} 55!2 \\ & \text{II} = & 57.2 \\ \hline \text{Mittel} & = 63^{\circ} 56!2 \\ \text{dJ} & = & +0.9 \\ \hline \text{J} & = 63^{\circ} 57!1 \\ \end{array}$$

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.

Deflektor I.

Ein-	***	Mag-	Kreis:	V:	Variationen			
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	Kornth. H.		
o W	0° 50.3−51° 4 52.6−53.0	14% 14.8	295° 17:0 45 12.6	12.2 12.2	102.0 102.2	τ=1398 34.6 34.6		
		14.7			102.1 100.0	34.6 —9.4		
					+2.1	25.2		

$$\begin{array}{ll} 2(\phi) &= 109^{\circ}55.6 \\ \phi &= 54 \ 57.8 \\ \lg\sin\phi_{15} = 9.91 \ 308 \end{array}$$

Variat.: Potsdam Kornthal lg c = 9.22 003 9.22 032 lg H = 9.30 681 9.30 670

Deflektor II.

WO	0º 56.9-57.3 58.8-59.8	15.0 13.8	49 291		12.2 12.0	102.4 102.4	34.7 34.9
- 26	testen =	14.4		120		102.4 100.0	34.8 -9.4
. 3	1-0 -14			-		+2.4	25.4

$$\begin{array}{lll}
2(\phi) & = 118^{\circ}19!0 \\
\phi & = 59 & 9.5 \\
\lg \sin \phi_{15} = 9.93 & 360
\end{array}$$

 $\begin{array}{ll} \lg \ c &= 9.24\ 062 \\ \lg \ H &= 9.30\ 686 \end{array} \qquad \begin{array}{ll} 9.24\ 090 \\ 9.30\ 674 \end{array}$

Zusammenstellung:

Variat,: Potsdam	Kornthal
H = 0.20268	H = 0.20263 265
H = 0.20269 Basiskorr. $\Delta b = -1$	$H = 0.20 \ 264$ $\Delta (\lambda, \phi) = -1$
$\frac{\Delta (\lambda, \phi) = -3}{H = 0.20265}$	H = 0.20 263

Nr. 30. 1902 Aug. 30. Sonnenschein.

Standpunkt: Sig. Kapf = Landesgrenzstein 243 am Westrande der Straße von Edernheim nach Ohmenheim, an einer Waldecke. Die Horizontalintensität wurde 15^m südlich vom Signalstein, in dem Ödestreifen zwischen Straße und Wald gemessen (wegen besseren Temperaturausgleichs im Schatten). Im tertiären Süßwasserkalk.

x = +33224.9, y = +102653.9, H = 545^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	- 0.17 CF argulation (CF)
1-4	I oben	$\Delta u = +0.9$ $4^{p} 20.5 - 21.6$	350° 15!2 15.4	6.7	350° 22!0	Azimut des Kreisnullpunktes:
5-8	II oben	22.6-23.6		6.6	350 20.8 350 21.4	K. Kl2°12'2 Gew. 11 K. 12.2 11 W. 12.1 11
9-12		4º 24.3-25.0	15.1	6.5	350 21.5	U. 12.5 4 G. 11.8 10 Z. 11.9 12
13-16	I oben	26.3-27.4	350 14.3 12.6	6.5	350 19.9 350 20.7	N. $\frac{11.9}{a_0} = -2^{\circ}12.0 \Sigma p = 68$ A-a=+1 3.4
100	Kirchheim, Kl. Kirchheim Wössingen Utzmemmingen Goldburghausen Zipplingen Nördlingen	Metaor I Cl	334 16.2 335 1.6 340 47.2 345 5.3 347 25.7 347 46.2 33 54.9	- 10.0 - 10.0 - 10.0 - 10.0		$\begin{array}{rcl} A-a=&+1&5.4\\ \hline A_0&=&-1^{\circ}&8.6\pm0.1\\ (M)&=&350&21.0\pm0.4\\ \hline M&=&349^{\circ}12.4\\ D_0&=&10&47.6\\ mittl. Dekl. D=&10&54.6\\ \end{array}$

Nadel	Kreis	Be- zeich-	Towns or	Mit	tel	the little state of	A + B	Va	riat.	Uhr-	and only	
Nadei	Areis	nung	A u	nten	B u	nten	2	H.	Z.	angabe	7.215.8	
I 1	0	a	63°			3:2	63°57:0		Marile	5P 17	$\Delta n' =$	$-0.8 \Delta n'' = -2.2$
2 3	W	a		25.8		59.5	64 12.6		124.0	10,700	Na	del I = 64° 3:6
	W	i	63			55.8	63 52.3		Larest	95		II = 7.0
4	0	- 1	04	21.2	0.4	3.5	64 12.3 64 3.6			25	Mi	ttel = 64° 5!3
11 -	0		00	205	04	20.0	-		LINE	50 07	dJ	= +0.1
II 5	0 W	a		36.5 57.0		39.8 14.5	64 8.2 64 5.8			5P 27	J	= 64° 5!4
6 7	W	i		36.5		36.2	64 6.3		123.9	7.0	15 1	
8	0	i	65	8.8		15.0	64 11.9	100.5		37	10 10	
	5.10		1500				64 8.0		124.0	Page	no m	
	500		1 15			1	Δi -1.0		126.2		100	
	1 22		1986			18	64 7.0	-0.8	-2.2	1 68	1 65	
-	P. DO.	-		agnet	1.							
Ein- stel-	Uhrang	rahe	Mag- net-	Kre		1	Variation					
lung	A STATE OF THE PARTY OF THE PAR		temp.	Mit	tel	Kornth D.	Potsd. H.	Kornth. H.				
v	4P 38.2-	20m5	13.7	200	46:3	6.4	101.0	τ=14% 31.7				97°26!6
v ₁ v ₂	39.7-		14.0	39	8.9	6.4	101.0	31.7		no!	φ =	48 43.3
12	000	10.1			57.6	6.4					$g\sin\phi_{15}=9$	9.87 552
V ₃	41.9-	42.4	13.5	301	30.2	6.3	101.0	31.6			Potsdam	Kornthal
V ₄	43.6-	44.1	13.5		31.7	6.3	100.8	31.5		100	= +6	$n'_{20} = +32$
		25	13.7	301	31.0	6.3	100.9	31.6			= 9.87558 = 9.17957	9.87 584 9.17 986
		100-					100.0	-8.5 23.1		2	= 9.30399	9.30 402
- 0		Host.	1				1 4-0.5	20.1	15	5 11	= 5.50 555	3.30 102
. 1	4P	49.6	Ma	gnet	27.8	6.3	-	τ=14°5 ▮		Nene A	ufstellung zwie	schen Wald und Straße,
v v ₄	52.5-		13.6		15.4	6.3	100.8	31.6	etw	a 15m vo	m Signalstein.	
v ₃	54.4-		13.3		15.5	6.3	100.9	31.5				97°26:2
100				301		6.3					$\phi = $ $\lg \sin \phi_{15} = $	48 42.9
V2	56.5-		13.3		57.2	6.3	101.0	31.5			= +6	n' ₂₀ = +32
v ₁	58.7-		13.8		25.9	6.3	101.0	31.5		1'100	= 9.87550	9.87 576
		-14	13.5	39	11.6	6.3	100.9	31.5 —8.4		g sm φ ₀	= 9.17940	9.17 972
		- 11						23.1			= 9.30390	9.30 396
1		- 5	Def	lektor	I.			0.0		•		
0	En 0.0					18		τ=14°6			9(4)	1110140
o W	5P 3.6-	- 8.0	13.3	294 46		6.1	100.3	31.2			$ \begin{array}{ccc} 2(\phi) & = \\ \phi & = \end{array} $	111°14:8 55 37,4
	7.0-		13.5	40	0.0	0.1	100.1	31.1			φ $\lg \sin \phi_{15} =$	9.91 617
marie .			2010				100.0	-8.2	1		= 9.22 003	9.22 032
		100				1 2	+0.2	22.9			= 9.30385	9.30 385
			Defi	lektor	II.			- 100		The same		
w	5P 10.2-	-104	13.9	50	24.2	6.0	100.1	7=14º7 31.1				119° 37:8
0			13.9		46.4	6.0	100.1	31.1			$ \phi = \\ \lg \sin \phi_{15} = \\ $	59 48.9 9.93 636
1000	of the last	1000	13.9		1	Imagi	100.1	31.1	-		= 9.24062	9.24 090
100 10		250 20					100.0	-8.1	1		= 9.24002 = 9.30425	9.30 423
v		13.5		350	27.2	6.0	+0.1	23.0				
)=					THE PERSON		T		Zusammens	
								1		at.: Pot = 0.20		Kornthal H = 0.20 138
									-		133	135
											130	130
									02 108		149	148
												$= 0.20138 \pm 0.20138$
									orr. Δb $\Delta (\lambda, \phi)$			$\begin{array}{c} \Delta (\lambda, \phi) = 0 \\ H = 0.20 \ 138 \end{array}$
									(10 6 6 6 1 1 mm			- 0.20 100
										= 0.20		

Nr. **3 a.** 1902 Aug. 16. Nebel mit durchdringender Sonne. Standpunkt bei Nördlingen, bei Standpunkt 3, s. S. 45. Im Diluviallehm. x = +27 215.6, y = +27 497.1, $H = 440^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
30	O direkt O O Nördlingen O vorwärts O rückwärts O rückwärts O vorwärts Pulverturm Löpfinger Tor Nördlingen Deininger Tor Reimlinger Tor Nähermemmingen	Δu = +4.4 7* 24m 42.5 25 49.5 26 38.5 27 32.5 7* 30 49.0 33 15.5 35 8.5 37 6.5	93°11:8 93 58.0 94 7.4 93 44.2 64 26.7 94 21.5 274 48.4 275 44.3 96 9.2 39 8.9 54 29.7 64 26.6 68 41.4 85 11.3 243 7.7		40 40 40 40 40 40 40 40 40 40 40 40 40 4
1-4	I oben	7ª 50.2-52.0	350 26.3 26.2	3.3	350° 29!5
5-8	II oben	54.0-55.2	350 17.7 17.6	3.0	350 20.6 350 25.0
9-12	II oben	7ª 57.7-59.3	350 17.7 17.8	3.0	350 20.8
13-16	I oben	8ª 0.6- 1.6	350 25.7 25.3	3.2	350 28.7 350 24.8

In Kornthal fehlt die Registrierung. Die Variationen der Deklination sind aus der Potsdamer Registrierung abgeleitet im Anschluß an benachbarte Tage.

Azimut	des	Kreisnullpun	ktes:
	The state of the s		

astr. direkt:	-1°13:6
	13.6
	$\Lambda_0 = -1^{\circ} 13!6$
astr. mit Son	nnenspiegel: -1 13.0
	Spiegelkorr1.6
	$A_0 = -1^{\circ}14.6$
Geod: P.	-0°26:2 Gew. 0.2
Nö.	24.7 0.2
D.	25.3 0.3
R.	26.5 0.3
Nä.	25.7 1
a ₀ :	$= -0^{\circ}25!7 \Sigma p = 2$
	= -49.2
A ₀ :	= -1°14'9
THE RESERVE TO SHARE THE PARTY OF THE PARTY	

Das geodätisch abgeleitete Azimut ist der nahen Zielpunkte wegen unsicher. Deshalb soll A₀ aus den astr. und geod. Bestimmungen zusammen abgeleitet werden.

	Ao	=	-1°	13:6 14.6 14.9	Gew. 2
Mittel	A _o (M)	=		14:1 24.9	10 E
500	M			10:8	41 200
mittl. I	D ₀	=		49.2 56.2	

Nadel	Kreis	Be-	Mi	ttel	A+B	Var	iat.	Uhr-			
Nadel	Areis	zeich- nung				A unten	B unten	2	H.	Z.	angabe
I 1 2	O W	a a	64° 1:8 64 16.8	63° 58!2 63 55.0	64° 0:0 64 5.9	98.1 97.9		8ª 9			
3 4	W O	i	63 37.0 64 24.0	63 45.2 64 2.0	63 41.1 64 13.0 64 0.0	97.8 97.7	124.7	18			
II 5	o W	a	63 40.5 64 41.8	64 43.8 63 4.2	64 12.2 63 53.0	97.5 97.5		8ª 21			
7 8	W	i	63 36.5 64 45.2	64 39.0 63 7.2	64 7.8 63 56.2	97.4 97.3	124.5	32			
					64 2.3 Δi –1.0	97.6 101.0	124.6 126.2				
					64 1.3	-3.4	-1.6	THE PARTY OF			

$$\begin{array}{cccc} \Delta n' = -3.4 & \Delta n'' = -1.6 \\ \text{Nadel I} = 64^{\circ}0.0 \\ & \text{II} = & 1.3 \\ \hline \text{Mittel} & = 64^{\circ}0.6 \\ \text{dJ} & = & -0.5 \\ \hline \text{J} & = 64^{\circ}0.1 \\ \end{array}$$

Magnet I.

Ein-	140.91	Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Boehum D.	Potsdam H.	
v	8ª 40 ^m 4	GREEN STORY	350° 20!5	12.0		
v ₁	43.7-44.4	15:0	38 47.3	12.0	96.9	
V ₂	45.6-45.9	15.0	39 20.9	12.0	96.9	
355			39 4.1	12.0		
V ₃	47.9-48.4	15.5	301 47.5	12.0	96.7	
V ₄	50.3-50.6	15.3	301 50.7	12.0	96.6	
A ROSE		15.2	301 49.1	12.0	96.8	
					100.0	
					-3.2	

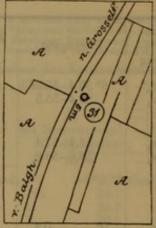
Bemerkung: Variation der Deklination von Bochum zu absolut gleicher Zeit. Magnetisch sehr unruhig.

Magnet II.

Ein-	110	Magnet-	Kreis:	Varia	tionen	Capatiles State States Links
stel- lung	Uhrangabe	temp.	Mittel	Bochum D.	Potsdam H.	* Bei v ₄ Ablesefehler von 20'.
V4* V3	8ª 53.4-53 ^m 7 55.4-55.5	15.5 16.5	301°26:0 301°25.2	11.7 11.5	96.7 96.5	$2(\phi) = 97^{\circ} 5!8$ $\phi = 48 32.5$
1			301 55.6	11.6	Han Mill	
v ₂ v ₁	57.1-57.4 58.6-58.8	16.3 16.2	38 51.3 39 11.6	11.4 11.0	96.5 96.5	$\begin{array}{ccc} \lg \sin \phi_0 &= 9.87 \ 483 \\ \lg c &= 9.17 \ 934 \end{array}$
1		16.1	39 1.4	11.2	96.5 100.0	$\lg H = 9.30451$
v	9ª 0.8		350 24.7	11.0	-3.5	21 artiferto O
n decis of	the field of the same	WY THE PART	000 211	31.5	NET ON	di constituto D
		Deflekto	or I.			
0	9* 3.3- 3.6	16.3 17.0	295 6.0 45 44.8	11.3 11.7	100.0 102.0	$2(\phi) = 110^{\circ}38!8$
**	W 5.3- 6.3	16.65	40 44.0		101.0	$ \phi = 55 \ 19.6 \lg \sin \phi_{15} = 9.91 \ 561 $
Course !		20.00		- 201	100.0	$\lg c = 9.22003$
	10,54			175	+1.0	lg H = 9.30 435
		Deflekto	or II.			
WO	9ª 8.5- 8.8 10.4-10.6	16.8 17.3	50 4.3 291 8.1	11.7 11.9	101.8 100.4	$2(\phi)$ = 118°56:2 ϕ = 59 28.0
Margh.		17.05		700	101.1	$\frac{\lg \sin \phi_{15} = 9.93585}{1 - 9.94065}$
700				1 4.61	100.0	$\begin{array}{ccc} \lg c &= 9.24065 \\ \lg H &= 9.30473 \end{array}$
104	(M) = 050.84.8				+1.1	.5.1 - 0.00 1.00
						H = 0.20 155
						161 153
						171
						$H = 0.20 \ 160 \pm 4$ $Basiskorr. = 0$ $\Delta(\lambda, \phi) = -1$

No	dal	Kreis	Be- zeich-	Mit	ttel	A+B	Var	riat.	Uhr-
Nadel Kreis		nung	A unten	B unten	2	H.	Z.	angabe	
I	1 2 3 4	O W W O	a a i i	64° 0:0 64 16.2 63 34.8 64 22.5	63°53:8 64 1.2 63 38.0 64 3.8	63° 56.9 64 8.7 63 36.4 64 13.2 63 58.8	99.2 98.5 98.0 97.5	122.3 122.4 122.2	9ª 15 23
II	5 6 7 8	O W W O	a a i i	63 37.2 64 49.5 63 24.2 65 5.0	64 45.2 63 8.5 64 39.2 63 8.0	64 11.2 63 59.0 64 1.7 64 6.5	97.6 97.7 97.8 97.4	122.0 121.6	9ª 26
						64 4.6 Δi –1.0 64 3.6	98.0 101.0 —3.0	122.1 126.2 —4.1	

$$\begin{array}{cccc} \Delta n' = -3.0 & \Delta n' = -4.1 \\ & \text{Nadel I} = 63^{\circ}58!8 \\ & \cdot & \text{II} = 63.6 \\ \hline & \text{Mittel} = 64^{\circ} \ 1!2 \\ & \text{dJ} = -0.2 \\ \hline & \text{J} = 64^{\circ} \ 1!0 \\ \end{array}$$


H = 0.20159

Nr. 31. 1902 Aug. 16. Sonnenschein.

Standpunkt östlich am Bachweg von Großelfingen nach Balgheim, nördlich der Bahnlinie, auf dem Höhenrücken der Klopfersäcker, 2^m vom oberen Böschungsrand entfernt. Im Löß.

$$x = +26484.8$$
, $y = +25549.7$, $H = 432$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
	CHECK - H	$\Delta u = +4.8$			
	O vorwārts O rückwārts O rückwārts O vorwārts	11 ^a 8 ^m 750 12 7.0 13 37.0 15 6.5	151° 5:2 332 31.8 333 58.6 154 34.5		350
	Nördlingen Klosterzimmern Deiningen Großelfingen Alerheim	000	296 34.4 359 52.6 16 7.4 17 28.6 67 23.2		J with
14	Enkingen Möttingen Balgheim Oberreimlingen Unterreimlingen		105 10.3 140 35.6 194 47.7 246 12.8 260 28.9		10 200
1-4	I oben	11° 25.8-27.0	350 26.6 25.8	10.8	350° 37!0
5-8	II oben	28.2-29.5		10.8	350 31.0
100			4 411	1 30	350 34.0
9-12	II oben	11° 29.8-30.7	350 20.2 21.7	10.9	350 31.9
13-16	I oben	31.7-33.0		10.9	350 37.9
· all		200 201	to the sale	-	350 34.9

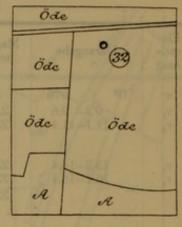
Die Variationen der Deklination sind aus den Potsdamer Registrierungen abgeleitet.

	astr:	-1	°26!8		
		elkorr			
	$\overline{\Lambda}_0$	= -1	°27:8		
Geod:	N.	-0	9 43:0	Gew.	5
	K.		43.0		
	D.		43.0		4 3
	A.		42.8		4
	E.		43.6		0.5
	M.		43.7		
	B.		43.1		2 2 2
	0.		43.4		2
	U.		43.5		2
	ao	= -(0° 43!1	Σp=	25
	A-a		-45.7		
	Ao	= -1	°28!8	±0:1	1
	(M)	= 350	34.4	±0.4	
	M	= 349	° 5:6		
		= 10			
nittl. D					

N-J-I	Vasia	Be- zeich-	Mi	ittel	A + B	Va	riat.	Uhr-
Nadel	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3 4	0 W W 0	a a i i	63°51:2 64 15.2 63 35.0 64 26.2	63°58:8 63 51.0 63 44.2 63 59.0	63°55!0 64 3.1 63 39.6 64 12.6 63 57.6	96.4 96.4 96.1 96.3	118.9	11*40 47
II 5 6 7 8	O W W O	a a i i	63 40.8 64 43.5 63 36.0 64 52.0	64 40.5 63 5.8 64 35.0 63 8.5	64 10.6 63 54.6 64 5.5 64 0.3	97.0 98.2 98.6 99.0	118.9	11*49 59
					64 2.8 Δi –1.0 64 1.8	97.2 101.0 —3.8	118.9 126.2 —7.3	100

$$\begin{array}{cccc} \Delta n' = -3.8 & \Delta n'' = -7.3 \\ Nadel I = 63^{\circ}57.6 \\ & \cdot & II = 61.8 \\ \hline Mittel & = 63^{\circ}59.7 \\ dJ & = 0.0 \\ \hline J & = 63^{\circ}59.7 \end{array}$$

Magnet I.


		Magne	t I.			
Ein- stel-	Uhrangabe	Magnet-	Kreis:	Varia	tionen	Variationen der Deklination den Bochumer Registrierungen zu absolut gleicher Zeit
lung	Omangaoo	temp.	Mittel	Boehum D.	Potsdam H.	entnommen. Magnetisch unruhige Zeit, die Einstel- lungen werden unsicher.
v	Op 56		350° 24!6	20.5	amile .	$2(\phi) = 96^{\circ} 12!0$
v ₁	9.4- 9.6	2197	38 14.3	20.5	98.6	$\phi = 48 \ 5.9$
v ₂	11.1-11.4	22.0	38 47.6	20.5	99.9	$\lg \sin \phi_{15} = 9.87406$
100			38 31.0	20.5	WP 12	n' ₁₀₀ = +1
	100 111	00 4		1000	M2. 7 156	$\lg \sin \phi_0 = 9.87 407$
v ₃	13.3-14.4 16.1-16.4	22.1 22.5	302 21.8	20.7	100.9	$\lg c = 9.17951$
V ₄	10.1-10.4		302 16.1	20.7	101.3	$\lg H = 9.30544$
	1794. 1577	22.1	302 19.0	20.7	100.2 100.0	
				19.2	+0.2	9-12 II oben 3721.8-1
		To de la constitución de la cons		122	70.2	
		Magnet	II.			
V ₄	OP 18.6-19.0	22.8	302 52.4	20.8	100.5	$2(\phi) = 96^{\circ}13!4$
V ₃	20.4-20.7	21.7	301 48.4	20.8	99.9	$\phi = 48 - 6.6$
	Mar -Call		302 20.4	20.8	DE THE	$\lg \sin \phi_{15} = 9.87 \ 409$
	22.4-23.4	22.1	38 22.8	21.0	100.0	$n_{100} = +1$
v ₂ v ₁	24.6-25.0	22.7	38 44.8	21.0	100.3	$ \lg \sin \phi_0 = 9.87 410 \\ \lg c = 9.17 934 $
71	21.0 20.0	22.3	38 33.8	21.0	100.2	
	100	22.0	00 00.0	21.0	100.0	lg H = 9.30 524
	MITTER TO THE PARTY OF THE PART			18.0	+0.2	The second secon
v	27.2		350 20.0	21.0	100	The second of
		Deflekto	. T			Großenheim
0	OP 29.7-30.2			01.1	1010	9/4) 10001419
O W	32.2-33.4	23.0 23.0	295 42.4 44 56.6	21.1 21.1	101.8 102.0	$ \begin{array}{ccc} 2(\phi) & = 109^{\circ} 14.2 \\ \phi & = 54 \ 37.1 \end{array} $
"	02.2-00.1	23.0	11 30.0	21.1	101.9	$\log \sin \phi_{15} = 9.91397$
		20.0			100.0	$\lg c = 9.22003$
					+1.9	lg H = 9.30 593
		200	Jains V	11+1		Annual Market State of the
		Deflekto			mation.	Neue Pinne.
W	0º 45.0-45.9	22.6	45 10.8	21.5	102.8	$2 (\phi) = 109^{\circ} 24!7$ $\phi = 54 42.3$
0	47.1–47.6	22.7	295 46.1	21.6	102.8	$ \begin{array}{ccc} \phi & = 54 & 42.3 \\ \lg \sin \phi_{15} & = 9.91 & 432 \end{array} $
	SECOND I SHOW	22.65			102.8 100.0	$\frac{18 \text{ sm } \varphi_{18} = 0.02 \text{ 102}}{\text{lg c}} = 9.22 003$
	DE = II -				+2.8	$\frac{1g \text{ H}}{1g \text{ H}} = 9.30553$
	Parane Phillips	4 1 4 4 4		THE REAL PROPERTY.	72.0	ig 11 = 5.50 556
		Deflekto				II STATES A STATES II
0	0₱ 50.3—51.1	23.0	291 40.6	21.7	103.0 3.2	$2(\phi) = 117^{\circ}34.6$
					3.3	$ \phi = 58 47.4 \lg \sin \phi_{15} = 9.93 483 $
					3.2	Annual Control of the
737	500 500	23.4	10 35 0	01.0	2.8 3.1	
W	52.6-53.6	23.2	49 15.2	21.9	3.1	$\lg H = 9.30561$
	The second second				103.1	
	Marie I	-		-	100.0	and the same of th
	Markhay				+3.1	To print the Deliteration of Spiller
		1000		Total	11.	and delication date
						H = 0.20 204
						195 227 Gam 1/
						227 Gew. ¹ / ₂ 208 - ¹ / ₂
						212
						$H = 0.20\ 207 \pm 5\gamma$
						Basiskorr. $\Delta b = 0$
						$\Delta(\lambda, \phi) = -3$
						H = 0.20204

Nr. 32. 1902 Aug. 16. Bedeckter Himmel.

Standpunkt auf einer der Kuppen des Gabelberges (Fruchten), nördlich von Harburg, in einer Öde. Im Marmorkalk.

 $x = +25 289.0, y = +22 639.0, H = 495^{m}.$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der auß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
1000		$\Delta u = +0^m 1$			E 702 Car (c)
1-4	I oben	3º 18.0−19 [™] 1	350° 18:4 23.3	11.9	350° 32!7
5-8	II oben	20.2-21.5	350 12.6 12.1	11.7	350 24.1
2000					350 28.4
9-12	II oben	3º 21.8-23.0	350 12.2 12.7	11.7	350 24.1
13-16	I oben	24.2-25.3	350 16.2 17.2	11.6	350 28.3
					350 26.2
17-20	I oben	3º 26.7-27.5	350 20.8 21.3	11.5	350 32.5
21-24	II oben	28.5-29.6	350 13.4 11.1	11.5	350 23.7
			A COLOR	1 34	350 28.1
25-28	II oben	3º 30.4-31.4	350 14.2 14.6	11.5	350 25.9
29-32	I oben	32.5-33.7	350 17.9 18.0	11.4	350 29.4
	77 1			0.0	350 27.6
1	Harburg Großsorheim		147 7.2 251 45.0		
100	Hoppingen		278 43.4		J variety
-	Möttingen		282 30.8	1100	3/1808/1711 35
1	Schmähingen	4	275 11.4		E 34 14
	Nördlingen	22 -	294 11.8	-	330 330 34

Magnetisch unruhig. Variationen der Deklination aus Potsdam abgeleitet.

ut des F		:0 Gew. 1
G.		.6 Gew. 1
M.		.3 6
N.		.8 10
a ₀ =	the name of the local division in	$21 \Sigma p = 19$
	= -40	
A0 =	-1°12	2:5 ±0:2
(M) =	350 27	$.6 \pm 0.5$
	: 349°15	
D. =	: 10 44	.9

Uhr-	iat.	Var	A + B	ttel	Mi	Be- zeich-	Vacio	Nadel
angabe	Z.	H.	2	A unten B unten		nung	minimum and the second section of the second	
4º 18	DE COM	101.5	63° 40!7	63° 48!5	63°32!8	a	0	I 1
		101.8	64 5.9	63 53.0	64 18.8	a	W	2 3
	123.7	101.9	63 42.4	63 47.5	63 37.2	i	W	3
27		102.4	64 5.8	63 57.5	64 14.0	i	0	4
		1000000	63 53.7					
4P 29		102.4	63 58.2	64 25.5	63 30.8	a	0	II 5
	No. Long	102.5	63 56.5	63 7.5	64 45.5	a	W	6
	124.0	102.5	63 59.2	64 27.5	63 30.8	i	W	7
39		103.0	63 57.5	63 6.8	64 48.2	i	0	8
1000	123.8	102.2	63 57.8					
Mark.	126.2	101.0	Δi -1.0					
	-2.4	+1.2	63 56.8					

$$\Delta n' = +1.2$$
 $\Delta n'' = -2.4$

Nadel I = 63°53:7

II = 56.8

Mittel = 63°55:2

dJ = +0.5

J = 63°55:7

Magnet I.

