Insect Virus Compilations

Publication/Creation

1951

Persistent URL

https://wellcomecollection.org/works/bqd6s6fe

License and attribution

Works in this archive created by Gerard Wyatt are available under a CC-BY licence. Please be aware that works in this archive created by other organisations and individuals are not covered under this licence, and you should obtain any necessary permissions before copying or adapting any such works.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org manuscript of paper habital to JBC in 1951; negested, Then condensed Thabitalled to J. gen Physiol T published:

THE NUCLEIC ACIDS OF SOME INSECT VIRUSES.

*Contribution No._____, Division of Forest Biology, Science Service, Department of Agriculture, Ottawa, Canada.

By G. R. WYATT

From the Laboratory of Insect Pathology,
Sault Ste. Marie, Ontarioy.

Mith the Application of recent analytical methods it has become established that nucleic acids from various sources differ in their contents of the purine and pyrimidine bases. These quantitative variations presumably represent one of the bases

of biological specificity in these substances.

Analyses of desoxyribonucleic acids (DNA®s) from a number of animal, plant, and microbial sources have led to the conclusion that DNA composition is a species character (Chargaff, 1950, 1951; Wyatt, 1951b, 1952). While the DNA®s of higher animals are quite similar in composition, those of bacteria and viruses exhibit more extreme variations (Chargaff, Zamenhof, Brawerman, and Kerin, 1950; Smith & Wyatt, 1951); among most or all, however, certain regularities in the nucleotide ratios are evident (Chargaff, 1951; Wyatt, 1952). Among plant viruses, which contain ribonucleic acid (RNA), small differences in purine-pyrimidine ratios have been shown among strains of tobacco mosaic, and these differ more markedly from other

unrelated plant viruses (Markham and Smith, 1950, 1951). It
therefore
thus seemed that nucleic acid analysis would aid in characterization of the viruses found in insects; being studied in this
laboratory, and possibly provide a criterion of relationship
among them.

1 minerous

The insect viruses comprise a numerous, highly adapted, rather host-specific group (Bergold, 1947, 1948a, 1950a, 1950b; Steinhaus, 1949a, 1949b; Steinhaus, Hughes and Wasser, 1949; Smith and Wyckoff, 1951). General methods for their isolation and purification have been worked out, and their morphology extensively studied, by Bergold (1947, 1948b, 1950a). On morphological and biological grounds, they appear to form a fairly homogenous group, which may be subdivided, however, into (a) polyhedral viruses (genus Borrelina Paillot; see Steinhaus, 1949a), occurring in numbers in polyhedral inclusion bodies, and (b) capsule or granule viruses (genus Bergoldia Steinhaus), occurring singly in minute oval inclusions.

or which and a service

The manner of their occurrence in inclusion bodies makes it possible to prepare these viruses virtually free of host material and bf cross-reaction with host antigens (Bergold & Friedrich-Freksa, 1947), a situation almost unique among animal viruses. They are relatively simple in chemical composition, having, in addition to protein, about 15% of DNA (Bergold & Pister, 1948b; Smith & Wyatt, 1951), and extremely little lipid

or non-nucleic acid carbohydrate (Wyatt, 1950). They thus provide exceptionally favorable material for comparative studies of nucleic acid composition in related micro-organisms.

Analyses are now described of the nucleic acids of eleven species or strains of insect viruses. The results are examined for their value in characterizing the viruses, and for what light they may throw on the problems of nucleic acid composition. An analysis of the nucleic acid of one of these viruses (Smith & Wyatt, 1951), and initial results from this comparative study (Wyatt, 1952) have already been reported.

EXPERIMENTAL

Preparation of the viruses

polyhedral bodies or capsules by the procedure of Bergold (1947, 1950a). The inclusion bodies which provided the starting material were obtained from the cadavers of diseased insects, and purified by sedimentation and repeated washing with water until the residue was almost white and showed very few foreign particles under the microscope.

The standard procedure for the isolation of the viruses is as follows, details being varied only slightly to suit

the properties of the different viruses. Dry, purified polyhedra or capsules are suspended at a concentration of 5 mgm./ml. in a solution containing NaCl (or KCl) 0.05 M. and Na₂CO₃(or K₂CO₃) 0.006 to 0.03 M.

The strength of alkali is adjusted to the solubility of the inclusion bodies of each species, as follows: Polyhedra from B. mori and C. p. eurytheme, 0.006 M.; from P. dispar, L. monacha and N. sertifer, 0.008 M.; from C. fumiferana, P. seriata, M. americanum and M. disstria, 0.03 M.; capsules from C. fumiferana and C. murinana, 0.03 M.

After 2 to 3 hours, with occasional shaking, dissolution of the inclusion body protein and liberation of the virus is complete; this can be followed with the dark-field microscope. The suspension is then centrifuged at 4000-6000 r.p.m. (Sorvall SSl centrifuge; 1600-3600 g) for 5 minutes to remove undissolved remnants and impurities; some further virus can be recovered by suspending this residue in water and re-centrifuging. The virus is then sedimented at 11,000 r.p.m. (12,000 g) for 45 minutes and the clear supernatant liquid containing dissolved capsule or polyhedral protein is set aside. The virus is suspended in distilled water or 10-4 M. Na₂CO₃ of volume equal to the

see the har spress of M

for 45 minutes. With some species, a brown layer consisting mainly of virus membranes (Bergold, 1952) and the undissolved surface skins of the polyhedra lies on top of the bluish-white sediment of virus; this can often be removed by rinsing with a drop of water. The remaining sediment consists almost wholely of virus; a number of the preparations used for nucleic acid analysis have been examined in the electron microscope by Dr. G. H. Bergold.

ordse

For hydrolysis, the virus is centrifuged down from a small volume of water in a 6 x 50 mm. glass culture per cent tube, and dried. The yield is generally 2.5 - 3.5% of the inclusion bodies. 60-100 mgm. of polyhedra or capsules, giving 1.5-3.5 mgm. of virus, were used for each analysis.

