Diagram relating to amplitude referenced as "Contribution of a series of atoms to a S F (waves)"

Contributors

Arnott, Struther, 1934-

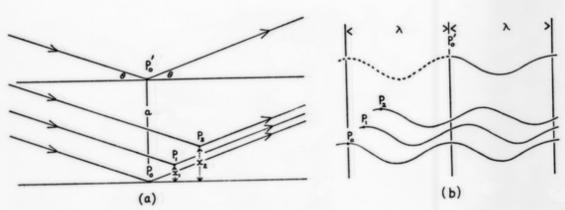
Publication/Creation

January 1965

Persistent URL

https://wellcomecollection.org/works/a89gzx3w

License and attribution


You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.

Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org difference compared to the wave from the standard atom P_0 is $2x_1 \sin \theta = \frac{hx_1\lambda}{a}$ and the phase difference in angular measure is $2\pi hx_1$

(a) and (b). A series of atoms contributing to the structure amplitude, F.

¹ It is assumed that $a_{100} = a$ and that the axes are of thogonal. The formulas 5.1 to 5.6, however, apply to the general case for crystal axes inclined at any angle.