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Preface to the Second Edition

As in the first edition of this little book the emphasis has remained on its being
essentially a practical guide to simple statistical methods which the
investigator can easily apply without recourse to anything more than a pocket
calculator. Despite the exciting, and often revolutionary, developments in
various laboratory disciplines in recent times, many of these statistical
methods still remain the cornerstone of much research in medical genetics. In
the last few years the use of computer programs has made many computations
very much easier—for example, in segregational analysis, linkage studies
and risk determination using data from linked DNA probes. However, it
would be wrong to apply such programs uncritically without appreciating at
least the basic underlying principles involved:; in this regard also it is hoped the
book may have some value.

The entire text has been revised with an additional chapter on the resolution
of genetic heterogeneity, a subject of increasing importance to medical
geneticists. Finally, statistical methods involved in the use of DNA probes are
also discussed, a field likely to develop considerably in the near future.

Edinburgh/Ibiza A.E.H.E.
1986



Preface to the First Edition

This is not intended to be a textbook but rather a practical guide to simple
statistical methods of use to those with a particular interest in medical
genetics. The emphasis throughout is on the solution of practical, rather than
theoretical, problems and particularly on problems of medical importance.

It is assumed that the reader has some knowledge of human genetics and
an acquaintance with very simple statistics, but a level of mathematical
sophistication no greater than simple algebra is required.

An effort has been made to make the book more or less self-contained, with
sufficient information, in the form of worked examples and reference tables,
to enable the reader to apply the methods to his or her own data. It is hoped
that the book will at least encourage, and perhaps help, those who would like
to attempt to analyse their own data themselves armed with no more than log
tables or a hand calculator.

Edinburgh/Ibiza A.EH.E.
1976
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Introduction

In the last decade or so, developments in human biochemical genetics and
cytogenetics have tended to eclipse quantitative methods in medical genetics.
These methods, however, will always provide the basis for much research in
the subject. Admittedly some have little practical value, as for example studies
of genetic drift and effective population size, assortative mating and
inbreeding, gene flow and racial admixture, and natural selection, but clearly
the study and measurement of such phenomena are essential for any
understanding and appreciation of man’s evolution. However developments
in recombinant DNA technology (genetic engineering) and the generation of
DMNA markers in recent years, have lead to the increasing application of
linkage studies in genetic counselling and antenatal diagnosis, areas of
considerable practical importance.

Several statistical methods are particularly valuable in helping to elucidate
the role of environmental factors in congenital malformations of unknown
actiology. Particularly useful in this regard are the techniques for recognizing
and measuring changes in disease frequency and cyclical trends, and for
estimating parental age and birth order eflects.

The study of disease associations has taken a new lease of life with the
discovery of strong associations with certain HLA types which may well
throw light on the aetiology of those disorders with which they are associated,
and though interest in twin studies has somewhat declined in recent years
much valuable information concerning the nature versus nurture controversy
can still be gained from such studies, particularly in the realm of psychiatric
disorders.

Yet other techniques, either directly or indirectly, have yielded information
of value in risk prediction for genetic counselling. The estimation of
heritability is most valuable as a measure of genetic determination but such
information can also be used to predict risks to relatives, and segregation
analysis can help establish the mode of inheritance which is obviously
important for genetic counselling. Methods for estimating recurrence risks,
often employing statistical tools such as Bayes' theorem. have become
increasingly important in recent years as the need for genetic counselling ha's
become more widely accepted.
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Some of these methods, however, are complicated and have occupied the
attention of some of the best intellects in human genetics. For this reason the
non-mathematically minded are sometimes discouraged. This book is
specially written for those with a level of mathematical sophistication no
greater than simple algebra. This of course means that rarely will the
derivation and proof of an equation or relationship be given but in all such
cases reference is made to where this information can be found. The reader,
however, is assumed to have some knowledge of basic genetics and simple
statistical methods and so be acquainted with such terms as standard error
(SE), statistical significance, correlation coefficient and chi square (¥°).

The book is intended to be a simple straightforward practical guide to
methods for analysing human genetic data. Each method is illustrated with
worked examples from real data, either published or unpublished. and tables
and graphs are included to help the reader with the calculations. The methods
described are essentially those which can be applied by the individual
investigator armed with no more than log tables or a pocket calculator. Some
refined methods. usually requiring a computer for analysis, have therefore
been considered beyond the scope of this book; for example, the calculation
of the coefficient of inbreeding from marriage distances and computer
methods for discriminating between different modes of inheritance. One
further point: particular data have been chosen because they illustrate a
method of calculation and not because they necessarily (though they often do)
represent the best available data on the subject. Since this is more a work book
than a text book no serious attempt has been made to assess critically the
results of such studies. However the problems and limitations of the various
methods are emphasized and discussed, and references are given to original
reports so that the interested reader may find more detailed treatment of a
particular statistical method. The principal danger is the uncritical application
of the methods described. If in doubt the reader should therefore always
consult the original reference or an experienced colleague, which will be
necessary, in any event, if the data warrant more complex analysis than is
covered by this introduction, the aim of which was to deal only with simple
basic methods.

It is hoped that the book is more or less self-contained with sufficient
information to enable the reader to apply the methods to his or her own data,
or at least help the reader to understand and perhaps appreciate more fully the
studies of others.



Hardy-Weinberg equilibrium and the
estimation of gene frequencies

Hardy-Weinberg equilibrium

Proposed by an English mathematician, G. H. Hardy, and a German
physician, W. Weinberg, in 1908, the so-called *Hardy-Weinberg principle’
can be expressed as follows. In a large, randomly mating (= panmixis)
population, in which there i1s no migration, or selection against a particular
genotype and the mutation rate remains constant, the proportions of the
various genotypes will remain unchanged from one generation to another. An
understanding of this principle is essential for much that will follow.,

Consider two alleles “*4" and ‘@’ such that the proportion of * 4" genes is ‘p’
and the proportion of “a’ genes is *g’, then p + g = 1. Throughout, ‘g’ will be
used to denote the frequency of the recessive allele. Now with random mating
the frequencies of the various genotypes will be:

Male gametes

A

A a
(p) q)
A(p) AA Aa
(p?) (Pq)
Female
gametes alg) Aa aa
(pg) (q*)

Thus the frequencies of the various offspring from such matings are p*(44),
2pg(Aa) and ¢*(aa), that is the terms of the expansion (p + ).

If these progeny now mate with each other the frequencies of the various
matings can be represented as:
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Genotype frequency of male parent

M

i A
AA Aa aa
(p?) (2pq) (¢%)
AA
(%) p* 2pq rq’
Genotype Aa
frequency of (2pq) 2piq 4p*q* 2pq*
female ad
parent (4%) Pq 2pq* q*

Thus, for example, the frequency of matings between persons with the
genotypes ‘aa’ and ‘Aa’ is 2pg* + 2pq’ or 4pg’. The frequencies of the various
offspring from these matings can be represented as:

Frequency of offspring

Mating type Frequency AA Aa aa
AA x AA p* p* = —
AA x Aa dpiy 2piq 2piq —
Aﬂ ® Aa 4P2q2 qu.l Epiqi pﬂql
AA % aa 2p*gq* — 2p*g* —
Aa * aa 4pg? —- 2pq? 2pg?
aa * aa q* — = g*
Total

= p*(p* + 2pq + q¢°) + 2pq(p* + 2pq + %) + ¢*(p* + 2pq + §7)

=  pip+q* +2p4(p + q) +¢*(p + 9)*

= p + 2pq 4"

= (p+q)°

The proportions of the various genotypes remain the same in the second
generation as in the first generation.

Estimation of autosomal gene frequencies

The method of estimation depends upon whether or not the heterozygote is
recognizable.

Heterozygote is not recognizable

In this case there is complete dominance and therefore the heterozygote is not
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recognizable. Assuming that the genotypes are in equilibrium, then the gene
frequencies can be estimated if the frequency of the rare homozygote is
known. Thus in alkaptonuria (a recessive disorder) which affects about one
child in every million:

3= ]

4= 1000000
therefore g = ]_
1000
but p+qg=1
therefore p=1

and the frequency of heterozygous carriers is 2pg or 1/500.

The standard error of the estimation of *g” (when the estimate of *g’ is based
upon the frequency of homozygotes ¢°) is [(1 — g%)/4N]! where N is the
number of individuals in the sample. Thus Pearn (1973) ascertained 9 cases of
Werdnig-Hoffmann disease (a recessive disorder) in a total of 231 370 births
in the North-East of England.

9
Therefore g = —

= 0.000 039

and g = ./0.000039

= 0.00624

1 — 0.000039
d E =
i 2 \/{4}{231 370)

= 0.001 04

The 95%, confidence limits will therefore be

mean + 1.96 x SE
= 0.00624 + 1.96(0.001 04)
= (0.004 20 to 0.008 28
Heterozygote is recognizable

If a characternistic is suspected of being determined by two codominant alleles,
the heterozygote therefore being recognizable, the frequencies of the two
genes can be estimated. Since the frequency of heterozygotes (H)

= 2pq

if the disorder is very rare then
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But this is only true when p is almost unity, otherwise

H =1ng
=21 — g)q
= 2q — 24°

1 ={1=2¢°=2H
1= 3p= V=70

1= /T=aH
q= e

and squaring this would give the frequency of affected homozygotes. Thus in
parts of Africa where the incidence of carriers of sickle cell anaemia (sickle cell
trait) has been found to be as high as | in 3,

1 — /1 — 0.667

8/
2

=
i

= (.211
and therefore

g> = 0.044 or 1 in 23

Another approach is illustrated by a study (Kellerman et al, 1973) in which
the induction of aryl hydrocarbon hydroxylase in human lymphocytes
showed a trimodal distribution in the population and it was suggested that the
three phenotypes represented the action of two alleles (A4 and B). Out of a total
of 161 individuals investigated the phenotypic frequencies were:

low inducibility = 86 (4.4)
intermediate inducibility = 59 (AB)
high inducibility = 16 (BB)

86 1/ 59
Therefore A gene frequency = = + i(fﬁl)
= 0.717
and B gene frequency = 1 — 0.717

= (.283
Therefore the expected phenotype frequencies are:

AA =161 (0.717) (0.717) =828
AB = 161 (2) (0.717) (0.283) = 65.3
BB = 161 (0.283) (0.283) =129
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To determine if the observed (0) and expected (E) results differ significantly
we calculate the value of chi square (#%) which is equal to the square of the
difference between O and E divided by E summed (represented by X) for all
groups.
(0 — Ep

E
s el e e el T LT

=88 T 653 T 129
= 148

Thus: =Y

We next determine the number of degrees of freedom (DF). In this sort of test
—referred to as a ‘goodness of fit’ test—the number of degrees of freedom

= (no. of classes) — (no. of estimated parameters) — 1

In the above example there are three classes and there was one estimated
parameter, namely the gene frequency, upon which the expected values were
calculated. Therefore there is one degree of freedom. (The reader is referred
to one of the standard text books of statistics for a discussion of the number
of degrees of freedom in various statistical calculations.) With one degree of
freedom, to be significant (P < 0.05) the value of #* would have to be greater
than 3.84 (Appendix 2, p. 166). In fact the value of 7* is only 1.48 and therefore
there is no significant difference between the observed and expected numbers
of low, intermediate and high inducers if it is assumed that these phenotypes
result from the operation of two codominant alleles, though subsequent
research has now shown that the genetic control of aryl hydrocarbon
hydroxylase inducibility is in fact more complicated than this.

In the case of autosomal dominant disorders with late onset, such as
Huntington’s chorea, the frequency of heterozygotes in the general
population () has to be determined indirectly because some will not yet be
affected. A useful method is that proposed by Reed et al (1958):

o
EINxPx
where
A = number of observed patients in a given area
Nx = total individuals aged x
Px = proportion of heterozygotes diagnosed by age x

summing over all ages.
The weakness of such estimates however, is that they depend on the
completeness of patient ascertainment.
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Determination of the expected frequencies of various matings and the
phenotypes of their offspring

Autosomal disorders

If it is considered that a certain characteristic could be due to the operation
of two alleles, it is possible to determine the expected frequencies of the
various types of matings, and the frequencies of the various types of offspring
from these matings and to compare these findings with those observed.

For example, Evans et al (1960) showed that it is possible to divide
individuals into two classes according to their ability to metabolize the drug
isoniazid. These are referred to as ‘rapid’ and ‘slow’ inactivators. In order to
determine if the slow inactivator phenotype represents the homozygous
recessive genotype, Professor Price Evans and colleagues compared the
observed and expected mating frequencies and their offspring. Out of a total
of 291 individuals investigated the phenotype frequencies were:

slow inactivators = 152
rapid inactivators = 139

If slow inactivation represents the homozygous expression of an autosomal
recessive gene (i.e. I.[).

Then I1(g%) = e
291
= (0.5223
therefore Iiq) = qﬁﬂ
= .7227
and Ig(p) =1 —0.7227
= 0.2773

Assuming random mating the number of expected mating types can then be
calculated and compared with the observed numbers (Table 2.1).
Table 2.1 Numbers of observed matings compared with those expected if slow inactivation

of isoniazid represents the homozygous expression of an autosomal recessive gene (Evans
et al, 1960)

Expected
OCCUrrence
Phenotypic Genolypic Expected frequency in 53 Observed
matings matings of matings matings occurrence
S=x 8 R G i 0.2728 14.46 16
RxS Tplg % LT, 2p%q*  0.0803
FRXIL  apgs 04187 | 0.4990 26.45 24
Rx*R Tole ® Iplg p* 0.0059
Talg % g,  4pq  0.0616 }u.:zst 12.09 13
Igl, % Igl,  4pig* 0.1606




ESTIMATION OF GENE FREQUENCIES 9

The observed and expected numbers of the different mating types can then
be compared in the usual manner (Table 2.2).

Table 2.2 Comparison of the observed and expected numbers of matings in Table 2.1.

(O - Ef?
Mating Observed Expected (0 — E)? E
3 X8 16 14.46 2.372 0. 164
Rx§ 24 26.45 6.003 0.227
R= R 13 12.09 0.828 0.0685
7 = 0.4595
(DF = 1)

The value of ¥* is 0.4595 which is not significant (Appendix 2, p. 166).
Therefore the observed numbers of different mating types do not differ
significantly from the expected numbers when it is assumed that slow
inactivation represents the homozygous recessive genotype.

A further test of this hypothesis is to compare the expected with the
observed numbers of children of each phenotype which result from various
matings. Thus in matings between rapid and slow inactivators, assuming slow
inactivation represents the homozygous recessive genotype, the expected
proportion of slow inactivators (/,1,) offspring is 2pg® (p.4). and the
proportion among offspring resulting from this particular mating 1s:

3

_ 2pq
2pq* + 2p*q* + 2pg*

£ L
p+2q

e 18

1+4
07227
aLy29y

= 0.4195

Therefore the expected number of slow inactivator offspring among 70
offspring of matings between rapid and slow inactivators is (70) (0.4195) or
29.36. Similarly the expected number of children of slow and rapid inactivator
phenotype among the offspring of other matings can be determined (Table
Z:3).
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Table 2.3  Expected numbers of children of each isoniazid inactivator phenotype compared
with those observed (Evans et al, 1960)

No. of children of each phenotype

Phenotypic No.of No.of  Rapid Slow

malings matings children E 0 E (4] i DF

§x 8 16 a1 0 0 51 51 — =

RxS§ 24 70 40.62 42 29.36 28 0.110 l

Rx R 13 38 31.30 3l f.68 7 0.018 1
53 159 13 86 0128 2

Since there is no significant difference between the observed and expected
numbers, the data fit the hypothesis that slow inactivator phenotype
represents the genetically homozygous recessive individual.

X-linked disorders

In an X-linked disorder the frequency of the mutant allele (*¢’) is equal to the
incidence of the disorder among males. The frequencies of the various types
of matings and the proportions of the various types of offspring from these
matings can be represented as:

Proportion among offspring
of a given sex

Mating type Males Females
Male Female Frequency a A aa Aa AA
a AA Py 1 — ! —_
d Aa 2pq* } 5 3 } =
a aa q I — 1 — —
A AA P — 1 — — I
A Aa 2p*q i ) — 1 i
A aa P’ | — — I —

As in the above example (p. 8), knowing ‘¢’ it is possible to calculate:

I. The expected frequencies of various matings and compare these with the
observed frequencies.

2. The expected frequencies of different types of offspring from various
matings and compare these with the observed frequencies.

Estimation of multiple allele frequencies

When there are three alleles but only certain phenotypes can be recognized,
gene frequencies have to be determined indirectly. For example, in the case of
the ABO blood groups, if the frequency of individuals with blood group O
(00) is represented as (0), with blood group 4 (A4 and A0) as (A) and with



ESTIMATION OF GENE FREQUENCIES 11

blood group B(BB and BO) as (B) then by simple algebra it can be shown that
the gene frequencies are respectively:

I* = /(0) + (4) - /(0)

ar
l — /(0) + (B)
I® = /(0) + (B) — \/(0)
or

1 — /(0) + (A)
1° = /(0)

When calculated in this way the sum of all the gene frequencies may not be
equal to 1.00. There will be a deviation from unity referred to as *D’, where

D = /(0) + (A) + /(0) + (B) — /O — 1
An improved estimate of the gene frequencies can be obtained in the following
way:
I1° = (1 + D/2)(,/(0) + D/2)
I =(1+ D/2)(1 — /(0) + (B)
1° = (1 + D/2)(1 — /(0) + (A)

This and other methods of estimating blood group gene frequencies are clearly
described in Race & Sanger (1975) and Levitan & Montagu (1977). ABO
blood group gene frequencies in the United Kingdom are given in Table 2.4.

Table 2.4 Blood group gene frequencies in the United
Kingdom (data selected from Mourant et al, 1958)

A B (e
England 0.252 0.050 0.698
Scotland 0.210 0071 0.719
Wales 0,244 0.064 0.692
MNorthern Ireland 0.210 0.069 0.721

Owverall 0.257 0.060 0.683




Estimation of factors affecting the genetic
structure of populations

We have seen that according to the Hardy-Weinberg principle it is assumed
that the various genotypes in a population are in equilibrium, and their
proportions therefore remain constant from one generation to another.
However, this is only true in large populations with no genetic drift, and where
there 1s random mating (panmaxis) with no significant assortative mating or
inbreeding, no gene flow from migration or racial admixture, no selection
against a particular genotype and a constant rate of muration. We shall now
discuss how each of these factors can be estimated in a given population.

Genetic drift

In large populations random variations in the number of children produced
by individuals with different genotypes has no significant effect on gene
frequencies but this is not so in small populations (*demes’ or “isolates’) where
such variations may have a considerable effect on gene frequencies (Sewall
Wright effect). If only a few people carry a particular gene, if such individuals
do not have children or they have children but by chance do not transmit this
gene to their offspring, then, barring a fresh mutation, the gene in question
will completely disappear from the population (Fig. 3.1) and is said to have
been ‘extinguished” (gene frequency zero) and its allele to have become ‘fixed’
(gene frequency 1.0). The amount of random genetic drift depends on the size
of the population being greatest in small populations where oscillations in
gene frequencies from one generation to another may be considerable.

Genetic drift is therefore a function of population size although not of roral
population size but rather the numbers of adults of breeding age and their
ability to have offspring to contribute to the gene pool of the next generation.
This is referred to as the effective size of the population or ‘N,’. Significant
genetic drift 1s likely to occur in a given population whenever:

u,sorm<1/2N,
where 4 = mutation rate; s = coefficient of selection; m = migration rate.

12
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LARGE FOPULATION
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Fig. 3.1 The effects of genetic dnift on gene frequencies in large and small populations
(diagrammatic)

If the mutation rate is of the order of 10 %, and if selection and migration are
extremely low, then random genetic drift can still be important in populations
of an effective size of up to 250000 (Wright, 1948).