Hydrolysis (70 per cent,

Perchloric acid (Total Marshak and Vogel, 1951) Was used been used for hydrolysis, since it liberates the purine and pyrimidine bases from whole virus, along with protein degradation products which interfere little with estimation of the bases. Hydrolysis is carried out in sealed tubes in a thermostatically controlled bath. After heating,

the hydrolysate is diluted with water, and the black carbon residue is brought into suspension by grinding with a glass rod, since it tends to adsorb P. Aliquots are taken with micro-pipettes² for chromatography, P estimation, and, if desired, N estimation.

Self-adjusting capillary type, made in the laboratory or purchased from Microchemical Specialties Ltd., Berkeley, California.

In order to obtain satisfactory emptying of the pipettes, the samples for inorganic analysis are dispensed onto small pieces of filter paper, which are dropped into flasks for incineration.

Since early experiments showed variability in the yield of thymine, some tests were carried out with purified ox spleen DNA to determine the optimal conditions. Temperatures above 100° were found to cause loss of thymine (about 15% in 1 hour at 110°). The amount of HClO4 used is also important: with 8-15 µl. of 70% HClO4 per mgm. DNA, constant yields are obtained, but with greater amounts of reagent, some thymine is lost (about 2.5% with 20 µl./mgm., and 10% with 30 µl./mgm.). When a mixture of DNA (15%) with protein (bovine plasma albumen, 85%) was subjected to hydrolysis,

Munula martan.

the amount of HClO₄ used was less critical, and yields were unchanged over the range 10-30 ul. HClO₄/mgm. DNA. Evidently, HClO₄ has a destructive action on thymine which can be overcome by the buffering effect of either protein or sufficient nucleic acid.

From these results it seems likely that when under optimal conditions with HClO4 a small amount of thymine is lost. This would partially account for the discrepancy from the yields obtained with formic acid (Wyatt, 1951b). The method chosen, however, gave very consistent results, satisfactory for the comparison of biological materials.

The yields of bases from ox spleen DNA, with and without added protein, and the percentages of total P and N accounted for by the estimated nucleotides, are given in Table I. The change in apparent yields resulting from the presence of protein nowhere exceeds 3 for cent.

The working procedure adopted is see follows. To the dry virus is added 3-4 µl. 70% HClO4 per mgm. weight, and the tube is closed and heated to 100° for 2 hours. Sufficient water is added to make the volume of hydrolysate about 25 µl., and the hydrolysis residue is ground into suspension. This allows two 8-µl. portions for chromatography and two or three 2-µl. portions for P estimation.

Charles of the

Estimation of the Bases

Published prodedures (Markham and Smith, 1949, 1951;

Wyatt, 1951b), using paper chromatography, were followed

with only minor refinements in order to obtain reliable

Aputous

results from the least possible material. Isopropanol (65 percent) containing

HCl (2.0 N.) was used exclusively as the chromatographic solvent. Each spot was eluted in 4 ml. of

O.1 N-HCl, by standing overnight, with mechanical shaking before and after standing. It was found that by sufficient cleanliness and care with the blanks, reliable results (difference between replicates rarely exceeding 3%)

could be obtained with optical densities as low as O.1,

corresponding to about 5 mgm. of purine or pyrimidine.

Inorganic Analyses

Phosphorus (usually 1.5-4 Agm. per sample) is estimated by the nephelometric method of Bergold and Pister (1948a), and nitrogen by a micro-Kjeldahl procedure.

RESULTS Resulta

All of the viruses gave rise only to the purines adenine and guanine and the pyrimidines cytosine and thymine.
Neither 5-methyl-cytosine nor uracil could be detected. Some

chromatograms showed a faint spot near the position of uracil; this, however, did not have the characteristic absorption spectrum of uracil and was found to be associated with the brown "membrane" portion of a virus preparation. The cleanest white preparations gave no spot in this position, confirming the virtual or entire absence of RNA from these viruses (Bergold & Pister, 1948b; Smith & Wyatt, 1951). In one preparation of C. p. eurytheme virus, the maximum possible uracil, indicated by the absorption of an eluate from the uracil position, was equivalent to 3% of the thymine present; as this included the absorption of protein degradation products, any actual uracil must have been considerably less. The amount of DNA estimated by summing the bases corresponds to 10-15% of the various viruses, but these figures are only approximate since the prodedure was not designed to refer results to dry weight.

The proportions of the several bases in the 11 viruses fraction examined are listed in Table II. The pertion of total P accounted for by the estimated nucleotides averages 88%. When compared with the corresponding figure of 100% for ox DNA analysed in the presence of protein by the same procedure, this suggests that some 10% of the virus may occur

in compounds other than nucleotides.

The mean ratios of the bases from <u>Porthetria dispar</u>
virus are in good agreement with those previously reported
for the isolated nucleic acid of this virus (Smith & Wyatt,
1951).

The viruses are arranged in the table in order of increasing content of adenine. It will be noted that the thymine content of the different nucleic acids then also form an ascending series, while the values for guanine and cytosinge are arranged in descending order. The ratios of adenine to thymine, and guanine to cytosine, are nearly constant for all, while the ratios of adenine plus thymine to guanine plus cytosine (AT/GC ratio) gives an index of the position of a virus in the series. These regularities are brought out in Table III. The variation in adenine/thysine and guanine/cytosine ratios within this group of organisms falls within experimental error. The corresponding ratios for ox spleen DNA are also very similar. These constant ratios are in accord with the regularities in the composition of DNA's which were first pointed out by Chargaff (1951) and have already been confirmed and discussed (Wyatt, 1952).

An incidental result of this balanced variation in nucleotides composition is that the mean nucletode residue

we lable?

weight in each nucleic acid (i.e. the mean molecular weight of the nucleotides less 18 for water eliminated in linkage) is also constant. This figure does not fall outside the range 308.8 - 309.3 for the entire series, although the molecular weights of the nucleotides vary widely (desoxy-adenylic acid 331, desoxyguanylic 347, desoxytidylic 307, thymidylic 322).

