Contributors

Arnott, Struther, b.1934

Publication/Creation

February 1967

Persistent URL

https://wellcomecollection.org/works/c29kgak2

License and attribution

You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.

Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org when

Symbols of Two-dimensional Symmetry Operators

Point symmetry (1st position)			Line symmetry (2nd and 3rd positions)				
Printed Graphical symbol symbol		Operator	Printed symbol	Graphical symbol	Operator		
2	-	2-fold (180°) point	m		Mirror-reflection line of symmetry		
3	- 18	3-fold (120°) point	20	1 22			
4	•	4-fold (90°) point	g		Glide-reflection line with trans-		
6	٠	6-fold (60°) point		-	lation of one half the repea distance along the line		

NOTE. The symbol 1 denotes the identity operation and hence the absence of any other (point or line) symmetry.

Symmetry Symbols In the diagrams of space groups, heights are indicated in the manner described above for equivalent

	Symbols of Symmetry Planes							
Symbol	Symmetry plane	Graphic	cal symbol	· A 6				
		Normal to plane of projection	Parallel to plane of projection	Nature of glide translation				
m	Reflection plane (mirror)	8	7_/	None (NOTE. If the plane is at $z=\frac{1}{2}$ this is shown by printing $\frac{1}{2}$ beside the symbol.)				
a, b	- Axial glide		1-1-1	a/2 along [100] or b/2 alon, [010]; or along (100).				
c	plane		None	c/2 along z-axis; or $(a+b+c)/2along [111] on rhombohedralaxes.$				
n	Diagonal glide plane (net)		2.10	(a+b)/2 or $(b+c)/2$ or $(c+a)/2$; or $(a+b+c)/2$ (tetragonal and cubic).				
d "Diamond" glide plane			1	$(a\pm b)/4$ or $(b\pm c)/4$ or $(c\pm a)/4$; or $(a\pm b\pm c)/4$ (tetragonal and cubic). See note below.				

Note. In the "diamond" glide plane the glide translation is half of the resultant of the two possible axial glide translations. The arrows in the first diagram show the direction of the horizontal component of the translation when the z-component is positive. In the second diagram the arrow shows the actual direction of the glide translation; there is always another diamond-glide reflection plane parallel to the first with a height difference of $\frac{1}{2}$ and with the arrow pointing along the other diagonal of the cell face.

Symbols of Symmetry Axes Nature of Graphical Nature of right-handed symbol right-handed Graphical Symmetry screw trans-Symmetry (normal to screw trans-Symbol Symbol lation along axis symbol plane of lation along axis the axis paper) the axis 1 Rotation None None Rotation 4 None monad tetrad I Inversion 0 None Screw 4,1 c/4 monad tetrads 4, 2c/4 Rotation 2 None diad (normal to paper) 4. 3c/4 (parallel to paper) 4 Inversion None tetrad 2, Screw c/2 diad 6 Rotation None (normal to paper) hexad Either (parallel to paper) 61 Screw a/2 or b/2 c/6 hexads Normal to 62 2c/6 paper 63 3c/6 3 Rotation None triad 6. 4c/6 31 Screw c/3 triads 6. 5c/6 3, 2c/3

None

3

Inversion

triad

Δ

In any space-group symbol the order in which the various parts of the symbol are written is, in general, the same as in the corre-sponding point groups (see Table 3.3.2).