Ein-	TTI	Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Bochum D.	Potsdam H.	
$v_1 \\ v_2$	3º 46.6-47 ^m 1 48.6-48.8	23°1 23.1	37°58!7 38 25.8	18.0 17.8	. 101.8 102.4	
		00.0	38 12.2	17.9		
V ₃ V ₄	50.6-51.2 52.2-52.5	22.6 22.9	302 25.9 302 28.5	17.7 17.5	103.1 101.0	
		22.9	302 27.2	17.6	102.1 100.0	
					+2.1	

Variationen der Deklination von Bochum.

$2(\phi)$	_	950	45:0
φ		47	
$\lg \sin \phi_{15}$			$\frac{281}{+14}$
$\frac{n'_{100}}{\lg \sin \phi_0}$	=		
lg c		9.17	
lg H	=	9.30	656

-			et	•	
170	10	CHES	100	_	
	A CO	Pr 1	шен	•	

Ein-	III	Magnet-	Kreis:	Varia	tionen	
stel- lung	Uhrangabe	temp.	Mittel	Boehum D.	Potsdam H.	
v ₄ v ₃	3º 54.6-55™0 56.2-56.4	22:9 22.7	302°52!7 301 58.0	17.3 17.1	97.0 96.4	$2(\phi) = 95^{\circ}48!8$ $\phi = 47.54.1$
v ₂ v ₁	57.8-58.2 59.3-59.5	22.9 22.9	302 25.4 38 2.8 38 25.5	17.2 16.9 16.7	95.0 95.1	$\begin{array}{ccc} \lg \sin \phi_{15} = 9.87 & 284 \\ n'_{100} & = & -28 \\ \lg \sin \phi_0 & = 9.87 & 256 \end{array}$
		22.85	38 14.2	16.8	95.9 100.0 —4.1	$\frac{\lg c}{\lg H} = 9.17934$ $= 9.30678$
v	4P 1.5	01	350 18.1	16.7		
		Deflekto				
o W	4 ^p 3.5 – 3.9 5.7 – 6.3	23.5	295 52.2 44 54.7	16.4 16.3	98.2 99.0	$2 (\phi) = 109^{\circ} 2!5$ $\phi = 54 31.2$
12-11		23.5		100	98.6 100.0 —1.4	$\begin{array}{ccc} \lg \sin \phi_{15} = 9.91\ 362 \\ \hline \lg c &= 9.22\ 003 \\ \hline \lg H &= 9.30\ 651 \end{array}$
		Deflekto	r II.			
W	4 ^p 8.1– 8.4 10.0–11.2	23.5 23.3 23.4	48 59.0 291 46.4	16.2 16.0	99.5 100.6 100.0	$2(\phi)$ = 117°12.6 ϕ = 58 36.4 $\log \sin \phi_{15} = 9.93407$
1	The make and			23	0.0	$\frac{\lg c}{\lg H} = 9.24065$ $= 9.30658$
						$\begin{array}{cc} H & = 0.20\ 256 \\ 267 \\ 254 \end{array}$
						257
						$H = 0.20258 \pm 3\gamma$ $\Delta (\lambda, \phi) = +2$ $H = 0.20260$


Nr. 33. 1902 Aug. 16. Sonnenschein.

Standpunkt in einer Öde, 45^m südwestlich von der Kapelle bei Mündling. Im Marmorkalk.

$$x = +25006.4$$
, $y = +20819.8$, $H = 525$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
	O direkt	$\Delta u = +5.5$ $6P 8^{m} 25.0$ $9 42.5$	277° 39!55 278 26.45	1 22	1 200 3
100	Wörnitzstein Mauren Mündling Kapelle, Mitte		198 53.2 235 20.4 358 55.3 36 6	1 10	
1-4	I oben	6°23.5-24°5	350 23.0 22.1	5.4	350°28:0
5-8	II oben	25.6-26.8	350 10.5 7.7	5.4	350 14.7 350 21.2
9-12	II oben	6°27.3-28.3	350 13.3 16.1	5.4	350 20.1
13-16	I oben	29.1-29.7	350 16.5 17.5	5.3	350 22.3 350 21.2

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.

Variationen der Deklination von Potsdam abgeleitet.

$$\begin{array}{lll} \text{astr:} & \mathbf{A}_0 & = -1^{\rm o} \ 0.8 \\ \text{Geod:} & a_0 & = -0^{\rm o} 23.7 \\ & \mathbf{A} - a & = -37.1 \\ \hline \mathbf{A}_0 & = -1^{\rm o} \ 0.8 \\ & (\mathbf{M}) & = 350 \ 21.2 \\ \hline \mathbf{M} & = 349^{\rm o} 20.4 \\ & \mathbf{D}_0 & = 10 \ 39.6 \\ \text{mittl.} \ \mathbf{Dekl.} \ \mathbf{D} & = \ 10 \ 46.6 \end{array}$$

N- J-1	V-si-	Be-	Mi	ttel	A + B	Vai	riat.	Uhr-	
Nadel	del Kreis zeich- nung		A unten	B unten	2	H.	Z.	angabe	
I 1 2 3	o W W	a a i	63°39!5 64 10.5 63 41.0	63° 41:0 63 52.2 63 43.2	63° 40:3 64 1.4 63 42.1	102.4 102.9 103.0	123.8	6P 53	
4	0	i	64 7.8	63 54.2	64 1.0	103.0		60	
II 5 6 7	o W W	a a i	63 27.5 64 41.0 63 30.8	64 29.0 63 5.5 64 31.0	63 58.3 63 53.2 64 0.9	103.1 103.1 103.1	123.7	7P 1	
8	0	i	64 37.0	62 58.2	63 47.6 63 55.0 Δi –1.0	103.5 103.0 101.0	123.8 126.2	10	
					63 54.0	+2.0	-2.4	1	

 $\Delta n' = +2.0 \quad \Delta n'' = -2.4$ Nadel I = 63° 51:2

II = 54.0

Mittel = 63° 52:6

dJ = +0.6

J = 63° 53:2

Deflektor I.

Ein-	***	Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Bochum D.	Potsdam H.	
0 W	6P 33.0-33 ^m 3 34.6-35.0	21% 21.6	295° 40:0 45 4.4	13.6 13.6	102.2 102.3	
		21.6			102.3 100.0	
					+2.3	

Variationen der Deklination aus Boehumer Registrierungen.

Deflektor II.

W 6P	6º 38.0-38.4 6.8-40.2	21.5 21.5	49 16.8 291 30.7	13.4 13.4	102.3 102.3
	9 3 93	21.5	37 19 3 3		102.3 100.0
			mile lest alles		+2.3

$$\begin{array}{cccc} 2(\phi) & = 117^{\circ}46!1 \\ \phi & = 58 \ 53.0 \\ \lg \sin \phi_{15} = 9.93 \ 469 \\ \lg c & = 9.24 \ 065 \\ \lg H & = 9.30 \ 580 \end{array}$$

Magnet I.

v ₁ *. v ₂	6P 43.0-43.4 44.2-44.4	20.0 20.0	38 20.3 38 52.4	13.4 13.4	102.1 102.1
-			38 36.4	13.4	
v ₃ v ₄	45.4-45.5 46.2-46.4	20.5 20.3	302 24.8 302 18.8	13.4 13.4	102.1 102.2
-	A STATE OF THE PARTY OF THE PAR	20.2	302 21.8	13.4	102.1
				800	100.0
v	49.3		350 23.2	13.4	+2.1

$$\begin{array}{cccc} 2(\phi) &= 96^{\circ}14.6\\ \phi &= 48 & 7.3\\ \lg\sin\phi_{15} = 9.87 & 359\\ \mathrm{n'}_{100} &= & +14\\ \lg\sin\phi_{0} = 9.87 & 373\\ \lg\mathrm{c} &= 9.17 & 951\\ \lg\mathrm{H} &= 9.30 & 578 \end{array}$$

* Bei v1 war ein Ablesefehler von 20'.

H = 0.20 227
221
220
H = 0.20 223 ±2 γ
Basiskorr.
$$\Delta b = 0$$

 $\Delta (\lambda, \phi) = +1$
H = 0.20 224

Nr. 34. 1902 Aug. 18. Leichter Nebel, Sonnenschein.

Standpunkt: Sig. Schneckenbuck bei Ohmenheim. Die Station wurde schon 1900 als Nr. 25 vermessen, s. W, S. 122. Im Breccienkalk des oberen weißen Jura.

$$x = +28515.5$$
, $y = +95290.8$, $H = 618^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n _o
	Mary N	$\Delta u = +0^{m}1$		1	10
1-4	I oben	6° 57.1–58°	6 350°27!7 29.8	3.4	350° 32:2
5-8	II oben	59.7-60.8	350 22.8 18.6	3.4	350 24.1
					350 28.1
9-12	II oben	7ª 1.4- 2.1	350 22.4 23.5	3.0	350 26.0
13-16	I oben	3.2- 4.4	350 26.1 25.3	2.9	350 28.6
17.5%				100	350 27.3
3	Ohmenheim Kösingen Neresheim, Schl. Neresheim Auernheim		15 26.1 106 32.0 192 11.3 210 50.6 220 22.6	100	AT THE REAL PROPERTY.

Azimut des Kr	eisnullp	unktes:
0	2° 13:9	Gew. 0.5
	15.5	
N. Schl.	16.0	2
N.	15.6	3
A.	15.5	11
$a_0 = -1$		$\Sigma p = 24$
A-a =	+58.7	
$A_0 = -$	1° 16:8	
(M) = 350	0 27.7	
M = 34	9°10!9	
$D_0 = 10$	0 49.1	
ittl.Dekl.D = 10	0 56.1	

N- J-1	Kreis	Be-	Mi	ttel	A+B	Vai	riat.	Uhr-	
Nadel	Kreis	nung	A unten B unten		- 2	H.	Z.	angabe	
I 1 2 3 4	O W W O	a a i i	63°39!5 64 27.2 63 43.2 64 21.8	63°58!5 63 55.5 63 59.2 64 1.8	63° 49:0 64 11.4 63 51.2 64 11.8	98.2 98.1 98.0 98.0	122.1	7ª 58 8ª 8	
II 5 6 7 8	O W W	a a i	63 34.0 64 54.8 63 41.5 64 54.8	64 40.5 63 11.8 64 43.5 63 7.8	64 0.9 64 7.3 64 3.3 64 12.5 64 1.3	98.3 98.0 97.6 97.2	122.1	8ª 10	
- W			02 0410	10	64 6.1 Δi –1.0 64 5.1	98.0 101.0 —3.0	122.1 126.2 —4.1	1000	

$$\Delta n' = -3.0 \quad \Delta n'' = -4.1$$
Nadel I = 64°0!9
II = 64 5.1

Mittel = 64°3!0
dJ = -0.2
J = 64°2!8

Magnet I.

Ein-		Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Kornthal D.	Potsdam H.	
v ₁ v ₂	7ª 10.6-11 ^m 4 12.5-12.7	14.5 14.7	38°41'.6 39 10.6	3.2 3.2	99.0	
2014			38 56.1	3.2		
v ₃ v ₄	14.4-14.7 15.7-16.1	14.2 14.3	301 55.8 301 56.2	3.3 3.5	98.8 98.6	
		14.4	301 56.0	3.4	98.8	
				40	100.0 —1.2	

Magnet II.

Ein- stel-	Y71 .	Magnet-	Kreis:	Varia	tionen	Standproint: Sig. Schneckschild.
lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsdam H.	Neue Pinne.
v ₄ v ₃	7ª 37.6-38 ^m 0 40.1-40.3	14:3 14.3	302° 26:5 301 26.2 301 56.4	3.4 3.4 3.4	98.2 98.2	$2(\phi) = 97^{\circ} 5!8$ $\phi = 48 32.6$ $\lg \sin \phi_{15} = 9.87 457$
v ₂ v ₁	41.4-41.6 42.7-43.2	14.4 14.6 14.4	38 49.5 39 15.0 39 2.2	3.2 3.2 3.2	98.2 98.2 98.2	$\begin{array}{rcl} n'_{100} & = & -12 \\ \hline lg \sin \phi_0 & = 9.87 \ 445 \\ lg c & = 9.17 \ 932 \end{array}$
v	44.9	14.00	350 26.1	3.4	100.0	$\lg H = 9.30487$
		Deflekto	r I.			
o W	7ª 47.2–48.3 48.7–49.3	15.0 14.6 14.8	295 9.7 45 51.4	3.3 3.4	98.4 98.4 98.4	$\begin{array}{ccc} 2(\phi) & = 110^{\circ}41.7 \\ \phi & = 55 \ 20.9 \\ \lg \sin \phi_{15} = 9.91 \ 514 \end{array}$
200	7.79 045 = (M)			130	100.0 —1.6	$\frac{\lg c}{\lg H} = 9.22005$ $= 9.30502$
w	7* 51.2-51.4	Deflektor	II. 50 4.6	3.3	98.5	$2(\phi) = 119^{\circ} 7.3$
Ö	52.6-53.0	15.1	290 57.3	3.6	98.3	ϕ = 59 33.5
W	315-350	14.95			98.4 100.0	$\begin{array}{ccc} \lg \sin \phi_{15} &= 9.93556 \\ \lg c &= 9.24069 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1		1		11+	-1.6	$\lg H = 9.30524$ $H = 0.20198$
						178 185 195
						$\begin{array}{c} H = 0.20 \ 189 \pm 5\gamma \\ \text{Basiskorr. } \Delta b = -2 \\ \Delta (\lambda, \phi) = -1 \\ H = 0.20 \ 186 \end{array}$

Nr. 35. 1902 Aug. 18. Sonnenschein.

Standpunkt: Sig. Eisenberg auf der Anhöhe westlich von Dischingen in einer Öde. Im oberen weißen Jura.

x = +20 336.5, y = +96 049.2, H = 514^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀	201 - 6710
	45.6-45	$\Delta u = +0^m 2$	Tim all		A stores	
1-4	I oben	9* 32.0-33 ^m 4	350° 22!6 24.0	7.1	350°30!4	Azimut des Kreisnullpunktes: K. —2°18'2 Gew. 8
5-8	II oben	35.5-37.3	350 13.7 12.6	7.5	350 20.6	Di. 17.6 0.3
			12.0		350 25.5	Da. 18.7 8 Ba. 18.6 5
9-12	II oben	9ª 38.6-39.8	350 15.5 15.7	7.7	350 23.3	$a_0 = -2^{\circ} 18.5 \Sigma p = 21$ A-a = +59.0
13-16	I oben	41.2-42.2	350 20.7 19.7	7.8	350 28.0	$A_0 = -1^{\circ}19.5 \pm 0.2$
	Katzenstein Dischingen Dattenhausen		41 22.5 64 11.8 150 9.5	200	350 25.6	$\begin{array}{cccc} (\dot{\rm M}) &= 350 & 25.6 \pm 0.1 \\ \hline M &= 349^{\circ} & 6:1 \\ D_0 &= & 10 & 53.9 \\ \text{mittl. Dekl. D} &= & 11 & 0.9 \\ \end{array}$
	Ballmertshofen		1			-12024

Nadel	Kroic	Be- zeich-		Mittel	A+B	Var	iat.	Uhr-	No. 200 1002 Aug.
Nauci	Kreis	nung	A un	ten B unt	en 2	H.	Z.	angabe	been widen Just, Thinesa
I 1 2 3 4	O W W	a a i i	63°3 64 1 63 3 64 1	7.2 63 47 66.8 63 51	7.5 64 2.4 1.0 63 43.9	95.6 95.8 95.9 95.7	118.9	10ª 30 38	Nadel I = 63°52!9 • II = 57.0
II 5 6 7	O W W	a a i	63 3 64 4 63 3	36.0 64 24 15.0 63 8 17.2 64 29	63 52.9 4.5 64 0.2 3.0 63 56.5 0.0 64 3.1	95.9 95.9 96.1	119.0	10° 41	$\begin{array}{ccc} Mittel &= 63^{\circ}55:0 \\ dJ &= -0.3 \\ J &= 63^{\circ}54:7 \end{array}$
8	0	i	64 4	0.5 63 3	63 52.2 63 58.0 Δi –1.0 63 57.0	96.2 95.9 101.0 —5.1	119.0 126.2 —7.2	49	-8.th mode II 8
		100		Magne	S. S	-5.1	-1.2	N E.C.	-readly wanted
Ein-	ALC: Y	GC =	(14)	90		V:	ariatio	nen	-cit de session de segui
stel- lung	1	Jhranga	be	Magnet- temp.	Kreis: Mittel	Kornth D.		Potsdam H.	angli della con
$v_1 \\ v_2$	9*	53.1-5 54.5-5		19:4 20.1	38° 3:8 38 35.8 38 19.8	8.1 8.2 8.15		95.6 95.6	$2 (\phi) = 96^{\circ} 6!6$ $\phi = 48 3.2$ $\lg \sin \phi_{15} = 9.87 292$
$v_3 \\ v_4$		56.5-5 58.4-5		19.1 19.7	302 21.3 302 5.0	8.3 8.4		95.7 95.9	$\frac{n'_{100}}{\lg \sin \phi_0} = \frac{-29}{9.87263}$
				19,6	302 13.2	,8.35	-	95.7 100.0 —4.3	$\frac{\lg c}{\lg H} = 9.30686$
	1 10			Magnet		1 000	1989	09070	. 0.41
v ₄ v ₃	10	3.3-		21.5 21,0	302 58.8 301 58.1 302 28.4	8.5 8.7 8.6	1	96.1 96.7	$ \begin{array}{rcl} 2(\phi) &=& 95^{\circ}51.4 \\ \phi &=& 47 \ 55.6 \\ \lg \sin \phi_{15} &=& 9.87 \ 246 \end{array} $
v ₂ v ₁	100	5.6- 7.5-		21.2 20.6 21.1	38 7.8 38 31.8 38 19.8	8.8 8.6 8.7	H	96.4 96.2 96.4	$\begin{array}{ccc} \mathbf{n'}_{100} &=& -24 \\ \lg \sin \phi_0 &=& 9.87\ 222 \\ \lg \mathbf{c} &=& 9.17\ 932 \end{array}$
	1000		0.7	21.1	1 200 1 25	1 19	1	100.0	$\frac{1g H}{ $
v	1		9.7	Deflekt	350 18.6	8.6	1		and the
o w	10	11.9-1 14.1-1		20.9 20.5	295 47.2 44 58.9	9.0 9.1	1	96.3 96.1	$ \begin{array}{ccc} 2 (\phi) & = 109^{\circ} 11!7 \\ \phi & = 54 \ 35.9 \\ 1 & = 100 \ 1208 \end{array} $
				20.7			-	96.2 100.0 —3.8	$\begin{array}{ccc} \lg \sin \phi_{15} = 9.91\ 308 \\ \hline \lg e &= 9.22\ 005 \\ \hline \lg H &= 9.30\ 723 \end{array}$
				Deflekto	or II.				Charles and the same of the sa
W	10*	16.7-1 18.6-1		20,4 19,6 20,0	49 7.1 291 32.4	9.4 9.5	STATE OF	95.8 95.8 95.8	$\begin{array}{ccc} 2 (\phi) &= 117^{\circ} 34.7 \\ \phi &= 58 \ 47.3 \\ \lg \sin \phi_{15} = 9.93 \ 374 \end{array}$
v	11 79	2	0.5	do to	350 18.0	9.5		100.0 —4.2	$\begin{array}{ccc} \lg c &= 9.24069 \\ \lg H &= 9.30724 \end{array}$
									$\begin{array}{ccc} H & = 0.20270 \\ & 281 \\ & 288 \end{array}$
									$ \begin{array}{c} 288 \\ H = 0.20284 \pm 3 \\ \text{Basiskorr. } \Delta b = -2 \end{array} $
									$\begin{array}{c} \Delta (\lambda, \phi) = & -2 \\ H = 0.20280 \end{array}$

Nr. 36. 1902 Aug. 18. Kräftiger Nordwestwind.

Standpunkt: Sig. Wassergang, südwestlich von Elchingen im Härdtsfeld. Im oberen weißen Jura, Plattenkalk, mit Überlagerung von Bohnerztonen.

$$x = +30526.8$$
, $y = +88456.0$, $H = 604$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
10	THE STATE OF THE S	$\Delta u = +0^{m}2$	01 DS 60 CE	100	\$0 bear 8
la-4a	I oben	0º 53.6-54 ^m 9	350° 22:8 22.9	14.3	350°37!2
5-8	II oben	47.8-49.0	350 18.8 20.0	14.0	350 33.4
18.5			20.0	185	350 35.3
9-12	II oben	OP 49.4-50.3	350 20.0 18.6	14.1	350 33.4
13-16	I oben	51.3-52.5	350 23.5	14.1	350 37.6
77.6			23.6	2000	350 35.5
100	Elchingen		51 31.2	1	mill me o
	Neresheim, Schl.		120 10.8		
	Auernheim		155 17.0	- 53	

Bemerkung: Erster Halbsatz verworfen und wiederholt durch Nr. la-4a.

Azimut des Kreisnullpunktes:

E.		-2	°24!2	2 G	ew. 1
N.			23.3	3	10
A.			23.2	2	10
ao					=21
A-a					
Ao	=	-1	28!7	7 ± 0	!1
(M)					.1
M					nly I
Do					
l. Dekl. D.	=	11	0.3	3	

Nadel	W	Be-	Mittel		A + B	Variat.		Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2	O W	a	63° 45!5 64 20.5	63° 59!5 63 53.5	63° 52!5 64 7.0	102.2 102.5	4 200	1º 4
2 3 4	W	i i	63 49.2 64 18.2	64 1.0 63 56.5	63 55.1 64 7.4	102.5 102.3	121.7	13
					64 0.5			2
II 5	o W	a	63 33.5 64 48.8	64 35.5 63 12.2	64 4.5 64 0.5	102.1 102.2	121.8	1º15
7 8	W	i	63 40.0 64 57.2	64 39.5 63 8.5	64 9.8 64 2.8	102.3 102.4	T DEP	25
					64 4.4 Δi –1.0	102.3 101.0	121.8 126.2	10016
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	Mary S. J	4-1934	64 3.4	+1.3	-4.4	1 8

$$\Delta n' = +1.3$$
 $\Delta n'' = -4.4$

Nadel I = 64° 0!5

II = 64 3.4

Mittel = 64° 2!0

dJ = +0.7

J = 64° 2!7

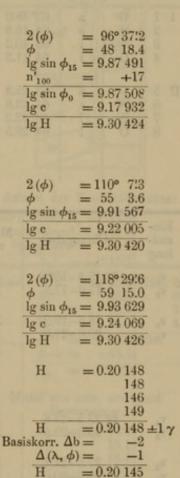
Magnet I.

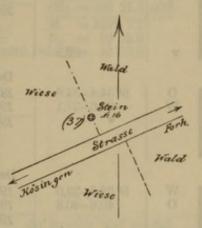
Ein-	STILL COST	Magnet-	Kreis:	Variationen		
stel- lung Uhrangabe	temp.	Mittel	Kornthal D.	Potsdam H.		
v v ₁ v ₂	1p 31 ^m 5 34.0-34.6 35.6-36.5	21°2 21.3	350° 27:2 38 24.5 39 1.6	13.6 13.6 13.6	102.4 102.4	
-11	E land	13.03	38 43.0	13.6		
v ₃ v ₄	38.5-38.6 40.5-42.7	20.8 20.7	302 6.7 302 6.1	13.5 13.5	102.4 102.6	
	2 db mole	21.0	302 6.4	13.5	102.4 100.0	
	WIND CO. T.				+2.4	

Bemerkung: Magneteinstellung wegen des starken Windes kaum möglich.

$2(\phi)$	=	96° 36!6
φ	=	48 18.3
$\lg \sin \phi_{15}$	=	9.87 509
n'100		+16
$\lg \sin \phi_0$		9.87 525
lg c		9.17 949
lg H		9.30 424

Magnet. II.


	1	Variationen		Kreis:	Magnet-	Cin-	Ein-
	(687)	Potsdam H.	Kornthal D.	Mittel	temp.	Uhrangabe	stel- lung
= 96	$2(\phi)$	102.6	13.4	302°37:1	2190	1º 51.0-51 ^m 4	V ₄
= 48	φ	102.6	13.4	301 32.5	20.3	52.3-52.8	V ₃
$\phi_{15} = 9.87$	lg sin		13.4	302 4.8			
=	n' ₁₀₀	102.4	13.4	38 32.1	20.6	54.3-55.0	V ₂
$\phi_0 = 9.87$	lg sin	102.4	13.2	38 51.8	21.0	56.4-56.7	v ₁
	lg c	102.5	13.3	38 42.0	20.7		
= 9.30	lg H	100.0					
		+2.5	13.1	350 26.4		59.2	v
				r I.	Deflekto		
= 1109	$2(\phi)$	102.6	13.0	295 23.2	21.2	2º 7.5- 7.6	0
= 55	φ	102.6	13.0	45 30.5	21.0	9.2- 9.4	W
$\phi_{15} = 9.91$	lg sin	102.6			21.1		
= 9.25	lg c	100.0					
= 9.30	lg H	+2.6			100		
				r II.	Deflekto		
= 1189	$2(\phi)$	102.1	12.9	49 42.4	21.3	2º 12.3-12.6	W
= 59	ф	101.9	12.6	291 12.8	21.3	14.6-14.8	0
$\phi_{15} = 9.93$	lg sin	102.0			21.3		1000
= 9.24	lg c	100.0			100		
	lg H	+2.0			100		- 67
= 0.20	Н						


Nr. 37. 1902 Aug. 18. Sonnenschein.

Standpunkt an der Landesgrenze, etwa 12^m nördlich der Straße von Kösingen nach Forheim, über dem Markstein Nr. 16, am Rande des Waldes. Im Lehm auf oberem weißen Jura.

$$x = +27420$$
, $y = +100910$, $H = 580$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
	ROBERT	$\Delta u = 11.3$			
la-4a	I oben	6* 48.2-48 ^m 8	350°23!2 25.4	6.4	350° 30:7
5-8	II oben	44.3-45.0	350 20.6 20.7	6.4	350 27.1
		300 110	20.7		350 28.9
9-12	II oben	6* 45.3-46.1	350 22.5 22.7	6.4	350 29.0
13-16	I oben	46.8-47.8	350 21.5 22.0	6.4	350 28.2
			22.0		350 28.6
	Ohmenheim O direkt	6p 56m 3.5	292 12.15 286 16.3	44	
	0 :	57 17.5 7P 1 8.5	287 2.0 287 13.7	100.0	
	0000	2 12.5	287 57.5		
	0	3 8.0 3 53.5	287 35.7 288 16.0		

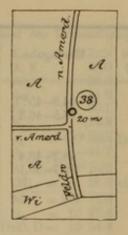
Bemerkung: Erster Halbsatz verworfen und wiederholt durch la-4a.

