Diagram captioned as "physical meaning of the Laue equation a.S=h" referenced as "a.s = h x"

Contributors

Fuller, Watson, 1935-

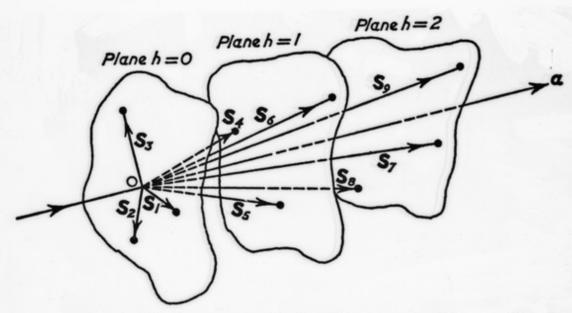
Publication/Creation

January 1965

Persistent URL

https://wellcomecollection.org/works/sp3waj2r

License and attribution


You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.

Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org 1

Physical meaning of the Laue equation $\mathbf{a} \cdot \mathbf{S} = h$ Vectors S_1 , S_2 , S_3 obey $\mathbf{a} \cdot \mathbf{S} = 0$ Vectors S_4 , S_5 , S_6 obey $\mathbf{a} \cdot \mathbf{S} = 1$ Vectors S_7 , S_8 , S_9 obey $\mathbf{a} \cdot \mathbf{S} = 2$

at points where these three sets cross is the transform observed. The underlying transform, as explained in section 2.9, still decide the relative intensities at the points at which it is observed and it is thus customary to consider the transform as 'sampled' (section 1.5 at the points design?