In a small population, in the absence of mutation, selection or migration,
the percentage of loci which will become fixed or eliminated in each generation
is 100/2N,. Thus in a religious isolate in Pennsylvania, the so-called *Old Order
“Dunker” (Old German Baptist) brethren’, the community consisted of 298
individuals and the effective size of the population was estimated to be about
90 individuals (Glass et al, 1952). Therefore the percentage of loci which might
be expected to become fixed or eliminated per generation in this community
15 100/180 or 0.55%, not an inconsiderable number of loci considering the
possible size of the human genome.

Estimation of effective population size

In Western countries roughly a third of the population is in the reproductive
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age-group and N, is therefore about a third of the total population size, but
in less developed countries significantly more than a third are in this age-
group. There are however more precise ways of estimating N, and various
equations have been developed in order to predict the effective size of the
population under a variety of conditions which may exist in nature (Kimura
& Crow. 1963). If the numbers of male (N,,) and female (Ny) parents are not
equal then for an autosomal locus, approximately:

_ 4NyN;
S NLEN:

Thus if in a particular population there were 50 males and 200 females of
reproductive age, then:

_ 4(50)(200)
€7 50 + 200
= 160
Thus the effective size of the population is only 160 instead of 250. This could
have been a significant factor in primitive societies in which polygyny (or
polyandry) was practised.
For X-linked genes the effective size of the population is:
9NN,
S AN TN
Taking into account variation in number of offspring, and providing the
population is fairly stable in size, then:
N —2

Ni‘
2

where N = number of individuals of reproductive age
(say 15 to 45 years)

V', = variance in number of offspring
(ideally those surviving to reproduction)

If necessary this can be computed independently for male and female parents,
and separate estimates for the effective size of the population obtained for the
WO Sexes.

Effective population size and gene frequencies
The variance in gene frequency Is:

_r4
yoN

and therefore the expected (standard) deviation in one generation due to

E
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chance sampling is x V,- Thus in the Cashinahua Indians, a genetic isolate in
Peru, there were 206 individuals in 1966 of whom 87 were of reproductive age
and the variance in offspring was 3.1 (Johnston et al, 1969).

Therefore:

N 4(87) —22

31+
= 68
Now the gene frequency of the Kidd blood group allele Jk* was 0.53 (Johnston

et al, 1968) therefore:
0.53)(0.47)
v = [©33)(047
R 2(68)
= 0.04

The 95% confidence limits for the gene frequency in the next generation will
therefore be 0.53 + (1.96)(0.04) or 0.45 to 0.61 due to chance alone. After this,
genetic drift would occur again in either direction the amount being a function
of the new values of Jk® and N,. An interesting discussion of the genetic
structure of an isolated primitive population is provided by Salzano et al
(1967) in the case of the Xavante Indians of Brazil.

It should be noted that genetic dnift would be particularly important in the
spread of neutral genes. This has been referred to as non-Darwinian evolution
in contrast to classical Darwinian evolution in which natural selection plays
the major role (Thoday, 1975).

To determine if selection or drift have played the greater role in determining
specific gene frequencies, investigators have sometimes employed the so-

called Wright's Fg¢; which is:
|
= Ve (whil:h is = )
Pq 2N,

high values implying selection, low values implying drift. Thus in Western
countries low values have been obtained for the ABO blood groups but
relatively high values for Duffy (Fy) blood group (Tills, 1977).

Assortative mating

The Hardy-Weinberg equilibrium only holds true if there is random mating
(panmixis). Assortative mating and inbreeding disturb the equilibrium and
result in an increase in the proportion of homozygotes and a decrease in the
proportion of heterozygotes.

Assortative mating is usually concerned with resemblance between
phenotypic traits such as height, intelligence, skin colouring and general
physiognomy which have a multifactorial basis. In order to estimate the
contribution of assortative mating to the total variance of a particular trait it
is necessary to compute the following (Cavalli-Sforza & Bodmer, 1971):
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lez = _zrpﬁ
A= rsplC,C,)

CI = 4."3';3 e Ct(‘ll{] + 23]

where the correlation between spouses is ‘rgp’, between parent and offspring
1s rp o and between sibs 1s ‘rg 5. This 1s perhaps a little oversimplified (Vetta,
1976) but is adequate for present purposes.

The total variance of a trait is made up of environmental and genetic
factors and (ignoring epistatic effects) the latter is due to the effects of
dominant and additive genes (Falconer, 1981). These various components of
the total variance can be calculated thus:

1. Environmental =1-C
2. Genetic
a. Non-additive (due to dominance) = €, — C,(;
b. Additive:
expected under random mating = C,C,(1 — A)
due to assortative mating = (0. C. 4

Using data on 1Q from Burt & Howard (1956) but purely for illustrative
purposes since the actual validity of these data has recently been questioned:

between spouses rgp = 0.3875
between parent/offspring rp o = 0.4887
between sibs rg s = 0.5069

therefore:

N 2(0.4887)
= 1’5 03875

= 0.7044
A = 0.3875(0.7044)
= (0.2730
C, = 4(0.5069) — 0.7044(1 + 0.5460)
= 0.9386

GG,

Therefore the partition of the total variance is then:
1. Environmental = 1 — 0.9386 = 0.0614

2. Non-environmental
a. Non-additive (due to dominance)
= 0.9386 — (.7044 = 0.2342
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b. Additive:
expected under random mating
= (.7044(1 — 0.2730) = 0.5121
due to assortative mating
= 0.7044(0.2730) = 0.1923

Thus assortative mating can have a significant effect on the genetic variance.
However, as Cavalli-Sforza & Bodmer (1971) point out, the real situation may
well be more complicated than such simple models would lead us to believe.

The partition of variance has also been calculated for stature and total
dermal ridge count (Table 3.1). In the latter trait, as one would expect, the
contribution by assortative mating is very small and not significantly different
from zero.

Table 3.1 Partition of variance determined from correlations between relatives for 10,
stature and total dermal ridge count

Partition of variance (%a)

Non-
genetic Gienetic
Mon-
Correlations additive Additive
Parent-
Spouses offspring  Sibs Random Assortative
(rsp) (rpio) (rg;s) mating mating
2 0.39 0.49 0.51 7 23 51 19
Stature 0.28 0.51 0.54 — 21 62 17
Ridge count 0.05 0,48 0.50 — 9 R7 4

Roberts (1977) has reviewed correlations between spouses for a vast
number of physical characteristics. In general correlations are less than 0.2 for
traits such as weight and stature. Social and psychological traits show much
higher correlations.

Inbreeding

Two individuals are said to be consanguineous if they have at least one
ancestor in common and, in practice, this common ancestor is usually
considered to be no more remote than a great-great grandparent. The
offspring of consanguineous parents are by definition inbred.

Determination of the coefficient of inbreeding

The coefficient of inbreeding (F) may be defined as the probability that an
individual (say C) will have, at a given locus, two genes identical by descent
from a common ancestor. There are a number of ways in which it may be
determined, the simplest being by path analysis or 1sonymy.
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Path analysis. If n and »n' are the number of generations in the lines of
descent from a common ancestor to the parenis of individual C then

i

where summation is for each common ancestor.

Thus in the offspring of first cousins once removed (Fig. 3.2) the number of
generations in line of descent from A to the mother is 3 (n), and to the father
is 2 (n"). Similarly the number of generations in line of descent from B to the
mother is 3 (n) and to the father is 2 (n'). Therefore:

P=() +(3)

i
R

In the case of X-linkage (Wright, 1922, 1950/1)

r-5())

where 7, = number of females in a line of descent and the summation relates
to paths which have no male to male succession. A method for calculating the

inbreeding coefficient for X-linked genes has been described in detail by Kudo
& Sakaguchi (1963).

Fig. 3.2 Paths used in calculating ‘F” of a child of parents who are first cousins once removed

Isonymy. The coefficient of inbreeding can also be determined from the
frequency of marriages between individuals with identical surnames (Crow &
Mange, 1965) the reason being that in many societies the surname is
transmitted in a regular pattern which closely corresponds to the biological
ancestry. Now the frequency of isonymous pairs divided by four gives the
inbreeding coefficient from random mating (F,). Thus if:

p; = proportion of males with a certain surname

g; = proportion of females with a certain surname
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then

EP;"?.‘
F,.==—
d 4

and F=F,+(1-F)F,

P—2rai

d F. =
. i 4‘"2{’#};}

where P = observed proportion of isonymous marriages
F, = inbreeding coefficient from random mating
F,, = inbreeding coefficient from non-random mating
F = total inbreeding coefficient.

Thus in a study of the Hutterites, a religious isolate in North America, there
were 446 marriages between 1940 and 1961 of which 87 were between
individuals with the same surname. For example there were 30 males and 33
females with the surname “Wi’ therefore the expected number of marriages
between these individuals with random mating is:

30 33
(m)(aa)“ﬁ
= 2722

whereas 5 such marriages were observed. In this way the total number of
expected isonymous marriages with random mating was 79.55 whereas the
observed number was 87.
Therefore the expected proportion of isonymous marriages was:
79.55
446
= (.178

and therefore

Now

o 87
446
= 0.195

P P - ZP:"FL
"4l - Ypaq)

P
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~ 0.195 — 0.178
T 40.822)
= 0.0052

Now
F=F+(1-F)F
= 0.0052 + (1 — 0.0052)0.0445
= 0.0495

Thus the average relationship is equivalent to something between first cousins
(F=1/16 or 0.0625) and first cousins once removed (F = 1/32 or 0.0313).
Almost the entire inbreeding effect i1s due to random marriages. The
component from non-random marriages (£, = 0.0052) is very small and not
significantly different from zero.

The attraction of the isonymy method in estimating the coefficient of
inbreeding is its simplicity. But the method should not be applied uncritically.
For example, there may have been some duplication of surnames at the time
the names were first introduced into the population, and assigning a family’s
name to an adopted child and giving any name other than the father’s to an
illegitimate child will affect the estimate of the coefficient of inbreeding from
isonymy. Overall it seems likely that i1sonymy will tend to overestimate the
actual amount of inbreeding in a given population especially when the level
of inbreeding is low or the number of surnames is small (Tay & Yip, 1984).

Itis of interest that surname has also been used as a “genetic marker’ in some
studies (Ashley & Davies, 1966) though its value in this regard has yet to be
fully assessed.

The amount of consanguinity in a population i1s best expressed as the
average inbreeding coefficient

:ZPiFi

where p; is the proportion of marriages with inbreeding coefficient F;. Thus in
a study of consanguinity among French Canadians in the Province of Quebec
(Laberge, 1966), out of a total of 96 marriages in the Isle aux Coudres in the
Gulf of St Lawrence, 13 were consanguineous (Table 3.2). In this study the
overall average inbreeding coefficient in the Province was 0.0014,

Table 3.2 Average inbreeding coefficient in the Isle aux Coudres (Laberge, 1966)

I51 cousin

Total 15t cousin onee removed 2nd cousin
Mo. of marnages 96 1 4 8
Proportion (p;) 0.0104 0.0417 0.0833
Inbreeding (F)) — 0.0625 0.0313 0.0156
P F — 000065 000131 (.01 30

Ep,F; = 0.0033
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In most Western societies the average inbreeding coefficient is always less
than 0.001 but in some isolated societies it may be greater than 0.04, but this
1s obviously influenced by marriage customs. Thus the coefficient of
inbreeding is high in communities in Southern India because of preferential
uncle-niece marriages, but is low in Eskimo communities because of taboos
against inbreeding in any form.

The value, in practical terms, of estimating the coefficient of inbreeding is
that 1t allows us to predict:

I. The incidence of a particular recessive disorder in an inbred population
since this is equal to

Fg + q*(1 — F)

Thus if the incidence of a recessive disorder in a randomly mating population
is 1 in 10000 (g*> = 0.0001) then among marriages in an inbred population in
which Fis 0.04, the expected incidence (all else being equal) will be

(0.04)(0.01) + (0.0001)(0.096)
= (.000496

or approximately 1 in 2000.
2. The proportion of heterozygotes for a particular recessive disorder in an
inbred population since

Hrp=(1 — F)Hq

where Hpand Hg denote the proportion of heterozygotes in populations with
and without inbreeding.

3. The ‘genetic load’ (defined as the proportion of the population lost by
selection), because certain components of the genetic load increase linearly
with the coefficient of inbreeding. However in order to calculate the genetic
load in this way it is necessary to know not only the value of F but also the
fitness (see p. 29) of the various genotypes and apart from one or two disorders
this 1s rarely known with any precision. The subject of genetic load has been
interestingly discussed by Fraser & Mayo (1974), Freire-Maia (1976) and
Knudson (1979).

The coefficient of relationship (R) is a measure of the degree of genetic
relationship between two individuals and may be defined as the probability
that both possess an identical gene by descent from a common ancestor(s). It
is equal to (1) to the power of the number of generations in the lines of descent
from a common ancestor(s) to the individuals whose coefficient of
relationship is being determined:

rs()"

or R =2F
That is, the inbreeding coefficient of a child is half the coefficient of
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relationship of its parents. Some values of Fand R are given in Table 3.3.

Table 3.3 Coefficients of inbreeding ( F) and relationship (R) and
probability of isonymy ( P) for various consanguineous matings

Mating F R P
Sibs /4 1/2 |
Uncle—niece, aunt-nephew 1/8 1/4 1/2
lst cousins 1/16 1/8 1/4
Ist cousins once removed 1/32 /16 1/8
2nd cousins 1/64 1/32 1/16
2nd cousins once removed 1/128 1/64 1/32
3rd cousins 1/256 1/128 1/64

Cousin marriages

With rare recessive traits, the parents of affected individuals are often related,
the reaon being that such individuals are more likely to carry the same genes
because they have inherited them from a common ancestor. In fact the chance
that first cousins will carry the same gene is | in 8. The frequency (C) of first-
cousin marriages among the parents of children with any particular
autosomal recessive disorder is (Dahlberg, 1947)

= all +15q|]_
~a+ 169 — aq

where a = frequency of Ist cousin marriages in the general population.

If *q" is very small then approximately

Alternatively if the frequency of first-cousin marriages in the general
population (a) and among parents of affected children (C) are known then the
gene frequency can be estimated since

L _a[l—C} _
4= 6C=Ca=—15a

Some examples of recessive disorders and the approximate frequencies of
consanguinity among the parents are given in Table 3.4, where it is assumed
that the frequency of first-cousin marriages in the general population is about
I in 200. Note that the rarer a recessive disorder the more likely are the parents
to be related. An increase in consanguinity among the parents of children with
a particular rare disorder may therefore be used as evidence that the disorder
is inherited as a recessive trait.
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Table 3.4 Prevalence of first-cousin marriages among the parents of individuals with vanious
recessive disorders

Disorder Frequency of homozygotes  Gene frequency % Consanguinity®

(4°) (q) (1) (2)
Alkaptonuria 1/1 000000 00010 24.2 23.8
Cyslinuria 1/ 100 D00 0.0032 9.3 8.9
Albinism 1/20 000 0.0071 4.7 4.2
Phenylketonuria 1/15000 00082 4.1 37
Cystic fibrosis 1 /2000) 0.0224 1.8 1.4
* Consanguiniiy estimated from (1) ol i2) u

a+ lbg — ag a 4 lbg

Gene flow

Another process by which genetic variation is introduced into a population
is by gene flow. That is when individuals from outside the population
contribute to the gene pool either by migrarion or racial admixture. Migration
may result in a gene being spread in one direction only and the frequency
gradient that may result is referred to as a cfine. Thus the frequency of the gene
for blood group B is very high in Asia (over 25%) but gradually decreases as
one travels westward across Europe until in Britain, France and Scandinavia
it is less than 10% (Mourant et al, 1976). It has been suggested that this
gradient or cline 1s the consequence of invasions by Mongoloids who pushed
westward from about A.p. 500 until A.p. 1500. Miscegenation between the
invaders and the native population in which blood group B was rare or absent,
led to the diffusion of the B gene across Europe (Candela, 1942). Of course it
is equally possible that this gradient in the frequency of blood group B gene
might have been the result of some as yet unknown selective force which
followed a similar geographic gradient.

Gene flow may also mean admixture of two or more genetically dissimilar
populations so creating a hybrid group, for example, the racial admixture
which resulted in the United States from miscegenation between African
Negroes and American whites or in Hawaii between Polynesians, Asiatics and
Europeans.

If *m’ is the proportion of genes at a particular locus in a hybrid population
(H) which is derived from a population (P) which has miscegenated with an
immigrant population (7), and if g is the gene frequency, then

gy = mge + (1 — m)q,
and therefore

oy —ai*
lgp — 44l

*The vertical lines mean the absolure values of the differences, that is the differences are
always positive.
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This is sometimes referred to as Bernstein's equation. If the gene in question
15 absent from the immigrant population then

_4n
dp

m

In studying the problem of gene flow in relation to the American Negro, Reed
(1969) considered the Duffy blood group (Fy(a+)) a good marker in this
regard. Thus the mean frequency of Fy* gene in West Africa (f) 1s at most
0.030, in American whites (P) is 0.429, and in American Negroes (H). in
southern California, is about 0.094, therefore

du — 491
qp — 4
0.094 — 0.030

m:

= 0.160

If however one assumes that F3* might well have been absent from the original
African population, then
=20
dp
4 0.094
0429
= 0.219

m

Thus from the evidence of Fi* gene of the Duffy blood group system, the
proportion of American Negro genes which are of American white origin is
between 16 and 22% in southern California. In contrast the proportion is less
than 4% in Charleston, South Carolina, which probably reflects cultural
barriers to gene flow. However when data for a number of blood groups.
enzymes and protein variants are considered, estimates for gene flow vary
considerably even within northern states of America, being as high as 64% for
G6PD in New York for example (Dyer, 1976).

It should be noted however, that in estimating “m’ in this way, several
assumptions are made (Workman et al, 1963). It is assumed that the deviation
of gy from g, is solely due to gene flow. It disregards the possible effects of
natural selection which can introduce a serious bias. Reed (1969) chose the
Duffy blood group system because there was no obvious evidence of strong
selection at this locus in Californian Negroes, at least as shown from studies
of fetal and infant growth and viability and from adult growth and fertility.
It also assumes that there is no assortative or preferential mating between the
two populations. Such calculations also depend on the estimation of gene
frequencies in the original populations and in the present hybrid population.
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Finally it should be noted that gene flow is also related to the effective size
of a population (N, ) and the coefficient of inbreeding (F). That is

i T
therefore
B i
~ 4NF

Thus in the Dunkers, a religious isolate in the United States, F was estimated
to be 0.0254 and N, to be 90 (see p. 13), and therefore

_1—00254
™ = 4(90)(0.0254)

= 0.1066

which represents the gene flow into the isolate each generation (Glass et al,
1952).

Selection

Selection has been studied more than perhaps any other aspect of human
population genetics. The subject is discussed in detail elsewhere (for example
Fisher, 1930; Spuhler, 1963; Bajema, 1971; Roberts, 1975), and here we shall
only be concerned with how selection forces, in relation to human disease. can
be measured.

Selection forces may be either natural or artificial. The former occurs under
natural conditions without the intervention of man, whereas the latter is a
direct consequence of man’s intervention by introducing effective treatments
for otherwise lethal disorders or limiting the reproduction of persons with
hereditary defects. Selection forces operate at all stages of development
though in humans this is usually considered in relation to postnatal
development and may operate through differential mortality or differential
fertility.

Selection forces disturb the Hardy-Weinberg equilibrium by increasing or
decreasing fitness. In this sense fitness has a very special meaning and will be
discussed later (p. 29).

The coefficient of selection (s) may be defined as the proportional reduction
in the gametic contribution of a particular genotype to the next generation.
If *f" is fitness

s=1-—-f
It can be shown that at equilibrium for an autosomal recessive trait
T

5= —

ql
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for a rare autosomal dominant trait
—
q

5

and for an X-linked recessive trait, in males
3u
q

&
where 4 = mutation rate.

Heterozygote advantage in recessive disorders

The estimation of ‘s° has mainly been of interest in autosomal recessive
disorders in which the apparent high frequency of affected individuals cannot
be accounted for by mutation alone or genetic heterogeneity (due to different
loci or multiple alleles at the same locus) and therefore it is postulated that the
heterozygote may have some selective advantage. Thus the Hardy-Weinberg
equilibrium is modified to

hHp* + [2pg + f3q?

where f|, f> and f; are the relative fitnesses of the three genotypes.