6

Inversion

hexad

None

THE 32 CRYSTAL CLASSES

(The eleven classes of distinct Laue symmetry are separated by vertical lines)

System	Axes and angles			Crystal classes (point groups)						
Triclinic	a a	b ß	с ү	$1 \\ C_1$	$\overline{1}$ C_i					
Monoclinic	a 90°	b ß	с 90°	$2 \\ C_2$	$m \text{ or } \overline{2}$ C_{δ}	2/m C_{2h}				
Orthorhombic	a 90°	ь 90°	с 90°				222 D2	mm2 C_{2v}	mmm D_{2h}	
Tetragonal	a 90°	a 90°	с 90°	4 C4	4 S4	4/m C4h	422 D4	4mm C _{4v}	$\overline{4}2m$ D_{2d}	4/mmm D4h
Trigonal (rhom- bohedral)	OF	a a 90° 90	° 120°	3 C3	3 C3i		32 D3	3m C _{3v}	$\overline{3}m$ D_{3d}	
Hexagonal	a 90°	а 90°	с 120°	6 <i>C</i> 6	б Сзь	6/m C _{6h}	622 D6	6mm C _{6v}	$\overline{6}m2$ D_{3h}	6/mmm Deh
Cubic	a 90°	a 90°	a 90°	23 T	m3 T_h		432 0	$\overline{4}3m$ T_d	m3m Oh	

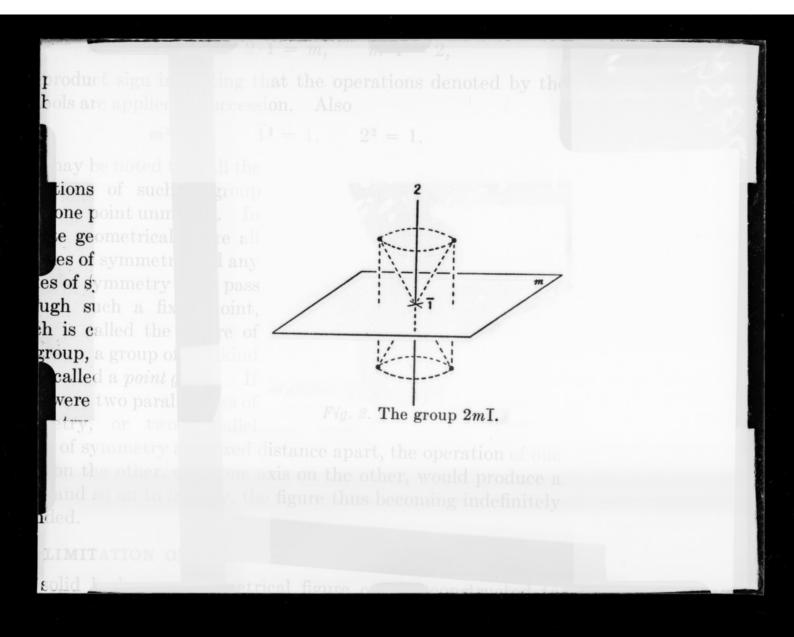
This gives rise to the seven well-known crystallographic systems, and the arrangement generally adopted is shown in Table I. Reference axes are also indicated, and these range from the trilinic system, we the tri-

arpendicular

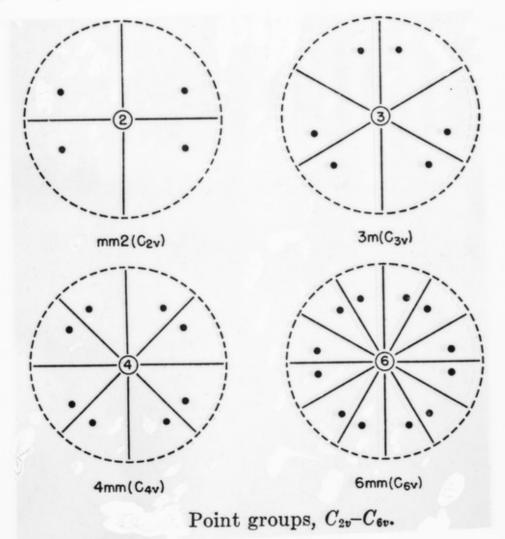
While the 3-fo

bedral system, it should be noted that this system cannot be based exclusively on the rhombohedral lattice (see Chapter III).

