Copy of a printed table referenced as "Heryberg table 35" [possibly variation on Herzberg]

Contributors

Price, William Charles, 1909-1993

Publication/Creation

March 1952

Persistent URL

https://wellcomecollection.org/works/yndpwtts

License and attribution

You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.

Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

Wellcome Collection
183 Euston Road
London NW1 2BE UK
T +44 (0)20 7611 8722
E library@wellcomecollection.org
https://wellcomecollection.org

displacements of the Y nuclei are in the direction XY, is the condition of constant (zero) moment of momentum fulfilled. The magnitude s_Y of the displacements of the Y nuclei is obtained from the condition that the component of the total linear momentum perpendicular to the plane $\sigma_v(yz)$ is zero; that is, since the velocities are proportional to the amplitudes of the displacements, $2m_Ys_Y\sin\alpha=m_Xs_X$, where α is half the angle at the top of the triangle formed by the molecule, s_X is the displacement of the X nucleus and m_X and m_Y are the masses of X and Y. Thus the form

Table 35. Number of vibrations of each species for the point groups having non-degenerate vibrations only.

Point group, total number of atoms	Species of vibra- tion	Ex- plained in Table	Number of vibrations ³⁰
C_2 $(N = 2m + m_0)$	A B	12	$3m + m_0 - 2$ $3m + 2m_0 - 4$
$C_s = C_{1h}$ $(N = 2m + m_0)$	A' A''	12	$3m + 2m_0 - 3$ $3m + m_0 - 3$
$C_i = S_2$ $(N = 2m + m_0)$	A_g A_u	12	3m - 3 $3m + 3m_0 - 3$
C_{2v} (N = 4m + 2m _{xz} + 2m _{yz} + m ₀)	A_1 A_2 B_1 B_2	13	$\begin{array}{l} 3m + 2m_{xx} + 2m_{yz} + m_0 - 1 \\ 3m + m_{xx} + m_{yz} - 1 \\ 3m + 2m_{xx} + m_{yz} + m_0 - 2 \\ 3m + m_{xx} + 2m_{yz} + m_0 - 2 \end{array}$
$ \begin{array}{c} C_{2h} & \cdot \\ (N = \! 4m + \! 2m_h + \! 2m_2 + \! m_0) \end{array} $	A_g A_u B_g B_u	13	$3m + 2m_h + m_2 - 1$ $3m + m_h + m_2 + m_0 - 1$ $3m + m_h + 2m_2 - 2$ $3m + 2m_h + 2m_2 + 2m_0 - 2$
$D_2 = V$ $(N = 4m + 2m_{2x} + 2m_{2y} + 2m_{2z} + m_0)$	A B_1 B_2 B_3	13	$3m + m_{2x} + m_{2y} + m_{2z}$ $3m + 2m_{2x} + 2m_{2y} + m_{2x} + m_0 - 2$ $3m + 2m_{2x} + m_{2y} + 2m_{2x} + m_0 - 2$ $3m + m_{2x} + 2m_{2y} + 2m_{2x} + m_0 - 2$
$D_{2h} = V_h$ $N = 8m + 4m_{xy} + 4m_{xz} + 4m_{yz} + 2m_{2x} + 2m_{2y} + 2m_{2z} + m_0$	A_g A_u B_{1g} B_{1u} B_{2g} B_{2u} B_{3g} B_{2u}		$\begin{array}{l} 3m + 2m_{xy} + 2m_{xz} + 2m_{yz} + m_{2x} + m_{2y} + m_{2z} \\ 3m + m_{xy} + m_{xz} + m_{yz} \\ 3m + 2m_{xy} + m_{xz} + m_{yz} + m_{2x} + m_{2y} - 1 \\ 3m + m_{xy} + 2m_{xz} + 2m_{yz} + m_{2x} + m_{2y} + m_{2z} + m_{0} - 1 \\ 3m + m_{xy} + 2m_{xz} + m_{yz} + m_{2x} + m_{2z} - 1 \\ 3m + 2m_{xy} + m_{xz} + 2m_{yz} + m_{2x} + m_{2y} + m_{2z} + m_{0} - 1 \\ 3m + m_{xy} + m_{xz} + 2m_{yz} + m_{2y} + m_{2z} - 1 \\ 3m + 2m_{xy} + 2m_{xz} + m_{yz} + m_{2y} + m_{2z} + m_{0} - 1 \end{array}$

 30 m is always the number of sets of equivalent nuclei not on any element of symmetry; m_0 is the number of nuclei lying on all symmetry elements present; m_{xy} , m_{xz} , m_{yz} are the numbers of sets of nuclei lying on the xy, xz, yz plane respectively but not on any axes going through these planes; m_2 is the number of sets of nuclei on a two-fold axis but not at the point of intersection with another element of symmetry; m_{2x} , m_{2y} , m_{2z} are the numbers of sets of nuclei lying on the x, y, or z axis if they are two-fold axes, but not on all of them; m_h is the number of sets of nuclei on a plane σ_h but not on the axis perpendicular to this plane.