When a stable equilibrium is maintained by selection such that the
heterozygote is ‘superior’ to either homozygote (f> > f, and f3) this is
sometimes referred to as ever-dominance.

If the coefficients of selection in the normal homozygote and affected
homozygote are s; and s, respectively then in either the entire population, in
the case of an autosomal recessive disorder, or among females in the case of
an X-linked recessive disorder:

Genotypes
AA Aa aa Total

After selection pl—s5) 2pg g*(l —5,) 1 —p?s, —g*s;, =T

Relative
contribution to
next generation

p(l —s5) 2pq gl —s2)
T T T

Therefore in the next generation

qns1 = 2(Aa) + (aa)

gt ¢l —5,)
E T

q— q°s;
T
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Therefore the change in gene frequency

=|"I‘Irl+l _q
q— q°s,

i

_ Pa(ps; — gs,)
T

But at equilibrium the change in gene frequency from one generation to
another is zero. That is when

P3; = 43,
(1 — gls; = gs,
S — g5 = 455

S'I-_
.';1 + a2

If, as in many serious recessive disorders, the rare homozygote is so severely
affected as not to survive to have children or survives but is infertile then
55 =1 and

5y

S

and therefore

Si -
Thus in the case of cystic fibrosis (g% = 1/2000: ¢ = 0.022)s, = 0.022/0.978 or
0.0225. To maintain the present frequency of this disease the heterozygote
must therefore have a fitness of 2.25% greater than the normal homozygote.
To demonstrate a relative increase in fitness of this order of magnitude in
heterozygotes would be very difficult but attempts have been made. For
example in cystic fibrosis (Danks et al, 1965; Knudson et al, 1967), Tay-Sachs
disease (Myrianthopoulos & Aronson, 1966) and phenylketonuria (Woolf et
al, 1975). How this is done will be discussed later (p. 29). The relationship
between the frequency of affecteds (%) and heterozygote advantage is given
in Figure 3.3.

Heterozygous advantage may well have played a part in determining the
relatively high incidences in certain populations of sickle-cell anaemia and
perhaps f-thalassaemia, in these cases through an increased resistance to
falciparum malaria (Allison, 1964). The high incidence of some other
disorders (Table 3.5) might also be due to heterozygous advantage but may
be partly related to population size in former times in which mutation could
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Fig. 3.3 Relationship between the frequency of affecteds (g°%) and heterozygote
advantage (%o ).

have played a greater role in determining gene frequencies (Mayo, 1970). It
is also possible that the so-called founder effect may have been important in
certain circumstances as in the case of the high incidence of Tay-Sachs disease
in a non-Jewish semi-isolate in North America (Kelly et al, 1975). Alternative
explanations for some of these high gene frequencies are close linkage to genes
whose alleles have been favoured by selection (hitchhiker effect) or epistatic
interaction with an unlinked gene (Wagener & Cavalli-Sforza, 1975).

Reproductive compensation may also be important (Koeslag & Schach,
1984).

Table 3.5 Estimated heterozygous advantage (in the absence of other factors) in
maintaining the frequencies of certain recessive disorders in which it i1s presumed in earlier

times, without treatment, most homozygous affecteds would not have survived to have
children

Frequency of Gene

affecteds frequency Heterozygous

Disorder Location (%) (q) advantage (%)
Sickle-cell anaemia Africa = 1/25 0.200 25.0
f-Thalassaemia Mediterranean 1/200 0.071 7.6
Cystic fibrosis Europe 1/2000 0.022 2.2
Tay-Sachs disease Ashkenazi Jews 1 /3600 0.017 1.7
Phenylketonuria Europe /15000 0.008 0.8
Ireland and 1 /5000 0.014 1.4

West Scotland

Equations relating gene frequencies to coefficients of selection under
various conditions are summarized in Table 3.6.
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Table 3.6 Summary of equations relating gene frequencies to coefficients of selection under
Various circumstances

Selection against Initial fitnesses Equilibrium
AA Aa il
(2*) (2pg) {*)
AA and oa | — 1, 1 I -3, q= =t
2 U P
AAd and Aa ] — 5 |l —=x l g = b
{rare) £
Fi ] l | | —+« |'I'H
-, g
(rarg) Vo

Estimation of fitness

We have seen that it is possible to estimate the coefficient of selection from
gene frequencies. It can also be estimated directly by determining the fitness
of various genotypes.

Biological or Darwinian fitness is a measure of the extent to which an
individual with a mutant gene can reproduce so that the gene is maintained
in the population. It is not synonymous with fertility per se since any
offspring who die before reaching maturity will not contribute at all to the
next generation. The subject, and some of the problems involved in estimating
fitness have been discussed in non-mathematical terms by Clarke (1959b).
Biological fitness has been variously expressed as:

|. The total number of offspring (excluding stillbirths and abortions)

2. The number of offspring who reach reproductive age (say 20)

3. The number of offspring who reach the mean age at which the parents
reproduced

4. The number of offspring who complete their reproductive life (say 45).

Method three is the ideal but it is often not easy to determine because in most
family studies there is insufficient data. For this reason investigators often rely
on the first method.

Comparisons are usually made with comparable data (similar age and sex)
from the general population or normal sibs. However, fertility is affected by
many factors other than genetic including race, period of time and social class,
etc. It is therefore not easy in practice to obtain a value for a general
population which is strictly comparable with affected individuals. Statistical
procedures have been developed for getting round these problems but they are
complex and require extensive demographic data (Reed, 1959; Charlesworth
& Charlesworth, 1973).

For this reason some investigators have made comparisons with normal
sibs. However, sibs of affected individuals are not always representative of the
general population. Further, apparently normal sibs may in fact be carriers
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of the gene and subsequently develop the disease if onset is not necessarily in
garly life. They may also have not completed their reproductive life at the time
of the study.

When there is variable age at death in affected individuals whose fitness 1s
to be assessed, a simple approach is to determine the number of offspring per
number of reproductive years (say 20 to 45). Thus in a study of benign Becker
type X-linked muscular dystrophy the mean number of live births per 100
fertile years was 4.959 for affected males and 7.418 for their unaffected male
sibs. The relative fitness is therefore 0.67. It should be noted that in this disease
one can be certain that sibs are in fact normal by determining their serum level
of creatine kinase.

Another common problem has been to assess the relative fitness of
heterozygotes for severe recessive disorders in order to determine if there is
any heterozygous advantage (p. 27). In this situation there is the problem that
if one considers the offspring of two heterozygous parents, such matings will
have been ascertained in the first place because they have produced an affected
child and this might well have biased their plans for further children. Also they
will have had to have had at least one child.

There are essentially two ways of dealing with these problems. Firstly, one
may consider the reproductive performance of the grandparents of affected
children since at least one maternal and one paternal grandparent will be
unsuspecting heterozygotes, but comparisons must be made with comparable
controls of the same generation. Such an approach has been made, for
example. in the case of cystic fibrosis (Danks et al, 1965; Knudson et al, 1967)
and Tay-Sachs disease (Myrianthopoulos & Aronson, 1966).

Alternatively one can study the reproductive performance of couples who
are both heterozygotes by determining the number and outcome of
pregnancies previous to the affected child, as was done by Wooll et al (19735)
in the case of phenylketonuria, or by making special allowances for the way
in which families have been ascertained. Thus of all families in which both
parents are heterozygous (3/4)° will have no affected children and 1 — (3/4)
families will have at least one affected child, s being the number of children
(sibs) in each family. The corrected numbers can therefore be calculated by
multiplying by 1/1 — (3/4)* (Table 3.7).

Table 3.7 Ohbserved and corrected sizes of families with an autosomal recessive trait

Observed no. Corrected no.

Size of

family Families Individuals Families* Individuals**
£ n,
| 3 X 20.0 20.0
2 3 (3] 6.9 13.8
k! 8 24 138 41.4
4 4 16 5.8 23.2
3 2 10 2.6 13.0
6 1 6 | 1.2
Total 23 67 50.3 118.6
Mean 291 2.36

=, [1/1 = (3147}
=" L1/1 — (3/4F)
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By applying this correction for ascertainment, the mean family size is clearly
reduced. But this assumes that there has been complete ascertainment of all
cases in a particular population. In some instances this might be impractical
and a more sophisticated method which assumes incomplete ascertainment is
then necessary (Kate, 1977).

Tanaka (1974) has devised a very simple and effective way of estimating
fitness. He has shown that

where A4, = frequency of the trait among parents of index cases
and A, = frequency of the trait among offspring of index cases

The underlying principle is that, if selection against a specific disorder 1s
sufficiently strong then the frequency of affected individuals among parents
of index cases will be lower than among the offspring of index cases, and this
reduction is proportional to the intensity of selection. The method is widely
applicable but is particularly valuable in autosomal dominant and
multifactorial disorders. Tanaka gives worked examples for a number of
disorders. For example, in one study of schizophrenia A, = 4.38%,
A, = 12.31% and therefore /= 0.36; and in one study of neurofibromatosis
A, = 18.27%, A, = 35.23% and therefore f = 0.52.

In order to obtain relative fitnesses for each sex separately, for males this
is

e
A, 2x

where A4," and A, refer respectively to the frequencies of affected individuals
among fathers of patients and among offspring of male index patients, and x’
and x" are the relative frequencies of male and female patients in the general
population. Similarly for females the relative fitness is

&t
AT %

where 4," and A" refer respectively to the frequencies of affected individuals
among mothers of patients and among offspring of female index patients
{Tanaka, 1975).

Unfortunately the method is not particularly suitable for rare disorders
because 4, is too small to be estimated precisely. Further, the method is only
valid if the frequency of the disorder is roughly the same in both the parent
and offspring generations. In some disorders, because of changes in accepted
diagnostic criteria over the last few decades, this may present an important
objection to the method.
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Finally, before leaving the subject, it should be noted that fitness may not
always be reduced. In Huntington’s chorea, for example, evidence suggests
that affected individuals are in fact more fecund than their normal sibs and
members of the general population of comparable age. In one study fitness in
Huntington's chorea was estimated to be 1.14 compared with the general
population (Shokeir, 1975). If maintained this would result in a steady
increase in the incidence of the disorder in future generations.

Fitness and incidence of X-linked disorders

In X-linked recessive disorders knowing the fitness of affected males (f) and
if the fitness of carrier females is 1.0, then it is possible to determine the
incidence of affected males (/) and carrier females (H) in terms of the
mutation rate* since at equilibrium

I = u+ HI.’E
and H=2u+ H2+1f

In a condition such as Duchenne muscular dystrophy (and many other serious
X-linked recessive disorders) where = 0 then

H=2u+ H[2
and therefore H=4u
and since I=pu+ Hf2
I=3u

In Becker type muscular dystrophy an approximate value of f is 0.70.
Therefore

H=2u+ H2 + K0.7)
but I=u+ H2

substituting for [,

then H=2u+ H2+ (p+ H[2)0.7
therefore H=18u
and I=10u

Values for H and [ for some other disorders are given in Table 3.8. These
results have important implications in probability calculations for genetic
counselling (see p. 99).

*Assuming the mutation rate is the same in males and females.
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Table 3.8 The incidence of affected males and carrier females in terms of the mutation rate
i g) in X-linked recessive disorders where the fitness in carrier females 15 assumed to be 1.0,

Fitness of Incidence (times u)
afTected males Alfected males Carrier females Example

0.0 3 4 { Duchenne muscular dystrophy
Lesch-Nyhan syndrome, etc.

0.1 34 4.7 -

0.2 33 3.5

03* 4.3 6.6 Neonatal hypoparathyroidism

0.4* 5 8 Vitamin D resistant rickets

0.5 6 10 —

0.6* 1.5 13 Anhidrotic ectodermal dysplasia

0.7 10 1% { Becker muscular dystrophy
Haemophilia A

0.8* 15 28 Diabetes insipidus, pituitary type

0.9 3 58 =

* From data in Stevenson & Kerr | 1967}
Mutation

The Hardy-Weinberg equilibrium depends on a constant rate of mutation, but
clearly this may be increased by exposure to X-radiation or mutagenic
chemicals. In discussing mutation this usually infers gene or so-called “point’
mutation though it should be remembered that chromosomal rearrangements
are also a form of mutation. There are two methods for determining mutation
rates: direct and indirect.

Direct method for estimating mutation rates

This method is only applicable to autosomal dominant traits which are rare
and always fully penetrant and X-linked recessive disorders when the carrier
state is detectable. An example of the former is provided by a study of
achondroplasia.

Summarizing the results of several recent newborn surveys, Gardner (1977)
found 7 cases of true achondroplasia of normal parents out of a total of
242 257 live births. However in each affected child the mutation could have
occurred in either the gene supplied by the mother or that supplied by the
father. Therefore the mutation rate per gene

= 7/2(242 257)
=144 x 10-°

the standard error of which is

Pq
2N

£ 000014 4 x 09999856
= 484 514

= 55x 107"
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Therefore the mutation rate for achondroplasia may be expressed as
144 + 5.5 x 109,

The application of the direct method to an X-linked recessive disorder
where it is possible to detect the carrier state, is illustrated in the case of
Duchenne muscular dystrophy (DMD) in which a proportion of healthy
female carriers have a raised serum level of creatine kinase. In one study
(Gardner-Medwin, 1970), 22 out of 35 known carriers had raised serum levels
of creatine kinase. Of 56 mothers of sporadic cases, 15 had raised levels. Thus
the proportion of new mutations (mothers are non-carriers) among sporadic
cases is [56 — (35/22)15]/56 or 0.574. Now over a 9-year period (1952-1960)
43 sporadic cases were born and therefore the number of new mutations is (43)
(0.574) or 24.682. The total number of males born in this period who survived
to age 5 (by which time almost all cases of DMD are diagnosed) was 236 200.
Thus the mutation rate is 24.682/236 200 or 10.5 x 10— 7. Thus if ‘P’ is the
proportion of sporadic cases presumed to be due to new mutations and if in
a given period ‘n’ is the number of sporadic cases and * N’ the total male births,
the mutation rate is equal to

Pn/N

The direct method of estimating mutation rates is not applicable to
recessive traits since a mutation to a recessive gene will go unrecognized if the
mutant gene is completely recessive and not manifest in the heterozygote. The
method is most useful in relatively severe dominant disorders in which
affected individuals often do not have offspring, so that a significant
proportion of affected persons are likely to be the result of new mutations. In
other situations the so-called indirect method is used.

Indirect method for estimating mutation rates

In dominant disorders if g is the mutation rate (per gene per generation) then
the frequency of cases due to fresh mutations is 2. If the reproductive fitness
is ‘/" and the incidence (p. 154) of the disorder is ‘I" then in each generation
the number of cases eliminated is

=(1-NI

In a state of equilibrium where the frequency of the condition does not
change from generation to generation, then the number of cases arising as a
result of new mutations must be equal to the number being eliminated because
of reduced fitness. Thus

2u=I1 -/
and therefore p= 41 = f)
Similarly it can be shown that for an autosomal recessive trait

p=IK1-1)
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for an X-linked dominant trait

u=1I1-,)
for an X-linked recessive trait

u=3ra -5
and for an holandric trait

p=1I1-1)

In the latter two cases I' represents the incidence of affected males among all
males whereas [ represents the incidence of affected males and females in the
total population. The term (1 — f) is referred to as the coefficient of selection
(5) against the gene (p. 25).

It should be remembered that there are a number of problems and sources
of error in estimating mutation rates by both the direct or indirect methods.
Spuriously high estimates will be obtained if clinically similar but genetically
different disorders are lumped together. Another problem is that both
methods depend upon the accurate determination of the incidence of the
disorder in the general population and this may be difficult to obtain. Further,
the incidence of a disorder in a particular population may be affected by
factors other than selection and mutation, i.e. by inbreeding, genetic drift,
founder effect, etc. Finally, the indirect method depends on the estimation of
fitness of affected individuals and this poses special problems (p. 29). The
subject of spontaneous mutation in man has been critically and interestingly
reviewed by Vogel & Rathenberg (1975) and Vogel (1983) where the reader
will find the subject dealt with in detail.

Genetic distance

It is often of interest from a genetic or anthropological point of view to
consider to what extent human populations are genetically different as a result
of factors such as genetic drift, selection pressures and mutation. In order to
make such comparisons, the so-called genetic distance between the
populations is determined. A number of methods are available for computing
genetic distance but perhaps the simplest., and intuitively the easiest to
appreciate, depends on estimating what is referred to as Euclidean distance.
Imagine the distribution of two measured characteristics defined by x and y
coordinates in a 2-dimensional plane. If the coordinates for one individual are
xy and y, and for another individual x; and y,, then the distance between the
two points can be calculated according to Pythagoras’ theorem:

1% — le_in'*' (¥ — J’zF

However in estimating genetic distances between populations, more than two
characteristics per individual are considered, and in general, the greater the
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number of characteristics, the more precise the estimate of genetic distance.
If n different characteristics are studied, then each individual will have
values

o, T T R

For each of these characteristics a mean can be obtained for each population
and the differences between the two populations (say A and B) can be
calculated

A =B e e ] . =A ] : [
k=X =d X8 —x=ds .. kg — Xg =iy

Because different units of measurement often have to be used for different
characteristics, comparisons are made possible by dividing each by its
standard deviation (). The genetic distance between any two populations is

then given by
»/ E{dﬂrﬂilz

where d; = difference between the means for each characternistic

o, = standard deviation for each characteristic (assumed to be
approximately the same in the two populations)

This approach is useful for simple metric characteristics which are not
strongly correlated. For characteristics which are continuously distributed
and strongly correlated other methods for computing genetic distance have to
be adopted. These include various methods developed by Mahalanobis,
Sanghvi, Bhattacharyya and Edwards and Cavalli-Sforza. However the
details of these methods are somewhat complex and can be found in Cavalli-
Sforza & Bodmer (1971), Weiner & Huizinga (1972) and Smith (1977).



Segregation analysis

To test a particular genetic hypothesis in experimental animals one studies the
progeny of controlled matings. This, of course, is not possible in human
populations and the geneticist has to approach the problem indirectly by
fitting probability models to family data: that is by comparing the observed
proportion of affected sibs and offspring with the proportion expected
according to a particular genetic hypothesis. This is referred to as segregation
analysis. The main problems of such studies arise through the different
methods of ascertaining families and affected individuals, and through
pooling data from different families which is necessary because no single
family is ever large enough to test a given genetic hypothesis. Various
statistical methods have been developed in order to eliminate such biases, but
it should be remembered that segregation analysis may also be complicated
by factors inherent in the data itself such as incomplete families, inaccurate
diagnoses and genetic heterogeneity. It therefore behoves the medical
geneticist to consider these possibilities carefully before attempting to
combine data from different families and applying the methods of segregation
analysis.

The simplest approach to the problem is to compare the observed number
of affected individuals in families with that expected assuming a particular
mode of inheritance. This can be illustrated in the case of a disorder supected
of being inherited as an autosomal dominant trait, the number of affected
offspring of an affected parent with a healthy spouse being compared with the
expected number using ° test. Thus in one study of opalescent dentine, out
of a total of 112 offspring of affected parents, 52 were similarly affected
whereas 56 would have been expected assuming simple dominant inheritance
(Neel & Schull, 1954):

Offspring Normal Affected Total
observed 60 3z 112
expected 56 56 112
(0 — EP? 16 16 —

2
iQ _EE 0.286 0.286 0.572

37
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Thus »2 is 0.572. With one degree of freedom (p. 7) to be significant *
should exceed 3.841 (see Appendix 2, p. 166). The value obtained is less than
this and therefore there is no significant departure from the expected number
of normal and affected offspring assuming autosomal dominant inheritance.