27.4	
Mittel $A_0 = -1^{\circ} 27!2$ (M) = 350 28.8	
$M = 349^{\circ} 1.6$ $D_0 = 10 58.4$ mittl Dekl $D = 11 5.4$	

N- d-1	Vasia	Be-	Mi	ttel	A + B	Var	riat.	Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2	o W	a	63°38!0 64 16.8	63°51!8 63 41.5	63° 44'.9 63 59.1	103.1		5º 50
3 4	W	i	63 40.2 64 11.2	63 56.5 63 46.0	63 48.4 63 58.6	103.6	123.6	58
II 5	o W	a	63 25.8 64 43.8	64 27.0 63 7.2	63 52.8 63 56.4 63 55.5	103.5		6P 1
7 8	W	i	63 32.2 64 39.5	64 30.0 63 2.8	64 1.1 63 51.2	103.5	123.6	10
		7			63 56.0 Δi –1.0	103.4 101.0	123.6 126.2	133
		1000			63 55.0	+2.4	-2.6	100000

 $\Delta n' = +2.4$ $\Delta n'' = -2.6$ Nadel I = 63°52'8 • II = 55.0 Mittel = 63°53'9 dJ = +0.7 J = 63°54'6

Ein-	of the same of the	Magnet-	Kreis:	Varia	tionen	
stel- lung	Uhrangabe	temp.	Mittel	Kornthal D.	Potsdam H.	
v ₁	6º 15.4-15º6	199	38° 9:6	6.4	103.8	$2(\phi) = 95^{\circ}50!$
V ₂	17.0-17.3	19.9	38 39.0	6.4	104.0	$\phi = 47.55$.
1	DERROS TO LO UP W	0	38 24.3	6.4	0.00	$\lg \sin \phi_{15} = 9.87 \ 21$
V ₃	18.6-19.0	20.0	302 32.3	6.4	104.0	$n'_{100} = +2$
V4	20.6-21.0	19.7	302 35.2	6.4	104.0	$\lg \sin \phi_0 = 9.87 24$
		19.9	302 33.7	6.4	104.0 100.0	$\frac{\lg c}{20.70} = 9.17.94$
608					+4.0	$\lg H = 9.3070$
61		- D tool		1 2 7	+1.0	
		Magnet	II.			
V4	6º 23.5-23.8	19.6	303 3.4	6.4	103.9	$2(\phi) = 95^{\circ}52!$
V ₃	25.3-25.5	20.2	301 57.2	6.4	103.8	$\phi = 47 56.$
9 9		THE REAL PROPERTY.	302 30.3	6.4	10000	$\lg \sin \phi_{15} = 9.87 \ 22$
V ₂	27.5-27.7	20.1	38 6.2	6.4	103.9	$n'_{100} = +2$
v ₁	29.6-30.0	21.0	38 40.2	6.4	104.0	$\lg \sin \phi_0 = 9.87 \ 25$
		20.2	38 23.2	6.4	103.9	$\lg c = 9.17 93$
6		CO STATE		100000	100.0	$\lg H = 9.3068$
v	32.5	No. of Lot	350 26.0	6.4	+3.9	
	02.0	,		1 0.4	William Co.	
		Deflekto	The same of the sa			d top set - s
0	6° 34.4-34.6	18.9	295 49.6	6.5	104.3	$2(\phi) = 109^{\circ}16!$
W	36.6-37.1	19.6	45 6.5	6.5	104.3	$\phi = 54.38.$
19		19.25		Indian al	104.3	$\lim_{n \to \infty} \sin \phi_{15} = 9.91 \ 28$
		1000		-	100.0	$\lg c = 9.2200$
224				1 2 4 8	+4.3	$\lg H = 9.3069$
		Deflektor	II.			
W	6º 38.6-39.0	19.0	49 16.6	6.4	104.4	$2(\phi) = 117^{\circ}24!$
0	40.6-40.8	19.0	291 52.6	6.4	104.4	$\phi = 58 \ 42.$
		19.0		No or Marie	104.4	$\lg \sin \phi_{15} = 9.9330$
100 100		Street, Street		3.00	100.0	lg c = 9.24 06
-		7 1 93		1 (5.00)	+4.4	lg H = 9.30 73
						H = 0.2028
						268
						274


H = 0.20 281268274295H = 0.20 280 ±5γBasiskorr. Δb = -2Δ(λ, φ) = +2H = 0.20 280

Nr. 38. 1902 Aug. 19. Sonnenschein.

Standpunkt auf einer Anhöhe südöstlich von Amerdingen, am Ostrande des Feldweges am Unterlienle, 20^m von einer Wegkreuzung entfernt. Im vulkanischen Tuff (Traß).

 $x = +22472.2, y = +27162.9, H = 550^{m}.$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n _o
	O direkt O = O = O = Amerdingen, Kap. Amerdingen	Δu = +1247 7* 30** 4755 32 42.0 33 51.5 35 23.0	95°10:3 96 6.3 95 45.5 96 37.5 249 14.8 288 20.9	2000	200 2 200 2 302 3 302 3
No. of Street	Bollstadt Rauhe Wanne O vorwärts O rückwärts O rückwärts O vorwärts	7* 47 42.5 50 27.0 52 23.0 55 51.0	9 24.9 11 29.9 98 28.1 279 33.8 279 21.6 100 38.5	THE PERSON	TEL TOTAL
1-4 5-8	I oben II oben	8* 21.0-22**4 24.2-26.0	350 23.4 23.6 350 11.6 11.0	3.2	350°26!7 350 14.5 350 20.6
9–12 13–16	STORES OF STREET	8ª 27.6-29.0 30.4-31.9	350 21.8 23.5 350 18.8 14.6	3.3	350 25.9 350 20.1 350 23.0
17-20 21-24	I oben II oben	8* 33.3–34.4 35.4–36.3	350 20.7 20.4 350 11.5 13.3	3.5	350 25.1 350 15.9 350 20.5
25-28 29-32	II oben I oben	36.5-37.6 39.6-40.5	350 17.0 16.5 350 19.3 17.5	3.6	350 20.4 350 22.0 350 21.2

Azimut des Kreisnullpunktes:

astr: direkt Ao -1°14"	
mit Spiegel: -1 13.6	3
Spiegelkorr1.5	
$A_0 = -1^{\circ}15!1$	L

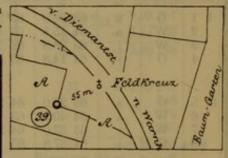
Geod:	A.K.	-0°25!4	Gew. 0.3
	A.	25.3	
	B.	26.5	3
	R.	23.7	4
	a0 =	= -0° 25!0	±0:8
	$A-\alpha =$	= -48.4	
	Ao =	= -1° 13:4	

Mittel aus astr. und geod. Bestimmung:

	A_0	=	-1°	14:2		
				13.4 14:2 21.3	±0:6	
ittl. De		=	10	7:1 52.9 59.9		

Na	dal	Kreis	Be-			A + B	Va	riat.	Uhr-
Iva	uei	Areis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I	1 2 3	o W	a	63°38:0 64 15.5	63°56:2 63 45.2	63°47:1 64 0.3	91.4	121.1	9ª 15
	3 4	W	i	63 38.8 64 14.8	63 54.2 63 54.2	63.46.5 64 4.5	91.2	141.1	23
II	5	0	A STATE OF THE PARTY OF THE PAR	63 29.0	64 23.2	63 54.6 63 56.1			9ª 25
11	6 7	W	a a i	64 40.5 63 32.0	63 8.5 64 26.0	63 54.5 63 59.0	91.3	121.0	9 23
	8	0	/ i	64 37.8	63 6.2	63 52.0 63 55.4	90.5	121.0	35
						Δi -1.0 63 54.4	101.0	126.2 —5.2	-400

Δ	n' = -9.9	Δn	-=	5.2
	Nadel I			
	Mittel :	= 63°		
	J :	= 63	53:0	


Magnet I.

		Magnet	**			
Ein- stel-	Uhrangabe	Magnet-	Kreis:	Varia	tionen	uniqualit and ciner Aubibe and binergia an Catarillante, 20° v
lung	Onrangabe	temp.	Mittel	Kornthal D.	Potsdam H.	v contract of a 26
v ₁	8* 44.8-45*1	1997	38°10:0	3.9	92.2	$2(\phi) = 96^{\circ} 9!4$
v ₂	46.5-46.8	19.5	38 47.8	3.9	92.0	$\phi = 48 \ 4.6$
	Street Tax	1	38 28.9	3.9	CARLO ME	$\lg \sin \phi_{15} = 9.87\ 304$
V ₃	48.2-48.4	19.3	302 16.9	4.0	92.0	$\frac{n'_{100}}{1 - 100} = \frac{-54}{0.07.050}$
V ₄	49.7-50.1	19.3	302 22.2	4.0	91.9	$ \lg \sin \phi_0 = 9.87 250 \\ \lg c = 9.17 947 $
	0 118 -44	19.45	302 19.5	4.0	92.0	lg H = 9.30 697
	145 PM			Mill Botto	100.0	ig 11 = 5.50 057
	-			I GGG	-8.0	1.12
		Magnet	II.			
V ₄	8ª 52.6-53.2	18.8	302 41.8	4.1	91.7	$2(\phi) = 96^{\circ} 9.0$
V ₃	54.5-54.8	19.1	301 44.6	4.1	91.7	$\phi = 48 \ 4.4$
	A I	Branch &	302 13.2	4.1	7	$\lg \sin \phi_{15} = 9.87\ 286$
V ₂	56.6-57.0	19.2	38 14.1	4.2	91.6	$n'_{100} = -57$
v ₁	58.8-59.2	19.7	38 30.4	4.2	91.6	$ \lg \sin \phi_0 = 9.87 229 \\ \lg c = 9.17 931 $
01	9.10 11 11 - 11 11	19.2	38 22.2	4.2	91.6	$\frac{\lg e}{\lg H} = 9.30702$
	25.5			1 100	100.0	Ig 11 = 5.50 702
	TARREST THE PARTY OF THE PARTY	1 304 75		3850	-8.4	-0.754 May 1 -25 1 1-
v	9ª 1.1	1 5	350 18.8	4.2	132 03	- 2 1 C 1 Page 1 Page 1 2 2 8
		Deflekto	or I.			
0	9ª 3.6- 3.9	19.0	295 43.2	4.3	91.6	$2(\phi) = 109^{\circ}15!5$
·W	5.5- 5.7	19.6	44 58.7	4.4	91.6	$\phi = 54 \ 37.8$
	Bestingwood	19.3		6.00	91.6	$\lg \sin \phi_{15} = 9.91\ 278$
	Chief of A	100 13	E 002 342	1 1 1 1 1 1 1	100.0	$\lg c = 9.22006$
	Tat	0.3	E 555 2	10000	-8.4	$\lg H = 9.30775$
		Deflekto	r II.			(unbrauchbar)
W	9ª 8.2- 8.5	20.0	49 25.0	4.4	91.6	$2(\phi) = 117^{\circ}53!8$
0	10.0-10.3	20.0	291 31.2	4.6	91.5	$\phi = 58 \ 56.8$
	0.85 01 - 0	20.0		The second	91.5	$\lg \sin \phi_{15} = 9.93 447$
	0.02 OI -0234	A distant		1	100.0	$\lg c = 9.24070$
		1 33	E DEE BE	1 7 7 7	-8.5	$\lg H = 9.30681$
						H = 0.20275
						278
						268
						H = 0.20 274 ±3
						Basiskorr. $\Delta b = -2$ $\Delta (\lambda, \phi) = -1$
						$\frac{\Delta(\lambda, \phi) = -1}{H = 0.20271}$
						H = 0.20 2/1

Nr. 39. 1902 Aug. 19. Sonnenschein.

Standpunkt südwestlich der Straße von Diemantstein nach Warnhofen im Lindenfeld, $55^{\rm m}$ von einem Feldkreuz entfernt. Im Löß auf Marmorkalk. $x=+22\ 193.1\,,\;y=+25\ 678.7,\;H=522^{\rm m}.$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)		Magnet- ablesung red. auf n ₀
1.4		$\Delta u = +0^{m}2$	250 210		
1-4	I oben	11°50.9-52°3	350 21.0 23.4	12.0	350°34!2
5-8	II oben	53.9-55.0	350 12.5 11.3	12.3	350 24.2
			11.5	- 13	350 29.2

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
9-12	II oben	55.4-56 ^m 3	350 13.9 16.2	12.3	350 27.3
13-16	I oben	58.6-59.6	350 18.7 15.6	12.3	350 29.5 350 28.4
III A	Eglingen Amerdingen, Kap. Amerdingen		270 25.7 277 2.3 282 21.7		Partit roads
	Aufhausen Bollstadt Diemantstein Rauhe Wanne		300 56.5 319 0.2 324 41.0 329 5.2	2.00	

Azimut des Kre	eisnullpunktes:
E	0°31!3 Gew. 7
A. K.	
Am.	30.0 5 30.0 5 31.6 7
Au.	
B.	30.1 6
R.	29.3 7
$a_0 = -$	$0^{\circ} 30!5 \ \Sigma p = 37$
A - a =	-45.7
$A_0 = -$	1° 16!2
	0 28.8 ±0.4
M = 34	9° 12!6
$D_0 = 1$	0 47.4
ttl. Dekl. D = 1	0 54.4

Nadel	V-sis	Be- zeich-	Mi	ttel	A + B	Va	riat.	Uhr-	
Nadel	Kreis	el Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1 2	O W	a	63°38!8 64 11.5	63° 41!5 63° 50.0	63° 40:2 64 0.8	95.3		0º 12	
3 4	W	a i i	63 39.8 64 7.2	63 45.0 63 51.5	63 42.4 63 59.4	96.1	120.1	20	
					63 50.6				
II 5 6	o W	a	63 31.5 64 34.2	64 25.2 63 2.8	63 58.4 63 48.5	96.2	120.3	OP 22	
7 8	WO	i	63 36.5 64 34.2	64 30.0 62 59.5	64 3.3 63 46.8	97.4	120.3	32	
					63 54.2	96.2	120.2		
					Δi -1.0	101.0	126.2		
141			18 1 1	131	63 53.2	-4.8	-6.0		

$$\begin{array}{ccc} \Delta n' = -4.8 & \Delta n'' = -6.0 \\ \text{Nadel I} = 63^{\circ} 50.6 \\ & \cdot & \text{II} = & 53.2 \\ \hline \text{Mittel} & = 63^{\circ} 51.9 \\ \text{dJ} & = & -0.4 \\ \hline \text{J} & = 63^{\circ} 51.5 \\ \end{array}$$

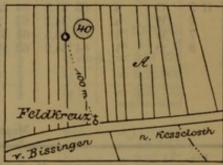
Magnet I.

Ein-	stel- Uhrangahe M		Kreis:	Variationen		
			temp. Mittel		Potsdam H.	
v	Op 38 ^m		350° 16:0	13.6	140	
$v_1 \\ v_2$	40.7-41 ^m 2 42.4-42.6	26°0 26.2	37 44.4 38 12.9	13.6 13.6	97.7 97.7	
'2	12.1-12.0	20.2	37 58.7	13.6	31.1	
v ₃ v ₄	44.4-44.7 46.2-46.5	26.8 26.8	302 39.6 302 42.2	13.6 13.6	97.6 97.5	
- maggina		26.45	302 40.9	13.6	97.6 100.0	
			ALE OUT OF	21.00	-2.4	
		Magnet	II.			
v ₄ v ₃	0° 48.8-49.0 50.1-50.4	27 <u>°</u> 0 26.7	303° 5:0 302 19.9	13.6 13.6	97.8 97.9	
			302 42.4	13.6	Des Jaj	
v ₂ v ₁	51.9-52.3 53.5-53.7	26.9 26.8	37 43.0 38 3.9	13.6 13.8	98.0 98.0	
		26.85	37 53.4	13.7	97.9 100.0	
v	56.0		350 18.6	13.8	-2.1	

$$\begin{array}{cccc} 2 \, (\phi) & = \, 95^{\circ} \, 17.8 \\ \phi & = \, 47 \, \, 38.9 \\ \lg \sin \phi_{15} = \, 9.87 \, 246 \\ \mathsf{n'}_{100} & = \, -16 \\ \lg \sin \phi_{0} & = \, 9.87 \, 230 \\ \lg \, \mathsf{c} & = \, 9.17 \, \, 947 \\ \hline \lg \, \mathsf{H} & = \, 9.30 \, 717 \end{array}$$

$2(\phi)$	=	95° 11:0
φ	=	47 35.5
$\lg \sin \phi_{15}$	=	
n' ₁₀₀	=	
$\lg\sin\phi_0$	=	9.87 187
lg c		9.17 931
lg H	=	9.30 744

Deflektor I.


Ein-	There are	Mag-	Kreis:	Varia	tionen	Nr. Einselferg Chron
stel- lung	Uhrangabe	net- temp.	Mittel	Kornthal D.	Potsdam H.	127 mls 101 0
O W	0º 57.8-58 [®] 2 59.6-60.0	27% 27.4	296° 9!5 44 28.2	13.8 13.8	98.3 98.5	$2(\phi) = 108^{\circ}18.7$ $\phi = 54 9.4$
The state of the s	R. S.	27.45			98.4 100.0	$\frac{\lg \sin \phi_{15} = 9.91304}{\lg c = 9.22006}$
34	Dar Service	Deflekto	r II.		-1.6	lg H = 9.30 713
W	1 ^p 2.6- 3.0 4.6- 4.9	27.5 27.7	48 29.2 292 7.7	13.9 13.9	98.7 98.9	$ \begin{array}{ccc} 2(\phi) & = 116^{\circ}21!5 \\ \phi & = 58 \ 10.8 \end{array} $
133	Dal D = 10 47.4	27.6			98.8 100.0	$\frac{\lg \sin \phi_{15} = 9.93354}{\lg c = 9.24070}$
		The same of	25		-1.2	lg H = 9.30 724
						H = 0.20 285 297
						283 288
						$\begin{array}{ccc} H &= 0.20\ 288\ \pm 3\ \gamma \\ \text{Basiskorr. } \Delta b = & -2 \end{array}$

Nr. 40. 1902 Aug. 19. Sonnenschein.

Standpunkt nordwestlich von Kesselostheim, in den Hähnleäckern, etwa 100^m von einem Feldkreuze entfernt, nördlich der Straße nach Bissingen. Im Löß auf Marmorkalk.

$$x = +22028.1$$
, $y = +23575.4$, $H = 455$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
-	100000000000000000000000000000000000000	$\Delta u = +13.7$	(h 95.0		
	○ vorwärts ○ rückwärts ○ rückwärts ○ vorwärts	4 ^p 3 ^m 46 ^s 5 5 15.5 6 37.0 8 16.5	72°42:6 253 41.0 253 21.8 74 18.8		
	Schaffhausen Geishardt Hochstein		0 27.8 244 29.2 280 22.0	100	100E
1-4	I oben	4º 35.0-35 ^m 9	350 27.6 32.6	7.0	350°37!1
5-8	II oben	37.2-38.2	350 20.1	7.0	350 26.8
3		5	19.5	2	350 32.0
9-12	II oben	4º 38.8-39.4	350 21.0 25.1	7.0	350 30.0
13-16	I oben	41.0-41.7	350 21.6	6.9	350 28.8
		1953. 7 min 2	22.2		350 29.4
17-20	I oben	4º 48.6-49.5	350 27.0 30.9	6.7	350 35.7
21-24	II oben	50.5-51.4	350 17.2	6.7	350 24.7
			18.8	0	350 30.2
25-28	II oben	4º 52.4-53.2	350 18.6 20.3	6.8	350 26.2
29 - 32	I oben	54.0-55.1	350 24.2	6.8	350 31.4
			25.1	7 8	350 28.8

 $\Delta(\lambda, \phi) =$

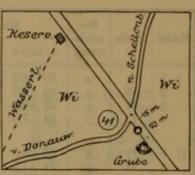
= 0.20284

Bemerkung: Pinnen mehrfach gewechselt.

Azimut des Kreisnullpunktes:

Mittel aus beiden Bestimmungen:

$$\begin{array}{cccc} A_0 & = -1^{\circ}14!3 \\ & 13.2 \\ \hline A_0 & = -1^{\circ}13!8 \\ (M) & = 350 \ \ 30.1 \ \pm 0!7 \\ \hline M & = 349^{\circ}16!3 \\ D_0 & = 10 \ \ 43.7 \\ mittl. \ Dekl. \ D = \ \ 10 \ \ 50.7 \\ \end{array}$$


No.d.1	V	Be-	6	Mittel	A + B	Va	riat.	Uhr-	No. 44. 1902 Au
nadel	Kreis	zeich- nung	A u	nten B unt	en 2	H.	Z.	- Constant	adjouit on Shinblange des 5
I 1	0	a	63°3			1 30	1111	4P 59	$\Delta n' = +0.8 \Delta n'' = -1.4$
2	W	a		7.0 63 42		101.7	124	ATTENDED	THE RESERVE TO SERVE THE PARTY OF THE PARTY
2 3	W	i	63 4	40.2 63 45	.8 63 43.0	101.7	124	107 914 10	Nadel I = 63° 49!4 • II = 50.4
4	0	o) i	64	7.0 63 51		101.1		5P 8	Mittel = 63° 49:9
				- 1 1 m	63 49.4			in 2	dJ = +0.3
II 5	0	a	63 2			101.7		5P 10	J = 63° 50:2
6 7	W	a	64 4			101.7	124	.8	
8	0	i	64 4			102.0		21	4-11
T DESCRIPTION	A STATE OF THE PARTY OF THE PAR		1000	and the same of th	63 51.4	101.8	124		- h 22 mg made Y hands
Servi				nin A sin	Δi -1.0	101.0	126	The same of the sa	
0 16				1 20	63 50.4	+0.8	-1	4	-8 Kill Krosen (d. 1785 S-
9 17	8.85		-3	Magnet	I.		*1		gradu - 520 20
Ein-	28.4	-	MAL	Magnet-	Kreis:	V	ariat	ionen	-1.20 % and o'll 100 21
stel- lung	3	Jhranga	be	temp.	Mittel	Korntl D.	hal	Potsdam H.	-16 1 oben 9 1.5-
v	5P	9	7 ^m 2	100	350°37!0	6.3		II.	$2(\phi) = 95^{\circ} 7.4$
v ₁	40.00	29.9-3		2895	37 55.7	6.3		101.9	$\phi = 47 \ 33.7$
v ₂	1:12	31.7-3		28.3	38 18.8	6.2		102.0	$\lg \sin \phi_{15} = 9.87 \ 252$
	0.80			Test .	38 7.3	6.2	-	20	$n'_{100} = +14$
V ₃	Marie .	33.7-3		28.3	302 59.0	6.2	250	102.1	
V ₄		35.2-3	5.5	28.3	302 60.8	6.1		102.1	0
				28.35	302 59.9	6.1	0	102.0 100.0	lg H = 9.30 681
				1	1		-	+2.0	THE RESERVE TO SHARE
	1			Magnet	II	1 3 8	+1	10000	The Real of Land
-	5p	50.5-5	Om7	Magnet 2890	303° 15:9	6.0	2	102.1	$2(\phi) = 95^{\circ} 8.8$
V ₄ V ₃		52.2 - 5		27.9	302 23.4	6.0		102.1	$\phi = 47 \ 34.2$
3	THE P. LEWIS CO., LANSING, MICH.	10.00	00 200 TD		302 49.6	6.0		2010	$\lg \sin \phi_{15} = 9.87 \ 218$
V ₂		53.6-5		27.7	37 44.6	6.0		102.0	n' ₁₀₀ = +14
V ₁	916	55.0-5	5.2	27.7	38 12.3	6.0		102.0	$\lg \sin \phi_0 = 9.87 232$
	3100			27.8	37 58.4	6.0	20	102.0	$\lg c = 9.17931$
				1223		Tuo	1 =	100.0	$\lg H = 9.30699$
v	4	5'	7.2	1.250	350 22.4	6.0	3 2	+2.0	0 0V A 06 855
	1			Deflekto	r I.	20	1 59	AND THE REAL PROPERTY OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	5P	59.2-6	0.2	26.8	296°17:8	5.9	8 19	102.0	$2(\phi) = 108^{\circ}21.0$
W		1.6-		26.7	44 38.8	5.9		102.0	$\phi = 54 \ 10.5$
				26.75		1 1 1 1 1	9 82	102.0	$\lim_{n \to \infty} \sin \phi_{15} = 9.91 \ 288$
						Court	-	100.0 +2.0	lg c = 9.22 006
	1			Defel	TI		- 1	72.0	$\lg H = 9.30704$
117	l en	54	5.0	Deflekto		1	1	100.0	$2(\phi) = 116^{\circ} 27.8$
W	6P	5.4- 6.1-		26.3 26.5	48 44.8 292 17.0	5.8		102.0 102.0	$2 (\phi) = 116^{\circ} 27!8$ $\phi = 58 \ 13.9$
-	3134	10.53		26.4	A STATE OF THE PARTY OF THE PAR	0.0	Host	102.0	$\lg \sin \phi_{15} = 9.93335$
	13 Gar			Print Triege		1	9221	100.0	lg c = 9.24 070
	1 3			Till Jane	The same of the same of	Viger Co.	-	+2.0	$\lg H = 9.30721$
									и020268
									H = 0.20268 276
									279
									287
									H = 0.20 278 ±4
									Basiskorr. $\Delta b = -2$ $\Delta (\lambda, \phi) = +2$

Nr. 41. 1902 Aug. 20. Bedeckter Himmel.

Standpunkt am Südabhange des Schellenberges bei Donauwörth, am Westrande eines Weges, 15^m von der Wegkreuzung und etwa 150^m vom Wasserreservoir, 23^m von einem alten Einbruche entfernt. Im Breccienkalk des weißen Jura.

 $x = +22 \, 166.0, y = +19 \, 761.4, H = 440^{m}.$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Potsd.	Magnet- ablesung red. auf n ₀
1977	17 2.0- 3.0	$\Delta u = +0.3$	(6 2) Sept	1800	ED 12:50 C
1-4	I oben	8ª 55.4-56 ^m 6	350° 24:5 26.3	4.9	350° 30!3
5-8	II oben	58.2-59.1	350 15.5 14.9	5.1	350 20.3
	100000000000000000000000000000000000000				350 25.3
9-12	II oben	8ª 59.4-60.3	350 17.6 19.2	5.2	350 23.6
13-16	I oben	9ª 1.5- 2.5	350 20.8 20.7	5.2	350 26.0
			20.7	-	350 24.8
	Münster		234 44.8		
100	Erlingshofen		235 35.8	1 20	
-3 3	Riedlingen		259 50.8	100	
3	Donauwörth, Kl.		278 50.5	51-8-3	
	Donauwörth	30	281 31.6	71 00	

Bemerkung: Am 20. Aug. fehlt die Registrierung in Kornthal. Die Variationen der Deklination wurden von Potsdam abgeleitet, im Anschluß an benachbarte Tage.

Azin	nut des	Kreis	nullp	unktes	:
-	M.	-00	28:7	Gew.	6
200 3	E.		28.8		6
7	R.		28.9		2
1000	D. Kl.		28.4		0.2
Ball B	D.		29.2		0.2
100	a0 =	= -0°	28!8	$\Sigma p = 1$	14
	A-a=	= -	35.1	1	
1000	A0 =	= -1°	3:9	±0:2	
900	(M) =				
80 F	M =	= 349°	21:1	1 4	
	Do =				
mittl. I	ekl. D =	= 10	45.9		

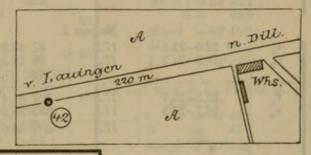
Nadel Krei		Be- zeich-	Mi	ttel	A + B	Variat.		Uhr-
Nade	Kreis	nung	A unten	B unten	2	H. Z.		angabe
I 1 2	O W	a	63°55!2 64 10.0	63° 49:5 63 42.8	63° 52!4 63 56.4	91.9	101.0	9ª 13
3 4	W	i	63 38.5 64 7.8	63 39.2 63 51.2	63 38.9 63 59.5	91.5	121.2	22
II 5 6	O W	a	63 35.0 64 35.5	64 26.8 62 57.2	63 51.8 63 60.9 63 46.3	91.4		9ª 23
7 8	W	i i	63 31.2 64 35.0	64 25.2 62 55.5	63 58.2 63 45.2	91.0	121.3	32
	TOT BE	150			63 52.6 Δi –1.0	91.4 101.0	121.3 126.2	
	180 (16)	100			63 51.6	-9.6	-4.9	1 1 0

$$\Delta n' = -9.6$$
 $\Delta n'' = -4.9$
Nadel I = 63°51:8
• II = 51.6
Mittel = 63°51:7
dJ = -1.4
J = 63°50:3

Magnet I.

Ein-	771	Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Boehum Dekl.	Potsdan Int.	
v	9ª 38.5		350°20!0	13.8		
v ₁	40.4-40.6	1897	38 2.8	13.9	90.9	
V ₂	42.0-42.4	18.8	38 28.2	13.9	90.7	
03			38 15.5	13.9		
V ₂	43.5-43.6	18.9	302 22.2	14.0	90.7	
v ₃	44.6-44.8	18.8	302 19.1	14.0	90.7	
2		18.8	302 20.7	14.0	90.7	
24		100000000000000000000000000000000000000			100.0	
8					-9.3	

Bemerkung: Variat der Dekl. von Bochum, Temperatur von Mg. I und II ist schlecht bestimmt.


-			
-0.15	10 Fm	LAKE	
	45.55	ше	H.