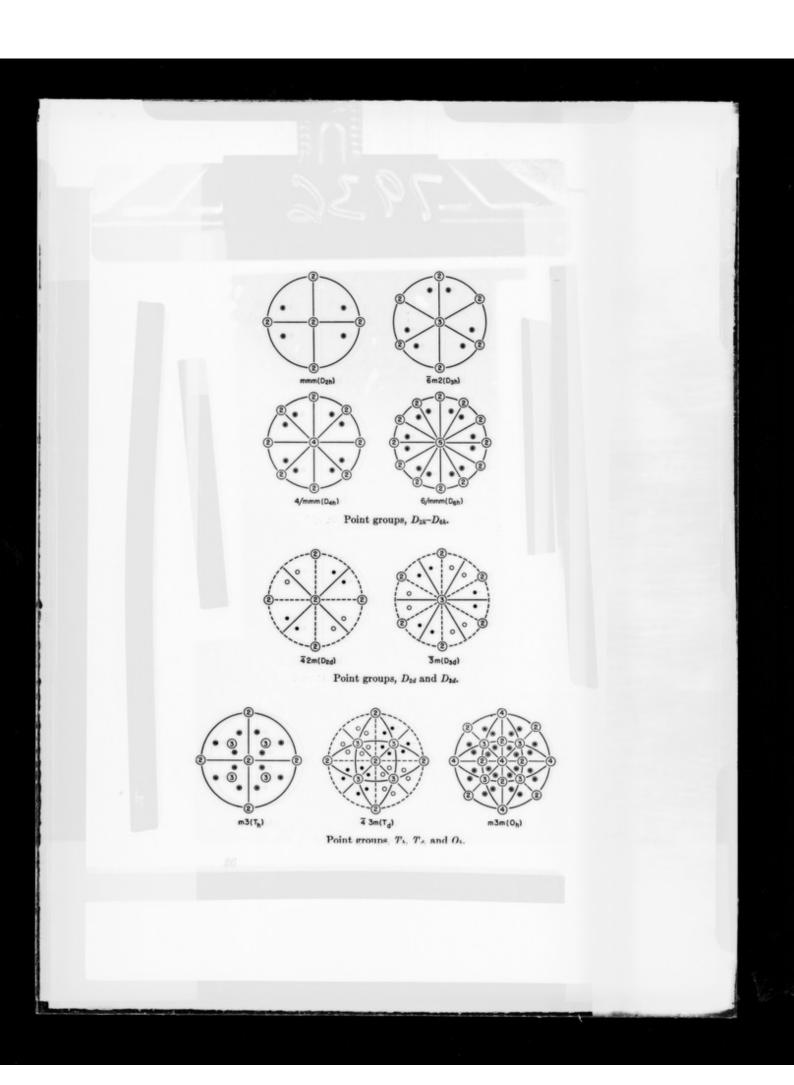
When the space groups (Table III) are developed from these points that the similar

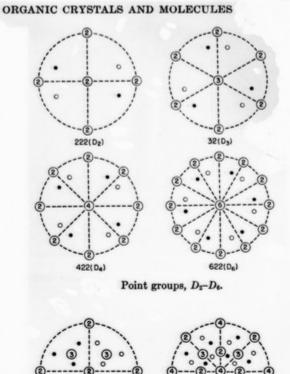


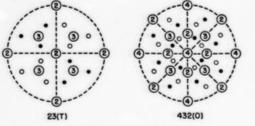
axis brings it into self-coincidence and gives into ps of Fig. 8 and one, $3/m = \overline{6}(C_{3h})$, already mention 5). The introduction of a reflection plane *paralle* d axis gives rise to a set of such planes equal in m multiplicity of the axis. These groups are illust



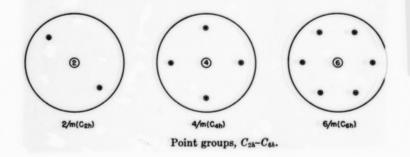
nd are analogous to those of Fig. 6. A reflection p be introduced perpendicular to the *n*-fold axis of $D_2 - D_6$ (Fig. 6), giving rise to the four further group In the case of D_2 and D_3 (Fig. 6), reflection planes