The significance of a departure from an expected ratio of 1: 1 among the
offspring of affected parents can be calculated quite simply from the formula
given by Roberts & Pembrey (1978):

P = [H i I]z_
A+ N
where A = total number of affected offspring

N = total number of normal offspring

The subtraction of unity from the difference in the numerator is Yates’
correction which has to be included when dealing with small numbers. Thus
if there were 15 affected and 12 normal offspring in a number of families in
each of which one of the parents was affected then

(15— 12) — 172
- 27

.II

i
=29
= (.148

In this example, therefore, there is no significant departure from the expected
1:1 ratio among the offspring in the families studied.

It should be remembered that in testing for autosomal dominant
inheritance, families should be ascertained irrespective of the nature of the
offspring of affected individuals, i.e. never because there are affected children
in the families.

This simple approach though useful ignores two very important problems:
at risk matings which by chance do not produce affected children, and the bias
which may result from the manner in which families are actually ascertained
for study. In the case of autosomal recessive disorders, where most of these
problems arise, matings between heterozygous parents are ascertained only
because they have produced affected children; however, by chance, some
families where both parents are heterozygous will produce only normal
children (heterozygotes and normal homozygotes) and will therefore not be
detected. By selecting only families which produce affected children a bias is
introduced which will result in a spuriously high proportion of affected
individuals in such families. Secondly, the more affected children there are in
a given sibship, the more likely it is that the sibship will be ascertained. Thus
the manner in which families are ascertained is critically important in testing
for recessive inheritance and determines the method of analysis to be used.

There are three ways in which families may be ascertained:
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1. An exhaustive search may be made to ascertain every affected individual
in the community regardless of whether or not there are any affected relatives
( = complete ascertainment). But since it is impossible to ascertain every “at
risk’ family because of the exclusion of those which have not produced
affected offspring, complete ascertainment is in effect always truncate. Also
in practice it is often impossible to ascertain every affected case in the
community, in which case ascertainment is referred to as being incomplete.

2. Each family may have been ascertained through one, and only one,
affected individual irrespective of how many affected children there may be
in the family ( = single incomplete ascertainment).

3. Some families may have been ascertained more than once through
different affected sibs ( = multiple incomplete ascertainment).

Some cases will be ascertained independently of other members of the
family (so-called probands or index cases), but other cases will be ascertained
only through probands, and these are referred to as secondary cases. In order
to select the appropriate model for ascertainment, the ascertainment
probability m(Greek pi) is used, which may be defined as the probability of an
affected individual being a proband:

_—
R

where in the population
A = number of affected individuals ascertained independently as probands
R = total number of affected individuals

There are a number of ways of estimating & (Simpson, 1983) perhaps the
simplest being

YAA - 1)
YAR - 1)

where summation is over all families. Thus using the data given in Table 4.7,
mis 0.73.
The methods of analysis depending on the mode of ascertainment may be

summarised as follows:
1. Complete ascertainment (m approaches 1)

a. A priori ( = direct) method
b. Maximum likelihood method
¢. ‘Singles” method
2. Single incomplete ascertainment { r approaches ()
*Sib" method
3. Multiple incomplete ascertainment (00 < g < 1)
a. Proband method
b. Modified ‘singles’ method
¢. Maximum likelihood method.
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Thus the investigator should be quite clear how families and affected
individuals have been ascertained and then apply the method appropriate to
the mode of ascertainment. Detailed discussions of some of these methods
together with references to earlier work are given by Steinberg (1959), and
Elandt-Johnson (1971).

Complete ascertainment

A priori method (Hogben, 1931, 1946). The actual number of affected
individuals is compared with the number expected calculated from the
truncate binomial

which has a variance of
spq Slplq::
— 1,
EI:I _qs {]_qijl]

where s = sibship size
n, = number of sibships of size s
p = theoretical proportion, i.e. 0.25
g=1—p

Values for these two equations for various sibship sizes are given in Table 4.3
(p. 42).

For this method of analysis it 1s assumed that all cases in a given community
have been ascertained. In practice, this is rarely possible, but an exception
would be the situation when every case of a rare disorder is studied in a well
defined and relatively small community.

An example of this approach would be the reported study of the so-called
*Mast syndrome’ (a form of presenile dementia with motor disturbance)
among the Amish, a religious isolate in the United States (Cross & McKusick,
1967).

The data from this study are summarized in Table 4.1.



SEGREGATION ANALYSIS 41

Table 4.1 Sibships in which one or more persons with the Mast syndrome were offspring of
unaffected parents. Individuals who died prior to age 12 have been excluded because of
uncertainty as to their genotype.

Family Affected Normal Total No. of ‘singles’
I 1 5 fi I
2 1 l 2 1
3 4 3 7
4 4 7 1 —
5 2 J] ¥
6 3 4 7 ol
7 | 7 8 '
8 2 4 6 <
9 1 5 6 |
Totals 19 42 61 4

To apply the a priori method of analysis the data are set-out as shown in
Table 4.2.

Table 4.2 The observed and expected numbers of affected individuals with the Mast
syndrome assuming complete ascertainment

Tatal no. Mo, of affected

Size of Mo. of of individuals

sibship sibships  individuals
5 n, som, observed expected Variance
2 1 2 1 1.1428 0.1224
f 3 1% 4 54744 2.3278
7 2 14 7 4.0392 1.9405
] 2 16 3 4.4450 2 3448
11 1 11 4 28710 1.8053

Totals 9 6l 19 17.9724 8.5408

sk = 2.9225

The expected numbers of affecteds and the variances are calculated in the
following manner. In the case of sibships of size 6 (s = 6), there are 3 (n, = 3)
of these and therefore from the data in Table 4.3 the expected number of
affected individuals in these sibships is

= (1.8248)3
= 5.4744
and the variance is
(0.775 95)3
= 2.3278

From the data in Table 4.2 it will be seen that the observed number of
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Table 4.3 Values of sp/l — ¢’ and its vaniance for various sibship sizes (s). (From Hogben,

1946.)
p=1/4and g=13/4 p=1j2=yg
sp : 5p o
5 = Variance = Variance
| 10000 0.0000 1.000 LRI
2 1.142% 0.12245 1.333 0.2222
3 1.2973 0.26297 1.715 04898
4 1.4628 0.42005 2.134 0.7822
5 1.6389 0.59]1 78 2.581 1.082
i1 1.8248 0.77595 1.047 1.379
7 2.0196 0.970 24 3.527 |.667
& 2.2225 1.1724 4.015 1.945
9 2.4328 1.3802 4.509 2215
10 2.649 1.5917 5.005 2478
11 2.8T71 1.8053 5.503 2.7131
12 3.098 2.0196 6.001 2.992
13 3.329 2.2335 6.5 3.245
14 3.563 24464 7.0 31.497
15 3.801 2.6575 5 3.748
16 4.041 2.B667 8.0 3.999
17 4.282 31.0738 8.5 4.249
13 4.525 12787 Q.0 4,500
19 4.770 14814 9.5 4.75
20 5016 1.6821 10.0 5.00

affected individuals differs from the expected number by 1.0276 which is
0.3516 times the standard error. Thus there is a close agreement between the
observed and expected numbers of affected sibs assuming autosomal recessive
inheritance (p = 0.25). Tables (see p. 44) are also available which give values
for sp/1 — g* for various values of p = 0.15 to p = 0.35 (Li, 1961).

Maximum likelihood method (Haldane, 1938). In this method no prior
assumption is made regarding a value for ‘p’, i.e. 0.25 if testing for recessive
inheritance. Instead the maximum likelihood estimate of ‘p’ is determined
where

which has a variance of

where R = number of affected individuals in all sibships
s = sibship size
n, = number of sibships of size ‘s’

the first equation being solved for ‘p’ by iteration.
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To apply the maximum likelihood method of analysis the data are set out
as in Table 4.4,

Table 4.4 The observed and expected numbers of affected individuals with the Mast
syndrome when p = 0.25 and p = 0.275

No. of affected individuals

Size of No. of expected* Reciprocal of variancet
sibship sibships
5 n observed P = (0.250 P= 0.275 p= 0.250 p= 0.275
2 1 l 1.143 1.159 3.483 3.371
f k] 4 5475 5.790 £6.213 64,782
7 2 7 4.040 4.304 55.196 33.960
8 2 3 4.446 4.764 66.694 65.096
I 1 + 2.871 3116 51.350 49.722
Totals 9 19 17.975 19.133 242936 236931

*n, = values for p = 0250 and p = 0275 in Table 4.54
tn, = values for p = 0250 and p = 0.275 in Table 4. 5B

A trial value of p = 0.250 is first chosen. This gives an expected number of
affecteds of 17.975 (slightly different from Table 4.2 because of differences in
the values of sp/1 — ¢* in Table 4.5A due to rounding-off). This is less than
the observed number (i.e. 19). Therefore a greater value of *p’ is chosen. When
p = 0.275, the expected number of affecteds is 19.133 which is slightly greater
than the observed number. Thus ‘p’ must lie somewhere between 0.250 and
0.275. By linear interpolation when there are 19 affected individuals the
corresponding value of ‘p’ is 0.272. Similarly by linear interpolation when
p = 0.272 then the reciprocal of the variance is 237.6. The variance is therefore

1/237.6 = 0.004 21

and the standard error is

0.004 21 = 0.0649

The final result may be stated as
p = 0.272 £ 0.065.

The reciprocal of the variance is given in Table 4.5B merely for convenience
in order to avoid a lot of zeros if the variance itself were used. Thus when
s = 15and p = 0.250 then the variance is 0.013 23. It should be noted that here
the variance relates to the estimate of “p’ and not to the number of affected
individuals as in the a priori method.
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Table 4.5A Values of sp/1 — ¢ for various values of ‘p’ and sibships of size *s". (From Li,
1961.)

5 p=015 p=020 p=0225 p=025 p=0275 p=030 p=035
2 1.081 1111 1.127 1.143 1.159 1.176 1.212
3 1.166 1.230 1.263 1.297 1.333 1.370 1.448
4 1.255 1.355 1.408 1.463 1.520 1.579 1.704
5 1.348 1.487 1.562 1.639 1.719 1.803 1.980
6 |.445 1.626 1.723 1.825 1.930 2.040 2.271
1 1.545 1.772 1.893 2.020 2152 2288 2.576
8 1.649 1.923 2,069 2.223 2.382 2,547 2.892
9 1.757 2,079 2,252 2.433 2.620 2.814 3.217
10 |.868 2,241 2.44] 2 649 2.865 3.087 3,548
I 1.982 2 407 2,635 2.871 3116 3.367 3.884
12 2.098 2,577 2.833 3.098 3371 3.651 4224
13 2.218 2,751 3.035 3.329 3.631 3.938 4.567
14 2,341 2929 3.241 3.563 3.893 4.229 4912
15 2.465 3.109 3.450 3.801 4.158 4.521 5.258

Table 4.5B Reciprocal of variances for various values of ‘p’ and sibships of size *s". (From
Li, 1961.)

5 p=015 p=020 p=0225 p=025 p=0275 p=030 p=035
2 4.583 3.858 3.640 3.4%3 3371 3.295 3.229
3 9.600 8.188 7.774 7.480 7.278 7.149 7.061
4 15038 12967 12367 11948  11.665  11.489  11.386
5 20882 18163  17.380 16833 16463 16230  16.077

6 27113 23.739 22.761 22.071 21.594 21.279 21.008
I 33.708 29.651 28.458 27.59%8 26.980 26.545 26.069
8 40.641 35.856 34415 33.347 32.548 31.947 3172
9 47.885 42.308 40.578 39.2538 38.229 37.416 36.257
0 55.412 48.962 46.896 45.274 43.969 42.898 41.282

11 63.191 55.775 53.322 51.350 49.722 48.356 46.228
12 71.193 62.706 59.815 57.445 55.456 53.762 51.08%
13 79.389 69.721 66.341 63.531 61.146 59.103 55.865
14 87.749 76.789 12.873 69.585 6. 7RO 64.372 . 566
15 96.247 83.881 79.387 75.592 72.349 69.568 65.203

‘Singles method (Li & Mantel, 1968). This is the simplest method of testing
for recessive inheritance when there is complete ascertainment and according
to the originators it is just as reliable as more involved methods. The method
consists simply of determining the number of sibships in which there is only
one affected individual ( = “singles’) and

UR=
B =
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where R = number of affected individuals in all sibships

I' = total number of individuals in all sibships

J = number of ‘singles’

Using the data as presented in Table 4.1 (p. 41)

bty
R
_ 15
5
=053

45

Note the close agreement with the value obtained by the maximum
likelihood method. Unfortunately though this is a very simple method for
calculating *p’, the determination of the variance is complicated. Li & Mantel
(1968) have shown that the variance 1s

where

5
where

W

W =) nw,

(1—g ')

TN - - +6-2p7 1

Fortunately Li & Mantel (1968) have provided tables of ‘w’ for various ‘p’
values (Table 4.6). For example in the above example the following values of

w i, are obtained:

Sibship No. of
size  sibships

S Zwn, = 23379

5 n, W, W,
If p=0.26

2 1 3.43 3.43

6 3 21.18 63.54

7 2 26.49 52.98

8 2 3206 64.12

11 1 49.72 49.72
Ipi=akoy

2 1 3.39 3.39

6 3 21.01 63.03

7 2 26.29 52.58

8 2 31.81 63.62

11 1 49.18  49.18

o 2wn, = 231.80
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and by interpolation ) w,n, = 233.18. Therefore the variance is 1/233.18 and
the standard error of the estimate 1s 1 ;’\/233.13 or 0.065.

It should be noted that in assuming complete ascertainment this tends to
overestimate the value of p.

Single incomplete ascertainment (Fisher, 1934)

The underlying assumption in this method (sometimes referred to as the *sib’
method) is that each affected individual has a very small chance of being
ascertained, and therefore there is never more than one proband per family.
The probability of ascertaining each family is proportional to the number of
affected individuals in the family.,

In this case

_R-N
Sy
which has a variance of %-
where R = number of affected individuals in all sibships

T" = total number of individuals in all sibships
N = number of sibships
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If we apply this approach to the data in Table 4.1 (p. 41) then

19-9
B = 5t —1
10
=5
— 0.192

and the standard error of this estimate 1s

\/__Tq_'

\/m 192) (0. 'ﬁ{m]
= 0.055

The estimate of *p’ calculated in this way would therefore appear to be less
than expected. When inappropriately applied this method in fact tends to
underestimate the value of *p’. However in this example the value obtained has
wide 95% confidence limits because the numbers are small (ie.
0.192 £+ (1.96)(0.055) or 0.084 to 0.300), which would accommodate a
theoretical value for “p’ of 0.25.

Multiple incomplete ascertainment (Bailey, 1951: Morton 1959)

In practice, ascertainment varies being somewhere between complete and
single incomplete in which case the method of multiple incomplete
ascertainment is the most appropriate for analysis, particularly of families
who present to the clinician. There is often more than one proband per sibship
but not all affected individuals are probands. Under such circumstances the
simplest method of determining the proportion of affected sibs of probands
is to count each sibship once for each time it has been independently
ascertained, omitting the proband each time. This is sometimes referred to as
Weinberg's ‘proband’ method.

The method is illustrated in data from a random sample of families with
phenylketonuria (Table 4.7).
In this case
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Table 4.7 Analysis of family data assuming multiple incomplete ascertainment. The proband
in each sibship is indicated by an arrow (normal: male [, female O; affected: male W,
female @).

Number in sibship

Family Probands AfTected sibs Total sibs
1 BO OO 1 0 3
_{.ﬂ
2 09 | I 2
A
gomn 1 0 2
4 D@0 ! | | 1 4
| 4
S M@ O DO 2 {I 4
il
ne | | 1
g i
7 D? 0@ O | I 4
8 ? sReNE I 0 3
9 BO I 0 1
II'F
1 2
(U BeN | 2 | 5
A A
Total 8 32

Davie (1979) has proposed a modification of the *singles’ method for use when
there 1s multiple incomplete ascertainment. Here

R—J

T

Where R and T are as before, but J is here the number of sibships with one
proband and not the number with only one affected individual as in the
method of Li & Mantel. The variance of this estimate of *p’

_{R — T —-R) 20(T - R)?
- (T=-J (T —Jp*

where  is the number of sibships with two probands. Thus using the data in
Table 4.7

_l6-8
36— 8
= 0.286

P



SEGREGATION ANALYSIS 53
and the variance

(16 — 8)(36 — 16) _ 4(36 — 16)?
= e =N -~ | o8

= 0.010

The final result may be stated as

p = 0.286 + 0.100

This is a very simple yet efficient method but is only applicable when probands
are ascertained independently of other affected sibs.

Morton has developed what is probably the best method of segregation
analysis when ascertainment is incomplete which estimates both rand p using
a maximum lkelihood approach. The calculations are complex, but a
computer program (SEGRAN) is available (Morton et al, 1983).

X-Linked inheritance

In X-linked inheritance (whether dominant or recessive) for rare disorders
there 1s never male to male transmission. Simple pedigree inspection may
therefore exclude the possibility of X-linked inheritance.

In X-linked dominant inheritance, if fully penetrant, all the daughters of
affected males will be affected. In the case of affected females, on average, half
their daughters and half their sons will be affected. A departure from the
expected 1 : 1 ratio of affected to normal offspring of affected females may be
tested for in the same way as for autosomal dominant inheritance (p. 37).

In X-linked recessive inheritance all the daughters of affected males will be
carriers. In the case of carrier females, on average, half their daughters will
also be carriers and half their sons will be affected. A departure from the
expected 1: 1 ratio of affected to normal sons of knewn carriers may be tested
for as in the case of autosomal dominant inheritance (p. 37) provided the
selection of carriers was because they were the daughters of affected males. If
they have been selected in any other way this introduces biases into the
calculations which would have to be taken into account, for example if
carriers have been selected because they have had at least one affected son and
also another affected maternal male relative. In this situation one might apply
the method of multiple incomplete ascertainment to the male progeny of such
carriers.

In serious disorders where affected males are infertile or do not survive to
have children it may be very difficult to prove X-linkage. However there are
statistical methods, though somewhat complex, for getting round this
problem (Morton & Chung, 1959). Otherwise one may have to resort to
evidence other than segregation analysis; for example, the same woman may
have had affected sons by more than one father, though this does not exclude
autosomal dominant inheritance with male limitation. The best proof is the






Multifactorial inheritance

In many common disorders (e.g. diabetes mellitus, schizophrenia, peptic ulcer
and hypertension) and a number of congenital malformations (e.g. spina
bifida and anencephaly, congenital pyloric stenosis and congenital dislocation
of the hip) there is a definite familial tendency, the proportion of affected
relatives being greater than in the general population but the proportion of
affected relatives is often only of the order of 5% or less, and therefore much
less than would be expected on a simple unifactorial basis. The most likely
explanation is that these disorders are inherited on a multifactorial basis
(Bishop, 1983). This implies that the cause is partly environmental and partly
due to the effects of many genes each of small effect.

If the observed familial aggregation in a particular disorder is suspected of
being the result of multifactorial inheritance this may be tested for in a number
of ways. It must always be remembered, however, that a confounding feature
will be if there is genetic heterogeneity in the disorder being studied. This
possibility must be carefully considered and, as far as possible, excluded
before combining data from different individuals and their families.

Tests for multifactorial inheritance

A number of models have been proposed for multifactorial inheritance but the
one which is most widely used is referred to as the “threshold model’ (Falconer,
1965). According to this model 1t 1s assumed that there 1s some underlying
graded attribute which is related to the causation of a particular disorder or
congenital malformation. This is referred to as the individual’s liability, which
includes not only his genetic predisposition but also the environmental
circumstances which render him more or less likely to develop the disease.
According to the model the curve of liability has a normal distribution in both
the general population and relatives of probands but the curve for relatives is
shifted to the right because they have a higher mean liability (Fig. 5.1). The
point on the curve beyond which all individuals are affected is the threshold.
In the general population the proportion above the threshold 1s the
population frequency and among relatives the proportion above the threshold
is the familial frequency.

35
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There are several consequences of such a model and if these are
demonstrable in a particular family study it indicates that the disorder in
question is probably inherited on a multifactorial basis.