		Magnet	11.	AND DESCRIPTION OF THE PARTY NAMED IN		
Ein-	Tibranasha	Magnet-	Kreis:	Varia	tionen	
stel- lung	Uhrangabe	temp.	Mittel	Boehum Dekl.	Potsdam Int.	
V ₄	9ª48.0-48 ^m 2	19:2	302° 43:2	14.3	90.6	$2(\phi) = 96^{\circ} 6!8$
V ₃	49.3-49.5	19.0	301 51.4 302 17.3	14.3	90.6	$ \phi = 48 3.4 \lg \sin \phi_{15} = 9.87 271 $
v ₂	50.6-50.9	19.0	38 11.3	14.4	90.7	$n'_{100} = -63$
v ₁	52.0-52.2	19.2	38 36.9	14.6	90.8	$\lg \sin \phi_0 = 9.87 208$
		19.1	38 24.1	14.5	90.7	$\begin{array}{ccc} \lg c & = 9.17929 \\ \lg H & = 9.30721 \end{array}$
v	53.7	152	350 20.4	14.6	-9.3	ig 11 = 3.50 /21
I sale		Deflekto	or I.			
0	9*55.5-55.7	19.7	295 48.4	14.8	90.9	$2(\phi) = 107^{\circ} 15!9$
W	57.0-57.4	19.7	45 4.3	14.9	90.7	$ \phi = 54 38.0 \lg \sin \phi_{15} = 9.91 293 $
		20.7			100.0	lg c = 9.22 007
- British	and building rate	2011	-		-9.2	lg H = 9.30 777
. 337	04505 500	Deflektor	49 12.6	15.0	000	$2(\phi) = 117^{\circ}37!1$
I W	9*59.5-59.6 10* 1.0- 1.2	19.7 19.9	291 35.5	15.0	90.6 90.6	$\phi = 58 \ 48.6$
1 50	7100 may 0 may	19.8			90.6	$\lg \sin \phi_{15} = 9.93\ 379$
- 33	THE PERSON NAMED IN	1 9			100.0 —9.4	$\begin{array}{rcl} \lg c &= 9.24072 \\ \lg H &= 9.30757 \end{array}$
1 5		1 1 2				H = 0.20 328
						H = 0.20 328 287
						313 303
						$H = 0.20308 \pm 9\gamma$
						Basiskorr. $\Delta b = -1$
						$\frac{\Delta(\lambda, \phi) = -1}{H = 0.20306}$
						11 = 0.20 500

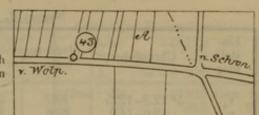
Nr. 42. 1902 Aug. 20. Regen.

Standpunkt am Südrand der Straße von Dillingen nach Lauingen, 220^m vom letzten Haus (Wirtshaus) Dillingens entfernt. Im Löß.

x = +16961.1, y = +27578.0, H = 433^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Potsd.	Magnet- ablesung red. auf n ₀	Bemerkung: Variationen von Potsdam
1-4	I oben	$\Delta u = +0^{m}3$ $2^{p}35.6-36^{m}7$	350°23:1 21.8	11.0	350°33:4	Azimut des Kreisnullpunktes: Do0° 24'.7 Gew. 1
5-8	II oben	37.7-38.8	350 14.9 15.1	10.8	350 25.8 350 29.6	Di. H. 26.7 0.3 L. 28.4 3
9-12	II oben	2º 39.1-39.6	350 17.1 17.6	10.7	350 28.1	$\frac{S.}{a_0} = \frac{26.7}{-0^{\circ}27!1} = \frac{3}{7}$
13-16	1 oben	41.1–41.8	350 20.4 19.4	10.6	350 30.5 350 29.3	$A-a = -49.7$ $A_0 = -1^{\circ} 16!8 \pm 0!7$
100	Donaualtheim Dillingen, Jes. Dillingen, Hoft. Lauingen, Schl. Lauingen Schabringen	Level 123	13 9.3 105 33.7 108 16.8 251 52.3 255 3.7 328 2.8	12.50	PAR STATE	$\begin{array}{cccc} (\dot{M}) &= 350 & 29.4 \pm 0.2 \\ \hline M &= 349^{\circ} 12!6 \\ D_{0} &= 10 & 47.4 \\ \text{mittl. Dekl. D} &= 10 & 54.4 \\ \end{array}$

Madal	Waste	Be-	Mi	ittel	A + B	Vai	riat.	Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3	O W W	a a i	63° 29!8 64 0.0 63 28.5	63°27:8 63 40.8 63 34.2	63° 28!8 63 50.4 63 31.4	106.9 107.1	120.3	2р 49
4	0	i	63 57.8	63 41.0	63 49.4 63 40.0			57
II 5 6 7	O W W	a a i	63 20.0 64 33.2 63 21.2	64 17.2 62 45.8 64 27.0	63 48.6 63 39.4 63 54.1	107.0 106.8	120.6	2P 59
8	0	i	64 30.5	62 41.0	63 35.7 63 44.4 Δi –1.0	107.0 101.0	120.4 126.2	ЗР 8
					63 43.4	+6.0	-5.8	12000


$$\begin{array}{cccc} \Delta n' = +6.0 & \Delta n' = -5.8 \\ \text{Nadel I} = 63^{\circ} 40!0 \\ & \text{II} = & 43.4 \\ \hline \text{Mittel} & = 63^{\circ} 41!7 \\ \text{dJ} & = & +1.8 \\ \hline \text{J} & = 63^{\circ} 43!5 \\ \end{array}$$

Ein-	***	Magnet-	Kreis:	Varia	tionen	Bemerkung: Variationen der Deklination von Boehum.
stel- lung	Uhrangabe	temp.	Mittel	Boehum Dekl.	Potsdam Int.	$2 (\phi) = 108^{\circ} 42.6$ $\phi = 54 \ 21.2$
o W	3º 12.2-12 ^m 4 14.0-14.5	17:4 17.5	296° 7:1 44 49.7	18.6 18.4	107.1 107.2	$\begin{array}{ccc} \phi & \equiv & 54 & 21.2 \\ \lg \sin \phi_{15} & = & 9.91 & 067 \\ n'_{100} & = & +49 \end{array}$
		17.45		N. S. S.	107.2 100.0	$ \begin{array}{rcl} & \lg \sin \phi_0 &=& 9.91116 \\ \lg c &=& 9.22007 \end{array} $
					+7.2	lg H = 9.30 891
		Deflektor	II.			
W	3º 16.5-16.6 19.5-19.6	17.8	48 53.5 291 58.8	18.4	107.1	$2(\phi) = 116^{\circ}54!7$ $\phi = 58\ 27.4$
	10.0-10.0	17.75	231 30.0	10.0	107.1	$\lg \sin \phi_{15} = 9.93146$
		1000000			100.0	lg c = 9.24 072
				99 9 7	+7.1	$\lg H = 9.30878$
		Magnet				
V ₁	3 ^p 22.5-22.8 23.9-24.2	17.2 17.5	37 49.0 38 18.3	18.3 18.2	107.0 106.9	$2(\phi) = 95^{\circ}30.0$ $\phi = 47,45.1$
V ₂	20.0-21.2	Tr. Dans	38 3.6	18.25	100.0	$\lg \sin \phi_{15} = 9.87011$
v ₃	25.5-25.7	17.3	302 31.4	18.1	106.8	n' ₁₀₀ = +46
v ₄	26.7-27.2	17.3	302 35.9	18.0	106.7	$ \begin{array}{rcl} & & & \\ & &$
		17.3	302 33.6	18.05	106.8 100.0	lg H = 9.30 889
					+6.8	
		Magnet II				
V ₄	3º 28.4-28.6 29.7-30.0	17.3	303 2.6 302 3.1	18.0 17.8	106.7 106.7	$2(\phi) = 95^{\circ}34!8$ $\phi = 47 47.1$
v ₃	25.7-30.0	17.0	302 32.8	17.9	100.7	$\lg \sin \phi_{15} = 9.87024$
v ₂	31.2-31.4	17.1	37 53.7	17.7	106.6	$n'_{100} = +45$
v ₁	32.5-32.6	17.1	38 21.6	17.7	106.6	
		17.1	38 7.6	17.7	106.6 100.0	lg H = 9.30 860
		1 4			+6.6	-1.50 mode 11 21-4
		1 20				H = 0.20 366
						360 365
						352
						H = $0.20361 \pm 3\gamma$ Basiskorr. $\Delta b = -1$
						Basiskorr. $\Delta 0 = -1$ $\Delta(\lambda, \phi) = +1$
						H = 0.20361

Nr. 43. 1902 Aug. 20 Kräftiger Westwind, Gewitter mit starkem Regen.

Standpunkt am Nordrand der Straße von Schwenningen nach Wolpertstetten, etwa 300^m vom Stationsgebäude entfernt, in den Hohlwegäckern. Im Löß.

x = +19867.4, y = +23628.0, H = 425^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der auß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
1-4	I oben	$\Delta u = +0^{\text{m}}3$ $6^{\text{p}}11.5 - 12^{\text{m}}3$	350° 23:0 25.2	6.0	350° 30:1
5-8	II oben	13.5-14.3	350 18.4 16.7	6.0	350 23.5 350 26.8
9-12	II oben	14.5-15.5	350 21.1 21.7	6.0	350 27.4
13-16	I oben	16.6-17.4	350 18.4 17.5	6.0	350 24.0 350 25.7
The same of	Tapfheim Schwenningen Blindheim Höchstädt, Schloß Deiscnhofen Unterglauheim Wolpertstetten		62 58.3 95 18.8 208 3.8 223 31.3 241 4.5 252 54.6 288 47.0		550 25.7

Bemerkung:	Um 5	234m A	bbruch	der
Messungen w				
wetters. Um	6º 10m	Fortset.	zung an	der
alten Stelle	und W	iederholi	ung der	In-
klinationsmes	sung in	it Nade	II. Van	riat.
von	Potsdam	abgelei	tet.	

alten	Stelle	und	Wice	ierhol	ang	der	In
klinati	ionsme	ssung	mit	Nade	I	Vari	at
	You	Potso	lam a	bgelei	tet.		
Azi	imut	des 1	Kreis	snullp	unk	tes:	

T.	-0°30!6 Gew. 3
B.	30.4 2
H.	30.9 6 30.4 7
D.	30.4 7
W.	30.5
a_0	$= -0^{\circ}30!6 \Sigma p = 19$
	= -42.0
Ao	$= -1^{\circ}12!6 \pm 0!1$
	$= 350\ 26.2 \pm 0.6$
M	= 349° 13!6
	= 10 46.4
	= 10 53.4
	B. H. D. W. a ₀ A-a A ₀ (M) M D ₀

Madal	Kreis	Be-	Mi	ttel	A + B	Vai	riat.	Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2	O W	a	63° 30!5 64 2.5	63° 40:0 63° 35.2	63°35!2 63 48.8	105.0		4º 30
3 4	W	100	63 31.5 64 1.8	63 44.0 63 40.2	63 37.8 63 51.0	105.2	122.5	39
			H		63 43.2			
II 5 6	o W	a a	63 27.8 64 31.5	64 21.0 62 58.5	63 54.4 63 45.0	105.2	122.6	4P 40
7 8	W	i	63 28.5 64 34.8	64 23.8 62 54.5	63 56.2 63 44.6	104.8	122.0	48
					63 50.0 Δi –1.0	105.0 101.0	122.6 126.2	C 493
					63 49.0	+4.0	-3.6	17-00
I la 2a	o W	a	63 30.8 63 60.5	63 42.5 63 37.0	63 36.6 63 48.7	103.1	-	6º 26
3a 4a	W	i	63 33 0 63 56.0	63 43.0 63 41.8	63 38.0 63 48.9	102.9	121.5	35
					63 43.0			

$$\Delta n' = +4.0 \quad \Delta n'' = -3.6$$
Nadel I = 63° 43:2

" II = 49.0

Mittel = 63° 46:2

dJ = +1.2

J = 63° 47:4

Die Nadeln I und Ia einzeln gerechnet und nach W, S. 21 um 3'0 (Diff. II-I) erhöht gibt:

$$I = 63^{\circ}44!4$$

$$Ia = 43.9$$

$$Mittel = 63^{\circ}44!2$$

$$+3.0$$

$$J = 63^{\circ}47!2$$

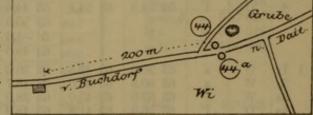
$$Mittel: Inkl. J = 63^{\circ}47.3$$

Ein-	TTI	Magnet-	Kreis:	Variationen		
stel- lung	Uhrangabe	temp.	Mittel	Bochum D.	Potsdan H.	
v	4P 54m0	77 (100)	350° 24:2	15.0		
v ₁	55.6-57.4	16.5	38 5.1	15.1	104.6	
v ₂	58.7-59.7	16.7	38 34.6	15.1	104.6	
-			38 19.8	15.1		
V.	5P 1.0- 1.4	16.4	302 23.8	15.2	104.4	
v ₃ v ₄	3.0- 4.6	16.5	302 27.0	15.2	104.2	
-		16.5	302 25.4	15.2	104.4	
					100.0	
		11 11 11 11 11			+4.4	

Bemerkung: Variat. der Dekl. von Bochum. Starker Wind und Gewitter. Magnetein-stellung wegen Unruhe schwierig. Der Magnet geht um 10' hin und her.

$=95^{\circ}54!4$
= 47 57.1
= 9.87 122
= +30
= 9.87 152
= 9.17946
= 9.30794

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. IV.


Magnet II.

Ein- stel-	Uhrangabe	Magnet-	Kreis:	Varia	tionen	and the gard and a second
lung	Onrangaoe	temp.	Mittel	Boehum D.	Potsdam H.	depoints on Northead der
v ₄	5º 12.2-12.5	16.7	302°51:9	14.9	103.6	$2(\phi) = 95^{\circ}50!2$
v ₃	13.6-14.0	16.6	302 1.7 302 26.8	14.9	103.6	$ \phi = 47 54.9 \lg \sin \phi_{15} = 9.87 103 $
v ₂	15.6-15.7	16.7	38 2.4	14.8	103.6	$\frac{n'_{100}}{\lg \sin \phi_0} = \frac{+23}{9.87126}$
v ₁	21.1-24.5	17.0	38 31.7 38 17.0	14.6	102.8	$\frac{\lg c}{\lg H} = 9.17929$ $= 9.30803$
:water		64 150		1 9329	100.0 +3.4	-0.11% - mdo 1 1
v	26.2	25	350 24.6	14.5	128 7 14	-2.81 asia II 8-
		Deflekto				
0 W	5 ^p 28.1-28.4 29.6-29.9	17.1	295 44.2 44 54.7	14.5 14.4	103.1 103.1	$2 (\phi) = 109^{\circ} 10!5$ $\phi = 54 \ 35.2$
STEWN .	20.0-20.0	17.1	17 51.7	14.4	103.1	$\lg \sin \phi_{15} = 9.91\ 183$
375 3		200		1000	100.0	$\lg c = 9.22007$
THE STATE OF		1		Service Service	+3.1	$\lg H = 9.30803$
		Deflekto	r II.			
WO	5º 31.6-31.7	17.2	49 2.6	14.4	103.0	$2(\phi) = 117^{\circ} 24.4$
0	33.4-33.5	16.9	291 38.2	14.4	103.0	$\phi = 58 \ 42.2$ $\lg \sin \phi_{15} = 9.93 \ 239$
		17.00		100	100.0	$\frac{\lg c}{\lg c} = 9.24072$
				0.01	+3.0	lg H = 9.30 813
						with 7 -all
						H = 0.20321
						325 325
						330
						$H = 0.20325 \pm 2$
						Basiskorr. $\Delta b = -1$ $\Delta (\lambda, \phi) = +2$
						$\frac{\Delta (\lambda, \phi) = +2}{H = 0.20326}$

Nr. 44. 1902 Aug. 21. Kräftiger Nordostwind. Sonnenschein.

Standpunkt östlich von Buchdorf, etwa 200^m vom letzten Hause entfernt, am Nordrande der Straße nach Daitung, bei einer Wegkreuzung. Wegen des Windes wurden J und K in 44 a, 10^m von 44 entfernt, am südlichen Straßenrand, hinter einer Hecke, gemessen. In sandiger Albüberdeckung.

 $x = +24518.1, y = +18294.1, H = 553^{m}$

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
	was plend to	$\Delta u = +18.7$			
1-4	I oben	10°48.6-49°6	350° 20:6 21.4	9.2	350° 30!2
5-8	II oben	51.4-52.4	350 18.2 18.8	9.1	350 27.6
18		10	20.0	100	350 28.9
9-12	II oben	10°53.0-53.7	350 20.1 20.0	9.6	350 29.6
13-16	I oben	55.5-56.9	350 20.0 21.1	9.8	350 30.4
8			21.1		350 30.0

Bemerkung: Variationen von Potsdam abgeleitet.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Magnet- ablesung red. auf n ₀
	Buchdorf Bergstetten Nußbühl Flotzheim Blosenau Gammesfeld		287° 20:5 319 38.7 335 31.0 340 5.3 63 35.4 81 2.1	
	O vorwärts O rückwärts O rückwärts O vorwärts	11 ^a 6 ^m 22 ^s 5 7 35.5 9 23.5 10 37.5	151 42.6 332 57.3 332 45.7 154 8.0	0.00 ES 100 10

Azimi	at des	Kreisr	ullpur	ktes:
100		-0	2000	
100		korr.	-1.0	
A	0	= -0	°58:9	
Geod:	Bu.	-0	°30!5	Gew. 1
ST. 743	Be.		30.6	2
53 110	N.		30.3	2 8 6
200	Bl.		29.6	6
1000	G.		28.4	10
0,000	a_0			Ep = 27
No. 30 at 10	A-a	= -	-32.6	
OF STREET	Ao	$= -1^{\circ}$	2:1 =	±0:5
		= 350		
Marchine		$= 349^{\circ}$		1
2000	Do	= 10	32.6	
mittl. Del	d Dm	- 10	39 6	

Nadel	Kreis	Be- zeich-	Mi	ttel	A + B	Vai	riat.	Uhr-
rvadei	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3	O W	a a	63° 45:8 64 8.0	63°52:2 63 44.0	63°49!0 63 56.0	98.0 98.0	119.8	11ª 22
3 4	WO	i	63 40.0 64 10.2	63 51.0 63 50.5	63 45.5 64 0.3 63 52.7	99.2 99.3	119.7	30
II 5 6 7	O W	a a	63 29.2 64 49.5	64 32.5 63 4.5	64 0.8 63 57.0	98.8 95.8	119.4	11* 32
8	o	i	63 30.8 64 53.5	64 32.5 63 1.0	64 1.6 63 57.2 63 59.2	98.6	119.8	40
600		186			Δi -1.0 63 58.2	101.0	126.2 —6.5	

$$\Delta n' = -2.9$$
 $\Delta n'' = -6.5$
Nadel I = 63°52!7
• II = 63 58.2
Mittel = 63°55!4
dJ = +0.1
J = 63°55!5

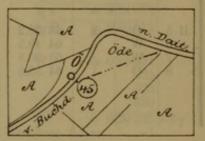
Magnet I.

Ein-	111	Magnet-	Kreis:	Varia	tionen
stel- lung	Uhrangabe	temp.	Mittel	Boehum D.	Potsdam H.
v v ₁ v ₂	11a 45 ^m .7 48.5–48.6 49.9–50.3	1790 16,8	350° 22:4 38 20.8 38 51.0 38 35.9	20.0 20.3 20.3 20.3	102.9 101.4
v ₃ v ₄	51.6-51.9 53.0-53.2	17.7 17.3	302 7.7 302 14.2	20.4 20.5	100.5 100.3
la Ti		17.2	302 10.9	20.45	101.3 100.0 +1.3
		Magnet	II.		
v ₄ v ₃	11a55.6-56.2 57.3-57.5	17.1 17.3	302 36.2 301 42.3 302 9.2	20.7 20.9 20.8	101.5 101.6
$v_2 \\ v_1$	59.0-59.4 0° 0.5- 0.8	17.3 17.8	38 21.8 38 35.7	20.9 20.9	102.0 102.2
		17.4	38 28.7	20.9	101.8 100.0
v	3.4	2130	350 24.6	21.0	+1.8

2(\phi)	= 96°19!5
φ	= 48 9.7
	= 9.87290
n' ₁₀₀	= +12
	= 9.87302
lg c	= 9.17928
lg H	= 9.30626
lg H	= 9.30 626

Deflektor I.

Ein-	Theres be	Magnet-	Kreis:	Variationen		
lung	lung Uhrangabe		Mittel	Bochum D.	Potsdam H.	
	0° 5.5- 5°7 7.3- 7.5	1793 17.5	295° 25:3 45 20.3*	21.2 21.2	101.0 100.4	
		17.4			100.7 100.0	
		Deflektor	II.		+0.7	
W			100000000000000000000000000000000000000	49 35.0 291 23.4	21.2 21.2	100.0
		17.85			100.0	
		A Jeffredeits			0.0	


* Bemerkung: Bei Deflektor I war ein Ablesefehler von 10'.

Nr. 45. 1902 Aug. 21. Sonnenschein. Wind.

Standpunkt am Nordrande der Straße von Buchdorf nach Daiting auf einer Öde an der Straßenbiegung vor Daiting. In lehmiger Albüberdeckung. x = +24 900, y = +17 000, H = 480^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf n ₀
		$\Delta u = +19.0$			100
1-4	I oben	1º 26.0-27 ^m 2	350° 22!1 22.1	16.2	350° 38!3
5-8	II oben	27.4-28.3	350 24.1	16.4	350 38.9
1			20.9		350 38.6
9-12	II oben	28.5-29.4	350 24.0 25.6	16.4	350 41.2
13-16	I oben	30.5-32.4	350 19.8	16.5	350 36.3
		State of the State of	19.9	1000	350 38.8
	O vorwärts	1º 35m 46.5	30 42.3		000 00.0
	O rückwärts	37 16.5	212 8.2		
-	O rückwärts	38 17.0	211 39.9		
	O vorwärts	39 33.5	32 54.0		

Nadel Kreis	Vania	Ein- stel-	Mi	ttel	A+B	Var	riat.	Uhr-
	Kreis	lung	A unten	B unten	2	H.	Z.	angabe
I 1	0	a	63°38:0	63° 53!0	63° 45!5	103.0		1º 46
2 3	W	a	64 17.5	63 46.2	64 1.9 63 47.2	101.0	120.0	
4	0		63 39.2 64 17.8	63 55.2 63 53.0	64 5.4	101.4		55
		office of			63 55.0			
II 5	0	a	63 35.8	64 30.0	64 2.9	101.5		1º 57
6	W	a	64 43.5	63 5.5	63 54.5	101.6	120.1	
7	W	i	63 34.0	64 29.0	64 1.5	102.5	*****	
8	0	i	64 40.0	63 6.0	63 53.0	102.0		2P 5
					63 58.0	101.8	120.0	
					Δi -1.0	101.0	126.2	
					63 57.0	+0.8	-6.2	

Bemerkung: Variation aus Potsdam abgeleitet.

Azimut des Kreisnullpunktes:

$$\begin{array}{cccc} \Delta n' = +0.8 & \Delta n'' = -6.2 \\ \text{Nadel I} = 63^{\circ}55.0 \\ & \text{II} = 63^{\circ}56.0 \\ \hline \text{Mittel} & = 63^{\circ}56.0 \\ \text{dJ} & = & +0.8 \\ \hline \text{J} & = 63^{\circ}56.8 \\ \end{array}$$

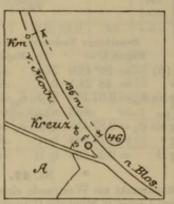
226

213

224

	Name of Bill	Magnet	I.		100	1	I die	Magnet	t II.		
Ein-	777	Mag-	Kreis:	Varia	tionen	Ein-	TT	Mag-	Kreis:	Varia	tionen
stel- lung	Uhrangabe	net- temp.	Mittel	Boeh. D.	Potsd. H.	stel- lung	Uhrangabe	net- temp.	Mittel	Boch. D.	Potsd H.
v ₁	2º 11.8-12 ^m 2	21:6	38° 5!1	24.6	104.0	v ₄	2º 19.6-20.6	19.6	302 46.2	24.6	106.2
V ₂	13.6-14.0	21.4	38 39.3 38 22.2	24.6	104.4	V ₃	21.6-22.0	20.0	301 48.2 302 17.2	24.55	106.0
v ₃	15.5-15.7	20.6	302 17.5	24.7	104.4	V ₂	23.4-23.6	19.9	38 15.6	24.5	105.1
V ₄	17.0-17.2	20.4	302 21.4	24.7	104.4	v ₁	24.5-24.8	20.0	38 34.1	24.4	104.8
		21.0	302 19.4	24.7	104.3	19.9	10 12.12.49	19.9	38 24.8	24.45	105.5
					+4.3	v	26.8	411	350 20.2	24.3	+5.5
		Deflekto	or I.					Deflekto	r II.		
O W	2º 30.1-30.4 32.0-32.4	20.0 20.5	295 37.2 45 17.5	24.0 23.9	103.8 103.6	WO	2º 34.6-35.0 36.7-37.2	20.3	49 26.7 291 32.6	23.8 23.7	103.6 103.6
		20.25			103.7 100.0	1000		20.35			103.6
					+3.7	1	Mark Street	TO THE REAL PROPERTY.			+3.6

Magnet I. Magnet II. Deflektor I. Deflektor II. $= 96^{\circ} 2!8 2(\phi)$ =109°40!3 2(\$\phi\$) $= 96^{\circ} 7.6 \ 2(\phi)$ =117°54:1 $2(\phi)$ = 0.20229H $= 48 \ 3.6 \ \phi$ $= 48 1.4 \phi$ = 5857.1 $= 54 50.1 \phi$ $\lg \sin \phi_{15} = 9.87 \ 317 \quad \lg \sin \phi_{15} = 9.87 \ 299 \quad \lg \sin \phi_{15} = 9.91 \ 420 \quad \lg \sin \phi_{15} = 9.93 \ 462$ = +29 n'₁₀₀ = +37 lg e n'100 = 9.22 008 lg c H


 $\lg \sin \phi_0 = 9.87346 \ \lg \sin \phi_0 = 9.87336$ $= 0.20223 \pm 4\gamma$ lg H $= 9.30563 \, \lg H$ =9.30587Basiskorr. Ab= $\lg e = 9.17944 \lg e$ =9.17928 $\Delta(\lambda, \phi) =$ +0 $\lg H = 9.30598 \lg H$ = 9.30592H = 0.20 222

Nr. 46. 1902 Aug. 21. Sonnenschein; lebhafter Nordwestwind.

Standpunkt am Westrande der Straße von Blosenau nach Warching, nahe einer Wegkreuzung am Rande der Anhöhe, 15th von einem Wegkreuze, 135th von einem Kilometerstein entfernt; im Felde. In lehmiger Albüberdeckung.

$$x = +25912.3$$
, $y = +16141.1$, $H = 535^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat. Potsd.	Magnet- ablesung red. auf no
01	1000= B	$\Delta u = +19.5$			DEF
1-4	I oben	5º 6.6- 7º6	350° 26:1 28.0	9.4	350°36!4
5-8	II oben	8.7- 9.8	350 27.3 26.3	9.6	350 36.4 350 36.4
9-12	II oben	5°10.2-11.2	350 28.0 28.0	9.8	350 37.8
13-16	I oben	12.0-13.0	350 25.8 26.0	9.9	350 35.8
1-5	Rögling Tagmersheim Blosenau		22 14.5 82 3.25 144 2.3	1000	350 36.8
de la	O direkt	5P 24 ^m 45.5 25 45.0	268 56.0 269 40.5		
0.10	0 .	26 28.5 27 39.0	269 15.5 270 2.3	18	
部から	O direkt O - O - O -	6P 24 27.5 25 28.5 26 16.5 27 9.5	280 3.0 280 46.7 280 22.9 281 5.3		

Azimut des Kreisnullpunktes: astr: $A_0 = -1^{\circ}10!5$ 10:6 Mittel Ao = 10.5 Mittel $A_0 = -1^{\circ}10!5$ Geod: $a_0 = -0^{\circ}41!3$ A-a = -28.8 $A_0 = -1^{\circ} 10!1$ Mittel aus astr. und geod. Bestimmung: $= -1^{\circ}10!3$ $A_0 = -1^{\circ} 10.5$ $(M) = 350 \ 36.6 \ \pm 0.2$ $M = 349^{\circ}26!3$ $D_0 = 10 33.7$ $D_0 = 10 33.7$ mittl. Dekl. D = 10 40.7

N. J.1	Vasia	Be-	Mi	Mittel		Vai	riat.	Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3 4	O W W O	a a i i	63°45:0 64 17.5 63 44.5 64 15.2	63° 47:2 63 56.0 63 52.5 64 6.0	63°46'.1 64 6.8 63 48.5 64 10.6 63 58.0	102.0 100.0 98.5	126.3	5º 33 40
H 5 6 7 8	O W W O	a a i i	63 34.2 64 49.5 63 36.5 64 46.5	64 32.0 63 13.8 64 31.2 63 11.5	64 3.1 64 1.7 64 3.8 63 59.0	98.2 99.0 100.0	126.0	5º 43
			Magnet I	0.00-0.0	64 1.9 Δi –1.0 64 0.9	99.6 101.0 —1.4	126.2 126.2 0.0	100

$\Delta n' = -1$	1.4	$\Delta n'' = 0.0$
Nadel	-0300	63° 58:0 60.9
Mittel dJ	=	63°59!4 -0.3
J	=	63°59:1

Magnet I

Magnet II.