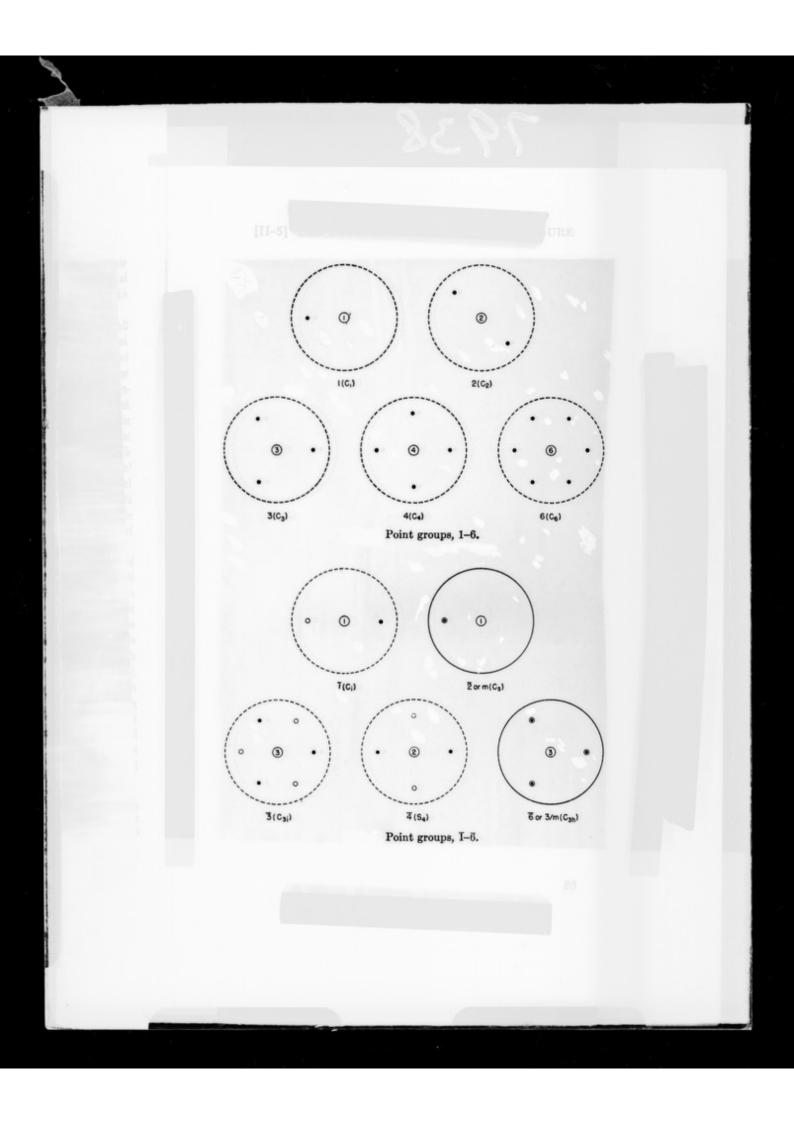


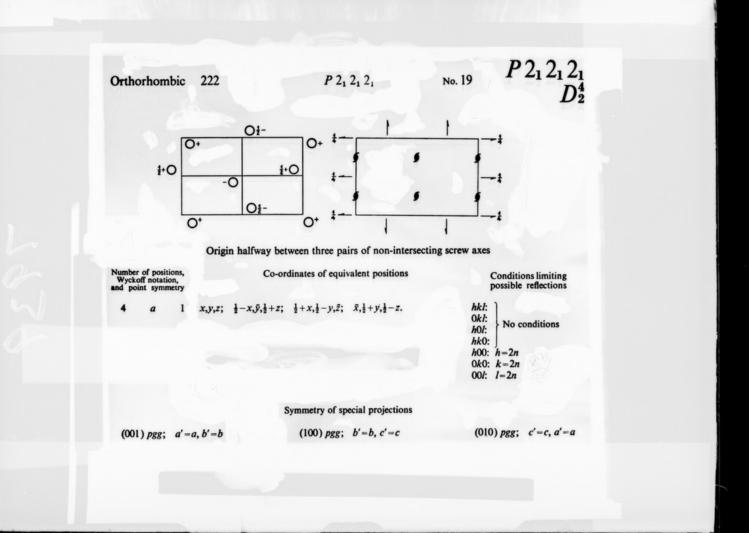




Point groups, T and O.



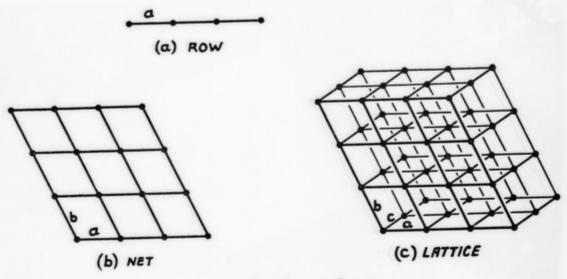




 $B_{C_2^3}^{B_2}$ $\begin{array}{c} C2\\ C_2^3 \end{array}$ B112 C121 No. 5 No. 5 2 Monoclinic Monoclinic 2 Origin on 2: unique axis b -----. 1.0 i+c 10t O+ Origin on 2; unio 8 0 IN SETTING 2ND SETTING Number of positions, Wychoff nonation, and point symmetry ites of equival Number of positions, Wychoff notation, and point symmetry nates of equivalent p (0,0,0; j.j.0)+ Conditions limiting possible reflections Conditions limiting possible reflections (0,0,0; 1,0,1)+ General: Ak2: h+/-2n Ak0: (h-2n) 400: (J-2n) 4 e 1 x3.2; \$3.2. 4 e 1 xy.s; Xy.L General: Akt: h+k-2n AGE (h-2n) GEO: (k-2n) 2 b 2 0,8,2. 2 a 2 0,0,2. 2 8 2 0,5,8. 2 a 2 0,5,0. Special: as abo Symmetry of special projection (100) pml; b'-b, c'-c/2 (001) p2; a'-a/2, b'-b(010) clm; c'-c, d'-a Symmetry of special projections (100) p1m; b'-b/2, c'-c (901) cml; e'-a, 5'-b (010) p2; c'-r, a'-a/2

first results, obtained by M. L. Frankenheim,³ were not entirely satisfactory, but rigid geometrical proofs were obtained soon afterwards by Auguste Bravais,⁴ who demonstrated that only 14 distinct types of space lattice are needed.

pace, which are the subject of Dravins's investigation, we may proceed in three steps. A rectilinear system of equidistant points, extending indefinitely in both directions, is called a *row*



Lattices and nets.

(Fig. 15a), and is fully described by one parameter, a, the fundamental interval separating two neighbouring points. A regular series of such parallel rows, lying in one plane, can be described by two fundamental intervals, a and b, and an arbitrary angle γ . This is called a *net* (Fig. 15b). The system of points regularly distributed in three dimensions consists of an indefinitely extended regular series of parallel nets, and can be described by three fundamental intervals, a, b, and c, together with three arbitrary angles, α , β , and γ . Such a system is called a *lattice* (Fig. 15c). The smallest parallelopiped which is identical

^a M. L. Frankenheim, Die Lehre von der Cohāsion, Breslau, 1835; ale Nova Acta Acad. Caes. Leopoldino-Carolinae Nat. Cur., 1842, 19(2), 471-660

* Auguste Bravais, "Mémoire sur les systèmes formés par des point ibuits montièrement sur un plan ou dans l'espace, J. école polytée