Threshold
rs

GENERAL
POPULATION

9

RELATIVES

q\m

Fig. 5.1 Hypothetical curves of liability in the general population and in relatives
of probands

. The fall off in frequency from first-degree to second-degree to third-
degree relatives can be predicted from the threshold model and will be greater
than that predicted on the basis of unifactorial inheritance. Examples of this
phenomenon have been given by Carter (1976).

2. The frequency will be greatest among the relatives of more severely
affected individuals because presumably they are more extreme deviants
along the curve of Lability.

3. The frequency among sibs born subsequent to index cases will be greater
the more affected relatives there are in a family, presumably because this
indicates that there are more abnormal genes segregating in the family and/or
the family has been more exposed to a precipitating environmental factor(s).

4. When there is a sex difference in the population frequency, the frequency
among relatives of affected individuals of the less frequently affected sex will
be greater than the frequency among relatives of affected individuals of the
more frequently affected sex. This is presumably because affected individuals
of the less frequently affected sex will tend to be more extreme deviants from
the population mean and so the risk to their relatives will be correspondingly
higher.
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Other expectations of multifactorial inheritance, though ner directly

consequent on the threshold model, are:
5. The wupper limit of the frequency among first-degree relatives 1s
approximately equal to v/ ¢ or g*, among second-degree relatives is g%, and
among third-degree relatives is ¢*, where ‘g’ is the frequency in the general
population (Edwards, 1960, 1976). Note that it is customary in discussing
multifactorial inheritance for ‘g’ to denote the frequency of the disorder and
not gene frequency.

6. The relative frequency (referred to as ‘K by Penrose, 1953b) is, for each
sex. the frequency in relatives divided by the frequency in the general
population. The observed relative frequencies can be compared with the
expected values for various modes of inheritance.

Thus the expected relative frequencies in sibs are:

1 : :
— for an autosomal dominant trait

2q

1 - .
— for an autosomal recessive trait

1 . : :
—— for a multifactonal trait.

i

Thus in one study of sacro-iliitis (a manifestation of ankylosing spondylitis)
the results in Table 5.1 were obtained. The fairly close agreement between the
observed relative frequencies and those expected for multifactonal
inheritance suggests that this disorder is inherited on this basis.

Table 5.1 Frequencies and relative frequencies of sacro-iliitis in sibs (data from Emery &
Lawrence, 1967)

Relative frequency

Frequency Observed Expected
Multi-
(Gen. pop. Sibs, Dominant Recessive factonal
(g) (s) (5/q) (1/2q) (1/4q) (1/v/q)
Males 0.049 18 0.1585 322 10.17 5.08 4.51
Females 0.01515 0. 1666 10.99 33.00 16.50 8.12

Estimation of heritability from family studies

Having decided that the disorder in question appears to be inherited on a
multifactorial basis, it is useful to estimate the heritability. This may be
defined as the proportion of the total phenotypic variance (genetic and non-
genetic) which is due to additive genetic variance. It is therefore expressed as
a percentage and abbreviated to the symbol *4%". The greater the value for the
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heritability the greater the contribution of genetic factors to aetiology. There
are, however, some important precautions to be borne in mind in estimating
the heritability.

The estimation of heritability is only meaningful if there is no genetic
heterogeneity in the disorder being studied (which in some cases increasingly
seems less likely) and if no major gene contributes to the causation of the
disorder. If a dominant gene contributes significantly to aetiology then the
estimated heritability may exceed 100%. If a recessive gene contributes
significantly to aetiology then the estimated heritability from sibs will be much
higher than that from parents and children. If, therefore, a ‘reasonable’
estimate of heritability is obtained, and this is roughly the same for sibs as for
parents and children, then it would seem likely that the disorder in question
1s inherited on a multifactorial basis. Some estimates of heritability are given
in Table 5.2.

Table 5.2  Estimates of heritability for vanous disorders affecting man

Frequency
Disorder (%) Hentabality
Schizophrenia | 85
Asthma 4 80
Cleft lip + cleft palate 0.1 Th
Pyloric stenosis (congenital) 0.3 75
Ankylosing spondylitis 0.2 70
Club foot {congenital) 0.1 68
Coronary artery disease 3 65
Hypertension (essential) 5 62
Dislocation of the hip (congenital) 0.1 60
Anencephaly and spina hifida 0.5 (]
Peptic ulcer 4 37
Congenital heart disease (all types) 0.5 35

In estimating heritability there are two important possible sources of error.
Firstly, since heritability is estimated from the degree of resemblance between
relatives, expressed as a correlation coefficient, a sharing of common
environment by family members may result in the estimate being too high due
to non-genetic causes of resemblance between relatives. This error is likely to
affect sibs more than other relatives. For this reason it is therefore important
to derive estimates from different kinds of relatives and to measure the
frequency in relatives reared or living apart and in unrelated individuals living
together, such as spouses. In this way it may be possible to assess the
contribution from shared environmental factors. The second source of error
only occurs when estimates are based on full sibs. This is due to the fact that
non-additive genetic variance contributes to correlations between full sibs.
For these two reasons heritability estimates should ideally be based not only
on sibs but also on parents and offspring and, where possible. on second- and
third-degree relatives, though clearly this is usually a counsel of perfection.

Finally, in estimating heritability it is assumed that the variance of lability
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is the same in all groups being compared. It is therefore important that the
“general population’ should be representative of the population from which
affected individuals and their relatives are selected.

Calculation of heritability

In practice, the most usual situation is that in which the frequency of the
disorder has been estimated in the general population (‘g’) and in relatives of
affected individuals (‘ra’) (Method I in Falconer, 1965).

If A = affected individuals in a sample
N = total number of individuals in the sample
g = frequency = A/N
(= i)
x = deviation of the threshold from the mean of the population
a = deviation of the mean of affecteds from the mean of the population
r = correlation between relatives and probands.
}' = sampling variance of r

P
WL
a’d

then r=_2__"M

and k= r for identical (MZ) twins
= 2r for first-degree relatives and non-identical (DZ) twins
= 4r for second-degree relatives
= 8Br for third-degree relatives.

That is h* = r/R where ‘R’ is the coefficient of relationship (see p. 21).

From tables of the normal distribution, given a frequency ‘q’, it is possible to
determine the normal deviate “x’ (single-tailed), in standard deviation units, of
the threshold from the population mean and also “a’ the deviation of the mean
of the affecteds from the population mean (Appendix 35). If the frequency in the
general population is assumed to have been estimated without serious error
(see Falconer, 1965) then the variance can be calculated thus:

and SE h* = 2./V for first-degree relatives
=4./V for second-degree relatives

- 8\/ V for third-degree relatives.

If the frequency of a disorder differs in the two sexes, then the sexes of both
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probands and relatives must be treated separately giving four estimates of
heritability: male relatives of male probands, female relatives of male
probands, male relatives of female probands and female relatives of female
probands. Here we have three frequencies: general population comparable to
affected individuals (‘g’), general population comparable with relatives ('gr’)
and relatives of affected individuals (‘ra’). In this situation

g_.r_‘rrn

aﬂ'

and I'-*’J—-(;I) (W, + W.)

g

If the four separate estimates of the heritability do not differ significantly they
can be combined into a single estimate by weighting each by the reciprocal of
its sampling variance and taking a weighted mean.

Another situation is when the data consist of the frequencies in relatives of
affected individuals (‘ra’) and in relatives of unaffected controls matched for
age and sex with the affected individuals (“¢’). In this situation

X, — X,q
, = PdXc )

2
and E— (E) w,,

Worked examples involving these various methods are given by Falconer
(1965) and also the special case in which there is variable age of onset
(Falconer, 1967). The reader can be no better advised than to refer to the
original publications. However, a simple example may perhaps be helpful in
illustrating the method of calculation.

Wynne-Davies (1970) has made a study of the frequency of congenital
dislocation of the hip in various relatives of affected individuals. If we use the
data on so-called ‘late-diagnosis’ cases the population frequency is about one
per 1000, i.e. g, = 0.1 %. From Appendix 3, for g, = 0.1 %, values for x, and
a, are 3.090 and 3.367. Among first-degree relatives there were 35 affected
individuals out of 1777, i.e. g,, = 1.97°%,. From Appendix 5, for g,, = 1.97%,
values for x,, and a,, are 2.060 and 2.426.

Since s
aﬂ'
o 3,090 — 2060
therefore r=—
= 0.306

h? = 2r for first-degree relatives
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therefore h? = 61.2%
I.-" 2
Now = 1) W..
\a),

(i)

" 0.9803
i k33ﬁ? (2.426)%35

= (.000420
SE h* = 2./ V for first-degree relatives
therefore SE h* = 0.041
or 4.1%,

Similarly the heritability and the standard error can be calculated for second-
and third-degree relatives (Table 5.3), the estimates obtained being 45.6 + 9.8
and 46.4 + 26.3.

In these calculations it has been assumed that the frequency in the general
population (0.10 %) is known without error, i.e. that the number of affecteds
upon which ¢, was estimated was very large. This of course simplifies the
situation but tends to reduce the estimated standard errors slightly.

The three estimates of the heritability can be combined by weighting each
by the reciprocal of its sampling variance and taking a weighted mean, i.e. by
dividing each of the individual heritability estimates by its variance and
summing, and dividing this by the sum of the reciprocals of the vanances.
Thus

hi h3 h3
(SE,)* * (SE,) ' (SE,)?

1 1 1
SE,)? T (SE)? " (SE,)?
612 456 464

(Mﬁ+ﬁw+amf
R Taiat |

@172 T 087 T (2637
= 58.6%,

weighted mean of h* =

The sampling variance of this combined estimate is approximately the
reciprocal of the sum of the weights. Thus
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SE of the weighted mean = L

1 1 o
\/{SEE T (SEy T (SEp
1

| ! |
J:Tm T 987 T (26.3)
= 37%

Thus the combined estimate of the heritability with its standard error is
58.6 + 3.7%.

Table 5.3 Heritability of congenital dislocation of the hip (late diagnosis) from frequencies in
various relatives (data from Wynne-Davies, 1970)

A N g% x a ro Vx 1000 'V h? + SE

Population = — 10 3090 3367 20— -
Belatives:
first-degree 35 1777 197 2.060 2426 0306 0.420 00205 6121 4.1

second-degree 16 4746 034 2706 3012 0.114 0.606 0.0246 456+ 95
third-degree 8 4220 0.19 2894 3.185 0.058 1.085 00329 464 + 263

Not all investigators agree with Falconer’s model and consider that it is
perhaps somewhat artificial to imagine a sharp cut-off beyond which
individuals are affected. Instead Edwards (1969) and Curnow (1972) have
suggested that a more realistic model is to consider that the genetic component
of liability is normally distributed in both the general population and in
affected individuals and according to Curnow (1972) the risk of being affected
increases in a sigmoid manner from 0 at a low genetic level to 1 at a high
genetic level. However, Falconer’s model and this latter model are
mathematically equivalent and lead to similar results.

Smith (1970) has produced a very useful graph (Fig. 5.2) from which it is
possible to derive an approximate estimate of the correlation in liability
between relatives, knowing the frequency of a disorder in the general
population and in relatives of affected individuals. Knowing the correlation
coefficient (r) it is possible to calculate the heritability since A* = r/R where * R’
is the coefficient of relationship (see p. 21). Thus in the case of renal calculi (an
example chosen by Falconer, 1965) the frequency in relatives of controls is
0.4 % and the frequency in first-degree relatives of patients is 2.5 %. From
Smith’s graph r = 0.25 and therefore the heritability is 50 %. From Figure 5.2
it is also possible to estimate the standard error of the heritability (Smith,
1970), but the method is complex and it is easier to calculate using Falconer’s
method (Falconer, 1965) as illustrated on page 59. Note that because of
sampling error the frequency in relatives might, in a particular study, appear
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to be less than the population frequency which would give rise to a negative
estimate of heritability (Fig. 5.2). Such negative estimates should be included
when pooling estimates from different sources.

Provided the population frequency of a disorder is known it is also possible
from Smith’s graph (Fig. 5.2) to derive an approximate estimate of the upper
limit of recurrence risks for relatives by assuming A* is 100 %. Thus if the
frequency in the general population is 1.0%, the maximum frequency
(recurrence risk) among first-degree relatives (r = 0.5)is 13 %, among second-
degree relatives (r=10.25) is 4.5% and among third-degree relatives
(r = 0.125)1s about 2.2 %. The values obtained by Falconer's method are very
similar and from the practical point of view of genetic counselling the
differences are small enough to be ignored.

So far we have only been concerned with the estimation of heritability of
discontinuous characters. Prominence has been given to this subject because
most disease states are regarded in this way. However mention should also be
made of the estimation of heritability of continuous characters such as stature
and blood pressure. Here heritability can be estimated from parent-offspring
correlations or sib—sib correlations. In the former we take the average value
of the offspring in each family and then calculate the correlation (r) between
these values and the average value for both parents in each family (so-called
mid-parent value). In general statistical terms, the correlation coefficient
between two variables (x and y) is equal to the square root of the regression
(h) of y on x multiplied by the regression of x on y:

r=./b

¥

x b.ty
The expected correlation between mid-parent and child is therefore equal to
the square root of the regression of child on mid-parent (which is 1) times the
regression of mid-parent on child (which is 0.5);

r=,/05=071
if the trait is completely genetically determined. Otherwise the heritability
r
- . I
2 0.71

Alternatively we can calculate the correlation (r) between the average values
of the offspring in each family and the value for one parent in each family (the
mother—child and father—child correlations being treated separately), in which
case

h? = 2r

In the case of sibs one calculates the so-called intraclass correlation
coefficient by an analysis of variance. The reader is referred to one of the
standard text books of statistics for details which are outside the scope of this
book (for example, see Snedecor & Cochran, 1967, p. 294 et seq). The
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derivation of heritability from the intraclass correlation for sibs is not
straightforward and the problem is discussed by Falconer (Falconer, 1981).
The details of assessing heritability in this way are usefully discussed in regard
to stature by Roberts et al (1978).
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Fig. 5.2 Graph of correlations in liability (r) between relatives and probands. From this the
heritability (h*) can be derived since h? = r for MZ twins, h* = 2r for first-degree relatives,
h* = 4r for second-degree relatives and h* = Br for third-degree relatives. (From Smith, 1970.)

Estimation of heritability from twin studies

Twins are said to be concordant when both exhibit the same trait. If only one
twin has the trait they are said to be discordant (see p. 87).

If in a particular disorder the population frequency and the proband
concordance rate (C,) in twins are known then it is possible to estimate the
correlation (‘') in liability and from this the heritability (Smith, 1974).
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An estimate of ' is given by

where values of “x” and ‘4’ can be obtained from Appendix 5 in the usual
manner. Thus if the frequency of a disorder in the population is 0.5 % (x,
= 2.576 and a, = 2.892) and if the proband concordance rate is 5.0 % (x,,
= 1.645) then

_ 2576 — 1.645

2892
= 0.32

or a more precise estimate may be obtained from

= X9 — [Im\/l —ij = xi’-.l“ﬂ; x“’#aﬂ'j]

: ag- + [Irzaiag ] xg]]

which in the above example is

2576 — [1.645,/1 — (2.5767 — 1.645%) (1 — 2.576/2.892)]
- 2.892 + [1.645%(2.892 — 2.576)]

= 0.36

The standard error of the correlation

- ()

Where A in this case is the number of twin pairs in which both members are
affected. Thus, if in the above example 4 = 9 then

T ey

= 0.05

Thus the estimate of the correlation and its standard error in the above
example is

0.36 + 0.05

It is also possible from twin data to estimate the correlation and therefore the
heritability simply from Figure 5.2, provided the concordance rate in twins
and the frequency in the population are known. Thus in schizophrenia the
population frequency is about 1.0% and in one recent study the proband
concordance rates were approximately 58 % in MZ twins and 12% in DZ
twins (Gottesman & Shields, 1972). From Figure 5.2 if the concordance in MZ
twins is 58 % then ry» 15 0.92, and if concordance in DZ twins is 12 % then
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rpz 18 0.48. Therefore for MZ twins
}!3 = Fyz = 92 %

and for DZ twins
ht=2rp, =96%

Pooling the results of several such twin studies the average estimate of the
heritability of schizophrenia works out to be about 85% (Gottesman &
Shields, 1973).

It should be noted that in the absence of environmental similarities,
concordance rates in MZ twins will not be expected to be high unless the
heritability and population frequencies are high (Smith, 1970). Despite a high
heritability the concordance may be low if the population frequency is low.

[t should also be noted that the index (H) proposed by Holzinger
(Holzinger, 1929), which depends on concordance rates in MZ and DZ twins,
i.e. H = (Cyy; — Cpz)/(1 — Cpp), is an arbitrary index and has no specific
genetic interpretation (p. 91). It is not a measure of heritability and therefore
should not be used for this purpose (Smith, 1974).

The heritability of conrinuous characters may also be estimated from twin
studies, in this case it is derived from the intraclass correlation coefficient and
this is discussed later (p. 90).

In conclusion, an estimate of heritability of liability for a particular disorder
is valuable for a number of reasons. Firstly, if a ‘reasonable’ estimate is
obtained this tends to support the hypothesis that the disorder is inherited on
a multifactorial basis. Secondly, it gives an idea of the relative contribution of
genetic and environmental factors to aetiology. Thirdly, it can be useful in
genetic counselling in helping to predict the possible frequency (and therefore
the chances of recurrence) in relatives. However a word of caution is
necessary. The application of the multifactorial model, with subsequent
estimates of heritability. is only justified when certain specific criteria are met
(p. 56). The uncritical application of the concept is therefore to be avoided,
a point which has been well argued by Fraser (1976).



Genetic linkage

In recent years a variety of laboratory techniques have provided a great deal
of information on gene localization in man (Francke, 1983). Pedigree analysis,
however, will continue to be of value particularly for localizing genes for traits
not expressed in cultured cells and for measuring distances between loci.

Much has been written on the subject of pedigree analysis for genetic
linkage studies and detailed expositions are to be found in Edwards (1971),
Renwick (1971) and Smith (1968). An eminently readable introduction to the
subject is to be found in Race & Sanger's Blood Groups in Man (Race &
Sanger, 1975).

The method adopted in determining linkage is the maximum likelihood
estimate of the recombination fraction (usually referred to as #) based upon
the relative probability (Pg) of having obtained the family. The latter is
determined by calculating the probability of having obtained the various
combinations of the particular traits under consideration on the assumption
of there being no measurable linkage (0 = 0.5) and comparing this with the
probabilities based on a range of recombination fractions from 0.00 to 0.50, i.c.

n P (family, given 6 = 0 to D.S}
R~ " P (family, given 0 = 0.5)

For convenience Pg is often expressed as its logarithm. The log,; of the
relative probability is called the ‘log of the odds’ or the lod score (Morton,
1955). The maximum likelihood estimate of #may be obtained by plotting the
sum of the lod scores (or the relative probabilities) for all the families studied
against various values of € from 0.00 to 0.50, and is the value of @
corresponding to the peak of the curve. Gene loci located on the same
chromosome are said to be syntenic, and syntenic loci showing less than 50 7%
recombination between them (# < 0.50) are said to be linked.

Autosomal linkage
Three generation families

Linkage phase refers to whether two linked genes are on the same particular

67
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chromosome ( = coupling phase) or on different homologous chromosomes
( = repulsion phase). In three generation families the linkage phase of
individuals in the second generation may be obvious from inspection of the
pedigree. In such a situation the recombination fraction can be determined
quite simply. Thus in the family in Figure 6.1, if black represents myotonic
dystrophy, a dominant disorder, and the sector alleles are represented as Se
(secretor) which 1s dominant to se (non-secretor) for the presence of ABH
substances in body secretions, we see that I, must be heterozygous for both
loci, and the secretor and myotonic genes are in coupling in II;. Therefore in
the third generation 11,  are all non-recombinants but II1, is a recombinant.

1 2
[
Secretor non-secretor
1 2
I —{]
Secretor non - secretor
I S T R
11 &]
Secretor non- non - Secretor non-  Secretor
secretor secretor secretor

Fig. 6.1 Family in which myotonic dystrophy (dominant) and secretor status are segregating.