Ein-	TT	Mag-	Kreis:	Varia	tionen	Ein-	TTI	Mag-	Kreis:	Varia	tionen
stel- lung	Uhrangabe	net- temp.	Mittel	Boch. D.	Potsd. H.	stel- lung	Uhrangabe	net- temp.	Mittel	Boeh. D.	Potsd. H.
v ₁ v ₂	5º 58.5-58 ^m 7 59.9-60.2	15:3 15.2	38° 44:4 39 5.1	17.6 17.4	103.8 104.5	V ₄ V ₃	6 ^p 5.5- 5.6 6.6- 7.0	14.5 14.7	302°32!6 301 26.0	17.4 17.4	106.7 107.0
			38 54.8	17.5	d IO	2			301 59.3	17.4	
V ₃	6 ^p 1.3- 1.9	15.1	302 0.4	17.3	105.0	V ₂	8.3- 8.4	14.5	38 45.0	17.4	107.0
V ₄	3.0- 3.3	14.8	302 13.1	17.3	106.2	V ₁	9.8-10.1	14.7	39 2.9	17.4	106.9
		15.1	302 6.8	17.3	100.0	70		14.6	38 53.9	17.4	106.9
					+4.9	l v	11.8		350 28.8	17.4	+6.9
		Deflekto	or I.				:1	Deflekto	r II.		
0	6º 14.2-14.4	14.7	295 19.6	17.4	106.4	W	6º 18.9-19.6	14.3	50 7.3	17.3	104.6
W	15.6-16.0	14.7	45 49.6	17.4	106.0	0	20.9-21.6	14.5	291 1.7	17.3	103.7
		14.7			106.2	THE PERSON		14.4			104.2

W	15.6-16.0	14.7 45 4	9.6 17.4	106.0	0 20.9-21.6	14.5	291	1.7 17.3	103.7
1	-	14.7		106.2 100.0	Add Supplement of	14.4			104.2 100.0
			ding , mild	+6.2	could very other	7050		H 16 120	+4.2
6410	Bemerkung: Va	riationen der Dekli	nation aus E	Bochum.					111111111111111111111111111111111111111
0(1)	Magnet I.	Magnet II.	. 410 0410	Deflektor L	Deflektor II.	-10	H	= 0.20 2	202

 $\begin{array}{c} = 59\,32.8 \\ = 9.93\,534 \\ = 9.24\,073 \\ = 9.30\,510 \text{ Basiskorr. } \Delta h = -1 \\ \Delta (\lambda, \, \phi) = +1 \\ H = 0.20\,189 \end{array}$

Nr. 47. 1902 Aug. 22. Nebel.

Standpunkt am Westrande eines Feldweges, $76^{\rm m}$ vom Garten des Gasthauses zum Löwen in Monheim (Lamontsche Station) entfernt, an einer Wegkreuzung. In lehmiger Albüberdeckung. x = +26.845.5, y = +18.157.8, $H = 515^{\rm m}$.

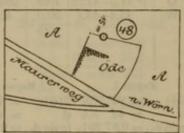
Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der änß. n. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
1-4	I oben	$\Delta u = +0^{m}3$ $6^{a} 17.5 - 18^{m}5$	350° 25!2 26.6	2.9	350° 28:8
5-8	II oben	19.6-20.8	350 22.7 24.6	2.8	350 26.4 350 27.6
9-12	II oben	6ª 21.2-22.0	350 24.8 27.5	2.8	350 29.0
13-16	I oben	23.2-24.3	350 22.8 20.5	2.6	350 24.2
	Monheim, Kap. Monheim Monheim Tort.		59 51.0 74 21.0 80 29.3	1.6	350 26.6

Azimut des Kreisnullpunktes: Geod: $a_0 = -0^{\circ}39!4$ A-a = -32.4 $A_0 = -1^{\circ}11!8$ $(M) = 350 \ 27.1 \pm 0!5$ $M = 349^{\circ}15!3$ $D_0 = 10 \ 44.7$ mittl. Dekl. $D = 10 \ 51.7$

NT - J - I	Kreis	Be-		Mittel		A + B	1 8	Var	riat.	Uhr-	and the second			
Nadel	Kreis	zeich- nung	A unt	ten B	unten	2		H.	Z.	angabe	and a			
I 1	0	a	63° 33		55:2	63° 45!		95.8		7ª 4	$\Delta n'$	=-6.8	$\Delta n'' = -$	1.8
2	W	a	64 26		48.0	64 7.		95.7	124.2			Nadel I =	= 63°57!	2
3	0	i	64 2		59.5 52.8	63 48.6		95.5		14		- II =		
-						63 57.3				-			= 63° 58!	
11 5	0	a	63 36	6.5 64	35.5	64 6.0)	93.6		7ª16	of the last	dJ =		
6	W	a	64 43	2.0 63	4.2	63 53.	1	93.1	124.6		22	J =	= 63° 56!	8
7	W	i	63 39			64 7.0			124.0	00	24			
8	0	1	64 40	0.5 63	5.0	63 52.		92.5	124.4	26	100			
				10		Δi -1.0		01.0	126.2					
				F		63 58.3		-6.8	-1.8					
			Magne	t I.	300	-	_	-	- 7.		Magnet	II.	2500	9 80
Ein-	18398	12.3	Mag-	Kreis	V.	ariationen	7	Ein			Mag-	Kreis:	Varia	tioner
stel- lung	Uhran	gabe	net- temp.	Mittel	Kor			stel		rangabe	net- temp.	Mittel	Kornth.	Potse H.
v ₁	6ª 31.3-		12.5	38° 40:		2 95.5		V ₄	6ª 3	9.3-39 ^m		302 30.7		95.9
v ₂	33.3-	-33.5	13.0	39 19.		.6 95.8		V ₃	4	1.6-41.8	13.3	301 24.0		95.6
11	-	1500		39 0.		-	ш		-			301 57.3	-	
V ₃	34.9-		13.8	301 54. 301 57.		0 95.9 6 96.0	_	V ₂		3.3-43.6 5.0-45.3		38 43.1 39 7.9		95.6
V ₄	36.4-	-30.7	13.2	301 56.		.6 96.0 .8 95.8	_	1,1	4	3.0-43.6	13.1	38 55.5		95.8
			20.2	301 30.	-	100.0	_	100			10.1	00 00.0		100.0
0 1						-4.2		v		47.0		350 26.8	2.0	-4.2
			Deflekto						- 4		Deflekt			
w	6ª 48.7-		12.8	295 13.		.9 95.9 .9 95.5	_	W		4.5 - 55.6 $7.2 - 57.5$		49 56.7 290 56.3	3.1	95.0
**	30.4-	-51.6	12.6	45 59.	2	95.5	_	1	3	1.2-31.	12.3	230 30.3	2.0	94.9
			12.1			100.0					12.0	P. S.	123	100.0
		-				-4.3	1	v		59.3	3	350 32.0	2.5	-5.1
M	agnet I.	411 9	Mag	gnet IL	010 0	Deflekt		1516		Deflektor I	I. 0° 0'.4	Н	= 0.20 2	214
(φ)	$= 97^{\circ}$ = 48	31.8 d	ϕ	$= 96^{\circ}5$ = 48 2	8.6 ¢			45:6 22.8	$\frac{2(\phi)}{\phi}$		30.5	11		222
	5 = 9.87	406 1		= 9.873	373 lg	$\sin \phi_{15} =$	9.91	1 465		$\phi_{15} = 9.9$	3 449			218
100	=	-29 n	100	= -	-29 lg	c =	9.22	2 009	lg c	= 9.2	4 075	H	= 0.202	
	$_{0} = 9.87$			= 9.87		H =	9.30	573	lg H		0 661 Ba	siskorr. Ab		-l 0
C	=9.17	945 1	gc	= 9.179				(Wah	rscheinl	ich Ables		$\Delta(\lambda,\phi)$	-0.20.9	

unbrauchbar. (Wahrscheinlich Ablesefehler, auch stellte sich W. schlecht ein.)

Nr. 48. 1902 Aug. 22. Sonnenschein.


= 9.30 583

= 9.30 566 lg H

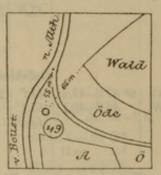
lg H

Standpunkt auf dem Pfaffenbichel, westlich vom Wörnitzstein, auf der Grenze zwischen Öde und Acker, 15^m von der Nordecke der Öde entfernt, bei einem Kalksteinbruch und etwa 250^m von der Station entfernt. Im Breccienkalk des obersten weißen Jura. x = +22 760.1, y = +21 728.4, H = 435^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
100	de logi nes	$\Delta u = +21.9$		-	
1-4	I oben	1º 10.4-11 ^m 5	350° 19:1 21.5	14.3	350°34:6
5-8	II oben	12.6-13.9	350 15.2 15.0	14.1	350 29.2 350 31.9
9-12	II oben	1º 14.1-14.9	350 15.3 14.9	14.0	350 29.1
13-16	I oben	16.1-17.5	350 19.9 19.1	14.0	350 33.5 350 31.3

= 0.20215

Azimut des Kreisnullpunktes: astr: -1°10'2 Spiegelkorr. -1.2 $A_0 = -1^{\circ}11!4$


Nr.	Ei	nstellun	ng	Uhra	ngabe	(Mit	isablesun tel der äuf r inn. Fäde	B. Po	riat.	Magnet- ablesung red. auf n ₀	Geod: M	40°	34:0 C	Gew. 7
	Wörni Dona O O	fündling örnitzste Berg itzstein, uwörth vorwär rückwä rückwä vorwär	Kap. , Ki. ts rts	2 ^p 21 23 24 26	^m 46!5 5.5 36.5 4.5	1 1 2 2	19° 43:3 90 13.3 92 34.0 00 16.9 09 20.8 45 47.0 27 0.2 26 41.6 47 51.0	Sandan order		CONTROL PARTY OF THE PARTY OF T	I a A A	W. K. $O. Kl.$ $O.$	33.9 34.5 34.2 Σ _I -38.7 12.9 ±(31.6 ±(0:2
Nr.	Kreis	Be- zeich- nung	A un	Mitt	el B unte		A + B 2	Va H.	riat. Z.	Uhr- angabe	J. may			
I 1 2 3 4	O W W O	a a i i			63°533 63 47 63 50 63 53	.2 .2 .2 .6	63° 46:2 63° 59.6 63° 45.3 63° 59.7 63° 52.7	94.1 94.8 94.5	121.0	1 ^p 56		Nadel I = 0	$\Delta n'' = -63^{\circ}52!7$ 54.9 $63^{\circ}53!8$ $+0.2$	4.9
H 5 6 7 8	O W W O	a a i i		3.5	64 32. 63 3. 64 36. 63 5.	.2 6 .5 6 .2 6	34 2.8 33 48.4 34 6.0 33 46.4 33 55.9 1i -1.0	104.5 104.6 104.9 99.6	121.6	17	100		63° 54:0	THE PARTY
Ein- stel-	Uhrai	ngabe	Magn Magnet-	Kr	eis:	Varia	tionen	st	in- el-	Uhrangabe	100000000000000000000000000000000000000	t II. Kreis: Mittel	Varia Kornth.	tionen Potsd.
lung V ₁ V ₂	1 ^p 25.0 26.6	-25 ^m 4 -27.2	17:9 19.0	38° 38	13:4 37.7 25.5	D. 14.0 14.0	92.0 92.0	-	ng 1	1P 32.5-32T 34.4-34.5		302°42:8 301 48.8 302 15.8	D. 14.1 14.1 14.1	92.4 92.4
v ₃ v ₄		-28.6 -29.9	18.5 18.7 18.5	302 302	15.7	14.0 14.0 14.0	92.0 92.0 92.0 100.0 —8.0	1	V ₂	35.8-36.1 37.3-37.5	19.0	38 13.8 38 44.2 38 29.0 350 19.4	14.0 14.0 14.0	92.4 92.4 92.4 100.0 —7.6
			Deflekt	tor I	est di		3-1	5,000 55-10		33.1	Deflekt	alway best	10.0	-Interior
0 W		-41 ^m 8 -43.7	19:8 20.0 19.9		35!8 9.9	13.9 14.0	92.5 92.7 92.6 100.0 —7.4		V	1º 45.7-47 ^m 48.5-49.6 51.5	0 19:6 19.2 19.4	49° 16:2 291 20.4 350 18.0	14.0 14.0	92.8 93.2 93.0 100.0 —7.0
) (\phi)	Magnet I. = 96° = 48	5.4 9	2(φ) β	= 48	1. 3° 13!2 3 6.4 37 322	2(φ) φ		9°34! 4 47.	1 0	Deflektor 1 $(\phi) = 117$ = 58 $\sin \phi_{15} = 9.9$	°55!8 57.9	Н :	2	83 57 67 71

Nr. 49. 1902 Aug. 22. Sonnenschein.

Standpunkt auf einer Öde, östlich der Straße von Niederaltheim nach Bollstadt, 55^m von der Wegkreuzung, 65^m von der Waldecke des hinteren Attenbühl entfernt. Im Marmorkalk.

$$x = +24636.4, y = +26651.8, H = 490^{m}.$$

and the same of	The state of the s				
Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel d. auß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
722		$\Delta u = -22^{\circ}4$		155	
1-4	I oben	5º 43.7—44 ^m 7	350° 22!5 24.2	6.7	350° 30!1
5-8	II oben	46.0-46.9	350 13.6	6.7	350 19.7
			12.5	1	350 24.9
9-12	II oben	5º 47.3-48.3	350 16.5 14.8	6.7	350 22.3
13-16	I oben	49.4-50.2	350 17.9	6.7	350 23.1
500			15.0	1889	350 22.7
17-20	I oben	5º 52.4—53.3	350 23.5 23.9	6.6	350 30.3
21-24	II oben	54.6-55.5	350 15.3	6.6	350 21.5
100			14.6	1000	350 25.9
25-28	II oben	5º 55.6-56.6	350 15.7 15.3	6.6	350 22.1
29-32	I oben	57.7-58.9	350 18.9	6.5	350 24.3
-			16.6	No.	350 23.2
1000	Rauhe Wanne		200 12.3	1	
	Schmähingen Dürrenzimmern		0 46.0 12 42.6	İ	
	Pfäfflingen		13 38.2		
	Klosterzimmern		17 26.7	1	
	Deiningen		25 40.8	In order	
1000	Großelfingen		29 31.4	223	
-	Enkingen Alerheim		41 28.4 46 48.0		
	Alerneini		40 40.0	1 1900	
	O direkt	6 ^p 55 ^m 10 ^s 5	285 19.6		
1000	O direkt	56 9.5	286 2.6	- BIA	
	O direkt	56 49.5	285 38.1		- 10
1	O direkt	57 43.5	286 20.4		

Azimut des Kreisnullpunktes:

Azımut	des	K	reisn	unpu	nktes	
astr.	Ao	=	-1°	14:8 15.2		
Mittel	Ao	=	-1°	15:0		
Geod:					Gew.	
	Dü.	=		29.8		10
				$30.2 \\ 30.2$		8 9
				30!2 -47.6	$\Sigma p =$	30
					± 0:2 ± 0.7	
				6:4 53.6		
mittl. De	kl. D	=	11	0.6		

Nr.	Kreis	Be- zeich-	Mit	ttel	A + B	Variat	tionen	Uhr-
Nr.	Kreis	nung	A unten	B unten	2	H.	Z.	angabe
11 2 3 4	O W W O	a a i i	63°40:2 64 20.0 63 44.0 64 16.2	63°50:8 63 54.5 63 55.5 63 54.2	63°45!5 64 7.3 63 49.8 64 5.2 63 57.0	98.8 98.9 99.3	124.0	6º 8
II 5 6 7 8	O W W O	a a i i	63 31.2 64 46.5 63 34.2 64 45.0	64 32.5 63 10.2 64 32.8 63 9.5	64 1.8 63 58.4 64 3.5 63 57.2 64 0.2 Δi -1.0 63 59.2	99.6 100.1 99.8 99.4 101.0 —1.6	123.9 124.0 126.2 —2.2	6P18

$$\Delta n' = -1.6 \quad \Delta n'' = -2.2$$
Nadel I = 63° 57'.0

* II = 59.2

Mittel = 63° 58'.1

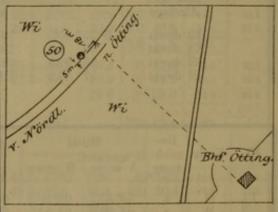
 $\Delta J = -0.1$

J = 63° 58'.0

Phys. Abh. nicht zur Akad. gehör. Gelehrter. 1904. 1V.

Magnet I.

Magnet II.


Ein-		Mag-	Kreis:	Varia	tionen	Ein-		Mag-	Kreis:	Varia	tionen
stel- lung	0	net- temp.	Mittel	Kornth. D.	Potsd. H.	stel- lung		net- temp.	Mittel	Kornth. D.	Potsd. H.
$\begin{matrix} v_1 \\ v_2 \end{matrix}$	6 ^p 32.1-32 ^m 9 33.9-34.2	15%5 16.5	38° 21:7 38 50.8 38 36.2	6.7 6.7	99.6 99.0	v ₄ v ₃	6 ^p 39.3-39 ^m 5 40.5-40.7	16°3 15.2	302° 26:8 301 33.9 302 0.4	6.7 6.7	99.0 98.9
$v_3 \\ v_4$	35.2-35.5 36.7-37.2	15.5 16.0 15.9	302 0.2 301 58.2 301 59.2	6.7 6.7	99.0 98.9 99.1	$\begin{array}{c} v_2 \\ v_1 \end{array}$	42.2-42.4 43.5-43.9	15.5 14.4 15.35	38 25.1 38 58.0 38 41.6	6.7 6.7	99.0 99.1 99.0
		15.5	301 33.2	0.7	100.0	v	45.9	10.00	350 19.6	6.7	100.0
184	The World	Deflekt	or I.	COURT OF STREET	+ 8	V Zeni	1	Deflekto	r II.		21-4
O W	6º 47.0-47.4 48.6-49.1	14.7 15.1 14.9	295 8.3 45 31.8	6.7 6.8	99.4 99.6 99.5 100.0	W o	6º 50.7-51.3 52.7-53.1	15.1 14.9 15.0	49 44.8 290 54.4	6.8	99.7 99.8 99.7 100.0
$\frac{2(\phi)}{\phi}$	$=48\ 18.5$	$2(\phi)$ ϕ	(agnet II. = 96°41'2 = 48 20.4	$2 (\phi)$	= 5	0° 23:5 5 11.8	Deflektor II. $ \begin{array}{ccc} 2 (\phi) & = 118^{\circ}5 \\ \phi & = 595 \end{array} $	25.2	Н	2	24 19
n'100	= -6	n'100	= 9.87 348 = -7 = 9.87 341 = 9.17 927	n' ₁₀₀ lg sin		-3	$\begin{array}{l} \lg \sin \phi_{15} = 9.93 \\ \mathrm{n'_{100}} = \\ \lg \sin \phi_{0} = 9.93 \\ \lg \mathrm{c} = 9.24 \end{array}$	$\frac{-2}{494}$ Bas	H iskorr. Δb : Δ(λ, φ):	= 0.20 2	$\frac{21}{24 \pm 3\gamma}$ $\frac{-1}{+2}$
lg H	= 9.30 604	lg H	= 9.30586	lg H	= 9.	30 575	lg H = 9.30	581	H	= 0.20 2	225

Nr. 50. 1902 Aug. 23. Nebel mit durchdringender Sonne.

Standpunkt bei Öttingen, 5^m vom Westrand der Straße von Öttingen nach Pfäfflingen, 18^m von der Fluchtlinie der Südwand des Hauptstationsgebäudes entfernt, im Sauereck. Am Moorrand gegen Löß.

x = +30911.6, y = +24507.4, $H = 418^{m}$.

Nr.	Einstellung	Uhrangabe	Kreisables. (Mittel d. äuß. u. der inneren Fäden)	Va- riat.	Magnet- ablesung red. auf n ₀
		$\Delta u = +23.9$	Lien. The		V 114
1-4	I oben	6°57.7-59°4	350° 20!9 19.8	5.0	350°25!3
5-8	II oben	7ª 0.6- 1.7	350 7.8 6.8	5.0	350 12.3
			0.0		350 18.8
9-12	II oben	7ª 2.1- 3.2	350 8.9 10.5	5.1	350 14.8
13-16	I oben	4.4- 5.7	350 16.2	5.1	350 21.0
			15.7		350 17.9
17-20	I oben	7° 6.5- 7.6	350 16.3 16.9	5.1	350 21.7
21-24	II oben	8.5- 9.4	350 11.1 11.3	5.1	350 16.3
			11.0		350 19.0

Azimut des Kreisnullpunktes: astr: $A_0 = -1^{\circ}2!3$ 0.8 0.8 0.8 Mittel $A_0 = -1^{\circ}1!3$ Geod: E. $-0^{\circ}19!8$ Gew. 3 0. 19.6 0.5 M. 19.8 2 H. 19.5 6 $a_0 = -0^{\circ}19!6$ $\Sigma p = 12$

Nr.	Ein	stellung	7	Uhra	ngabe	(Mi	eisablesung ttel der äuß. er inn. Fäden)	Variat.	able	gnet- sung auf n ₀
	Öttin	ningen gen, prot nningen naltingen	- 63			1	309°39.0 35 26.6 170 47.7 287 35.7	1		
	00000	direkt direkt direkt direkt direkt	The state of the s	7ª 14 ¹⁸ 15 16 17 18	40!5 38.5 29.5 26.5 10.5		93 12.7 93 57.4 93 33.6 94 43.2 93 52.9	The second		
Nadel	Kreis	Be- zeich-		M	ittel		A + B	Var	iat.	Uhr-
vauci	Kieis	nung	A	unten	B un	ten	2	H.	Z.	angab
I 1 2 3 4	O W W	a a i	64 63	°47:5 18.0 49.5 16.8	63° 5 63 5 64 63 5	3.2	63°51!0 64 5.6 63 56.5 64 7.5	99.0 98.4 98.4	123.7	7ª 23

	A-0	=	-	-44.0	
				3.6 ± 0.5 18.6 ± 0.3	
	M	= 3	490	15:0	-
mittl. D	D _o ekl. D	=	10	45.0 52.0	

N	1.1	W-da	Be-	Mi	ittel	A + B	Vai	riat.	Uhr-
Na	aeı	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
1	1 2 3 4	O W W O	a a i i	63° 47:5 64 18.0 63 49.5 64 16.8	63° 54:5 63 53:2 64 3:5 63 58:2	63°51:0 64 5.6 63 56.5 64 7.5 64 0.2	99.0 98.4 98.4	123.7	7* 23 33
11	5678	0 W W 0	a a i i	63 37.5 64 49.2 63 44.5 64 45.5	64 37.5 63 13.5 64 36.2 63 11.0	64 7.5 64 1.3 64 10.4 63 58.2	98.4 98.0 97.6	123.5	7* 35 45
						64 4.4 Δi -1.0 64 3.4	98.3 101.0 —2.7	123.6 126.2 —2.6	128

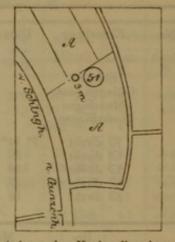
Δn'	=-2.7	$\Delta n''$	= -2.6
	Nadel I	= 64° =	
	Mittel dJ	= 64° = -	
	J	= 64°	1!5

Magnet I.

Magnet II.

rangabe	net- temp.	Mitt	1								
	-compa	Milit	el	Kornth. D.	Potsd. H.	stel- lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd H.
51 ^m 4		350°	9:4	4.9	Day	v ₄	8ª 2.8- 3.5	10.5	301°55:3	4.3	97.0
	10.7			5.0	96.0	V3	7.1- 7.5	77.0			95.4
5.6-56.6	10.5	39	6.4	5.0	96.0	0.00			301 27.2	4.7	
		38 5	59.4	5.0		Vo.	9.1-10.5	10.8	38 42.2	4.9	95.4
8.5-58.9	10.9	301 3	30.1	4.2	96.4	vi	11.5-11.7	11.0	39 16.5	4.1	96.3
	10.5			4.0	96.9			10.8	38 59.3	4.5	96.
	10.65	301 2	25.7	4.1	96.3						100.0
					100.0	-					-4.0
					-3.7	v	13.0		350 9.2	4.0	
	3.9-54.4 5.6-56.6 8.5-58.9 0.2-60.5	3.9-54.4 10.7 5.6-56.6 10.5 8.5-58.9 10.9 0.2-60.5 10.5	3.9-54.4	3.9-54.4 10.97 38 52.5 5.6-56.6 10.5 39 6.4 38 59.4 8.5-58.9 10.9 301 30.1 0.2-60.5 10.5 301 21.4	3.9-54.4 10.7 38 52.5 5.0 5.6-56.6 10.5 39 6.4 5.0 38 59.4 5.0 38 59.4 5.0 8.5-58.9 10.9 301 30.1 4.2 0.2-60.5 10.5 301 21.4 4.0	3.9-54.4 10.7 38 52.5 5.0 96.0 5.6-56.6 10.5 39 6.4 5.0 96.0 38 59.4 5.0 96.0 8.5-58.9 10.9 301 30.1 4.2 96.4 0.2-60.5 10.5 301 21.4 4.0 96.9 10.65 301 25.7 4.1 96.3 100.0	3.9-54.4 10.7 38 52.5 5.0 96.0 5.6-56.6 10.5 39 6.4 5.0 96.0 38 59.4 5.0 96.0 8.5-58.9 10.9 301 30.1 4.2 96.4 0.2-60.5 10.5 301 21.4 4.0 96.9 10.65 301 25.7 4.1 96.3 100.0 10.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.9-54.4 10:7 38 52.5 5.0 96.0 5.6-56.6 10.5 39 6.4 5.0 96.0 8.5-58.9 10.9 301 30.1 4.2 96.4 0.2-60.5 10.65 301 25.7 4.1 96.3 10.00 10.00 7.1-7.5 11.0 300 59.2 301 27.2 11.5-11.7 10.8 38 42.2 11.5-11.7 10.8 38 59.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		репек	tor 1.				- D	enektor	Ale:	*		
0 W	8* 17.0-17.4 19.4-19.7	11.1	294 26.9 45 48.4	4.9 4.8	95.2 95.0	W O	8ª 22.3-22.4 25.0-25.4	12.0 11.7	50 290	9.4 3.3	4.6 4.9	95.6 95.6
	Ti Pal	11.3	HE-102		95.1 100.0	100		11.85		10		95.6 100.0
	170 416-	1000	1-		-4.9	1	Part and Control					-1.4


Magnet I.	Magnet II.	Deflektor I.	Deflektor II.	H	= 0.20 167
$2(\phi) = 97^{\circ}33!7$	$2(\phi) = 97^{\circ}32!1$	$2(\phi) = 111^{\circ}21.5$	$2(\phi) = 120^{\circ}6!1$		163
$\phi = 48 \ 47.3$	$\phi = 48 \ 45.8$	$\phi = 55 \ 40.7$	$\phi = 60 \ 2.9$		167
$\lg \sin \phi_{15} = 9.87 \ 502$	$\lg \sin \phi_{15} = 9.87 \ 497$	$\lg \sin \phi_{15} = 9.91578$	$\lg \sin \phi_{15} = 9.93672$		153
$n'_{100} = -25$	$n'_{100} = -27$	$n'_{100} = -33$	$n'_{100} = -30$	H	
$\lg \sin \phi_0 = 9.87 477$	$\lg \sin \phi_0 = 9.87470$	$\lg \sin \phi_0 = 9.91545$	$\lg \sin \phi_0 = 9.93642$	Basiskorr. Al	b = -2
$\lg c = 9.17942$	$\lg c = 9.17926$	$\lg c = 9.22010$	$\lg e = 9.24077$	$\Delta(\lambda, \phi)$) = -1
$\lg H = 9.30465$	$\lg H = 9.30456$	$\lg H = 9.30/465$	$\lg H = 9.30435$	H	= 0.20 159

Nr. 51. 1902 Aug. 23. Sonnenschein.