DISCUSSION Discussion

Because of their possessing surface membranes and a variety of morphological forms indicative of a life cycle, these viruses have been described as organisms (Bergold, 1950a). The term seems appropriate, and is used in this paper. Yet their possessing only one type of nucleic acid is a characteristic of fundamental importance, shared with bacteriophages (Cohen and Arbogert, 1950), which differentiates them sharply from bacteria or other microorganisms with which they might be compared. Whether rickettsize contain RNA seems not to be definitely settled (Cohen, 1950). Lack of RNA in certain viruses may be associated with their parasitic metabolism, which frees them from the need to synthesize enzyme systems. The remaining DNA has presumably genetic value.

According to the composition of their DNA, the eleven viruses analysed have been arranged in a series with the proportions of the bases changing in a balanced manner. Their distribution in the scale, however, is not random, but shows grouping into sets with very similiar or identical composition. This is most clearly shown by the AT/GC ratios in Table III, which have values of approximately 0.95 for two viruses, 1.35 for four viruses, and 1.67 for two. None of the differences in content of individual bases within the group having AT/GC ratio 1.35 (M. americanum, M. disstria, B. mori, C. p. eurytheme) are significant when examined by the t test. This outcome was scarcely expected in view of (Wyatt, 19516) the results with animal DNA's which suggested a unique, if only slightly different, composition for each species, and those with tobacco mosaic (Markham & Smith, 1950) which indicated that even related virus strains could differ in nucleic acid composition.

There is some evidence in the results that related viruses tend to have similarly constituted nucleic acid.

Thus, the two capsule viruses are close together in the scale, so are the two pairs of polyhedral viruses whose hosts are members of the same family. Such well-adopted,

on families

Lefe Courses ONA, Taleton Relation of the Courses of the Course of the Courses of the Course of the Courses of the Courses of the Course of the Courses of t

showe stryen !

what does interded
mean here?
Capalle v. Polytel
1/ so, note 1.67 for
11. soul
The idea in the
but not well?
would sop in
then by top 1.2

host-specific parasites may be expected to have evolved along with, and to some extent to parallel the phylogenetic relationships of, their hosts. No connection was obvious, however, between the morphological characteristics of the viruses (Bergold, 1952) and their nucleic acids. Their serological relations remain to be investigated.

Similarity of nucleic seid composition, on the other hand, obviously does not necessarily imply close relationship of the viruses. For example, the polyhedral virus of the sawfly N. sertifer and the capsule virus of the tortrix C. murinana are biologically as different as any pair in the series, yet have apparently identically composed DNA. The group with AT/GC ratio approximately 1.35 also includes quite unrelated species. Yet the virtual identity of nucleic acid composition of son many species must have some significance. DNA composition in these viruses appears to change by discrete steps; yet the magnitudes of these steps are not quite sufficiently uniform to represent changes by equal numbers of nucleotides. In attempting any such explanation, it would be important to establish by further analyses whether intermediates occur. Moreover, the steps do not appear to represent mutations, since distinct viruses can have the

1. Fortricio

Low getine!

1

must probably await better knowledge of the molecular structure of nucleic acids.

The indepedence of host and virus nucleic acids, already established for bacteriophages (Smith & Wyatt, 1951) is confirmed by the analysis of a polyhedral virus and a capsule virus from the same insect species, C.

fumiferana. These have quite distinct nucleic acids.

It would be interesting to compare the DNA's of the various host insects. Several attempts to prepare DNA from caterpillars led to only very small and impure yields. Approximate analyses, however, of DNA from B. mori and L. monacha showed that they, like other animals, have a marked excess of adenine and thymine over guanine and cytosine, and that of L. monacha, at least, is quite different from its virus.

while some distinct viruses have the same nucleic acid composition, these analyses can nevertheless take their place among useful taxonomic characters. For example, in a case of apparent cross-infection of L. dispar with B. mori virus, such as was obtained by Bergold (1943), analysis of virus DNA would establish whether this represented true infection or provocation

- antecalent not too clear -? ONA

distinctly and

of latent virus. The sensitivity of the method is adequate for such tests, as approximate ratios can be obtained from less than 1 mgm. of virus.

SUMMARY

Eleven viruses causing polyhedral diseases or capsule diseases of insects have been isolated and subjected to quantitative/vanelysis for the purines and pye rimidines of their nucleic acids. The viruses possess approximately 10-15% of DNA. No RNA was detected. The DNA's contain adenine, guanine, cytosine, and thymine, but no methylcytosine. The proportions of the purines and pyrimidines vary in the different species in a balanced way so that adenine/thymine and guanine/cytosine are constant ratios close to unity, but the ratio adenine +thymine/guanine +cytosine gives a characteristic index ranging from 0.71 to 1.87, by which the viruses may be arranged in a scale. Viruses possessing characteristics in common tend to fall near one another on the scale, but proximity on the scale does not necesssrily imply relationship. The scale is not a continuous distribution, but contains groups of viruses having if identical DNA composition, with intervals between. The

on Brond continue

fundamental significance of these results remains uncertain at present, but it is clear that nucleic acid composition Space > can be a useful taxonomic character for viruses.

I wish to express thanks to Dr. E.A. Steinhaus for the gift of diseased alfalfa butterfly caterpillars as a source of polyhedra, to Dr. F.T. Bird for diseased spruce sawfly larvae, and to Dr. G.H. Bergold for polyhedra and capsules of several species and for stimulating discussion of the work. The phosphorus and nitrogen estimations were carried out by Miss Rhona Farish.