In this situation the recombination fraction (#) is therefore 1 out of 6 or 0.17.
In fact, the study of a large number of families in which secretor status and
myotonic dystrophy were segregating gives a value of #close to 0.07.

Two generation families

When information is available only in two generations of a family, the
measurement of linkage is more involved and demands a resort to some
mathematics. If *G” and ‘g’ are alleles at the ‘main’ (disease) locus and *T" and
1" are alleles at the “test’ (genetic marker) locus, then if an individual has the
genotype GT/gi (i.e. coupling phase) there are four possible types of gametes:
two non-recombinants (GT and gt) and two recombinants (Gt and gT). If the
frequency of recombination is € then:

= D

frequency of non-recombinant gametes

I
| ==

M ‘

therefore frequency of GT or gt gametes

and frequency of recombinant gametes =

[ e o

therefore frequency of Gt or gT gametes
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If these two loci were not on the same chromosome (not syntenic), or if on
the same chromosome but were far apart (€ > 0.5). then there would be equal
numbers of all four types of gametes.

Now let us consider a family in which Lutheran blood groups and secretor
status are segregating. The Lutheran alleles are Lu® and Lu" where Lu® is
dominant to Lu® (Fig. 6.2).

Ob
Lu? Secretor Lu ® non-secretor

Lu b Lu® Lu b
non-sacrator Secretor Secretor

Fig. 6.2 Scgregation of Lutheran blood groups and secretor status

From this pedigree the mother must have the genotype Lu’se/Lu’se and
father must be Lu"Se/Lu’se or Luse/ Lu"Se. Depending on which genotype
the father has affects the assessment of his offspring as to which are
recombinants and which are not. Let us first consider that the arrangement is
Lu“Se/Lu"se, in which case the first four children are all non-recombinants
and the last child is a recombinant (Fig. 6.3).

O————O0
Lu%Se/LuPse Lubse/LuPse

& & &

Luhsﬂ' Lubse Luhf.ie.-* Lu’Se Lub se/ LubSa
L r
- ol s el
non-recombinants recombinant

Fig. 6.3 Segregation of Lutheran blood groups and secretor status

In this case the probability of getting

1 — 0)\?
3 children Lu’se/Lu’se = (T)

1 -0
1 child Lu"se/Lu“Se = =

fl
| child Lu’se/Lu’Se = 5
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Therefore the probability of getting this family if father has the genotype

Lu®Se/Lu®se is
I =8l 4‘:*
o =) 2

o —0f

32

Now let us consider the alternative possibilities when the father has the
genotype Lu“se/Lu’Se. Here the first four children are now all recombinants
and the last child is a non-recombinant (Fig. 6.4).

O—0
Lu%se/LuPSe LuhstILubH
1Lub=e." Lubse Lu®Se/LuPse LuPSe/Lulse
~ - [
recombinants non-recombinant

Fig. 6.4 Segregation of Lutheran blood groups and secretor status.

In this case the probability of getting

= A

j

I child Lu*Se/Lu’se = %ﬁ'

3 children Lu®se/Lu®se = (
1 child Lu*Se/Lu’se = 2
1

Therefore the probability of getting this family if father has the genotype

Lu®se/Lu®Se is
A AW
2 2 2

041 - 0)
—an

Now what we have to decide is the probability of obtaining the observed
phenotypes of the children under two different assumptions namely that
father is either in coupling or in repulsion. Since coupling and repulsion are
equally likely the probability of getting this family is the average of the
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probabilities assuming coupling and repulsion, i1.e.

1 ﬂ{l_— f)* b 841 — 0)
P 32 32

If we assume 0 = 0.2 then

1[ (02008  (0.2%(0.8)
Wy | b sl il ot
9.2 2[ 9 m ]
~ 0,001 300
If & = 0.5 then
1 [ (0.5)°
F“:i[ 16 ]
— 0000976

Therefore the relative probability (Pg) when 6 = 0.2

_ P (family|8 = 0.2) N
~ P (family|0 = 0.5)

_ 0,001 300
~0.000976

= 1.3320

This is then repeated for various values of # from 0.0 to 0.5 (Table 6.1).

Table 6.1 Lutheran blood groups and secretor status: relative probabilities and lod scores

71

Recombination fractions ()

0.0 0.1 0.2 0.3 0.4 0.5
Relative probability 0.0 1.0517  1.3320 1.2439  1.0758  1L.O0OOO
Lod score — o 0022 0.124 0.085 0.031 0,00

The relative probabilities are then plotted against the various recombina-
tion fractions and in this way the maximum likelihood estimate of the
recombination fraction is obtained (Fig. 6.5). In this example the maximum
likelihood estimate of @is approximately 0.21. In fact the study of a number

families in which the Lutheran blood groups and secretor status were

segregating indicates that fis about 0.15.

* ‘P (family | # = 0.2)’ means the probability of the family given thar & = 0.2. The vertical

line means “given that’.
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Fig. 6.5 Relative probability of linkage for various recombination fractions

Fortunately it is not necessary to go through such laborious calculations
each time because tables of lod scores are now available (see Appendix 6).

When the parent’s “phase’ is known (as it may be in three-generation
families) then lod scores for various numbers of non-recombinant and
recombinant offspring in each family can be read off directly from the table.
When the parents’ phase is not known (as in two generation families) the z,
score and its correction (e;) have to be determined. The z, score is determined
in the following manner. The offspring are divided up according to whether
or not they possess the main character and/or the test character. In the
example on page 68 this would have been necessary if there had been no
information on individuals in generation I. Thus:

Main character (G) + test character (T') =
(myotonic dystrophy + secretor) 5
Not main character (g) + not test character (1) = 3
(healthy + non-secretor)

Main character (&) + not test character (1) =}
(myotonic dystrophy + non-secretor) I
Not main character (g) + test character (T) 1
(healthy + secretor)

Thus the z; score is indicated as 5:1 (the larger number is conventionally
written first) and is looked up in tables under the heading ‘z; 5:1°. The ¢,
correction is necessary only when the test character genotype of a parent can
only be derived from an offspring involved in the count for z;. It is equal to
the number of individuals with or without the main character. In the above
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example this would be 4 : 2 (the larger number is again written first). The z; and
e, scores, indicated as ‘2, 5:1" and ‘e, 4:2', are then obtained from Appendix
6 and would be added to the lod scores from other families.

The anti log of the sum of the lod scores for individual families for various
values of @ gives the relative probability of linkage for each value of 6.

In extensive pedigrees of more than three generations the same logical
approach is followed, the z; and ¢ scores are calculated and from these the
lod scores are obtained.

The work involved however can be extremely tedious and time consuming
and there is plenty of room for mistakes in logic particularly in extensive
pedigrees. Fortunately computer programs, such as LIPED (Ott, 1974) and
LINKAGE (Lathrop et al., 1985), are now available for such computations.

Prior probabilites of linkage

So far, we have considered that all values of the recombination fraction are
equally likely. This is an oversimplification and Renwick (1969, 1971) has
emphasized the need to take into account the initial or *prior’ probabilities of
different values of .

Since chromosomes vary in length the probability that a given gene 1s
located on a specific chromosome is proportional to the length of the
chromosome. By considering the relative lengths of all 22 autosomes it has
been calculated that the prior odds of linkage for any two genes, i.e. that two
genes are located on the same autosome, is 1:17.5 (Renwick, 1969). Other
prior odds to be considered include the differential rate of recombination in
males and females (p. 75). known chromosomal location of one of the loci
being studied and so on. To obtain the final odds for linkage the prior odds
for each value of @ are taken into account. The calculation of prior
probabilities is rather complicated and the reader 1s referred to the onginal
papers by Renwick (1969, 1971). Fortunately, in practice, the inclusion of
prior probabilities is not necessary if only a rough estimate of the
recombination fraction is required and since human pedigree data are usually
meagre, this is often all that is possible anyway.

Probability of linkage

The average height (H) of the relative probability curve indicates the odds on
linkage, which for autosomal linkage are approximately equal to H: 20. The
average height of the relative probability curve is equal to the sum of the
antilogs of the lod scores for 6 = 0.05,0.10,0.15 ... 0.45 (Appendix 6) divided
by 9. Thus if H is 100 then the odds on linkage would be 100:20 or 5: 1.
For X-linked loci the probability of hinkage 1s equal to H:1.

Probability limits

The 0.95 probability limits (they are not really confidence limits in the true
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sense of the term) of the maximum likelihood estimate of the recombination
fraction may be determined approximately by simply subtracting 2.5 % of the
total area under the relative probability curve from each end of the curve. The
total area of the curve may be determined by planimetry or simply by counting
the number of one centimetre squares covered by the curve.

Recombination fraction and map distance

The relative distance between different loci on any particular chromosome is
related to the frequency with which crossing-over occurs between them : 1 %
crossing-over (r.e. 8= 0.01) being equal to one map unit or centiMorgan
(cM). The relationship between the recombination fraction and actual map
distance however, is not linear. The farther apart the loci. the greater the
discrepancy since double cross-overs will occur and be scored as non-
recombinants. Several formulae have been derived (e.g. Haldane, 1919;
Kosambi, 1944; Carter & Falconer, 1951) which permit recombination
fractions to be converted into map units. The formula of Kosambi (1944) is

convenient.
1+ 28
D=25log,| ——
- (1 = ZE})
where D = map distance in centiMorgans

) = recombination fraction.

If natural logarithms (log,) are not available then since log, = 2.3026 log, .

therefore
1 + 20
= 57 e
= logm(l = 2!’!)

Because of the limitations to the amount of human data that are usually
available, it 1s unlikely that linkage will be detected if #1s much greater than
0.20. Since the relationship between map distance and @is essentially linear up
to # = 0.20, from a practical point of view, recombination frequencies can be
converted directly into map distances with little loss of precision. Thus Race
& Sanger (1975, p. 595) calculated map distances for various values of the
recombination fraction using the three different formulae and in each case the
correction made little difference up to 0.20:

7] Haldane Kosambi Carter & Falconer
0.10 11 10 10
0.20 26 21 20
0.30 46 34 31

A table for converting # to map distances 1s given in Rao et al (1977).
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For reasons which are not clear recombination is often greater in females
than in males. Therefore in studying genetic linkage, if possible, families
should be divided into those in which the mother is the doubly heterozygous
parent and those in which the father is the doubly heterozygous parent and
the recombination frequencies determined for males and females separately.

X-linkage

In assessing the linkage relationships between a main locus and a test locus,
the offspring of doubly heterozygous females are scored. It has to be
remembered, however, that if no one else in the family is affected a mother can
only be considered heterozygous at the main locus (disease locus) if she has
had at least two affected sons. If there is only one affected son this could be
the result of a new mutation, in which case the mother would not be a carrier.
Of course if in a particular disorder there is a reliable test for the heterozygous

FAMILY H
1 2

recombinant non-recombinants

FAMILY R
1 2

"

recombinant nen-recembinant

FAMILY P
1 2

1

. w

Muscular E Colour
5 dystrophy blindness

Fig. 6.6 Families in which Duchenne muscular dystrophy and deutan colour blindness are
segregating. (From Emery, 1966.)
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state then even if the mother has only one affected son her genotype at the
main locus can be firmly established as either GG or Gg.

Consider three families in which Duchenne muscular dystrophy (main
character) and deutan colour blindness (test character) were segregating
(Emery, 1966). In family H (Fig. 6.6), since the maternal grandfather was
colour blind and his wife a carrier of Duchenne muscular dystrophy (she also
had other male relatives with this disease), these two loci must be in repulsion
in their daughter I1,. Therefore 111, must be a recombinant and 111, and I11;
must be non-recombinants. Similarly in family R the mother (I1,) is doubly
heterozygous and the colour blind and muscular dystrophy loci are in
repulsion and therefore I11; must be a recombinant and III, must be a non-
recombinant.

In family P the grandfather (I,) was dead. It was not known whether he was
colour blind and therefore the linkage phase in the mother (I1;) is not known.
In this case lod scores can be determined in the usual way. To determine the
z, score (see p. 72):

Main character (g) + test character (1) 1
(muscular dystrophy + colour blindness) } I
Not main character (G) + not test character (7))
(healthy + normal colour vision)

|

Il
(=1

—_

Main character (g) + not test character (T)
(muscular dystrophy + normal colour vision) I

Not main character (G) + test character (¢) = (]
(healthy + colour blindness)

Therefore the z; score is indicated as 1 : 1. The number of individuals with the
main character (muscular dystrophy, g) is 2, therefore the ¢, correction is
indicated as 2 : 0. For the appropriate number of scored children the lod scores
for each of these three families in which Duchenne muscular dystrophy and
deutan colour blindness are segregating can be determined (Appendix 6) and
then added to each other. The results clearly indicate (Emery et al, 1969) that
the loci for Duchenne muscular dystrophy and deutan colour blindness are
not closely linked (Table 6.2).

In studying X-linkage there is obviously a selection of such ‘informative’
families, which introduces a bias into the calculations which may alter the lod
scores slightly. Edwards (1971) has studied this problem in detail and has
provided a table of modified lod scores which takes into account different
modes of ascertainment. For precision, ideally one should perhaps use
Edwards’ tables. They are complicated however and most will find that for all
practical purposes the lod scores in Appendix 6 are quite adequate and in fact
give very similar results.
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Finally it should be appreciated that if the results of pedigree analysis
suggest that two loci (whether autosomal or X-linked) are within measurable
distance of each other, one will be more confident of the linkage relationship
the greater the lod scores and the narrower the 0.95 probability limits. This
point is illustrated diagramatically in Figure 6.7.

3.0

2.0 -

1.5

LOD SCORE

05 o

d

005 010 015 0.20 025 030 0.35 040 0.45 050
RECOMBINATION FRACTION (8]

Fig. 6.7 Diagram of lod scores plotted for various values of the recombination fraction ()
indicating: (a) high probability of very close linkage (i less than 0.05); (b) high probability that @
equals 0.15; (c) suggestion of linkage; (d) no discernible linkage.

The precise locations of several hundred genes in the human genome is now
known. This has been established by a variety of techniques quite apart from
classical linkage analysis (McKusick, 1980; Francke, 1983) and summaries are
to be found for example in the American Journal of Human Genetics (1983) 35:
134156, Human Gene Mapping 7, Cytogenetics and Cell Genetics (1984) 37
Nos 1-4. The use of linkage specifically with DNA markers for genetic
counselling purposes will be discussed in Chapter 8.



Twin studies, their use and limitations

Here we shall not be concerned so much with twinning as a biological
phenomenon, which has been dealt with in detail by Bulmer (1970) and
MacGillivray et al (1975), but rather with the value of twin studies in genetic
analysis. There are definitely two, and possibly three, types of twins. Firstly,
there are dizygous (DZ), non-identical or fraternal twins derived from the
independent release and subsequent fertilization of two separate ova. Such
twins are genetically no more alike than sibs. Secondly, there are monozygous
(MZ), or identical twins derived from the splitting of a single fertilized ovum
at an early stage in development. They therefore have the same genotype and
are of the same sex. A third type of twin resulting from the fertilization by two
separate sperms of two division products of the same oocyte is theoretically
possible but evidence of the existence in man is inconclusive. In man this form
of fertilization usually results in a mosaic individual.

The frequency of MZ twinning is essentially the same throughout the world
at about 3 to 4 per 1000 births. But whereas the frequency of DZ twins in
Western Europeans is about 6 to 9 per 1000 it is about twice this in Negroes
and less than half this in Orientals. Also MZ twinning is little influenced by
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Fig 7.1 Frequency of twin births per 1000 maternities for England and Wales (source: OPCS
Birth Statistics).
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maternal age or parity but the frequency of DZ twins increases significantly
with parity and with maternal age, reaching a maximum at 35 to 40 years
(Bulmer, 1959). Hereditary factors are important in DZ twinning (mother’s
genotype being much more important than father’s genotype) but much less
soin MZ twinning (Parisi et al, 1983; Philippe, 1985). There has been a gradual
decline in the frequency of twin births since the early 1950s (Fig. 7.1).
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Fig. 7.2 DZ and MZ twinning rates (live and still births per 1000 maternties) for England,
Scotland and Wales.

This decline has been due to a fall in the frequency of DZ twins, but this now
seems to be levelling off and the MZ rate is even rising slightly (Fig. 7.2).
Possible explanations for the decrease in DZ twins have been discussed by
James (1972) who has suggested that the cause may be more environmental
than biological. The increase in MZ twins has been attributed to the use of oral

contraceptives resulting in delayed implantation of the fertilized ovum
(Emery, 1985).

Diagnosis of zygosity

The first priority in twin studies i1s to establish the zygosity. There are
essentially three ways of doing this. The first is a statistical method (so-called
Weinberg's method) which is used to estimate the numbers of different types
of twins. The other two methods are used for diagnosing the zygosity in
individual twin pairs: one depends on the fetal membranes and the other on
similarities between the twins.
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Weinberg's method (Weinberg, 1901)

Since all MZ twins are of like-sex but half of DZ twins will be of unlike sex,
then the number of DZ twins can be estimated by doubling the number of
unlike-sex twins, and the number of MZ twins is the difference between the
numbers of like-sexed and unlike-sexed twins.

Thus the proportion of DZ twins is

2U
N
where [/ = number of unlike-sexed twins
N = total number of maternities

and the proportion of MZ twins is

L-U

N

where I. = number of like-sexed twins.

Therefore per 1000 maternities the DZ twinning rate is

E::c]lllﬂ*l:l
N

and the MZ twinning rate is

L;—Uxmm

Thus in 1973 in Scotland there were 74 500 maternities of which 747 resulted
in twin births: 516 of like sex and 231 of unlike sex. Therefore the frequency
of DZ twins is

2 x 231

l
TR

= 6.2 per 1000 maternities

and the frequency of MZ twins is

516 — 231

1000
4500

= 3.8 per 1000 maternities.

Weinberg's method is sufficiently accurate for most purposes though in fact
there is a slight excess of like-sexed over unlike-sexed DZ twin pairs (James,

1976).
The frequency of multiple births very roughly follows Hellin’s law. That is
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if the frequency of twins is ¢, the frequency of triplets is 2, the frequency of
quadruplets (3, etc. However because multiple births may result from
treatment with recently introduced ‘fertility drugs’ this simple relationship
may now no longer hold.

Fetal membranes

Examination of the fetal membranes is the time-honoured method of
diagnosing zygosity at birth. There are a number of possibilities which are
summarized diagrammatically in Figure 7.3. In all cases where there is a single
chorion (monochorionic) the twins are unequivocally MZ since this occurs in
about 70 % of MZ twins but never in DZ twins. In other situations the
diagnosis of zygosity is not clear cut and though dichorionic twins are more
likely to be DZ, an individual dichorionic twin pair of like-sex cannot be
unequivocally diagnosed by fetal membranes alone. For this reason and
because information on fetal membranes may not always be available the so-
called similarity method of diagnosing zygosity is often resorted to.

Placenta PLACENTA CHORION AMNION DZ(%) MZ(%)

2 2 2 50 15
1 2 2 50 15
1 1 2 - 70
1 1 1 - rare

Fig. 7.3 Diagrammatic representation of the different types of placentation and their frequencies
in DZ and MZ twins
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Similarity method

The object of this method is to compare, in the twin pair under study, traits
in which MZ twins would be expected to resemble each other more closely
than DZ twins. By such studies it is possible to estimate the relative
probability of monozygosity to dizygosity. If a pair of twins differs in one
simply inherited trait, such as sex, eye colour, or blood group, then the twins
must de dizygotic. On the other hand, apart from skin grafting, a pair of twins
can never be proved with certainty to be monozygotic, though with a large
number of traits the probability that a twin pair is monozygotic may become
almost unity. It should be remembered, however, that very rarely MZ twins
may have a different phenotype or chromosome constitution as a result of
post-zygotic aberrations (Nielsen, 1967; Benirschke & Kim, 1973).