Standpunkt östlich der Straße von Gunzenhausen nach Schlungenhof, auf einer Ackergrenze, 25^m von der Straßenböschung, 3^m von einer Quergrenze entfernt. Im mittleren Keuper.

x = +37660.6, y = +20504.4, H = 415^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
		$\Delta u = +24.4$			10 - 0
1-4	I oben	10°43.6-44°8	350° 19!9 21.7-	7.1	350° 27:9
5-8	II oben	46.4-47.9	350 11.3 12.0	7.2	350 18.8
					350 23.4
9-12	II oben	10°48.3-49.5	350 15.8 15.1	7.3	350 22.7
13-16	I oben	50.5-51.7	350 14.4 13.5	7.3	350 21.3
					350 22.0
17-20	I oben	10°52.6-53.6	350 13.9 14.0	7.3	350 21.3
21-24	II oben	55.0-56.0	350 8.7 9.1	7.5	350 16.4
					350 18.8
25-28	I oben	10°57.1-58.2	350 13.8 14.9	7.6	350 22.0
29-32	II oben	59.1-60.2	350 10.2 9.9	7.7	350 17.7
	Laubenzedel		353 3.6		350 19.8
	Haundorf		14 56.2		
Ground .	Gräfensteinberg		54 52.2		
- September 1	Gunzenhausen		172 28.0		
659	Unterwurmbach Wald		224 54.8 286 50.3		
200	O vorwärts	Op 5 m 13:5	174 54.8		
520	O rückwärts O rückwärts	6 44.5 7 40.5	356 21.2 355 51.4		
100	O vorwärts	8 55.5	177 17.5		

Azim	nt de	s Kreisnullpunktes	
	Spieg	-0°59!7 elkorr1.0	
	Ao	=-1° 0:7	
Geod:	L.	-0° 26:0 Gew.	1
	H.	26.0	5
	Gr.	26.6	5
	Gu.	26.7	0.5
	U.	28.1	2
	W.	25.6	2
	a_0	$=-0^{\circ}26.4 \Sigma p = 1$	16
	A-a	=-1 37.0	
	Ao	$=-1^{\circ} 3!4 \pm 0!3$	
	(M)	$=350\ 21.0\pm1.0$	
	M	=349°17:6	
	Do	= 10 42.4	

mittl. Dekl. D = 10 49.4

NT- 3-1	V-sie	Be-	Mi	ttel	A + B	Vai	riat.	Uhr-
Nadel	Kreis	zeich- nung	A unten	B unten	2	H.	Z.	angabe
I 1 2 3 4	O W W O	a a i i	63°51!5 64 32.8 63 51.5 64 29.8	64° 4:0 63 56.8 64 7.0 64 4.8	63° 57:8 64 14.8 63 59.3 64 17.3 64 7.3	90.5 90.6 90.9	120.6	11*41
II 5 6 7 8	O W W O	a a i i	63 50.8 64 53.2 63 53.5 64 51.8	64 41.0 63 19.8 64 49.0 63 20.0	64 15.9 64 6.5 64 21.3 64 5.9	91.1 91.4 91.5	120.4	11*51
	Tes A	1/2 44			64 12.4 Δi –1.0 64 11.4	91.0 101.0 —10.0	120.5 126.2 —5.7	100

$$\Delta n' = -10.0$$
 $\Delta n'' = -5.7$

Nadel I = 64° 7:3

• II = 11.4

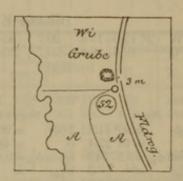
Mittel = 64° 9:4

dJ = -1.4

J = 64° 8:0

N					
- 10	10.0	CPR	20	•	
		20.0	ши		

Magnet II.


Ein- stel- lung	Uhrangabe	Mag- net- temp.	Kreis: Mittel	Varia Kornth. D.	Potsd. H.	Ein stel lung	- Uhrangabe	Mag- net- temp.	Kreis: Mittel	Varia Kornth. D.	Potsd. H.
v ₁ v ₂	11ª 9.9-10 ^m 4 11.8-12.0	18:8 19.1	38°34!8 39 4.3 38 49.6	8.0 8.0 8.0	90.6 90.8	v ₄ v ₃	11*17.8-18**3 19.6-20.0	19°1 19.2	302° 15:2 301 11.4 301 43.3	8.5 8.6 8.55	90.3 90.1
v ₃ v ₄	13.4-13.8 15.0-15.5	19.1 19.3	301 37.6 301 43.2	8.4 8.4	90.7 90.6	$\begin{array}{c} v_2 \\ v_1 \end{array}$	21.6-21.9 23.2-23.4	18.8 19.0	38 43.7 39 3.1	8.7 8.9	90.1 90.2
		19.1	301 40.4	8.4	90.7 100.0 —9.3	V	25.6	19.0	38 53.4 350 14.4	9.0	90.2 100.0 —9.8
		Deflekto	or I.		-5.5	00	- A	Deflekto		3.0	-8.0
o w	11*28.5-28.8 30.5-30.7	19.8 19.6 19.7	294 57.6 45 40.9	9.0 9.3	90.5 90.6 90.6	Wo	11°34.2–34.6 36.2–36.5	19.9 19.5 19.7	49 53.4 390 38.2	9.7 9.7	90.5 90.5 90.5
		1			100.0 —9.4	v	38.2		350 13.0	9.7	100.0 —9.5
$2 (\phi)$ ϕ $\lg \sin \phi$ n'_{100}	$ \begin{array}{r} = 48 \ 34.4 \\ 9.5 = 9.87627 \\ = -63 \\ 9.0 = 9.87564 \\ = 9.17942 \end{array} $	$2(\phi)$ ϕ $\lg \sin \phi_{1}$ n'_{100}	guet II. $= 97^{\circ} 10!1$ = 48 35.0 = 9.87624 = -67 = 9.87557 = 9.17926 = 9.30369	$\begin{array}{c} 2(\phi) \\ \phi \\ \text{lg sin} \\ \text{n'}_{100} \\ \text{lg sin} \\ \text{lg c} \end{array}$	$\phi_{15} = 9$ $\phi_{15} = 9$ $\phi_{0} = 9$ $\phi_{0} = 9$	0°43:3 5 21.8 .91 680 -64	$\begin{array}{ccc} \text{Deflektor II.} \\ 2 (\phi) & = 119^{\circ} \\ \phi & = 59 \\ \lg \sin \phi_{15} = 9.93 \\ n'_{100} & = \\ \lg \sin \phi_0 = 9.93 \\ \lg c & = 9.24 \\ \lg H & = 9.30 \\ \end{array}$	37.6 3743 -65 678 Ba	H siskorr. Δb $\Delta (\lambda, \phi)$	=0.201 = -	$\begin{array}{c} 23 \\ 35 \\ 37 \\ 30 \pm 3 \gamma \\ -2 \\ -3 \end{array}$

Nr. 52. 1902 Aug. 23. Sonnenschein.

Standpunkt bei Wassertrüdingen, am östlichen Talrande, westlicher Rand eines Feldwegs an einer Ackerecke, 3^m von einer Mergelgrube, in der Verbindungslinie von Station mit dem Eislerhause. Im Keuper, bunte Mergel.

$$x = +34600.2$$
, $y = 24062.4$, $H = 425$ ^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf n ₀
		$\Delta u = +24.7$		1 4	
1-4	I oben	2°22.6-23.7	350°28:8 31.1	12.2	350° 42!2
5-8	II oben	24.6-25.8	350 17.8	12.2	350 29.8
			17.4	10.0	350 36.0
9-12	II oben	2°P25.9-26.6	350 20.6 22.7	12.1	350 33.7
13-16	I oben	27.7-28.9	350 23.8	12.0	350 34.9
			22.0	12.0	350 34.3
600	Auhausen, nördl.		173 51.5	-	
THE PARTY	Wassertrüdingen Altentrüdingen		251 39.3 8 4.1		
	O vorwärts	2º 38m 23.5	50 22.6	A COP	
	O rückwärts	40 6.5	231 37.7		
135	O rückwärts O vorwärts	41 29.0 42 48.5	231 18.3 52 21.5	Market .	

Azimut des Kreisnullpunktes:

$$\begin{array}{c} \text{astr:} & -1^{\circ}17.4\\ \text{Spiegelkorr.}-1.3\\ \hline A_0 & = -1^{\circ}18.7\\ \hline A_0 & = -1^{\circ}18.7\\ \hline \text{Geod:} \ a_0 & = -0^{\circ}36.9\\ \hline A-a & = -43.3\\ \hline A_0 & = -1^{\circ}20.2\\ \hline \text{Mittel aus astr. und geod.}\\ \hline \text{Bestimmung:}\\ \hline A_0 & = -1^{\circ}19.5\\ \hline (M) & = 350\ 35.2\pm0.9\\ \hline \hline M & = 349^{\circ}15.7\\ \hline D_0 & = 10\ 44.3\\ \hline \text{mittl. Dekl. D} & = 10\ 51.3\\ \hline \end{array}$$

Nadel	Kreis	Be- zeich-	Mi	ttel	A + B	Varia	tionen	Uhr-
Nadel	Kreis	nung	A unten B unten		2	H.	Z.	angabe
1 1 2 3 4	O W W O	a a i i	63°51:5 64 26.0 63 51.2 64 22.8	64° 0:0 63 57.0 64 5.8 64 3.0	63°55!7 64 11.5 63 58.5 64 12.9 64 4.6	98.7 98.9 99.0	121.3	1 ^p 31
II 5 6 7 8	O W W O	a a i i	63 38.5 65 7.2 63 46.5 64 54.5	64 43.0 63 15.0 64 42.2 63 18.2	64 10.7 64 11.1 64 14.4 64 6.4	99.0 99.4 99.6	121.5	1º 40
200					64 10.6 Δi –1.0 64 9.6	99.1 101.0 —1.9	121.4 126.2 —4.8	1

 $\Delta n' = -1.9 \quad \Delta n'' = -4.8$ Nadel I = 64° 4:6

" II = 9.6

Mittel = 64° 7:1

dJ = +0.1

J = 64° 7:2

Magnet I.

Magnet II.

Ein-		Mag-	Kreis:	Varia	tionen	Ein-		Mag-	Kreis:	Variat	tionen
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.
v	1º 53m0	1 10	350°25!6	12.7	13.00	100					N AND
v ₁ v ₂	55.5-55.7 57.3-57.5	20°2 21.1	38 32.6 39 2.3	12.7 12.6	99.3 99.5	V ₄ V ₃	2 ^p 3.4-3.6 5.1-5.5	20°.1 20.4	302°34:5 301 26.4	12.6 12.6	100.2 100.5
1000		1	38 47.4	12.65	4 600				302 0.4	12.6	- 103
v ₃ v ₄	58.8-59.1 2 ^p 0.6- 1.2	21.0 20.8	301 59.6 302 5.7	12.6 12.6	99.7 99.9	v ₂ v ₁	6.9-7.3 8.6-9.1	20.5 20.1	38 35.6 39 1.1	12.6 12.6	100.9 100.9
200		20.8	302 2.6	12.6	99.6 100.0			20.3	38 48.3	12,6	100.6 100.0
					-0.4	v	11.2		350 22.0		+0.6
		Deflekt	or I.					Deflekto	r II.		
WO	2 ^p 15.0-15.4 16.6-16.8	20.7	45 38.3 295 25.9	12.6 12.6	101.2 101.2	WO	2º 19.3-19.5 20.8-21.2	20.8 20.6	49 51.8 291 18.1	12.5 12.4	101.1
		20.7			101.2 100.0			20.7			101.1 100.0
		10			+1.2						+1.1
$2(\phi)$ ϕ $\log \sin \phi$	$=48 22.4$ $b_{15}=9.87549$	$2(\phi)$ ϕ $\lg \sin \phi_1$	gnet II. = 96°47!9 = 48 23.7 = 9.87539	$\frac{2(\phi)}{\phi}$	$ \begin{array}{c} \text{Deflektor} \\ = 1 \\ = 5 \\ \phi_{13} = 9 \end{array} $	10° 12:4 55 6.2	$2(\phi)$ = 118° ϕ = 59 $\lg \sin \phi_{15} = 9.9$	33:7	H	1	35 30 49 59
n'100	= $-3p_0 = 9.87546= 9.17942$	n'100	= +4 $=9.87543$ $=9.17926$	lg sin		+8 0.91585 0.22010	$n'_{100} = \frac{1}{\lg \sin \phi_0} = 9.9$ $\lg c = 9.2$	+7 3 630 Ba 4 077	Hasiskorr. Δ b $\Delta(\lambda, \phi)$		$43 \pm 7\gamma$ -2 -1
lgH		lg H	=9.30383	-		0.30425	$\lg H = 9.3$			=0.201	40

Nr. 53. 1902 Aug. 23. Sonnenschein.

Standpunkt: Sig. Kapellenberg bei St. Wendelin, nahe Röttingen, an einer Ackergrenze beim Walde. Im unteren weißen Jura.

x = +41088.8, y = +90320.7, H = 626^m.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der äuß. u. der inn. Fäden)	Variat.	Magnet- ablesung red. auf no
1-4	I oben	$\Delta u = +25^{\circ}2$ $5^{\circ}23.0-24^{\circ}5$	350° 23:7 26.7	6.4	350°31'6
5-8	II oben	26.1-27.6	350 16.5 16.6	6.3	350 22.9 350 27.2

Azimut des Kreisnullpunktes: astr: $-1^{\circ}20!6$ 20.5 $A_{0} = -1^{\circ}20!6$

Nr.	Eins	stellung	τ	Thrang	abe	(Mitte	ablesung 1 der äuß. inn. Fäden)	Variat.	able	gnet- esung auf n _o				
9-12	11	oben	5P	27.8-2	28 ^m 9	350	0° 17:9 16.5	6.2	350	© 23:4	Geod.: Z	L -2	° 17:8	Gew. 11
13-16	1	oben		30.5-3	31.6	350	10.5	6.1	350	27.3	I		17.7 17.7	10
		plingen	7			6	5 1.2		350	25.4		$r_0 = -2$	18.1 ° 17'8	$\sum_{p=41}^{11}$
	Itz	rkingen lingen itelfinge	n				9 8.0 6 29.6 8 47.2			In	A	$\begin{array}{ccc} A - a & = & -1 \\ A_0 & = & -1 \end{array}$	+55.9 °21!9 ± 26.3 ±	0:2
	00	direkt direkt direkt direkt	61	37 3	5!5 7.5 5.5 9.0	283	1 28.9 2 12.2 1 49.1 2 34.6			R	N	A = 349 $A = 10$	° 4:4 55.6	20.0
N. 1.1		Be-		Mitte	1		A + B	Variat	ionen	Uhr-	September 1			
Nadel	Kreis	zeich- nung	A un	ten]	B un	ten	2	H.	Z.	angabe				
I 1 2 3	O W W	a a i	63° 4 64 1 63 5	9.8		0.5	63° 51:6 64 10.1 63 55.2	98.0 97.8	124.2	5º 40		Nadel I =		-2.0
4	0	i	64 1	7.2	63 5	8.2	64 7.7 64 1.2	97.6		50			4.0 64° 2!6	
II 5	O W	a	63 3 64 5		64 3 63 1		64 6.0 64 5.2	98.3		5º 52		J = J	-0.4 64° 2!2	
7 8	W	i	63 3 64 5	8.0		3.2	64 5.6 64 3.0	98.2 98.5	124.1	61				
				0.2		3	64 5.0 Δi –1.0	98.0 101.0	124.2 126.2					
nay	EL M		Magn	et I.			64 4.0	-3.0	-2.0	10.11	Magnet	II.		
Ein-	(01.7a)		Mag-	Kre	is:	Vari	ationen	Ein-			Mag-	Kreis:	Varia	tionen
stel- lung	Uhran	gabe	net- temp.	Mit		H.	Z.	stel- lung		hrangabe	net- temp.	Mittel	H.	Z.
v ₁ (- 6.5 - 8.7	16°.7 16.7		2.9	5.3 5.3	99.5 98.8	V ₄ V ₃		6.0-16 ^m 8.0-18.2		302°19:4 301 26.8	5.0 4.9	98.1 98.7
v	11.4.	-11.6	16.9	301	51.5	5.3	97.9		1	9.6-20.0	16.3	301 53.1	5.0	99.3
V ₃ V ₄		-13.5	16.7	301	56.5	5.2	98.0	v ₂ v ₁		21.3-21.6	16.4	39 5.8	5.0	99.8
			16.75	301	58.0	5.2	98.6				16.25	38 51.5	5.0	99.0
			Deflek	tor I			-1.4	V		23.6	Deflekto	350 24.2	5.0	-1.0
	3P 26.3		16.5	295		4.8	99.1	I W		80.6-31.1	15.8	50 10.1		99.6
W	25.4	-28.6	16.7	45	52.1	4.9	99.3	0	3	2.5-32.8	16.1	290 49.4	5.0	99.6
100		1917					100.0 0.8	155	1		1 9			- 0.4
	egnet 1. = 96° = 48		(φ)	gnet II. = 96° = 48			Deflektor 1)° 40!5	$2(\phi)$	=119° = 59	20:7	Н =		77 65 60
	= 9.87	466 lg	$\sin \phi_1$			lg si	$\phi_{15} = 9.9$	91 566		$b_{15} = 9.93$		Н =		58
	= 9.87		$\sin \phi_0$		7 466	lg si	$\phi_0 = 9.9$		lg sin	$\phi_0 = 9.93$	3 636 Basi	iskorr. $\Delta b = \Delta (\lambda, \phi) =$	= .	-2 +2
		486 19		= 9.3		and the same of		30 449		= 9.30			= 0.20 1	

Nr. 54. 1902 Aug. 24. Sonnenschein.

Standpunkt: Sig. Büttener, südlich von Zöbingen am Rande eines Feldweges. Im schwarzen Jura, Grenze zwischen Posidonienschiefer und Amaltheentonen.

x = +45518.9, y = +93768.5, H = 500°°.

Nr.	Einstellung	Uhrangabe	Kreisablesung (Mittel der auß. u. der inn. Fäden)		Magnet- ablesung red. auf n ₀
14 800		$\Delta u = +0^{m}4$	1 6- 100		
1-4	I oben	8ª 50.9-51 ^m 8	350° 22:2 23.4	2.6	350° 25!4
5-8	II oben	53.3-54.4	350 10.4 10.7	2.6	350 13.2 350 19.3
					550 19.5
9-12	II oben	8ª 54.8-55.6	350 15.5 16.0	2.5	350 18.3
13-16	I oben	57.0-58.0	350 19.9 19.9	2.5	350 22.4
-	Zöbingen Walxheim Zöbingen, Kap. Nordhausen Zipplingen	- To 100	337 43.6 344 20.3 352 47.3 57 48.9 89 29.1		350 20.3

Nadel	Kreis	Be- zeich-	Mi	ttel	A+B	Vai	riat.	Uhr-	
Ivadei	Areis	nung	A unten	B unten	2	H.	Z.	angab	
I 1 2 3	o W W	a a i	63° 44!2 64 24.0 63 46.0	63°59!2 64 0.0 64 0.8	63°51!7 64 12.0 63 53.4	90.9 90.6 90.4	122.7	9ª 33	
4	0	i	64 22.0	63 59.2	64 10.6 64 1.9	50.4		41	
II 5 6 7 8	O W W O	a a i i	63 38.5 64 48.0 63 40.2 64 54.0	64 39.8 63 12.2 64 39.2 63 9.5	64 9.2 64 0.1 64 9.7 64 1.8	89.9 89.6 89.5	122.5	9ª 43 51	
		252 2			64 5.1 Δi –1.0	90.2 101.0	122.6 126.2		
	100				64 4.1	-10.8	-3.6	1 16.00	

$$\Delta n' = -10.8$$
 $\Delta n'' = -3.6$

Nadel I = 64° 1:9

" II = 4.1

Mittel = 64° 3:0

dJ = -1.8

J = 64° 1:2

Magnet I.

Magnet II.

Ein- stel-	Uhnanasha	Mag- net-	Kreis:	Variat	tionen	Ein- stel-	Uhrangabe	Mag-	Kreis:	Varia	tionen
lung	Uhrangabe	temp.	Mittel	Kornth. D.	Potsd. H.	lung		net- temp.	Mittel	Kornth. D.	Potsd. H.
v ₁	9ª 6.6- 7™0	15:0	38° 37!3	2.7	91.2	V ₄	9ª 13.2-13 ^m 4	14.9	302° 11:4	2.7	91.2
V ₂	8.2- 8.5	15.1	39 6.4	2.7	91.2	V ₃	14.6-14.9	15.2	301 20.7	2.7	91.3
14.9			38 51.9	2.7		To make			301 46.0	2.7	
v ₃	9.6-10.0	15.1	301 45.5	2.7	91.2	V ₂	16.4-16.6	15.2	38 37.4	2.8	91.3
V ₄	11.1-11.4	15.0	301 39.1	2.7	91.2	V ₁	18.0-18.2	15.5	39 8.5	2.8	91.1
Pag.		15.05	301 42.3	2.7	91.2 100.0			15.2	38 52.9	2.8	91.2 100.0
					-8.8						-8.8
					11/11/25	v	19.7		350 18.8	2.8	

Deflektor I.

Deflektor II.

Ein-	YTHE	Mag-	Kreis:	Varia	tionen Ein-		171	Mag-	Kreis:	Varia	tionen
stel- lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd. H.	lung	Uhrangabe	net- temp.	Mittel	Kornth. D.	Potsd, H.
o W	9° 21.6-22™0 23.4-23.6	1690 16.3	294°45!6 45 40.4	2.9 3.0	91.0 91.0	W	9 ^a 25.5-25 ^m 9 27.5-28.3	15:8 15.9	49°56!5 290 34.5		90.8 90.8
		16.15		19207	91.0 100.0	100		15.85			90.8 100.0
				1	-9.0						-9.2

Magnet I.	Magnet II.	Deflektor I.	Deflektor II.	
$2(\phi) = 97^{\circ} 9$	$2(\phi) = 97^{\circ} 6!9$	$2(\phi) = 110^{\circ}54.8$	$2(\phi) = 119^{\circ} 22!0$	H =0.20184
$\phi = 48 \ 34$	$.8 \phi = 48 \ 33.4$	$\phi = 55 \ 27.4$	$\phi = 59 \ 40.9$	182
$\lg \sin \phi_{15} = 9.8750$	$00 \lg \sin \phi_{15} = 9.87489$	$\lg \sin \phi_{15} = 9.91613$	$\lg \sin \phi_{15} = 9.93640$	184
	$n'_{100} = -60$			
$\lg \sin \phi_0 = 9.8744$	$10 \log \sin \phi_0 = 9.87429$	$\lg \sin \phi_0 = 9.91552$	$\lg \sin \phi_0 = 9.93577$	Basiskorr, $\Delta b = -2$
$\lg c = 9.1794$	$10 \log c = 9.17925$	lge = 9.22011	$\lg c = 9.24078$	$\Delta(\lambda, \phi) = -1$
lgH =9.3050	00 lg H = 9.30 496	$\lg H = 9.30459$	$\lg H = 9.30501$	H =0.20180
		Verworfen, wegen un- sicherer Magnettempe-		

IV. Ab Ergeb

Zusammenstellung der Ergebnisse aus

Basisstationen: Kornthal und Potsdam. Pfeiler Kornthal: $\phi = 48^{\circ}50'5$ 1, $D_{1901.0} = 11^{\circ}43^{\circ}5,$

Station	120- 11		dinat		1912	Meeres- hõhe	Mittlere Deklination D	Mittlere
Nr.	geodā	tische		geographisch	9	in Metern	(westlich)	Inklination
1112	x	У	NBreite	Länge e. Gr.	Länge ö. F.	N. N.	1. Jan. 1901	1. Jan. 190
100	0.00000					-		The same of the
1	+26 724.3	+ 26 393.2	48° 50:19	0h 42m 6:19	28°11:31	427	11° 9:8	64° 7!1
2	+26 201.4	+ 27 043.2	49.34	42 0.07	9.77	500	11 7.3	64 9.3
3	+27 216.3	+ 27 496.8	50.93	41 55.55	8.65	440	11 3.2	64 8.7
3a	+27 215.6	+ 27 497.1	50.93	41 55.55		440	11 3.6	64 3.0
4	+29 660.6	+ 25 921.6	54.83	42 10.31	12.33	428	10 52.0	64 0.3
5	+28 332.0	+ 25 423.9	52.75	42 15.23	13.56	425	11 7.3	63 59.8
6	+27 287.1	+ 24 353.2	51.12	42 25.59	16.15	411	10 53.8	64 6.8
7	+26 332.6	+ 23 937.4	49.63	42 29.63	17.17	494	11 1.1 10 57.3	64 0.2
8 9	+27 126.7	+ 22 544.2	50.90	42 42.87	20.47	420		63 59.9
	+28 078.9	+ 22 984.2	52.39	42 38.55	19.40	414	10 56.1	63 57.2
10	+27 302.4	+ 23 738.1	51.15	42 31.39	17.62	460	10 56.7	64 0.1
11	+29 030.1	+ 24 187.8	53.87	42 26.91	16.48	420	10 32.9	64 4.9
12	+29 444.3	+ 22 736.0	54.54	42 40.75	19.95	424	10 57.4	64 4.8
13	+28 354.9	+ 21 251.0	52.85	42 55.07	23.53	505	10 56.6	64 1.2
14	+28 920	+ 20 475	53.76	43 2.39		568	10 54.8	64 1.5
15	+29 800.4	+ 21 458.0	55.13	42 52.91	23.00	468	10 56.3	64 3.3
16	+28 741.9	+ 21 952.4	53.45	42 48.31	21.84	453	11 1.2	64 3.2
17	+27 260	+ 21 340	51.13	42 54.31	23.33	455	10 56.8	63 58.9
18	+26 489.9	+ 21 274.0	49.92	42 56.07	23.54	525	10 55.7	
18a	+26 490	+ 21 250	49.92	42 56.27	23.58	510		63 58.5
19	+26 610.0	+ 19 823.3	50.12	43 8.87	26.98	520	10 53.0	63 59.1
20	+27 950	+ 19 165	52.22	43 15.07	28.53	523	10 52.6	64 0.4
21*	+47 433.4	+101 064.7	56.32	41 43.26		495	11 4.3	64 5.6
22	+31 805.1	+ 28 062.0	58.17	41 49.51	7.13	466	11 2.3	64 6.5
23	+31 852.8	+ 26 391.3	58.28	42 5.47		493	11 0.4	64 5.9
24	+30 292.5	+ 27 706.9	55.78	41 53.11	8.06	488	11 2.4	64 4.6
25	+28 540.0	+ 27 338.2	53.04	41 56.91	8.99	433	11 7.3	64 5.5
26*	+43 417.5	+100 136.4	54.16	41 39.98		510	11 5.8	64 3.1
27*	+38 694.2	+100 585.2	51.61	41 41.16		513	11 3.3	64 3.4
27a*	+38 500	+100 700	51.49	41 41.83		470		
28	+24 808.8	+ 24 497.9	47.21	42 24.47		475	11 5.5	63 59.0
29	+25 420	+ 26 270	48.14	42 7.47		435	11 101	63 58.2
29a	+25 466.9	+ 26 293.7	48.20	42 7.23	-	465	11 12.1	63 59.6
30*	+33 224.9	+102 653.9	48.64	41 47.58	-	545	11 2.0	64 7.9
31	+26 484.8	+ 25 549.7	49.83	42 14.23		432	11 8.8	64 2.2
32	+25 289.0	+ 22 639.0	47.99	42 42.15		495	10 59.3	63 58.2
33	+25 006.4	+ 20 819.8	47.58	42 59.51		525	10 54.0	63 55.7
34*	+28 515.5	+ 95 290.8	46.17	41 22.78		618	11 3.5	64 5.3
35*	+20 336.5	+ 96 049.2	41.75	41 25.29		514	11 8.3	63 57.2
36° 37°	+30 526.8	+ 88 456.0	47.31		27 55.04	604	11 7.7 11 12.8	64 5.2 63 57.1
	+27 420 +22 472.2	+100 910	45.53	41 41.96		580	11 7.3	63 55.5
38 39	+22 472.2	+ 27 162.9 + 25 678.7	43.46 43.07	41 59.39 42 13.55		550 522	11 1.8	63 54.0
40	+22 028.1	+ 23 575.4	42.84	42 33.59		455	10 58.1	63 52.7
30	722 020.1	4 20 070.4	12.01	42 00.00	10.10	400	10 30.1	00 02.1

schnitt.

nisse.

den Messungen im August 1902.

 $\lambda = 0^{h} 36^{m} 29^{h} 5$ e. Gr. = $26^{\circ} 47^{\circ} 12$ ö. F. H = 335^{m} N. N.