REFERENCES

- Bergold, G., 1943, Über Polyederkrankheiten bei Insekten, A Biol. Zentral/bl. 63, 1.
- Bergold, G., 1947, Die Isolierung des Polyeder-virus and die Natur der Polyeder, Z. Naturforsch. 2b, 122.
- Bergold, G., 1948a, Über die Kapselvirus-Krankheit, Z. Naturforsch. 3b, 338.
- Bergold, G., 1948b, Bundelförmige Ordnung von Polyederviren, Z. Naturforsch. 3b, 25.
- Bergold, G., 1950a, The multiplication of insect viruses as organisms, Can. J. Res., E, 28, 5.
- Bergold, G., 1950b, Insect Viruses (in) Viruses 1950, Pasadena, California.
- Bergold, G., 1952, Personal Communication.
- Bergold, G., and Friedrich-Freksa, H., 1947, Zur Grösse und Serologie des Bombyx-mori-Polyedervirus, Z. Natursforsch. 2b, 410.
- Bergold, G., and Pister, L., 1948a, Mikrobestimmung von 0.1-7

 Phosphor in Organischem Material, Z. Naturforsch,
 3b, 332.
- Bergold, G., and Pister, L., 1948b, Zur quantitativen Mikrobestimmung von Desexy- und Ribonucleinsaure, Z. Naturforsch. 3b, 406.
- Chargaff, E., 1950, Chemical specificity of nucleic acids and mechanism of their enzymatic degradation, Experientia 6, 201.
- Chargaff, E., 1951, Structure and function of nucleic scids as cell constituents, Fed. Proc. 10, 564.

- Chargaff, E., Zamenhof, S., Brawfman, G., and Kerin, L., 1950, Bacterial desoxypentose nucleic acids of unusual composition, J. Amer. chem. Soc. 72, 3825.
- Cohen, S.S., 1950, The chemical composition of the antigens of commercial typhus vaccine, J. Immunol. 65, 475.
- Cohen, S.S., and Arbogast, R., Chemical studies in host-virus interactions, VI., J. Exp. Med. 91, 607.
- Markham, R., and Smith, J.D., 1949, Chromatographic studies of nucleic acids. I., Biochem. J. 45, 294.
- Markham, R., and Smith, J.D., 1950, Chromatographic studies of nucleic acids. 3., Biochem. J. 46, 513.
- Merkham, R., and Smith, J.D., 1951, Chrometographic studies of nucleic acids. 4., Biochem. J. 49, 401.
- Marshak, A., and Vogel, H.J., 1951, Microdetermination of purines and pyrimidines in biological materials, J. Biol. Chem. 189, 597.
- Smith, J.D., and Wyatt, G.R., 1951, The composition of some microbial desoxypentose nucleic acids, Biochem. J. 49, 144.
- Smith, K.M., and Wyckoff, R.W.G., 1951, Electron microscopy of insect viruses, Research 4, 148.
- Steinhaus, E.A., 1949a, Nomenclature and classification of insect viruses, Bacteriol. Rev. 3, 203.
- Steinhaus, E.A., 1949b, Principles of Insect Pathology, New York, McGraw-Hill.
- Steinhaus, E.A., Hughes, K.M., and Wasser, H.B., 1949, Demonstration of the granulosis virus of the variegated cutworm, J. Bacteriol. 57, 219.
- Wyatt, G.R., 1950, Studies on insect Viruses and nucleic acids, Unpublished Thesis, University of Cambridge, England.
- Wyatt, G.R., 1951a, Recognition and estimation of 5-methylcytosine in nucleic acids, Biochem. J. 48, 581.
- Wyatt, G.R., 1951b, The purine and pyrimidine composition of decypentose nucleic acids, Biochem. J. 48, 584.
- Wyatt, G.R., 1952. Specificity in the composition of nucleic

acids, Expt. Cell. Res. Suppl. 2, in press.

Table I

Yield of bases from ox spleen DNA

after hydrolysis in HClO₄ (70%, 15 µl./mgm. NA) at 100°

	W. down land a	Moles	per 100	moles tot	al bases	P accounted	N accounted	
Material analysed	Hydrolysis -	Adenine	Thymine	Guanine	Cytosine	for, per cent	for, per cent	
Purified DNA	1 hr.	28.2	26.3	23.0	20.7	95	97	
"	2 hr.	28.5	26.0	23.2	20.7	98	97	
DNA 15%, albumen 85%	l hr.	27.8	27.0	22.7	20.7	99	-	
"	g hr.	27.8	26.9	22.7	20.9	100	-	

*Allowing 1.3 for methylcytosine, not estimated in these experiments.

Table II Purine and pyrimidine composition of DNA's of insect viruses

	Host species	Host order and family	No. of		es per 100 mol			P accounted
1	1900 Species		analyses	Adenine	Thymine	Guanine	Cytosine	for, per cen
-	Forthetria disper (L.), Gypsy moth	Lepidoptera Lymantriidae	4	21.2 - 0.15	20.05 ± 0.18	30.5 ± 0.11	28.25 + 0.09	92
	Nun moth L.,		1	24.6	23.8	26.8	24.7	-
	choristoneura fumiferana Clem.), Spruce budworm	Tortricidae	3	24.8 ± 0.12	24.0 + 0.09	26.7 + 0.14	24.5 + 0.14	86
	Ptychopoda seriata Schrk.,	Geometridae	2	26.7 ★	25.7	24.4	23.2	87
	Palacosoma americanum (F.), Eastern tent caterpillar	Lasiocampidae	3	29.2 + 0.22	28.0 ± 0.34	22.5 + 0.19	20.2 + 0.11	93
cype	Forest tent caterpillar		3	29.2 + 0.23	28.5 ± 0.37	21.9 ± 0.19	20.3 + 0.07	86
non	Bombyx mori L., silkworm	Bombycidae	3	29.3 + 0.25	28.0 ± 0.33	22.5 ± 0.05	20.2 + 0.13	88
	Colias philodice eurytheme Bdvl., alfalfa butterfly	Pieridae	4	29.9 ± 0.35	27.6 + 0.08	22.4 ± 0.15	20.1 + 0.22	90
Inclusion	Neodiprion sertifer (Geoffr.), Pine sawfly	Hymenoptera Tenthredinidae	2 04	32.3	30.3	19.5	17.9	-
T	Caccoccia murinana Hb.	Lepidoptera Lepidoptera	3	32.1 - 0.14	30.5 ± 0.44	19.7 _ 0.35	17.8 ± 0.29	84
1	Choristoneura fumiferana		1	32.8	32.4	18.4	16.4	-

Independent analyses performed on different preparations of virus.

Mean value and its standard error.