Techniques used in this method include blood group typing, determination
of certain polymorphic phenotypes demonstrable in serum, erythrocytes and/
or leucocytes (including DNA polymorphic markers (p. 103), PTC tasting,
secretor status and dermatoglyphics. The determination of zygosity using this
method 15 much simpler when the parental phenotypes are known. The
following example will illustrate the method of calculation. The findings in the
father and mother of twin boys J and A were as follows:

Father Mother J A
Blood groups 0 A B A, A,
R,r R,\R, R, R, R, R,
MsMs NsNs MsNs MsNs
P-pos P-pos P-pos P-pos
Lula—) Lula—) Lula—) Lu(a—)
Kell-neg  Kell-neg Kell-neg  Kell-neg
Fy(a+) Fvla+) Fyla+) Fyla+)
Secretor status secretor  secretor secretor  secretor
Haptoglobin type 1-1 21 2-1 2-1
Dermatoglyphics
Total ridge count — — 161 165
Sum of atd angles e s 86 88

Clearly the only informative data are the ABO and rhesus (Rh) blood
groups, haptoglobin types and dermatoglyphic findings. Since approximately
70 % of all twins are DZ, the prior probability that twins are DZ is 0.70 and
the probability of their being MZ is 0.30. In the above example, the conditional
(see p. 93) probabilities of the second twin having the same sex, ABO and Rh
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blood groups and haptoglobin type as the first twin if the twins are DZ. is 0.50
in each case. From tables of dermatoglyphic findings in various types of twins
(Smith & Penrose, 1955; Smith et al, 1961), a difference in total ridge count
of only four occurs in about 4 % of like-sexed DZ twins and 27 % of MZ
twins, and a difference in atd angles of only 2° occurs in about 9 % of DZ twins
and in 18 % of MZ twins.

The prior, and each of the individual conditional probabilities are
multiplied together to give a joint probability of either dizygosity (JPpz) or
monozygosity (JPyz). The probability of dizygosity then

TRy
~ JPpz + JPyz
and the probability of monozygosity

- JPyiz
P L IF

or one minus the probability of dizygosity. In the above example the
calculations are as follows:

Character Ppz |
Prior probabilities 0.70 0.30
Conditional probabilities
Sex 0.50 1.00
Blood groups
ABO 0.50 1.00
Rh 0.50 1.00
Haptoglobin type 0.50 1.00
Dermatoglyphics
diff. in TRC (4) 0.04 0.27
diff. in atd angles (27) 0.09 0.18
Joint probability 0.000 157 5 0.01458
The probability of dizygosity is therefore
0.000 157 5
0.014737 5
= 0.0107
and the probability of monozygosity is
1 — 0.0107

= (0.9893
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In this case there is a 99 % probability that the twins are monozygous. It
should be noted that with continuously variable traits such as dermato-
glyphics stature or cephalic index, a diagnosis of the type of zygosity can never
be made with certainty.

Now if we had had no information on the parents of these two twins then
the probabilities of obtaining the various observed traits in the twins would
have to have been based on gene frequencies in the general population. The
calculations are very tedious but fortunately tables of relative probabilities of
dizygosity are available (Smith & Penrose, 1955; Smith et al, 1961), for blood
groups and some other traits based on their population frequencies in the
United Kingdom. With such information the method of calculation is as
follows. If pyD, py D, p,D, etc. are the relative probabilities of dizygosity for
each trait under consideration, then the overall relative probability of
dizygosity (pD) based on this information is

=poD x p\D % p,D % ..,
and the total probability of the twins being dizygous is
= pD/(1 + pD)

and the probability of the twins being monozygous is
=1 - [pD/(1 + pD)]

Thus in the above example:

Relative probability of

Character dizygosity
Prior prob. 2.3333 (i.e. 0.7/0.3)
Like-sex 0.5000
Blood groups

ABO (A,) 0.6470

Rh (R,R,) 0.5021

MNS (MNss) 0.4733

P(P+) 0.8489

Lu(A—) 09614

K(K—-) 0.9485

Fy(a+) 0.8036
Secretor status

secretor 0.8681
Dermatoglyphics

Total ridge count 0.23

atd angles 0.50

Relative probability of dizygosity (pD) 0.01114
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The probability of dizygosity is therefore

0.01114
101114

= 0.0110
and the probability of monozygosity is

1 — 0.0110

= (.9890

Gaines & Elston (1969) have produced a series of curves (Fig 7.4) from
which it is possible to read off directly the relative probability of dizygosity
for any gene frequency (g) and which are therefore applicable to any simply
inherited trait in any population in which the gene frequency is known. Curve
A is used when the twins are homozygous as when one of the two alleles is
dominant and the twins have the recessive phenotype, or if the two alleles are
codominant and the twins have the phenotype of either of the two
homozygous genotypes. Here *g" is the frequency of the common allele. Curve
B 15 used when the twins are heterozygous as when the two alleles are
codominant and the twins have the heterozygous phenotype. Here g’ is the
frequency of either allele. Curve C is used when the twins could be either
homozygous or heterozygous as when one allele is dominant and the twins
exhibit the phenotype associated with the dominant allele. Here “¢" is the
frequency of the dominant allele. Thus in the above example, the P
+ phenotype represents the homozygote PP or the heterozygote Pp, the gene
frequency of P being about 0.50 in Western Europe. Therefore from curve C
the relative probability of dizygosity 1s about 0.86.

Advances in recombinant DNA technology (Emery, 1984) have revealed
that DNA polymorphisms, which occur once in every 100 to 200 base pairs,
are extremely common in the general population. Such polymorphisms
should prove especially valuable in determining twin zygosity (as well as
paternity), because if a sufficient number are studied in any individual twin
pair, they may well provide enough information in themselves without
recourse to any other markers.

The use of twins in genetic analysis

The main value of twin studies in genetic analysis is that they can give an idea
of the role of genetic factors in aetiology. From this point of view the most
commonly employed techniques are the study of concordance rares (for
discontinuous characters such as disease states) and variances and correlations
(for continuous characters such as serum lipoproteins).
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Frobability

TR TR N
Gene Frequency

Fig. 7.4 Relative probability of dizygosity as a function of gene frequency (q). For details see
text. (From Gaines & Elston, 1969)

{:‘ﬂ‘!ﬂ'f}fﬂfﬂn{? rates

[f both twins of a pair are affected they are said to be concordant, while if only
one twin is affected they are said to be discordant. Concordance rates can be
defined in a number of ways (Allen et al, 1967). Firstly there is the pairwise
concordance rate (C,) which may be defined as the proportion of affected twin
pairs in which both members are affected. The pairwise concordance rate is
usually given by
C
C+D

where C = total number of concordant pairs
D = number of discordant pairs.

Thus in one recent study of schizophrenia in twins (Gottesman & Shields,
1972) there were 11 concordant and 11 discordant pairs of MZ twins and 3
concordant and 30 discordant pairs of DZ twins.

Therefore

C.MZ = 11/22 = 50%
C.DZ= 3/33= 9%

Concordance may also be expressed as the proband concordance rate (C,)
which may be defined as the proportion of affected individuals among the co-
twins of previously ascertained index cases. When both twins are affected and
have been independently ascertained, the twin pair is in effect counted twice.
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The proband concordance rate is given by

C+C

C+D+C
where C" = number of concordant pairs ascertained independently through
both affected twins.

Thus in the above example of the 11 concordant pairs of MZ twins, both
of the affected co-twins were ascertained independently in four pairs, and of

the three concordant pairs of DZ twins in one pair both twins had been
ascertained independently.

Therefore
11 +4 .
CMZ= il a -
2=
GhZ = ——=——=" = {98
P 3 EAlE ] 2

It should be noted that if an attempt is made to ascertain all affected twins
in the population then C = €' and therefore
2C
C, = —
=W+ D

Thus by attempting complete ascertainment of all affected twins, this gets
around the problem of deciding whether or not a pair of concordant twins
have been independently ascertained. It can also be shown (Smith, 1972a) that
if all twins with the trait in question have been ascertained then

C.=CI2—C)

and
C,=2C.(1 +C,)

so the two concordance rates can be derived one from the other. If the
condition under consideration is comparatively uncommon and/or ascertain-
ment is low, no pair of twins is likely to be doubly ascertained (€’ = 0) and
therefore the two concordance rates are equivalent.

On balance the proband concordance rate is to be preferred to the pairwise
concordance rate for reasons which are discussed in detail by Allen et al
(1967). Unfortunately in many twin studies in the past the mode of
ascertainment was either not recorded or not taken into account.

The interpretation put on concordance rates is that for a disorder in which
genetic factors are important in aetiology. the concordance rate for MZ twins
reared apart will be about the same as for MZ twins reared together, and the
concordance rate for MZ twins will be greater than for DZ twins. As was
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discussed earlier it is possible to estimate from concordance rates the
correlation in liability between twins and from this it is possible to derive the
heritability (p. 64). Again it must be emphasized that if the frequency of a
disorder is low (i.e. 0.1 % or less), the concordance rate in MZ twins will also
be low unless the heritability is very high (Smith, 1970).

Variances and correlations

An idea of the degree of genetic influence on a continuously variable trait may
be gauged from the intra (within)-pair and inter (between)-pair variances
(Osborne & De George, 1959) and the intraclass correlation.

The intrapair variance

2.4 =BF
2N

which has N degrees of freedom.
The interpair variance

! [Em + B? YA+ 5;]2]

SN 2 N

which has N — 1 degrees of freedom, where

N = number of twin pairs
A and B = values for the members of each twin pair.

Variances may be compared by dividing the larger by the smaller the ratio
being referred to as *F’, the statistical significance of which can be determined
from reference to standard tables of *F" values (Fisher & Yates, 1963).

The method of calculation is illustrated from some data on serum
cholesterol levels in twins (Osborne et al, 1959).

Since a trait such as serum cholesterol level may well be affected by age. sex
and environmental factors and for the sake of simplicity in merely wishing to
demonstrate the method of calculation, only the authors’ data on adult male
twins reared together will be considered. Their figures have been rounded-off
to one decimal place. For MZ twins the intrapair variance was 279.5 (N = 14)
and the interpair variance was 2780.5 (N = 18). For DZ twins the intrapair
variance was 694.3 (N = 6) and the interpair variance was 1519.1 (N = 6).
Thus comparing the interpair variances ol MZ and DZ twins (MZ/DZ):

2780.5

~1519.1
= 1.83

Whereas comparing the intrapair variances of MZ and DZ twins (DZ/MZ):
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. 6943
T 2795
=248

Neither of these *F’ values is statistically significant but since the intrapair
variance for DZ twins is more than twice that for MZ twins, this suggests that
hereditary factors play a role in the control of normal serum cholesterol levels.

However though intrapair and interpair variances can give an idea of the
role of genetic factors in aetiology, they are not in themselves a measure of the
degree of genetic determination.

Another approach to the problem is to measure the correlation between
pairs of twins, but it is not possible to calculate the usual correlation
coefficient because there is no way of deciding which measurement on a pair
of twins i1s X and which is Y. For this reason a different type of correlation
coefficient is determined. This is referred to as the intraclass correlation
coefficient (r) which treats the pairs of measurements symmetrically. It is equal
Lo

interpair variance — intrapair variance
interpair variance + intrapair variance

From the intraclass correlation coefficient it is then possible to calculate the
heritability (p. 57) since

h*=r/R
where R = coefficient of relationship
Therefore for MZ twins

h=r
and for DZ twins

== JFr

In the above example the intraclass correlation for male MZ twins reared
together

il 2780.5 — 279.5
27805 + 2795
= ().82

therefore h* = 82%

The intraclass correlation for male DZ twins reared together

_1519.1 — 694.3

- = 0.37, therefore h* = 749
1519.1 + 694.3
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Various useful mathematical models for the analysis of quantitative data
within the families of identical twins are discussed in detail by Nance & Corey
(1976).

Problems and limitations of twin studies

Twin studies have been helpful in fostering a great deal of research. The results
of such studies have emphasized the role of genetic factors in aetiology in a
variety of conditions. However there are limitations, both statistical and
biological, to the twin method. The statistical problems are those of
ascertainment and the interpretation to be placed upon such parameters as
intrapair and interpair variances. Edwards (1968) has argued that since all
diseases have some genetic predisposition the estimation of such parameters
may be a costly way of confirming expectations without providing any useful
measure of the intensity of this predisposition. However, recent studies have
shown that concordance rates and intraclass correlations can be used to
estimate the heritability which is meaningful in terms of measuring the degree
of genetic determination.

In the literature much use has been made of an index attributed to
Holzinger (1929) as estimating the degree of genetic determination from twin
data. This index, often referred to as “H°, has been variously expressed in
terms of concordance rates:

(Cmz — Cpz)/(1 — Cpz)
in terms of intraclass correlations:
(raygz — rpz)/(1 — rpz)
and in terms of intrapair variances:
(Vpz — Vmz)/Vpz

However, this ‘H" index is an arbitrary index and has no specific genetic
interpretation (Cavalli-Sforza & Bodmer, 1971). It is not an estimate of
heritability and should therefore not be used for this purpose. For these
reasons it has been recommended that the use of the *H” index should be
discontinued (Smith, 1974).

The biological limitations to the twin method are more complex and
difficult to cater for. They include prenatal factors such as position in utero,
manner of delivery. and the possibility of shared placental circulation, as well
as postnatal factors and perhaps here the main problem is the tendency for
twins to share the same environment. It is for this latter reason that
comparisons between MZ twins reared together and reared apart can be

helpful.






Estimation of recurrence risks for genetic
counselling

Recurrence risks are based upon either Mendelian principles, in the case of
unifactorial disorders, or empiric observations on the frequency of a
particular disorder among relatives of affected individuals in the case of
multifactorial disorders. The estimation of recurrence risks in both these
situations has been discussed in detail by Murphy & Chase (1975). Here we
shall only be concerned with the principles of such calculations.

Unifactorial disorders

When considering the probability of an individual having a particular
genotype (preclinical case or a heterozygous carrier) it is customary to base
such calculations on “anterior’ information only. That is the prior probability
based on knowledge of the individual’s antecedents and sibs. But this ignores
‘posterior’ information based on the individual’s phenotype (clinical findings
and test results) and that of any of the individual’s offspring. From such
posterior information it is possible to calculate so-called conditional
probabilities. The product of the prior and conditional probabilities is the
Joint probability. The final posterior probability of an individual having a
particular genotype is the joint probability of getting the observed
information given the genotype in question, divided by the sum of this
probability and the joint probability of getting the observed information if the
individual is normal.

The expression of posterior probabilities in terms of prior and conditional
probabilities in this way is known as Bayes’ theorem or Bayes' law (Bayes,
1763).

In general terms, if the prior probability of an event A4 occurring is denoted
as P(A), and of 4 not occurring as P (not 4), and if the conditional probability
of event O if A occurs (i.e. probability of O given A) i1s P(O|A), and if the
conditional probability of event O if A does not occur is P(Q|not A), then the
probability of 4 given O

93
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Rtig) )

P(A|0) = P(A)P(0| A) + P(not A)P(O|not A)

This is illustrated in the case of an apparently healthy man aged 50 whose
father died of Huntington’s chorea and who wishes to know if his own son
may one day become affected. This disorder 1s inherited as an autosomal
dominant trait, the first signs of which usually appear sometime between the
ages of 25 and 55. The prior probability of having inherited the disorder from
his father is 1/2. Since approximately 80 % of cases of Huntington’s chorea
develop symptoms before the age of 50, the chance (conditional probability)
that he would not have manifested the disease by this age even if he had
inherited the gene is about 20% (1/5). Therefore the joint probability of
having inherited the disease and being clinically unaffected at age 50 is 1/10.
The prior probability of not having inherited the disease is 1/2 and of course
the conditional probability of being normal if he has not inherited the gene is
I, and therefore the joint probability is 1/2. The posterior probability of
having inherited the disease given that he is apparently unaffected at age 50
1s therefore 1/6:

Inherited Not inherited

Probability the disorder the disorder
® Prior 1/2 1/2
® Conditional 1/5 1
® Joint 1/10 1/2

) 1/10
Posterior ' =1/6

: 10+ 12

The prior probability that his son will have inherited the gene is therefore
I in 12 or 8.5 %. Of course as each year goes by and the father and son remain
healthy so their risks of having inherited the gene decrease. The probabilities
that an apparently healthy individual and his or her offspring may have
inherited Huntington’s chorea, polyposis coli or myotonic dystrophy have
been calculated in this way from data (based on clinical findings) in the
literature and from personal studies and the results expressed graphically in
Figures 8.1, 8.2 and 8.3, respectively.
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Fig. 8.1 Probability that an apparently healthy parent (upper curve) and offspring (born when
the still unaffected parent was aged 20, 30 and 40 years) may have inherited Huntington’s

chorea from an affected grandparent
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Fig. 8.2 Probability that an apparently healthy parent (upper curve) and offspring (born when
the still unaffected parent was aged 20, 30 and 40 years) may have inhented polyposis coli

from an affected grandparent
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Fig. 8.3 Probability that an apparently healthy parent (upper curve) and offspring (born when
the still unaffected parent was aged 20, 30 and 40 years) may have inherited myotonic
dystrophy from an affected grandparent

This Bayesian approach to probability calculations and the estimation of
genetic risks has been eloquently discussed by Murphy & Mutalik (1969). The
method is particularly valuable in the case of X-linked recessive disorders
where the problem is to determine the probability of a particular woman being
a carrier. The detection of symptomless female carriers is an important
problem in genetic counselling. During recent years a number of tests have
been devised by means of which it is possible to detect carriers of X-linked
recessive disorders. Unfortunately, in some of these tests there is overlap in the
results obtained in known carriers and normal women in which case a
suspected carrier with a normal test result presents a particularly difficult
problem and it is in this regard that Bayesian methods can be particularly
helpful.

Of course if an appropriate test indicates that a woman is a definite carrier,
then genetic counselling can be based on first principles and this more
elaborate approach is not necessary.

In a lethal X-linked disorder, such as Duchenne muscular dystrophy, the
prior probability of any woman being a carrier is 4u (p. 32). If a suspected
carrier has two sons one of whom is affected, the conditional probability of
this, assuming she is a carrier, 15 1/4, and if she i1s not a carrier is u (the affected
son being a new mutation). Now in the case of Duchenne muscular dystrophy
approximately two-thirds of known carriers have a serum level of creatine
kinase which exceeds the normal 95th percentile (Emery, 1965). If a suspected
carrier’s serum level of creatine kinase is therefore less than the normal 95th
percentile then the conditional probability of this if she is a carrier is 1/3 and
if she is not a carrier is 19/20. Thus:
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Probability Carrier Not a carrier
®Prior 4u 1-4u =1
® Conditional

genetic (1/2)? u

biochemical 1/3 19/20
e Joint u/3 £19/20

3

Posterior # —

u/3 + pl9/20

This is inefficient however. because not all the information is being used and
it is better to use the actual values of the particular characteristic being
measured, for example, by taking into account the suspected carriers’ actual
serum level of creatine kinase and comparing this with values in normal
women and known carriers. This is done by first calculating the proportion
of normal women and the proportion of known carriers who have a particular
serum level of creatine kinase, as shown in Table 8.1.