 $J_{1901.0} = 64^{\circ} 5.2, \ H_{1901.0} = 0.20 \ 135.$

Mittlere HorizInt. H.	Mittlere Total- Intensität T	Mittlere VertInt. Z VertKomp. Z	Mittlere Nord- Komp X	Mittlere Ost-Komp. Y	Größe	der störe	nden Kra	ft in y
			Komp. X					
1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	X.	Y.	Z.	T.
0.20 099	0.46 046	0.41 427	0.19719	-0.03 892	-104	- 30	+ 89	+ 31
0.20 088	0.46 081	0.41 472	0.19710	-0.03 875	-116	- 8	+140	+ 69
0.20 119	0.46 135	0.41 516	0.19746	-0.03 857	- 68	+ 12	+170	+115
0.20 114	0.45 967	0.41 331	0.19740	-0.03 859	- 73	+ 10	- 13	- 51
0.20 150	0.45 975	0.41 324	0.19 789	-0.03 799	- 3	+ 56	- 51	- 60
0.20 103	0.45 853	0.41 212	0.19 725	-0.03 878	- 83	- 24	-143	-171
0.20 086	0.46 006	0.41 389	0.19724	-0.03 797	-100	+ 52	+ 50	- 10
0.20 162	0.45 998	0.41 344	0.19 790	-0.03 853	- 45	- 5	+ 19	- 11
0.20 192	0.46 059	0.41 397	0.19 824	-0.03 837	- 8	+ 1	+ 65	+ 45
0.20 218	0.46 043	0.41 367	0.19 851	-0.03 835	+ 31	+ 5	+ 21	+ 24
0.20 154	0.45 978	0.41 325	0.19 787	-0.03 827	- 38	+ 19	- 13	- 37
0.20 164	0.46 133	0.41 493	0.19 824	-0.03 691	+ 18	+155	+131	+104
0.20 142	0.46 080	0.41 444	0.19 775	-0.03 828	- 31	+ 8	+180	+ 49
0.20 162	0.46 026	0.41 374	0.19 795	-0.03 827	- 27	+ 1	+ 29	+ 6
0.20 174	0.46 062	0.41 408	0.19 809	-0.03 819	- 11	+ 4	+ 59	+ 39
0.20 143	0.46 041	0.41 401	0.19 777	-0.03 822	- 28	+ 6	+ 36	+ 11
0.20 158	0.46 072	0.41 428	0.19 786	-0.03 853	- 29	- 21	+ 76	+ 48
0.20 194	0.46 035	0.41 370	0.19 826	-0.03 835	- 8	- 3	+ 39	+ 23
0.20 196	0.46 030	0.41 363	0.19 830	-0.03 829	- 14	+ 2	+ 42	+ 23
0.20 182	0.46 014	0.41 351	0.19 819	-0.03 810	- 28	+ 12	+ 33	+ 9
0.20 182	0.46 049	0.41 391	0 19 820	-0.03 808	- 15	+ 8	+ 57	+ 35
0.20 130	0.46 074	0.41 443	0.19 755	-0.03 866	- 15	+ 5	+ 48	+ 29
0.20 126	0.46 090	0.41 463	0.19 754	-0.03 853	- 7	+ 12	+ 51	+ 36
0.20 124	0.46 068	0.41 440	0.19 754	-0.03 842	- 12	+ 13	+ 35	+ 17
0.20 127	0.46 040	0.41 407	0.19 755	-0.03 854	- 24	+ 12	+ 18	- 2
0.20 120	0.46 049	0.41 420	0.19 742	-0.03 881	- 57	- 15	+ 56	+ 20
0.20 124	0.45 992	0.41 354	0.19 747	-0.03 873	- 37	+ 2	- 24	- 44
0.20 118 0.20 119	0.45 987	0.41 352	0.19 745	-0.03 858	- 58	+ 19	- 5	- 39
0.20 200	0.46 052	0.41 385	0.10.992	0.00 000	90	- 33	. 90	. 54
0.20 214	0.46 062	0.41.389	0.19 823	-0.03 886	- 28	- 55	+ 80 + 70	+ 54 + 57
0.20 220	0.46 114	0.41.365	0.19 835	-0.03 928	- 3	- 64	+126	+110
0.20 093	0.46 053	0.41 439	0.19 722	-0.03 845	-105	+ 30	+110	+ 48
0.20 159	0.46 047	0.41 399	0.19 779	-0.03 897	- 49	- 39	+ 68	+ 35
0.20 215	0.46 065	0.41 392	0.19 845	-0.03 853	- 7	- 12	+ 83	+ 66
0.20 179	0.45 913	0.41 242	0.19 815	-0.03 816	- 47	+ 15	- 57	- 81
0.20 141	0.46 091	0.41 457	0.19 767	-0.03 863	- 66	+ 31	+142	+ 90
0.20 235	0.46 083	0.41 403	0.19 854	-0:03.909	- 12	- 12	+125	+102
0.20 100	0.45 995	0.41 369	0.19722	-0.03 880	- 95	+ 27	+ 37	- 16
0.20 235	0.46 081	0.41 400	0.19 849	-0.03 935	+ 3	- 53	+ 94	+ 84
0.20 226	0.46 016	0.41 332	0.19 846	-0.03 901	- 20	- 28	+ 49	+ 31
0.20 239	0.46 004	0.41 313	0.19 865	-0.03 872	- 11	- 8	+ 38	+ 22
0.20 233	0.45 954	0.41 261	0.19 864	-0.03 850	- 21	+ 3	- 5	- 21

Station		Koor	dinat	e n		Meercs-	Mittlere	Mittlere	
Nr.	geodā	itische		geographische	,	höhe in Metern	Deklination D (westlich)	Inklination J	
****	x	у	NBreite	Länge e. Gr.	Länge ö. F.	N. N.	1. Jan. 1901	1. Jan. 1901	
41	+22 166.0	+19 761.4	48° 43:12	0h43m 9591	28° 27:24	440	10°53!3	63°52:8	
42	+16 961.1	+27 578.0	34.74	41 56.27	8.81	433	11 1.8	63 46 0	
43	+19 867.4	+23 628.0	39.44	42 33.35	18.09	425	11 0.8	63 49.8	
44	+24 518.1	+18 294.1	46.85	43 23.67	30.67	553	10 47.0	63 58.0	
45	+24 900	+17 000	47.43	43 35.95	33.75	480	10 43.9	63 59.3	
46	+25 912.3	+16 141.1	49.09	43 44.07	35.76	535	10 48.1	64 1.6	
47	+26 845.5	+18 157.8	50,53	43 24.75	30.94	515	10 59.1	63 59.3	
48	+22 760.1	+21 728.4	44.03	42 51.11	22.54	435	10 55.7	63 56.5	
49	+24 636.4	+26 651.8	46.86	42 3.95	10.74	490	11 8.0	64 0.5	
50	+30 911.6	+24 507.4	56.83	42 23.63	15.68	418	10 59.4	64 4.0	
51	+37 660.6	+20 504.4	49 7.54	43 1.23	25.07	415	10 56.8	64 10.5	
52	+34 600.2	+24 062.4	2.66	42 27.43	16.62	425	10 58.7	64 9.7	
53*	+41 088.8	+90 320.7	48 52.99	41 8.10	27 56.80	626	11 10.0	64 4.7	
54*	+45 518.9	+93 768.5	55.35	41 19.24	59.58	500	11 6.2	64 3.7	

Auszug aus: »Erdmagnetische Elemente von Württemberg und Hohen Zusammenstellung magnetischer Werte aus den Messungen von 1900, neu be

Station	100000000	Koor	Meeres- hõhe	Mittlere	Mittlere					
Nr.	geoda	itische	TENNO	geographische	3	in Metern	Deklination	Inklination		
ALV.	x	у	NBreite	Länge e. Gr.	Länge ö. F.	N. N.	1. Jan. 1901	1. Jan. 1901		
15	+49 202.6	+ 62 382.5	48°57:6	0h 39m 37s	27°34:0	554	11° 19:3	64° 9:4		
16	+53 380.4	+ 81 952.4	59.7	40 41	50.1	549	11 12.1	64 10.1		
17	+47 433.4	+101 064.7	56.3	41 43	5.6	495	11 4.2	64 4.7		
22	+33 446.6	+ 37 185.8	49.2	38 14	13.2	309	11 27.5	64 4.9		
23	+30 190.0	+ 54 169.2	47.4	39 9	27.1	429	11 21.3	64 0.6		
24	+38 652.5	+ 78 994.5	51.9	40 31	47.4	685	11 12.4	64 3.4		
24a	+29 818.2	+ 79 176.2	47.0	40 31	47.5	533	11 11.6	64 5.7		
24b		- 10 10 10	50.3	40 2	40.4	553		64 5.2		
25	+28 515.5	+ 95 290.8	46.2	41 23	28 0.5	618	11 3.8	64 4.9		
32	+ 5 834.4	+ 39 100.6	34.3	38 20	27 14.7	765	11 23.0	63 53.0		
33	+16 167.0	+ 50 661.2	39.8	38 58	24.1	432	11 21.8	63 58.6		
34	+ 2 084.1	+ 62 787.3	32.3	39 36	33.8	650	11 12.2	63 54.4		
35	+18 251.4	+ 71 873.1	40.8	40 7	41.4	651	11 7.5	64 6.3		
35a	+13 314.5	+ 82 706.2	38.1	40 42	50.2	549	11 22.1	63 56.2		
35b	+22 012.8	+ 82 208.5	42.7	40 40	49.8	580	11 11.4	64 6.9		
39	- 9884.5	+ 31 903.4	25.9	37 58	8.7	782	11 26.2	63 45.4		
40	- 5 288.7	+ 51 126.5	28.2	38 58	24.3	744	11 17.8	63 48.2		
41	-1657.1	+ 74 574.7	30.0	40 15	43.4	546	11 19.5	63 42.0		
42	+ 3 171.8	+ 91 964.8	32.6	41 11	57.6	445	11 8.6	63 45.1		
49	-19 925.3	+ 66 738.2	20.3	39 49	36.9	496	11 15.7	63 38.9		

Ergebnisse.

Die magnetischen Werte aus den Messungen von 1902 wurden auf 1. Januar 1901 umgerechnet, weil sie dann mit den Ergebnissen der württembergischen Vermessung von 1900 vereinigt werden können. Die Messungen in Kornthal 1900 und 1902 haben ergeben, daß in 1.96 Jahren D um 8:9, J um 3:0 abgenommen, H in 1.95 Jahren um 54γ zugenommen hat.

Mittlere Horiz,-Int. H.	Mittlere Total- Intensität T	Mittlere VertInt. Z VertKomp. Z	Mittlere Nord- Komp. X	Mittlere Ost-Komp. Y	Größe der störenden Kraft in γ						
1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	1. Jan. 1901	X.	Y.	Z.	T,			
0.20 261	0,46 021	0.41 322	0.19 896	-0.03 827	0	+ 1	+ 65	+ 50			
0.20 316	0.45 961	0.41 227	0.19 940	-0.03 887	+ 14	- 2	+ 19	+ 17			
0.20 281	0.45 985	0.41 272	0.19 907	-0.03 874	0	- 19	+ 34	+ 24			
0.20 191	0.46 004	0.41 337	0.19 835	-0.03 778	- 41	+ 39	+ 52	+ 17			
0.20 177	0.46 009	0.41 348	0.19 824	-0.03 757	- 53	+ 50	+ 61	+ 18			
0.20 144	0.45 997	0.41 350	0.19 787	-0.03 775	- 80	+ 26	+ 52	+ 2			
0.20 170	0.45 993	0.41 334	0.19 800	-0.03 844	- 50	- 31	+ 18	- 12			
0.20 222	0.46 033	0.41 354	0.19 855	-0.03 834	- 27	+ 7	+ 83	+ 54			
0.20 180	0.46 048	0.41 390	0.19 800	-0.03 897	- 44	- 30	+ 81	+ 48			
0.20 114	0.45 994	0.41 362	0.19 745	-0.03 835	- 38	+ 11	- 26	- 49			
0.20 080	0.46 094	0.41 491	0.19714	-0.03 813	- 8	- 2	+ 24	+ 9			
0.20 095	0.46 105	0.41 497	0.19 727	-0.03 827	- 16	+ 10	+ 61	+ 38			
0.20 120	0.46 027	0.41 395	0.19 739	-0.03 897	- 42	0	+ 17	- 9			
0.20 135	0.46 033	0.41 395	0.19 758	-0.03 878	- 10	+ 10	0	- 13			

zollern«, herausgegeben vom K. Württ. Stat. Landesamt, S. 157 und 158. rechnet für 1901.0, und Unterschiede gegen die Basisstation bei Kornthal.

Mittlere Horiz,-Intens.	Mittlere Total-Intens.	Mittlere VertikIntens.	Mittlere Nord-Komp.	Mittlere Ost-Komp.	Größe der störenden Kraft in γ								
1. Jan. 1901	1. Jan. 1901	1, Jan. 1901	1. Jan. 1901	1. Jan. 1901	X.	Y.	Z.	T.					
0.20 098	0.46 106	0.41 496	0.19 707	-0.03 945	- 7	+7	+ 50	+ 35					
0.20 085	0.46 096	0.41 490	0.19 703	-0.03 902	- 21	+6	+ 45	+ 24					
0.20 127	0.46 042	0.41 410	0.19 753	-0.03 865	- 19	+ 6	+ 13	- 4					
0.20 137	0.46 071	0.41 438	0.19 736	-0.04 000	- 4	+13	+ 39	+ 27					
0.20 162	0.46 010	0.41 357	0.19 768	-0.03 969	- 6	+11	- 10	- 18					
0.20 133	0.46 020	0.41 382	0.19 749	-0.03 913	- 25	+ 9	+ 1	- 17					
0.20 116	0.46 045	0.41 419	0.19 734	-0.03 905	- 75	+22	+ 80	+ 21					
0.20 132	0.46 068	0.41 436	0.19 747	-0.03 916	- 28	+27	+ 60	+ 34					
0.20 139	0.46 075	0.41 441	0.19 765	-0.03 864	- 69	+31	+124	+ 72					
0.20.238	0.45 976	0.41 282	0.19 841	-0.03 994	- 5	+29	+ 11	+ 2					
0.20 187	0.46 012	0.41 348	0.19 791	-0.03 977	- 32	+17	+ 41	+ 18					
0.20 253	0.46 047	0.41 355	0.19 868	-0.03 935	- 22	+41	+124	+ 93					
0.20 105	0.46 037	0.41 414	0.19727	-0.03 879	-116	+70	+120	+ 48					
0.20 275	0.46 146	0.41 455	0 19 878	-0 03 996	+ 3	-67	+195	+174					
0.20 110	0.46 065	0.41 444	0.19 728	-0.03 902	-114	+23	+144	+ 73					
0.20 320	0.45 953	0.41 218	0.19 917	-0.04 029	+ 22	+18	+ 12	+ 14					
0.20 298	0.45 980	0.41 258	0.19 905	-0.03 976	+ 1	+29	+ 51	+ 40					
0.20 424	0.46 096	0.41 326	0.19 027	-0.04 011	+106	+57	+127	+ 59					
0.20 312	0.45 928	0.41 192	0.19 930	-0.03 926	+ 6	-11	- 12	- 13					
0.20 382	0.45 917	0.41 147	0.19 990	-0.03 980	+ 12	0	+ 22	+ 21					

Daraus berechnet sich die damalige jährliche Änderung der Deklination auf -4.55, der Inklination auf -1.5, der Horizontalintensität auf $+28\gamma$.

Mit diesen Beträgen wurde die Umrechnung auf 1901.0 vorgenommen, sowohl der vorstehenden Stationen 1—54, als der in Betracht kommenden Stationen aus W¹, S. 157. Vom jährlichen Gange wurde abgesehen. Man erhält die Zusammenstellung S. 130—133.

¹ W = Die erdmagnetischen Elemente von Württemberg und Hohenzollern für 1901.0.

Die Messungen von 1902 und von 1900 haben 2 Feldstationen gemeinsam: Nr. 21 Sig. Senselberg, früher Nr. 17, und Nr. 34 Sig. Schneckenbuck, früher Nr. 25. Auf der ersteren hat sich in D, J und H eine jährliche Änderung von -4!6, -1!1 und +30γ, auf der letzteren von -4!7, -1!3 und +29γ ergeben; die Werte stimmen mit den in Kornthal gewonnenen innerhalb der Messungsgenauigkeit überein. Zur weiteren Prüfung, ob innerhalb des Störungsgebietes eine andere säkulare Änderung stattgefunden habe als außerhalb, wurden die Werte von Lamont, s. Magnetische Ortsbestimmungen, mit den jetzigen verglichen. Die Stationen bei Marktoffingen, Monheim, Donauwörth und Dillingen sind örtlich nahezu dieselben; für die anderen Lamont schen Punkte wurden die jetzigen Werte durch Interpolation aufgestellt, wobei allerdings einige Werte unsicher werden. Für die Zeit 1850.0—1901.0 erhält man folgende Änderungen:

Messungs-		D	J	H	Messungs-		D	J	H
jahr von Lamont	Station von Lamont	Abnahme Zunahme		jahr von	Station von Lamont	Abna	Zunahme hren		
	von Lamont	in 51 Jahren			Lamont	von Lamont			in
1850	Rothenburg	5° 30'	1°39'	1028 %	1855	Heidenheim	5°35'	_	9887
1849	Gunzenhausen	5 31	1 37	1025	1855	Giengen a. Br.	5 30	100	1003
1855	Roth am See	5 32	1 34	1051	1852	Ulm	5 26	1041'	1040
1855	Crailsheim	5 30	-	1036	1850	Günzburg	5 26	1 45	1015
1855	Ellwangen	5 34	1 28	1038	1855	Lauingen	5 29	-	1040
1850	Öttingen	5 29	1 35	1012	1850	Dillingen	5 26	1 40	1048
1855 1854	Aalen	5 30	1 34	1041 1009	1849 u. 1850	Donauwörth	5 27	1 40	1043
1854	Marktoffingen Nördlingen	5 28		1009	1844	Stuttgart	-	1	1036
1854	Wemding	5 35		1036	1852	Pforzheim	5 36	1 55	1081
1854 1855	Monheim Buchdorf	5 28	1 42	1042 1023	u. 1853 1844	Tübingen .	5 35	_	1054

Eine Gesetzmäßigkeit verschiedener Änderung im Störungsgebiete ist hieraus noch nicht zu erkennen.

Aus den gemessenen Elementen wurde die Totalintensität T, die Vertikalintensität Z, die Nordkomponente X und die Ostkomponente Y berechnet und auf S. 130—133 zusammengestellt. Den mittleren Fehlern in D von ± 1.0 , in J von ± 1.2 , in H von $\pm 4.2\gamma$ entsprechen mittlere Fehler in X von $\pm 4\gamma$, in Y von $\pm 6\gamma$, in Z von $\pm 37\gamma$, in T von $\pm 33\gamma$; die beiden letzten Beträge sind wegen des Fehlers in J sehr hoch und es erscheint fraglich, ob man bei den kleinen hier auftretenden Störungen auf Z und T überhaupt eingehen soll. Indessen sind die entsprechenden Unsicherheiten aus den Messungen von 1900 nur $\pm 17\gamma$ und $\pm 14\gamma$; diese mögen die Darstellung von Z und T rechtfertigen.

Zur Berechnung der störenden Kräfte wurden aus W, S. 156 die Formeln für normale Verteilung und den Ausgangspunkt Basisstation Kornthal genommen:

Nordkomponente $\Delta X = -22 - 6.98 \, \Delta \phi + 1.54 \, \Delta \lambda$ Ostkomponente $\Delta Y = +10 + 0.96 \, \Delta \phi + 2.57 \, \Delta \lambda$ Vertikalkomponente $\Delta Z = -4 + 8.52 \, \Delta \phi - 1.20 \, \Delta \lambda$ Totalintensität $\Delta T = -12 + 4.64 \, \Delta \phi - 0.57 \, \Delta \lambda.$

Die Ergebnisse sind auf S. 130—133 eingetragen. Der spätere Zusammenschluß der bayerischen mit der württembergischen magnetischen Landesaufnahme wird bessere Werte, in der Hauptsache aber nur eine Parallelverschiebung bringen. Die Werte der Station 3* sind außer Betracht geblieben, da die Inklination, die indessen doppelt gemessen wurde, um 5!6 kleiner ist als die der Station 3 und nicht zu den anderen Messungen paßt; die Fehlerursache konnte nicht entdeckt werden.

Die Tafel VIII enthält die Darstellung der störenden Kräfte nach Streichen, Fallen und Größe ($4^{\rm mm}=25\gamma$), auch die magnetischen Kamm- und Tallinien; es sei aber nochmal auf die Unsicherheit in Thingewiesen, die für die Stationen von 1902 einen mittleren Fehler der Pfeillänge von $\pm 5^{\rm mm}$, für die von 1900 einen solchen von $2^{\rm mm}5$ beträgt.

Man erkennt aus der Darstellung, daß ein magnetisches Störungsgebiet vorliegt, das von der hohen Alb über die Heidenheimer Alb und das südliche Härdtsfeld sich ins Ries und Vorries und in den fränkischen Jura erstreckt, wie weit in diesen hinein, bleibt hier unbestimmt. Die Störungen sind nicht groß, sie schwanken zwischen +174γ bei Herbrechtingen und -171γ bei Klosterzimmern, betragen also noch nicht 1/2 Prozent der normalen erdmagnetischen Kraft. In den einzelnen Teilen verhält sich das Störungsgebiet verschieden. Südwestlich vom Ries hat es eine Länge von mehr als 60 km, eine Breite von über 20km; es verläuft im Hauptstreichen des schwäbischen Jura. Seine Kammlinie geht an Berghülen, Luizhausen, Weidenstetten, Bolheim, Herbrechtingen, Dischingen und Kösingen vorbei und scheint sich bei Schmähingen mit der Rieskammlinie zu vereinigen. Ob, wie aus der Nullinie für H hervorzugehen scheint, noch eine Kammlinie von Kösingen über Eglingen gegen Finningen geht, und wenn dies der Fall ist, ob diese Linie ein Ausläufer oder die Fortsetzung der ersteren oder aber eine andere

Kammlinie ist, bleibt unbestimmt. Ebenso ob und wie eine Kammlinie, oder die Störung überhaupt in den fränkischen Jura hinein verläuft. Dagegen zeigt sich ausgesprochen ein schmaler Störungsstreifen im Südost vom Ries mit einer Kammlinie bei Mauren, Wörnitzstein und Donauwörth; es scheint, daß diese Linie westlich von Katzenstein an die Rieskammlinie anschließt. Im Ries selbst zeigt sich eine besondere Kammlinie, von Nördlingen an Schmähingen, Sorheim, Katzenstein, Wallfahrt, Laub vorbei nach Wechingen, und es ist auffallend, wie diese Linie von West über Süd nach Ost der Bruchlinie des Rieskessels folgt; der Verlauf dieser Kammlinie muß indessen durch einige weitere magnetische Stationen schärfer bestimmt werden.

Man sieht, daß es sich hier nur um einen schmalen Störungsstreifen handelt und denkt zunächst an den Bruchrand des Rieskessels als Ursache. Da aber erstens nur der südliche Teil des Bruchrandes, nicht aber der gesamte Bruchrand diese magnetische Störung zeigt und da zweitens die Stationen am Donauabbruch, sowie auch die der magnetischen Landesaufnahme Württembergs und Hohenzollerns keinen Zusammenhang zwischen geologischer Verwerfung und magnetischer Störung ergeben haben, so kommt man zu dem Schlusse, daß auch hier nicht der Bruchrand des Rieskessels, sondern ein in der Tiefe liegendes Gestein, eine Spaltenfüllung, die magnetische Störung hervorruft.

Weiter zeigt die Darstellung auf Tafel VIII, daß sich von Nord und Nordwest her ein Gebiet negativer magnetischer Störungen in einer Länge von 20^{km} und einer Breite von 6^{km} in das Ries, und in einem Bogen zwischen das Gebiet positiver Störungen hereinschiebt. Die magnetische Tallinie geht von Hainsfarth nach Öttingen, Dürrenzimmern, Klosterzimmern, Alerheim nach Wörnitzostheim. Auch außerhalb des Ries, bei Mündling, zeigt sich eine größere negative Anomalie.

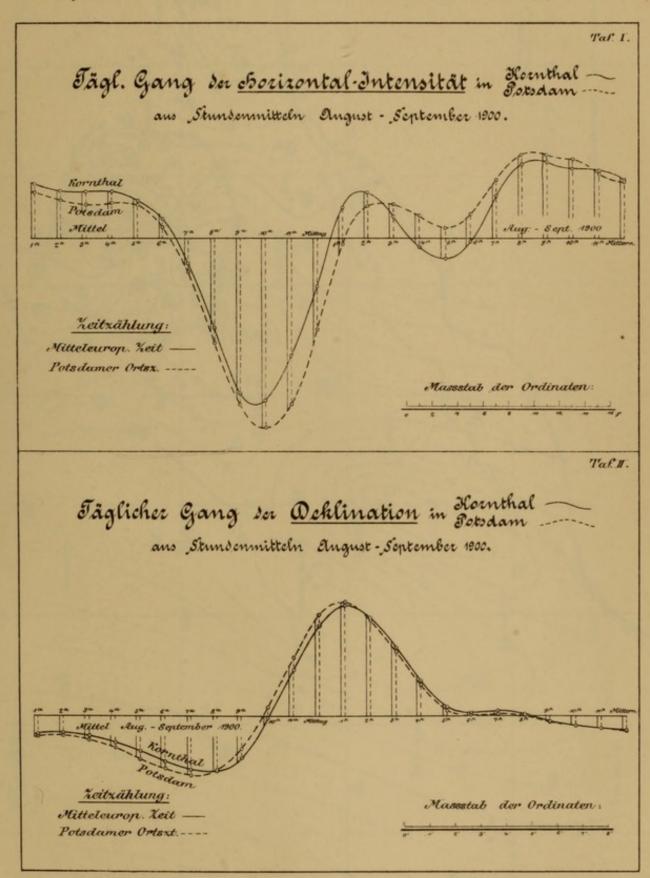
In beiden Fällen negativer Störung, insbesondere im ersteren Felde, in der Mitte des Rieskessels mit den am tiefsten liegenden Stationen, müssen wir entweder auf saure Gesteinsmassen, oder auf Massendefekte oder auf beides zusammen schließen.

Magneteisenlager mit nach oben gerichtetem Nordpole sind bei der Größe des Gebietes und der Geringfügigkeit der Störungen hier nicht möglich. Es mag erwähnt werden, daß natürlich auch saure Massen in Gebieten positiver Störungen vorkommen können, wie das Moor bei Wechingen; es findet eben dann eine Abschwächung der positiven Größe statt.