* = Tortripidae

Table III

Molar proportions of the bases in DNA's of insect viruses

Virus host	Adenine Thymine	Guanine Cytosine	Purines Pyrimidines	Adenine + Thy Guanine + Cyt	
H. dispar	1.06	1.08	1.07	0.71	364
I. monacha	1.03	1.08	1.06	0.94	
d. fumiferena	1.03	1.09	1.06	0.95	260
F. seriata	1.04	1.05	1.04	1.10	299
americanum	1.04	1.11	1.07	11.34	
disstria	1.02.	1.08	1.05	1.36	
boo mori	1.04	1.11	1.07	1.34	278
	1.08	1.11	1.09	1.35	
A. sertifer	1.07	1.09	1.07	1.67	-
E. murinena	1.05	1.11	1.07	1.67	256
funiferana	1.01	1.12	1.05	1.87	
ox spleen DNA	1.04	1.02	1.03	1.22	

Included for comparison; ratios are taken from the analysis of DNA in the presence of protein, and methylcytosine has been added to cytosine.

Recovery of bares from beef spleen DNA ofter lydrolysis in HClo4 at 100: Mean values from 3 enferments.

Agdrolypis Molar rottos of the bases (total = 4.00) P N

Jime A T G C recovery recovery

DNA 1 hr 1.135 1.057 0.925 0.832 94.9 97.0

DNA 2 hrs 1.144 1.046 0.931 0.830 98.4 96.6

DNA + protein 1 hr 1.119 1.086 0.913 0.831 98.6
DNA + protein 2 hrs. 1.120 1.081 0.911 0.839 100.4 -

Ratios in Junes Vivis NA's.

								-			1		
			A			G			C			7	
Pd	12-11	21.7	0	0	30.6	-1	-	28.1	1.5	2.25	20.2	1.5-	2.25
	24-iv	20.8	4	16	30.4	-1	1	28.5	25	6.25	26.7	1.5	2.25
	19-VI	21.5	3	9	30.7	2	4	28.2	0.5'	0.15	19.5	5.5	35.25
	15-xi	21.3	1		30.2	3	9	28.2	0.5	0.25	20.3	2.5	6.25
	4	84.9	12	126	121.9	- 1	2)15	153.0	1:	2)9_	80.2	12)	#1
		21.2		2.2			1.25						3.4
				1.5			= 1.1						= 1.8
	THE STATE OF THE S							200					
Bm.	元	29.3	+ 0.25	-	22.5	± 0.0.	5-	20.2	± 0.13	?	28.0	\$ 0.3	3
Cpe	2-iV	29.2	7	49	22.7	3	9	20.6	5	25	27.4	Z	4
	10.11	29.4	5	25	22.5	1	1	20.3	2	+	27.7	1	1
	3-1411	30.3	4	16	21.1	3	9	19.9	2	4	27.7	1	1
	H-*	30.6	7	49	22.1	3	9	19.6	5	25	27.7	1	1
	4	+)119.5	12)139	89.4	(2	128	80.4	12	2/58			12)7
		29.9		12	22.35								0.6
			V	= 3.5	.4	V				V = 2.2			V = 0.8
Ma	(1-14)	29.5	3	9	22.7	2	4	20.0	2	4	27.6	4	16
	28-ix	28.8	4	16	22.1	4	16	20.4	2	4	28.7	7	49
	14-xi				-		1				CONTRACTOR OF THE PARTY OF THE		
							6121						
				5	22.5		3.5	20.2		1.3	28.0		11.5
			1	2.2		1	1:19		1.	: 1./		1	/= 3·H
Md	13-xi	29.7	5	25	22.3	4	16	20.2	- 1	1	27.8	7	49
	141	19.0	2	H.	21.8	- 1	1	20.2	1	1	29.0	5	25-
	15-41	29.0	2	4.	21.7	2	+	20.4		1	29.8	3	9
)33	_	4	()21		(6 13	\$5.6		6)83
		29.2		5.5	21.9		3.5	20.3					
			1	= 2.3		1	V = 1.9			1=0.7		1	= 3.7
								-					

		1										1		
2 13			A			G				C		7	-	
Lm	18.xi	24.6			26.8				24.7			23.8		
Pcf	20-xi	24.6	2	4	26.8		2 4		24.4	-	1	24.2	2	4
	26-xi	25.0	2	4	26.7		0		24.4	1	1	24.0	0	0
	30-xi	24.9	1		26.4	3	3 9		24.8	3	9	23.9	-	1
		24.8		619	26.7		6)13		24.5		6)11	24.0		615
				V=1.2			2.1 V=1.4				Nº 14			V= 0.9
Ps					24.3			1	23.2			25:7		
	30-xi	26.6			24.5			1 3	23.2			25.7		
		26.7			24.4			-	23.2			25:7		
CCm	1-14	32.6	1	1	20.2	5	25-	1	8.3			29.8	7	49
	13-14	32.0	1	1	19.8	1	1	1	7.8	0	0	30.4	1	1
	20-iV	32.4	3	9			49		7.3		-	31.3		
				6)11								3191.5		
	1.81	32.1		1.9	19.7							305		
	1 2			V= 1.4			V:3.5			V	= 2.9		2	= 4.4
.,														
Hs	100000	31.8			18.6			1000				31.2		
	19.41	32.8			20.5				7.4			29.3		
		32.3			19.5			1	7.9			30.3		
000								1,	/					
cct	20-×	32.8			18.4			10	6.4			32.4		
10336								1						
								1						
								1				1		
						1		1			(1		

Lumary of Vinis analyses for NA content.