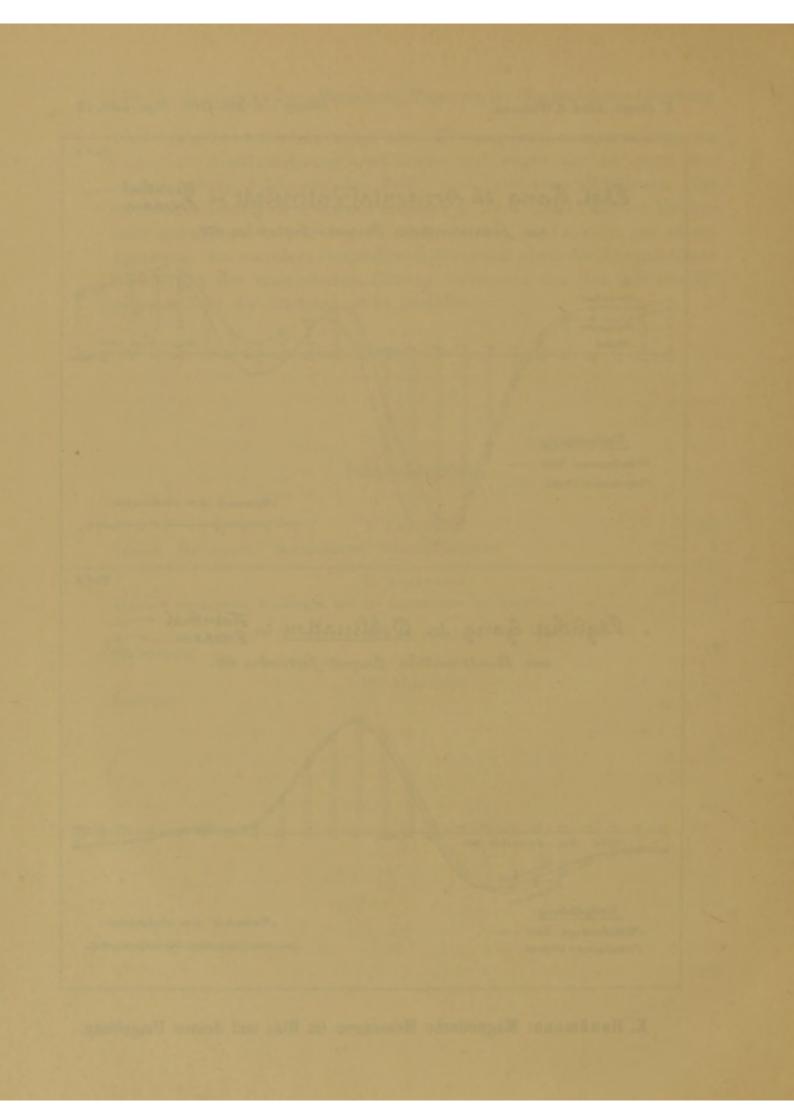
In den Gebieten positiver Anomalie scheint das Oberflächengestein wenig magnetischen Einfluß ausgeübt zu haben. Das zeigt der geringe Betrag und die langsame Änderung der Störungen, es geht aber auch direkt aus den Proben auf Ablenkung des Deklinationsmagnets mit Stücken des anstehenden Gesteins hervor: nirgends konnte ein Ausschlag nachgewiesen werden. Auch zeigen es die Messungen in verschiedener Höhe: am Goldberge, Station Nr. 27 und Nr. 27a, wurde bei rund 40^m Höhenunterschied dasselbe H gemessen; am Roten Berg bei Schmähingen wurde auf der Kuppe. Station Nr. 29a, ein um 6γ größeres H gefunden als 30^m tiefer, am Fuße, Station Nr. 29, in einem Steinbruche. Im Gegensatze dazu zeigt sich die Inklination auf dem oberen Punkt ebenfalls größer, als unten, um 1:4. Aber die Unterschiede sind so klein, daß insbesondere mit Hinsicht auf das schlechte Wetter bei der Messung ein weiterer als der schon gezogene Schluß nicht begründet ist.

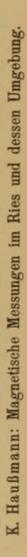
Die positiven magnetischen Störungen lassen sich also, da Magneteisenlager auch hier ausgeschlossen sind, nur durch unterirdische, basische Gesteinsmassen erklären. Es wäre das der von W. Branco und E. Fraas angenommene Lakkolith.1

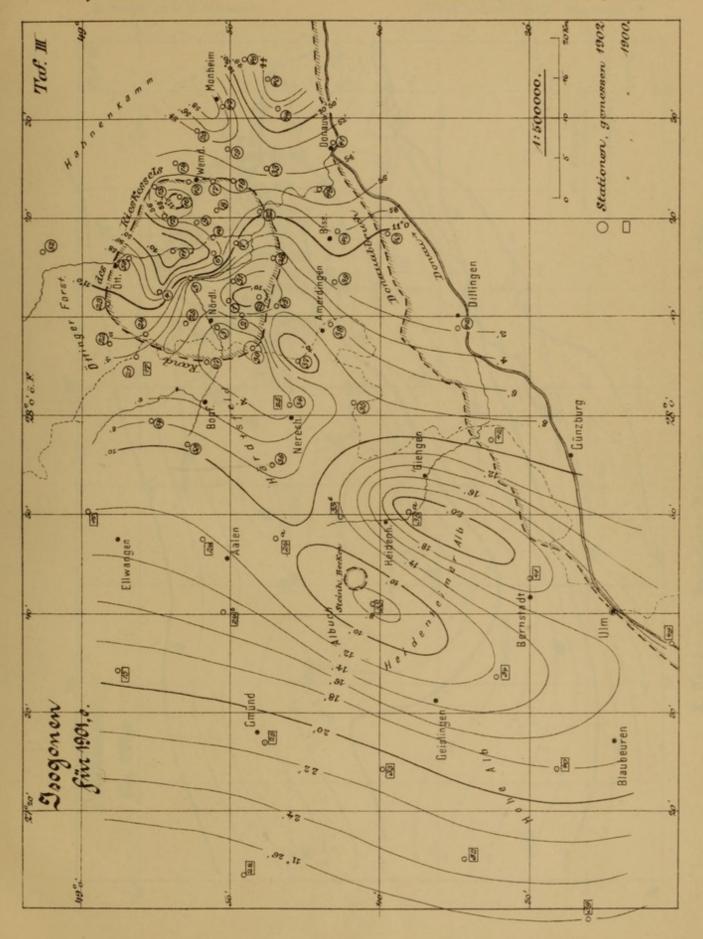
Im Ries können, nach den Störungen zu schließen, diese basischen Massen nicht tief sitzen, höchstens 2km tief; bei Schmähingen und nördlich davon scheinen sie der Tiefe zu stärker zu werden.

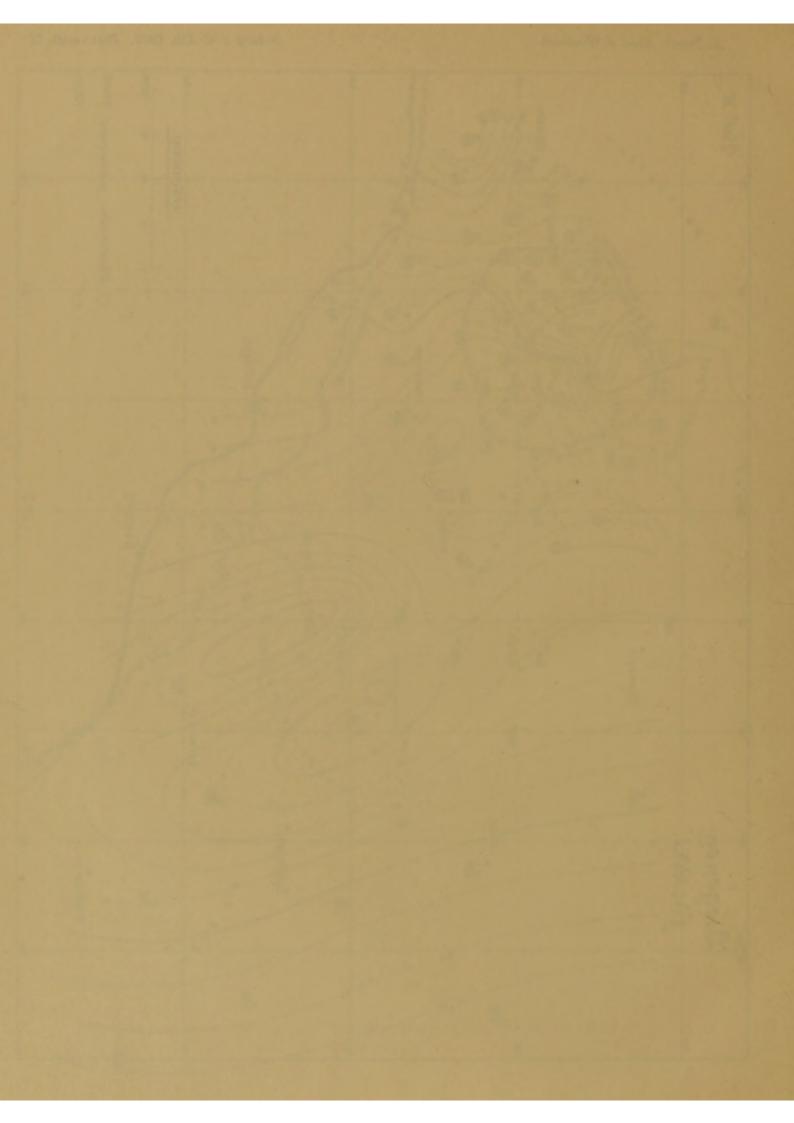

Südwestlich vom Ries, im Albgebiete, liegt die Sache anders; da müssen nach Länge, Breite und Tiefe ausgedehnte basische Gesteine vorhanden sein, wie aus den störenden Kräften hervorgeht, in 3-6km Tiefe. Aus den etwas unsicheren Nullinien der Horizontalintensität und Inklination ergibt sich, wenn man von der üblichen Herleitung des anziehenden Massenzentrums abgeht und dafür die Breite der störenden Massen einführt, eine Tiefe von 4-8km. Als mittlere

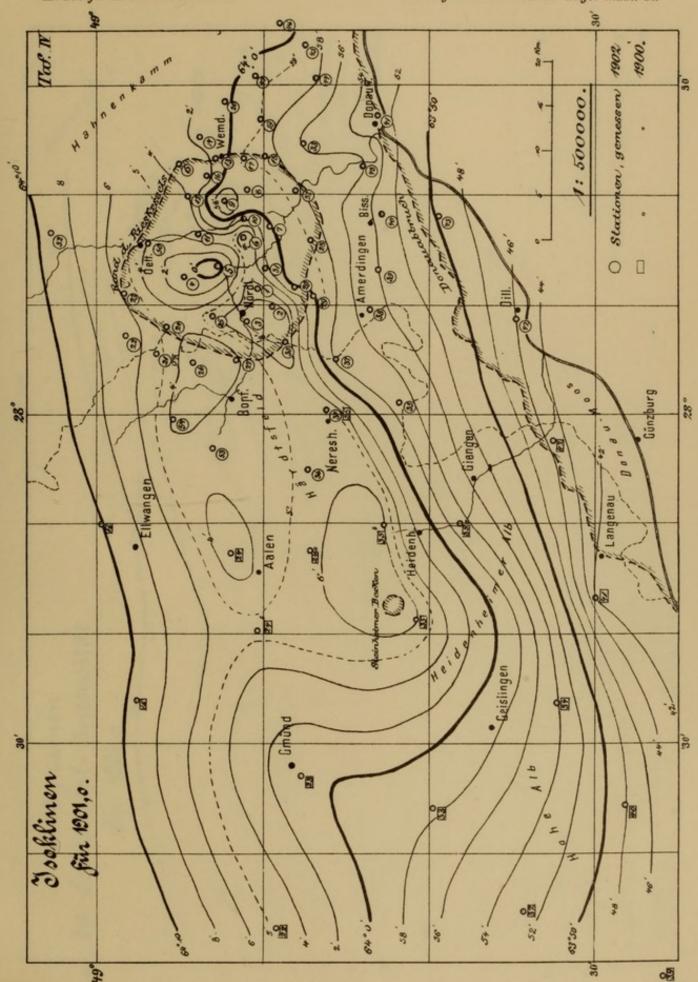
¹ W. Branco und E. Fraas. Das vulkanische Ries bei Nördlingen in seiner Bedeutung für Fragen der allgemeinen Geologie. Abhandlungen d. Kgl. Preuß. Akad. d. Wiss. 1901. — W. Branco. Das vulkanische Vorries. Ebenda 1903.

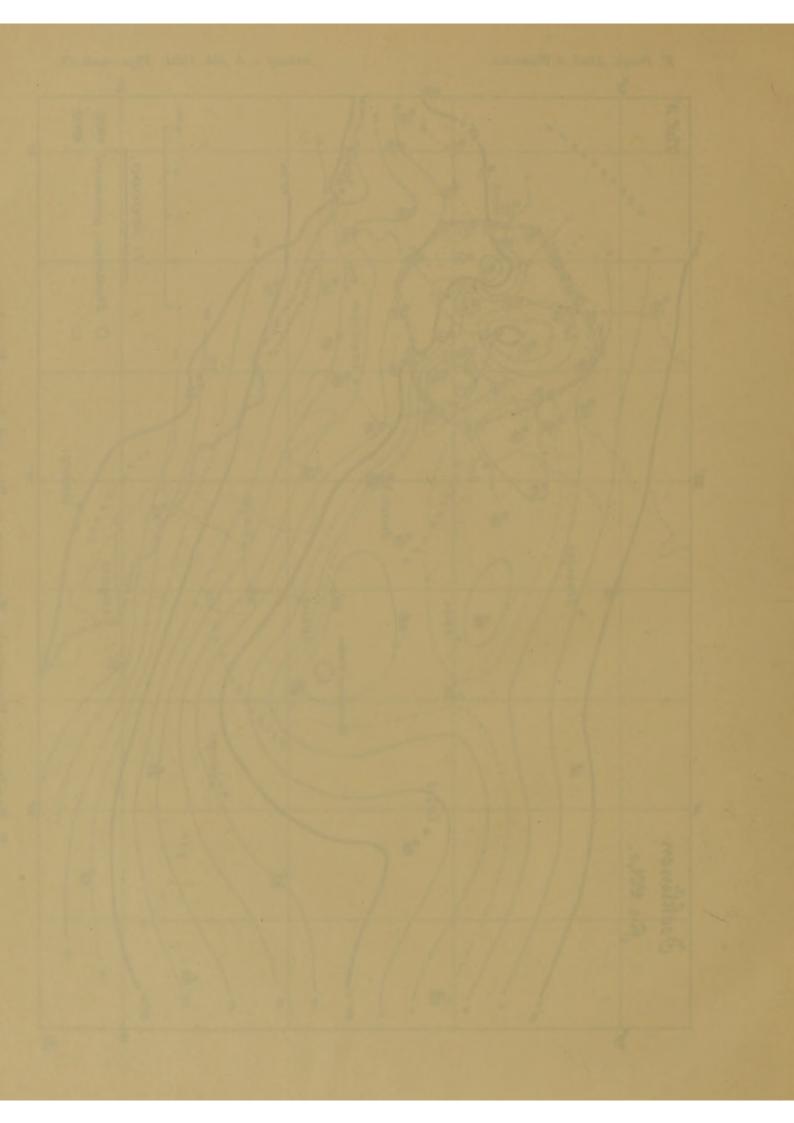

Tiefe des Lakkolithes kann also 5km angenommen werden, ein wegen der Gestaltsänderung wechselnder und wegen der zu seiner Herleitung nötigen Schätzung der Breite auch unsicherer Mittelwert. Die störenden unterirdischen Massen scheinen in der Gegend zwischen Heidenheim und Giengen am stärksten zu sein, wie aber der Lakkolith mit seinen Apophysen im einzelnen verläuft und inwieweit etwa das Steinheimer Becken an der magnetischen Störung teilnimmt, das läßt sich aus der geringen Zahl der Stationen nicht ermitteln.

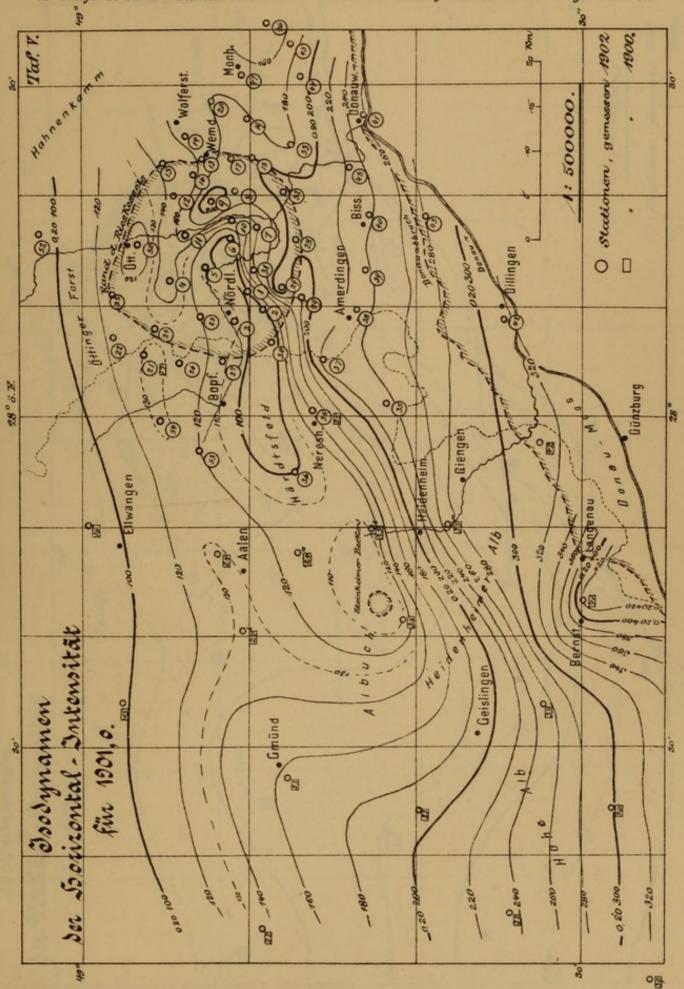

Inhaltsübersicht.

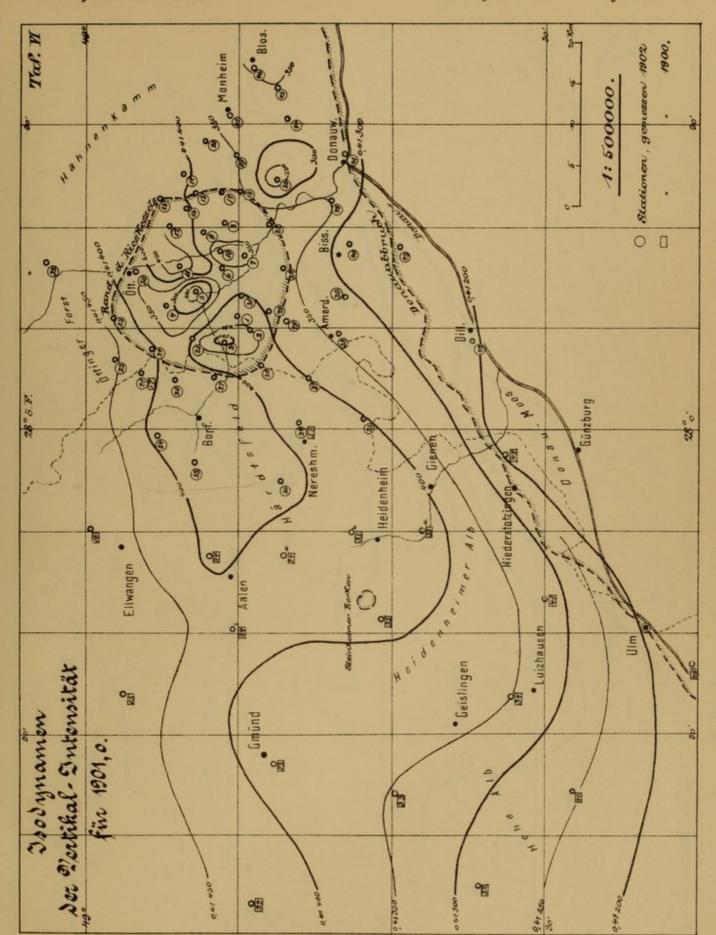

	I. Abschnitt.											Seit	
Verlauf.	Instrumente.	Basisstati	onen.	Messungsmeth	oden .	M. III	Alfa				131		1
				Abschnitt.									
Absolute	magnetische l	Messungen	auf der	· Basisstation	bei Ko	rntha	d .		-				27
				. Abschnitt.									
Feldmess	sung	nes diso	11 . 11	sidia Talif	1115	i ·	45					-	40
				. Abschnitt.									133
Ergebnis	se									*			130



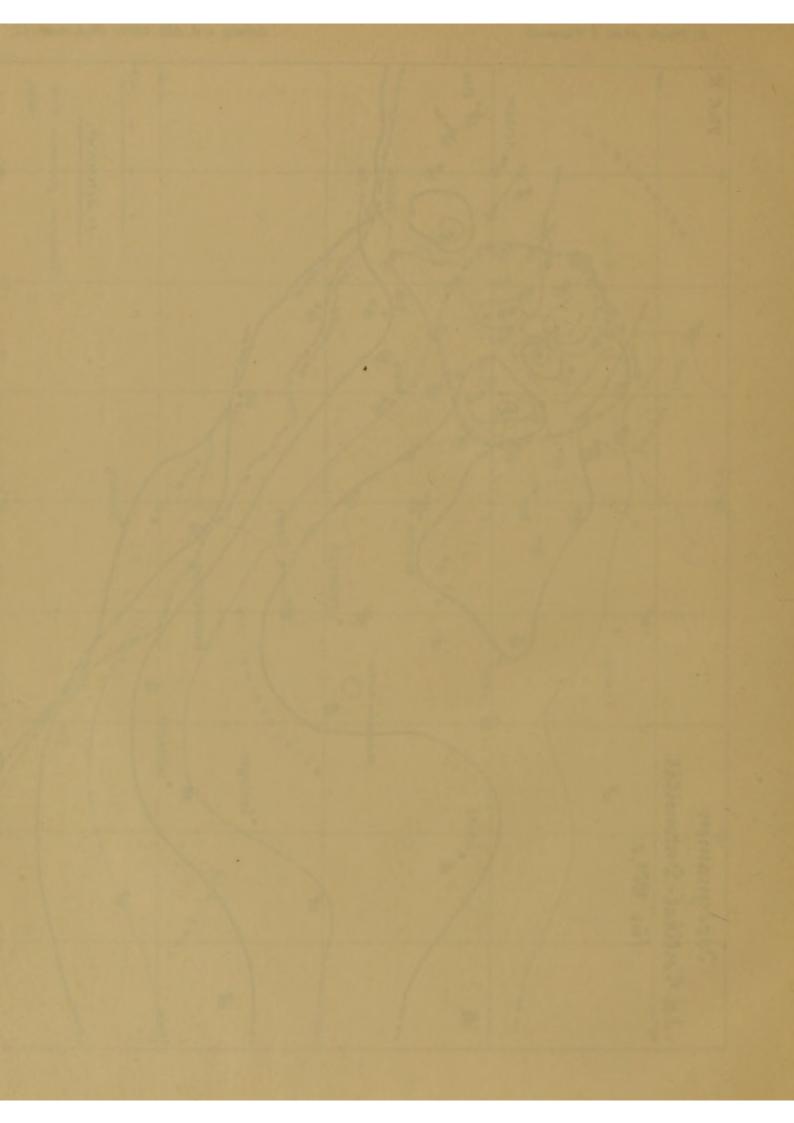

K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.

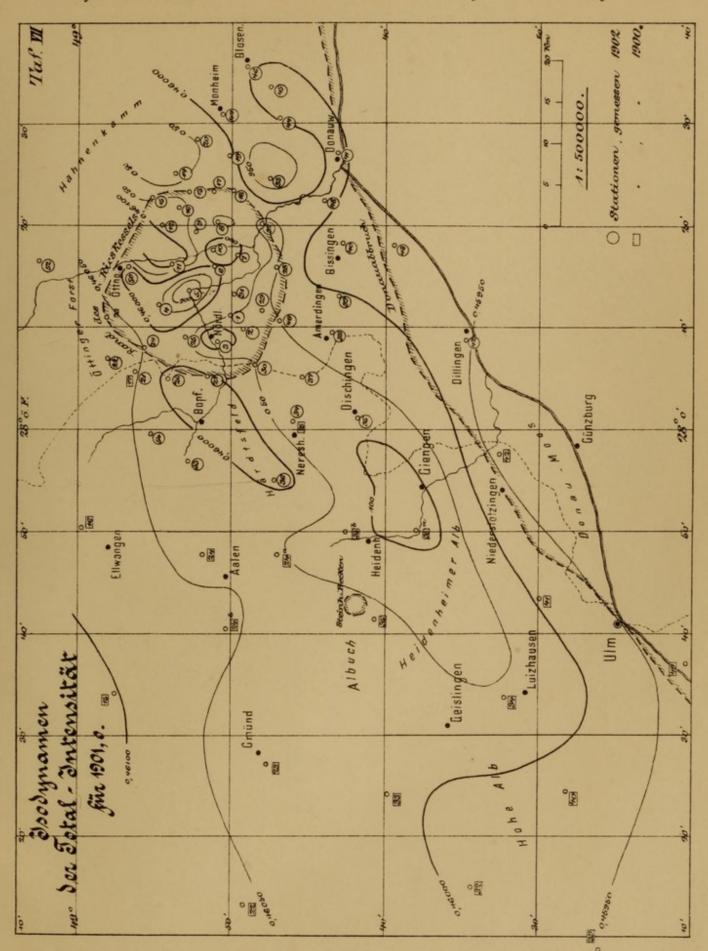






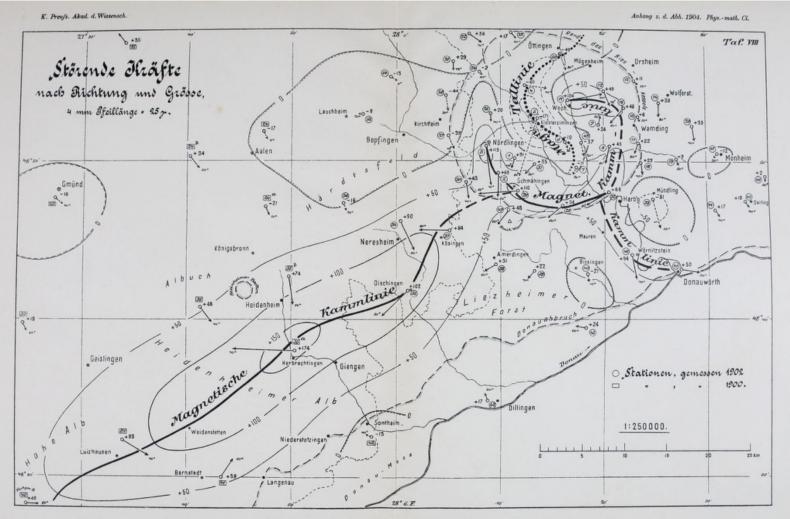
K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.

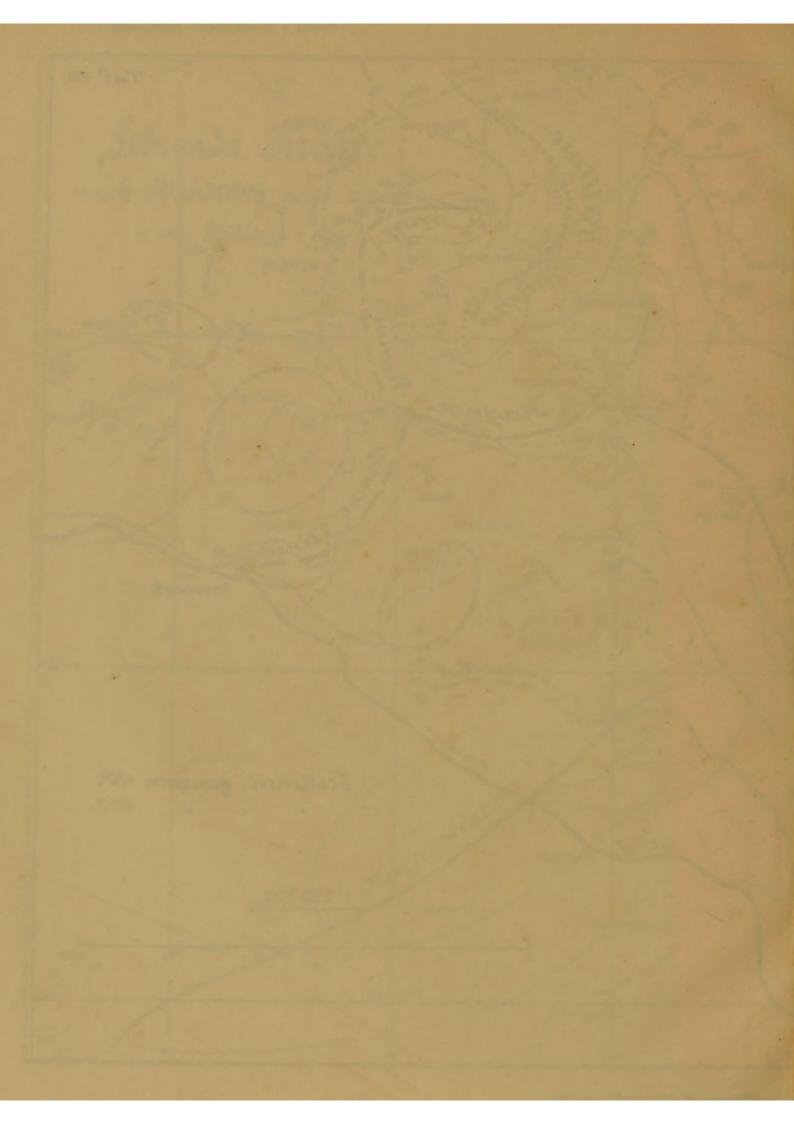




K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.

K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.




K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.

K. Haußmann: Magnetische Messungen im Ries und dessen Umgebung.

Berlin, gedruckt in der Reichsdruckerei.