				0 1					
								(tile = 310	
S	becies	Date	WS.	WF.	.7.	Volume	W. wi	. WI HA	
/			folglishen	vins	yiold	1	in oper	in ofer	
			mg	mg ?	0	pl	mg	ing.	
Po	2	12-11	100	?				d	
		24-iv	105	3.1	2.95-	16 (18.3)	1-10	0.153	13.9 .
		19-11	80	1.8	2.15	14.2 (15.6)	1.35	0.246	17.5
		15-x1	60	1.2	2.0	28 (25.9)	0.38	0.55	14.5
					2.40				
Ba	ca	II-iv	_	2.0	-	16 (175)	0.74	0.070	9.5
,		2-VI	100	3.5	3.5	29.6 (31.2)		0.110	8.4
*		3-4111	lat	3.8	3.8	25 (27.8)		280.0	7.5
					3.7				
					,				
. Cp.	٠ 2	-iv	100	2.6	2.6	16 (79)	0.95	0.104	11.0
		L-VI	100	3.2	3.2	286 (31.0)	1.23	0.147	11.9
	3	-VIII	100	4.3	4.3	25 (28.1)	1.27	0-121	9.5
	H	t-x	200	5.9	295	50 (64.3)	1.80	0.190	10.5
					3.26				
Ca	4.	2-11	174	4.8	2.8	28 (31.5)	1.06	0.183	17.2
	-	lo-iv	109	3.0	2.8	16 (18.1)		0.133	9.7
			1		2.8			1	1 1
								1-	- /
N		20-V	80	1.9	2.4				7.6
		19-11	80	1-4	1.4	14.2 (15.0)	0.88	0.089	/0.2
					1.9				

Denis	Pate	folglohn mg.	ws.	es.i	d Vilene	W. vinis	W.HA	0%
7		holden	inna	20	4 Volume	in spot	in sfort.	
		mg.	mg.		pl	mg.	mg.	
		0	9.			9.	đ	
Ма	II du	100	3.6	3.6	2-(2-1)	100	0.124	11.5
MIG	11-1111		3.6		25 (27.6)	1.08	6.136	12.4
	28-ix	80		4.5	25- (296)			
	14-41	60	1.8	3.6	26 (27.3)	0.5'5"	0.65	11.8
				3.7				
MX	13-xi	60	1.6	2.7	31 (32.1)	0.41	0.041	10.0
	14-xi	60	1.4	2.4	26 (270)	0.43	0.059	13.7
	15-41	80	1.8	2.25	16 (27.3)	0.55	0.065	11.8
				2.44	2005			
Lm	19-xi	2.5	0.7	2.8	8 (8.6)	0.61	0.69	11.3
PCF	20xi	60	1.4	2.3	25- (26.0)	0.45	0.041	9.0
	26-41	80	1.5	19	26 (17.1)	0.46	0.059	12.8
ccf	20-xi	75-	2.4	3.5	26 (27.8)	0.72	0.072	10.0
Ps	26-xi	80	1.9	2.4	26 (27.4)	0.58	0.072	12.3

.

Table I

Opill of bases from on splem DNA

ofter hydrolopis in HClO4 (70%, 15 pl./mg. NA) at 100°

		Qu	les fer 100	weles total	bases*		
Material analysed	Hydrolyus . time	adennie		Ikramie		Pac- counted for per sent	Hac-
Purified DNA	1 hr.	28.2	26.3	23.0	20.7	95	97
P Ju Dies	2 ler.	28.5	26.0	23.2	20.7	98	97
DNA \$570, albuman 75	lhr.	27.8	27.0	22.7	20.7	99	-
ц	2 hr.	27.8	26.9	22.7	20.9	100	-

^{*} allowing 1.3 for methyleytosine, not estimated in these experiments.

Jable III

Allolar proportions of the bases in DNA's of west viouses.

Virus host	adenine Thypnine	Avanine Cytorine	Parries Agricultures	Adennie + Ilymie Begune + Cytomie ,
P. dispar	1.06	1.08	1.07	0.71
R. monacha	1.03	1.08	1.06	0.94
C. funiferara	1.03	1.09	1-06	0.95
P. seriata	1.04	1.05	1.04	1.10
M. americanum	1.04	1.11	1.07	1.34
all distoria	1.02	1.08	1.05	1.36
B. more	1-04	1.11	1.07	1.34
	1.08	1.11	1.09	1.35
	1.07	1.09	1.07	1.67
	1.05	1.11	1.07	1.67
	1.01	1.12	1-05-	1.87
	1-04	1.02	1-03	(-22
	P. dispar R. enonacha C. fruiterana R. seriata M. americanum M. distoria B. mori C. f. eurytheme M. sertifis C. musinama C. fumiprana	Overs host Thysima (P. dispar 1.06 R. monacha 1.03 C. fruiterana 1.03 P. seriala 1.04 OM. americanum 1.04 OM. distoria 1.02 B. more 1.04 C. f. eurytheme 1.08 OM. sertifer 1.07 (C. musrinana 1.05 C. fruiterana 1.01	Overs hort Thyrime Cytoria P. dispar 1.06 1.08 R. monacha 1.03 1.08 C. funiferana 1.03 1.09 P. seriata 1.04 1.05 OM. americanum 1.04 1.11 QM. distoria 1.02 1.08 B. mori 1.04 1.11 C. f. eurytheme 1.08 1.11 OM. sertifer 1.07 1.09 C. musinana 1.05 1.11 C. funiforana 1.05 1.11	Nino host Ilignine Externic Agricultures (P. diefar 1.06 1.08 1.07 R. monacha 1.03 1.08 1.06 C. fruiterana 1.03 1.09 1.06 P. seriala 1.04 1.05 1.04 Qu. americanum 1.04 1.11 1.07 Qu. dietoria 1.02 1.08 1.05 B. mori 1.04 1.11 1.07 C. f. curythene 1.08 1.11 1.09 Qu. sertife 1.07 1.09 1.07 C. funifrana 1.05 1.11 1.07 C. funifrana 1.05 1.11 1.07

* Included for comparison; methyleytosine has been added to externe.

Composition of beef splean DHA as determined after two wethods of bydrobysis.

Wolar ratios calculated to total 3.95, making 4.00 when 0.05 is added for 5-methyl ey tomic.

	HCOOH	HCCO.
	(Mean of 11 analyses)	(Quean of 9 analyses)
A	1.130 ± 0.008	1.141 ± 0.013
T	1.115 ± 0.006	1.042 ± 0.018
4	0.854 ± 0.007	0.922 ± 0.009
0	1.951 + 1 Mg	0 544 + 0.004

·Pd	A	4	C	T
12.11	.849 2 4			.806 7 49
	.831 16 256			
19-vi	.861 14 196			
	3)2541 6 456			
	0.947 76	1.223 8	1.131 24	0.799 73
		±0.003		
Bu 11-iv	1.174 3 9	0.899 0 6	0.806 2 4	1.118 4 16
2-11	1.152 19 361	0.908 4 16	0.900 8 64	1.146 24 576
	1.186 15 225			1401 21 441
	33.512 6595			33.365 611033
	1.171 99		.808 25	1.122 172
	+.010	+ -002		
Coe 2-iv	1.170 15 228	0.909 11 121	0.824 13 169	1.099 6 36
	1.175 10 100	0.901 3 9	0.813 2 4	
3-4111		0.883 15 225	0.797 14 196	
	3)3.556 6)1001			33316 (165
	1.185 166	0.898 5.9	0.811 61	
	±0.013			+0.003
Cm 13-1V	1.280	0.991	0.7/2	1.218
	1.294	0.781	0.690	1-2872
	212.574	1		
	1.287	0.776	0.701	1.235
		''		
Ns 20-V	1.270	0.746	0.736	1.246
***************************************	1.312	0.822	0.694	1.171
	2/2.5-82	The same of the sa		2)2417
	1.291	0.784	0.715	1.208

Ratio in BSNA by Hellor hydrolysis.

			abyland					P
	Date	% KAint	tela notes.	A	G 00	C	T	secon
	-25-VII-50	10	72% 1 hr BWB	1.096	0.886 (62)		1.137	101
A) 12-ix-50	8	72% 1 hr BWB	1.230	0.896 (.41)	0.860	1-017	98
Cantal	17-14-50	16	72% (4 BWB	1.16	0.93 (10)		1-02	101
	19-x-50	- 11	72% 14 BWB	1.121	0.898 (012)	0.845	1.083	91
	(14-xii-50	7	70% 164 868	1.13	0.97 (41)	0.840	1.00	
200 .	24-1-51	6.3	ч	1.12	0.935 (26)	0.85	1.04	102
	21-11-51	9	70% 2 ho 97°	1.121	0.938 (41)	0.827	1.113	
	31-111-51	10	. 100°	1.16	0.95 (-4)	0.94	1.00	
	lų.	20	100"	1.15-	0.92 .	0.87	1.00	
	a	lean		1.143	0.924	0.846	1.044	
				± 0.013	10009		±0.018	
•	6	Correct for to	tal	1-141	0.922	0.844	1.042	

				,			
	(12-ix-50	Heoth	1.156	0.877	0.871	1.099	89
Cantat	17-ix-50	H(00)+	1.14	0.85	0.888	1.10	96
	19-x-50	HOOT	1.127	0.837	0.869	1.117	90
loo	24-1-51	40001+	1-11	0.87	0.85	1.11	98
	Mean		1.133	0.86	0.861	1.106	
				0.858			
	0.						

Previous mean

BSHA-HOOGH G C 7 1.156 .23 529 0.877 19 361 0.871 10 100 1.099 7 1.14 . 7 49 0.85 8 64 0.855 6 36 1.10 1.127 - 6 36 0.837 13 169 0.869 8 64 1.117 11 121 1.// . 23 529 0.87 12 144 0.85- 11 121 1.11 4 16 12)1143 12)738 12/321 12)222 0861 27 1.133 95.4 0.858 61 1.106 19 Mul seris 10004 ±0.010 ± 0.005 ±-008 . Old series 1.129 \$ 0.006 0.851 + 006 0.842 + 0011 1.126 ± 0.008 Ownell wear 1-131 ± 0.008 0.855 ±0.007 0.852 ±0.009 1.116 ±0.006 Conest for total 1.130 1.115-0.854 0.851

Test of hydrolysis & BSNA.

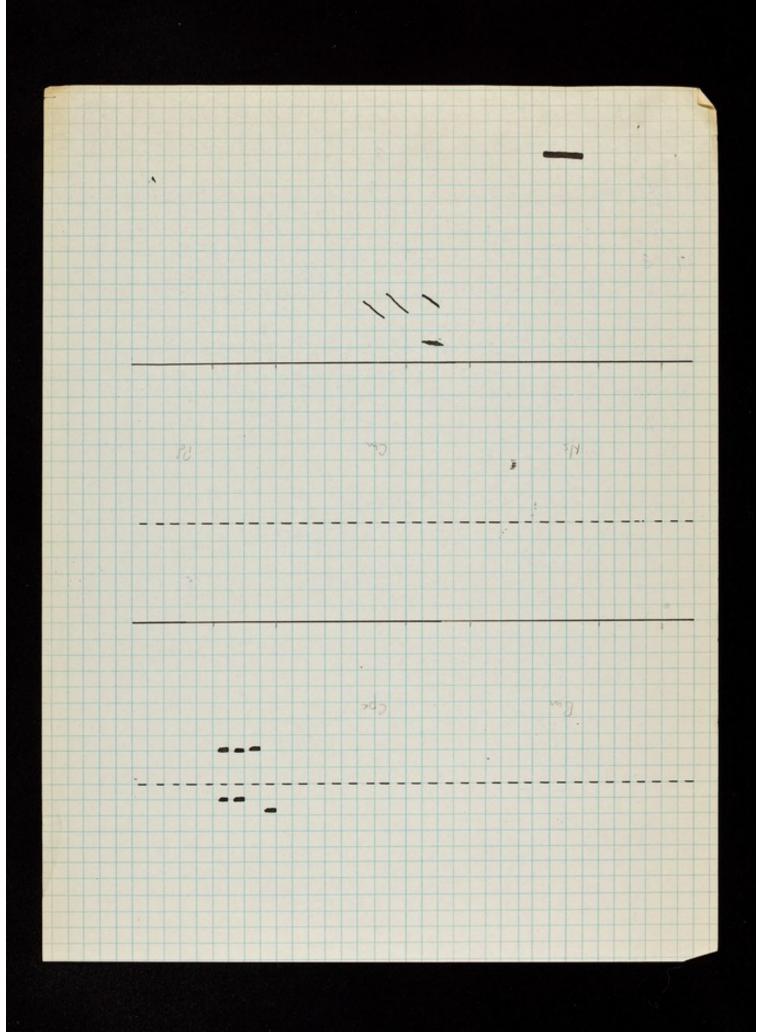
					P	N
Oute	A	T	6	C	suovery	recovery.
NA 1 hr 5-x	1.133	1.054	0.932	0.826	-	98.8
17-*	1.126	1.091	0.906	0.824	94.1	96.7
20-x	1.143	1.024	0.933	0.844	95:6	95:4
	1.134	1.05%	0.924	0.831	94.9	97.0
NA						
NA 2 lo. 5-x	1.146	1.020	0.938	0.843	-	100.0
17-x	1.140	1.061	0.924	0.872	99.3	94.1
Zo-x	1.144	1.055	0.928	0.822	97.5	95.9
	1.143	1.045	0.930	0.829	98.4	96.6
Prot the 5-x	1.115	1.070	0.932	0.831		-
13-x	1.113	1.064	0.931	0.940	96.9	-
17-x	1419	1.147	0.874	0.811	99.0	-
20-X	1.129	1.061	0.916	0.842	100.4	-
	1.119	1.086	0.913	0.831	98.6	-
*Portzlo. 5x	1-100	1.081	0.926	0.836		
13-x	1.117	1-052	0.936	0.846	98.1	-
17-x	1.117	1.100	0.902	0.830	1020	-
26 ×	1.141	1.089	0.876	0.842	101.2	-
	1.119	1.080	0.910	0.838	100.4	-

Sucer HA's Ban 9-xi-49 Louis 21-xi Ld Sutroduction Dp 13-xii Disionery of variation in KA's. Brignificance? Georgelin & Beographia Romes 13-xi, .. 16-17.50 24-11-50 Earlingon 21.11.80 Ld 19-4-50 474 g > noyels. Prefin of for orins. Profestion of the visus table : 234 g > 24 mg. Materies - aucthors Desomatografhie Technique Thydrolypis. Results : BSNA. Supotance y (2) Cone. in Hola, (3) adoled pol. Enorgani analyses. (4) Caston secreture. Results Joble of ratios Lack of usuall. Telle of constant ration Diemsion Significant of lack of KNA. VTMV remeis annual MA's Commist of gene-specific MA's Volpense of 2 orouses in one lost. Silleworn DAVA, alleupt : gyfry with. Vaguement : isolated LdVHA Malue in ilentifying vinuses.

Mean molestile sender exights.

		Pal	Lm	PCF	Ps	Ma	Md	Bm	Gpe	Cun	Ns	CCF	BNA
													NIC 39
A	(313)	664	771	776	836	915	915	918	936	1000	1010	1026	870
T	(304)	609	724	730	781	1.78	866	851	839	927	921	985-	8/9
6	(329)	1002	882	899	804	740	721	740	737	648	642	606	747
C	(289)	816	714	708	671	5-84	586	254	581	514	577	474	604
		3091	3091	3093	3092	3090	3088	3093	3093	3089	1090	3091	3069

A+T/G+C ratios, re-calculated as fraction = N+D constant at 40.0


0.71 16.6: 23.4 0.945 19.4: 20.6 1.10 21.0: 19.0 1.35 23.0.: 17.0 1.67 25.0: 15.0 1.87 26.1: 13.9

canast le fortutore server best some significance

	A+T	1	G+C	1
Pd	41.25	7.35	5-8.75	7.45
Lu	48.42 110.4	4.50	51.57	1.12
Cf	48.4 } 48.6	3.8	51.5 51.3	3.7
Ps	52.4	5.0	47.6	6/
Mq.	57.2		42.7)	9.1
Md	57.7 57.4		42.2 42.5	
Bn	57.3	5.2	42.7	4.9
Cpe	57.5		42.5	
Ks	62.6 } 62.6		37.47	
Crah	62.61	2.6	37.4	2.6
CCF	65.2		34.8	

		Ratio	d	To wiere	
83:47	1	0.71:1			171
91:109	2 [0.83 : 1]	12	6.4	183
99:103		0.94 : 1	16 13	8.2	194
105:95	-	1.10 : 1	12 14	5:7	210
112:82		1.35-:1	13 14	5.9	235-
120180	7 [[1:62.1	15	6.4	
125:75		1.69 : 1	17	75	
130:70	9	1.87:1			
				23.2	
	71:100			6.69	
\$ 200	71 × 40		6.6	7 % = 1 in	. 15.
	A + T	= 0.71			2/2/
	A+ T	= 0.71 (4	+c)	Irtal = 1.71	26%
		= . 0.94 (6		1.94	3/0/
	A+ T	= 1.10 (6	tc)	2.10	

0.94 × 4 194

	A	T	G	C	
Bm 1-xi.49 RNA	1.11	1.20	0.87	0.82	
Lm 24-1450	1.44	1.43	0.5%	6.68	
Catheron 21-111-50	1.51	1.03	0.60	0.95	
Pd V new	0.848	0.802	1.220	1.130	: 4.000
BLVHA SO	0.86	0.81	1.20	1.12	

3)162 3/195

114

Properties of June Vinises.

Type of underson boby Viris name Designation 9fool Lipsy moth (Porthetria dispar (R.); Leplaston, Borrelina reformino Holmes Polyhedon Eguarticae) Una moth (Rymantonia Borrelina efficiens House Polybelon wononka L.; Lefstoften, Legenantricios) Silkworm (Bowlyn moi L.; Borrelina boulyis Paillet Polyhelm. Repidoptia, Bombycilae) Alfolfo britisfly (Colias flibolis Bornelina campeoles Stanlins Polyberton. engetteme Boist.; Lifedoften, Piriolee). Gre Orchard tent califullar Malacorana aminiamum (Fabr.); Republica, Laciocampilas) Polyhelm Ma Polyleda Md Four tens cutifullar (Malacoama