Table 8.1 Relative probabilities of normal homozygosity to heterozygosity (*h°) for various
serum levels of creatine kinase expressed in international units (from Emery, 1980)

Serum creatine kinase Controls Carriers i
{(1U) No. %Y ;) No, A (Y, /Y3

11-30 26 13.0 2 25 520
31-50 112 6.0 10 12.5 4.48
51-70 47 23.5 8 10,0 235
T1-90 f lo0 {1 12.5 0.24
91100 L] 1.5 6 1.5 0.20
LI1-170 i 10 6 200 .15

=170 ] 0.0 28 35.0 -

Total 200 10:0.0 80 1 0 —

The way in which such information is then used is illustrated in the following
example which also indicates how the Bayesian approach is applied in a more
complicated family situation. Let us assume that a woman who seeks genetic
counselling has a serum level of creatine kinase of 80 IU, one normal brother,
and a sister with a serum level of creatine kinase of 60 IU who has an affected
son, there being no one else affected in the family. First we have to go back
one generation and consider the mother of these two sisters whose prior
probability of being a carrier is of course 4y. We then consider the conditional
probabilities, firstly of her having had a normal son and secondly of having
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had a daughter with an affected son and a serum level of creatine kinase of
60 1U. The over-all joint probabilities are then calculated. It is most useful to
set out the calculations in clear cut steps as follows:

Consider mother

Probability Carrier Not a carrier
@ Prior 4u | — 4p=|
® Conditional
a normal son 112 |
(] A "y i e |
daughter Carrier Not a carrier Carrier  Not a carrier
® Prior 1/2 1/2 2u I
® Conditional
affected son 1/2 7 1/2 u
SCK 60 IU 0.10 0.24 0.10 0.24
® Joint 0.03 0.12u 0.10u 0.24u
® Joint 0.06u 0.24,° 0.10u 0.24u
(neghgible)

In the case of the daughter we first determine the prior probabilities of her
being a carrier or not a carrier given her mother is or is not a carrier. Secondly,
we determine the conditional probabilities of the daughter having an affected
son and a serum level of creatine kinase of 60 IU assuming she is or is not a
carrier, and finally we determine her joint probabilities. The final over-all joint
probabilities are arrived at by multiplying the daughter’s joint probabilities by
her mother’s prior probabilities and her mother’s conditional probabilities of
having a normal son. The final posterior probability of the mother being a
carrier, taking into account information on her daughter with an affected son,
is the sum of the joint probabilities if she is a carrier (columns 1 and 2) divided
by the sum of these probabilities plus the sum of the joint probabilities if she
15 not a carrier (columns 3 and 4) i.e.:

000
0.06u + 0.10p + 0.24u

= (L135

We now consider the sister who came for counselling who now has a prior
probability of being a carrier of 0.075, say 0.08;
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Probability Carrier Not a carrier
® Prior 0.08 0.92
® Conditional
SCK 80 IU 0.13 0.03
® Joint 0.010 0.028

Her (posterior) probability of being a carrier is therefore:

1 OO
0.010 + 0.028
=0.26

Thus despite the fact that both she and her sister have serum creatine kinase
levels within the normal range, the sister who requested counselling still has
a high chance (i.e. about 1 in 4) of being a carrier.

A general formula for calculating the probability of a woman being a carrier
of a lethal X-linked disorder, which affects either a brother or a son (there
being no one else affected in the family) has been derived (Emery & Morton,
1968). If i, and h,,, based on the results of biochemical and other tests, refer
respectively to the relative probabilities of normal homozygosity to
heterozygosity (Y,/Y, in Table 8.1) in the suspected carrier and her mother,
so that if there is no such information & = 1,

and if ¢ = number of normal brothers

and r = number of normal sons

and if s = 1 where a son is affected and 0 if a brother is affected
and = 0 where a son is affected and 1 if a brother is affected

then the probability (P) of her being a carrier of a lethal X-linked disorder:

1 + sa
"l +sa+ab+th

where

a = h,2

and
b=h2

If the frequency of carrier females is Hu (i.e. 4u when the fitness of affected
males is 0, as in Duchenne muscular dystrophy, or 18y when the fitness of
affected males is 0.7, as in haemophilia A (see p. 33), then the probability of



100  METHODOLOGY IN MEDICAL GENETICS

a woman being a carrier of any X-linked disorder:

p— | + sa’
l + sa’ + a'b +th
where
a = ad4/H
For example in the case of haemophilia A where H = 18u
a = a4/18
= 0.22a
therefore
1 + 0.225a

1 + 0.225a + 0.22ab + th

Returning to the problem of Duchenne muscular dystrophy, formulae have
been derived which also take into account information on serum levels of
creatine kinase in the first-degree post-pubertal female relatives of a suspected
carrier (Emery & Holloway, 1977). The probability of a woman being a carrier
(where again there is only one affected individual in the family) then becomes:

gl 1 + saf
1 + saf + afbd + thd
where
" Yli
L il-:ll 05(Y,; + Y3)
where

Y, = proportion of normal women with a particular daughter’s serum level of
creatine kinase

Y, = proportion of definite carriers with this serum level of creatine kinase.
Similarly,

1l'Fli

for each sister
i+ Y,

f= n. 0.5(Y

If there is no such information on daughters then d = 1, and if there is no such
information on sisters then /= 1. Thus if the daughters are currently too
young for their serum levels of creatine kinase to be meaningful, and if sisters
are not available then the above formula reduces to:
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1 + sa
| + sa + ab + th

as before,
To illustrate how the formula is applied, consider the situation in Figure 8.4.

[ 1 ®2

v o Owd &
wdl 0 O

Fig. 8.4 Hypothetical family in which 11} wishes to know her risk of being a carrier of
Duchenne muscular dystrophy

Here the woman who is seeking advice (I1,) has an affected brother (1 = 1;
s = 0), one normal brother (g = 1), and two normal sons (r = 2). If serum
levels of creatine kinase are 80 IU in I (h,, = 0.24)and 60 IU in 11, (h, = 2.35),
and if serum creatine kinase levels in II; and 115 are respectively 801U and
601U, then

3.0 23.5
/= [u.s (3.0 + 12.5]] [ 0.5(23.5 + IU.{}}:| =i

and if the serum creatine kinase levels in 111y and III; are 201U and 401U
respectively, then

13.0 56.0
a5 [D.S{llﬂ + 2.5]][0,5[55_0 T IZ_,S_}] = 2.74

Therefore the probability of II; being a carrier, taking into account all this
information, is

or approximately 3 %. Though the formulae used in these calculations look
a little formidable their attraction i1s that they are readily amenable to
computer programming. A program which can be adapted for this purpose
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is PEDIG (Heuch & Li, 1972; Conneally & Heuch, 1974).

One further complication, however, requires consideration. In the Becker
type of X-linked muscular dystrophy, serum levels of creatine kinase decrease
with age in carriers, which means that in this disorder, in determining the
probability of a woman being a carrier, her age as well as her serum level of
creatine kinase must be taken into account (Skinner et al, 1975).

The method given above for calculating *A’ values and the general principles
involved apply to any X-linked disorder where quantitative data on carriers
are available. For example, factor VIII and factor VIII-like antigen in carriers
of haemophilia A. Further, the results of different tests may be combined by
multiplying together ‘A’ values from the different tests, for example,
combining data from serum levels of creatine kinase and electromyography
in the case of a suspected carrier of Duchenne muscular dystrophy. Thus a
woman who has an affected brother, but no other brothers and no sons, and
if two different tests have yielded values of iy and h,, then the probability of
her being a carrier is:

1
1+ 2h,h,

If the problem had been that she had an affected son. but no brothers and no
other children, then the probability would have been:

1
1+ (hyhy))2
iy puEait)
= 2,

It should be noted however, that it is only legitimate to multiply #; and h if
the two tests are statistically independent, i.e. they are not positively
correlated for controls or carriers.

The Bayesian method of calculating probabilities, based on estimating
values of *4’, can provide little information if the data are limited and is
unnecessary when the results of a particular test indicate a clear dichotomy |
between normal women and carriers. The method 1s most valuable in those X-
linked disorders where there is overlap in test results in normal women and
carriers. The particular method chosen for estimating ‘4" will depend upon the
amount of data available. As we have seen, values for *A’ can be estimated
from an arbitrary classification into normal and abnormal if the data are
limited, or from density functions if the data are extensive.

A major development in recent years has been the introduction of DNA
markers for carrier detection and the way in which such information can be
combined with, say. serum creatine kinase data and used in genetic
counselling deserves special consideration.
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Linkage and DNA markers

Of interest in the present context has been the demonstration of linkage
between loci for particular genetic diseases and what are referred to as
restriction fragment length polymorphisms (RFLPs) (Emery, 1984). The
latter are normal variations in base sequences of the DNA which have no
apparent effects on the individual and are inherited as co-dominant traits.
They are detected by restriction endonucleases. These enzymes cut DNA at
sequence specific sites and in the case of an RFLP different sized DNA
fragments will be produced in some individuals compared with others. These
fragments are detected on an electrophoretic gel (a Southern blot) by
hybridization with a DNA probe complementary to that particular region of
the DNA. These points are illustrated in Figure 8.5.

e Frﬂbe
A 10 kb C
} { allele-1
: il - Ekb: allele - 2
B
1 O
1-2 2-2
11 ‘ ‘ &’
1-2 -2 2-2

Teae = = = = |
— — == 10 kb
————— T kh

Ny 1 Iy Iy g

Fig. 8.5 Diagrammatic representation of an autosomal RFLP (above), its inheritance within a
family in which three members are affected with an autosomal dominant disorder (middle),
and the appearance of the resultant restriction fragments on a Southern blot (below)

Here it is assumed there is a polymorphism at restriction site B, the absence
of the site is here called allele-1 and the presence of the site is allele-2. When
the restriction enzyme cuts the DNA in one chromosome at sites 4 and C it
generates a single fragment of size 10 kb (1 kb = 1000 base pairs) which
corresponds to allele-1. If the enzyme cuts the DNA not only at sites 4 and
C but also at B, two fragments will now be generated of sizes 7 kb and 3 kb
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which corresponds to allele-2. Polymorphic genotypes can therefore be
deduced from the pattern of bands on an electrophoretic gel. In this example
the affected parent is heterozygous (1-2) for the polymorphism as are the two
affected children (11, and 11,) whereas the youngest unaffected child (II;) is
homozygous for allele-2.

The interest in RFLP’s is that if close linkage can be found with a disease
locus then this can be useful for preclinical and prenatal diagnosis and, in X-
linked disorders, the detection of female carriers. Such information i1s most
useful when linkage is very close, as when the polymorphism occurs within the
gene itself or is only a few hundred base pairs distant (1 % recombination or
I centiMorgan is roughly equivalent to 1000 kb). However, if the
polymorphism is some distance from the disease locus then the possibility of
recombination has to be taken into account. If studies had shown that the
polymorphism in the above hypothetical example were linked to an
autosomal dominant disorder, it would appear in this family that the disease
locus and allele-1 are in coupling. A prediction of the disease status in any
subsequent child would depend on the polymorphic allele he or she inherited
and the possibility of recombination occurring. Thus, if the next child inherits
allele-1 from father, he or she will be affected unless crossing-over occurs, but
if allele-2 is inherited from father then the child will not be affected unless
Crossing-over occurs.

Linkage with DNA markers is particularly valuable in detecting female
carriers of X-linked disorders. Because of random inactivation of the X-
chromosome (Lyonisation) and subsequent cellular mosaicism in females,
carrier detection by conventional biochemical methods on serum can never be
entirely satisfactory. Some carriers might be detected only by studying single
cells or clones of cells, but even then there is the added complication of
possible metabolic co-operation between normal and mutant cells, or even the
suppression of mutant cells within the body. As it circumvents these problems,
linkage with X-chromosome DNA markers as a means of detecting carriers
has considerable attraction. An example of this is given in Figure 8.6 where

! o

a5

Il 1&1* (J_)

1-2

Fig. 8.6 Pedigree of an X-linked recessive disorder linked to an RFLP, the alleles of which are
represented below the pedigree symbols
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an RFLP (allele-1 and allele-2) has been found to be linked (recombination
fraction @) to an X-linked disease.

Inspection of the pedigree suggests that the disease gene in this family is in
coupling with allele-2. The probability of IIl; being a carrier therefore
depends on which of her mother’s polymorphic alleles she inherited. If she
inherited allele-2 then she will be a carrier unless crossing-over occurs, and
therefore in this instance the probability of her being a carrier is (1 — #). But
if she inherited allele-1 she will not be a carrier unless crossing-over occurs, and
therefore the probability of her being a carrier is then equal to the
recombination fraction €. In the example under consideration, III; is
heterozygous for the RFLP and since she had to inherit allele-1 from her
father she must have inherited allele-2 from her mother. She is therefore likely
to be a carrier unless crossing-over occurred. Incidentally, contrary to what
might be expected in X-linked disorders, useful information can be provided
by the father. If there had been noe RFLP information on the affected male in
generation [1 there would be less certainty of the linkage phase in mother. The
method of calculation is then as follows. Firstly, we consider mother who must
be a carrier of the disease gene. Assuming that either linkage phase is equally
likely (the disease gene () is in coupling with allele-1 or allele-2), if the disease
gene is in coupling with allele-1 then she could only have an affected son with
allele-2 or a normal son with allele-1 if crossing-over occurred in each case. i.e.
the conditional probabilities of both events is equal to the recombination
fraction €. But if the disease gene is in coupling with allele-2 then both these
events could only occur if there was no crossing-over, i.e. the conditional
probabilities are equal to (1 — €). In this way we can calculate the joint
probabilities for either linkage phase. Now we consider the daughter and for
either linkage phase in her mother she may or may not be a carrier. If the
disease gene is in coupling with allele-1 in the mother, then given the daughter
is a carrier she could only have inherited maternal allele-2 if crossing-over
occurred (i.e. the conditional probability is #), and if she is not a carrier if
crossing-over did not occur (i.e. the conditional probability is 1 — #). And so
on. The calculations can be set out thus:

Consider mother (11,)

Probability I—a or 2—d
® Prior 1/2 1/2
® Conditional

affected son

with allele-2 7] 1—-8

normal son

with allele-1 f 1—-48

: * (1 —6)?
@ Joint 5 -
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Consider daughter (I11,) __ = A

hl r Al

Carrier Notacarrier Carrier Not a carrier

® Prior 1/2 1/2 1/2 1/2
® Conditional
Carner or
non-carrier
with maternal 0 =0 = 2
allele-2
: & F(l — 6 (1 — 872 a1 — 0)*
. =
Joint 2 i 4 3

Note that the joint probability in column 1 is the probability that the daughter
15 a carrier and the disease gene is in coupling with allele-1 in her mother,
whereas in column 3 it is the probability that the daughter is a carrier and the
disease gene is in coupling with allele-2 in her mother. The overall posterior
probability that the daughter is a carrier irrespective of the linkage phase in
her mother is therefore the sum of the joint probabilities in columns 1 and 3
divided by the sum of these probabilities plus the sum of the joint probabilities
if she is nor a carrier (columns 2 and 4), i.e.

# +(1 -8y
@+ (1 =0y + 041 —0) + &1 — 6)*
_1—’3.:5f+:’--:‘3'1
1 —20 + 202

If linkage is fairly close then in such a situation this refinement does not
affect the risks to such an extent as to influence the individual’s likely course
of action. Thus if # = 0.10 then disregarding uncertainty of the linkage phase
in mother, her daughter’s chance of being a carrier is 90 %, but if this
uncertainty is taken into account then her chance of being a carrier works out

to be 89 %!
The calculation of risks is more difficult when there is only one affected

individual in the family, a situation which is becoming increasingly frequent
nowadays, partly as a result of genetic counselling in affected families. The
affected individual in such a family may represent a new mutation and there
15 no certainty as to the linkage phase. Let us assume that mother is
heterozygous for the DNA polymorphism (1-2) and that her husband and her
only son who is affected both have allele-2 whereas her daughter, whose risk
Is to be determined, is heterozygous. The latter, having inherited allele-2 from
her father, must therefore have inherited allele-1 from her mother, that is a
different maternal allele from her affected brother. The method of calculation
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is as follows. Firstly, we consider mother whose prior probability of being a
carrier is of course 4u and there is an equal chance that the disease gene is in
coupling with allele-1 or allele-2. Given that mother is a carrier with the
disease gene (d) in coupling with allele-1 then she could only have had an
affected son with allele-2 if there had been a cross-over, i.e. the conditional
probability of having an affected son with allele-2 is equal to the
recombination fraction 8. However if the disease gene in mother is in coupling
with allele-2 then she could only have had an affected son with allele-2 if
crossing-over did nor occur (i.e. 1-8). In this way we can calculate the joint
probabilities for the mother being a carrier or not being a carrier. Now we
consider the daughter who may or may not be a carrier. If her mother is a
carrier with the disease gene in coupling with allele-1, then given her daughter
1s also a carrier, she could only have inherited maternal allele-1 if crossing-
over did not occur (1-8), and if she is not a carrier, only if crossing-over did
occur (#); and so on. The calculation can be set out thus:

Consider mother:

Probability Carrier Not a carrier
@ Prior 4u 1
= —. == — v=—
2u 2u
{1 —d) (2 —d)

® Conditional
affected son

with allele-2 f 11— I
@ Joint 2ul 2u(l — i
Consider daughter:

g 5 -~ A} r : e \ e 7 - .
Carrier Mot Carrier Not Carrier Not

@ Prior 12 1/2 142 1/2 2u 1
@ Conditional

Cirrer or

non-carrier

with maternal

allele-1 | -8 7] (7] | — @ 1/2 1/2

2util — 0 2ufl? 2l = ) 24l — * 2t
® Joint W00 20 0= 0) WO 0F E
2 2 2 2 2 2
(negligible)
® Postenor
(of being a carner)
48(1 — &)
40(1 — O+ 2F + X1 -6 + |
_46(1 — &)

3

Serum creatine kinase data can also be taken into account by incorporating
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it as another conditional probability (see p. 98). If the daughter’s serum
creatine kinase level is such that ¥, of normal women and Y, of known
carriers have this level, then the final probability becomes:

2 _ [ =01y,

T [46(1 — )]Y, + [20*% + 2(1 — 0)* + 1]Y,
whi fi 4001 -6
401 — 0) + [26% + 2(1 — 6)* + 1]h

where

il
=

h

Thus if there is no information on serum creatine kinase (h = 1), and if 8 = 0.5
(i.c. essentially no data from a DNA probe), then the probability of the
daughter being a carrier becomes:

20 + 4+ 203 + 1
or one-third, which is what would be expected.
The probability of a sister of an isolated case of Duchenne muscular

dystrophy being a carrier has been calculated assuming various SCK levels
and recombination fractions (Fig. 8.7).

1.0 4

h=04
=
]
[+
h=110
h=23
h=48
-
00 KE=— : . . .
1] 01 0.2 0.3 0.4 05

Recombination Fraction (8]

Fig. 8.7 The risks of a sister of an isolated case of Duchenne muscular dystrophy being a
carrier assuming she has inherited the same (——) or difTerent ( ) maternal RFLP allele as
her affected brother, and for various serum creatine kinase levels corresponding roughly to the
normal percentiles of 99 (h = 0.1), 98 (h = 0.4), 95 (h = 1L.0), o0 (h-2.3), and 50 (h = 4.8)
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The risks in such situations may be further refined by including information
on the number of normal brothers she may have, her mother’s serum creatine
kinase level. and, particularly important, her maternal grandfather’s
haplotype. To reduce the rate of misdiagnosis resulting from recombination
between the disease locus and a DNA marker, information from probes on
either side of the disease locus (flanking probes) can also be very helpful.
Taking into account all such information in order to give an over-all risk
figure is very valuable (Clayton & Emery, 1984).

Computer programs for assessing genetic risks which take into account
information on linked DNA probes are now available. The program LIPED
(Ott, 1974), which is widely used to compute lod scores in linkage analysis, has
been adapted to include DNA probe data for counselling, and details are
given, for example, in Conneally et al (1984), Winter (1985). Clayton (1985).

Dominant disorders with reduced penetrance

In autosomal dominant disorders, genetic counselling is relatively straightfor-
ward when there is more than one affected individual in the family, even if
penetrance is reduced. or if there is only one affected individual but the
disorder is always fully penetrant. In the latter situation then, barring
illegitimacy. the affected individual must be a new mutation and therefore the
chance of recurrence in any subsequent children is negligible. But in disorders
with reduced penetrance, an iselated case in a family may not be a new
mutation, because one of the parents may be a clinically normal heterozygote.
In the case of apparently normal parents who have had a child with an
autosomal dominant disorder with reduced penetrance, the chances of
recurrence in a subsequent child may be calculated in the following way. The
(prior) probability that either parent is heterozygous but unaffected because
the gene is non-penetrant is 4pg (1 — P) where P is the penetrance. Given one
of the parents is heterozygous, then the conditional probability of having a
child who has inherited the mutant gene and is also affected is P/2. On the
other hand, given that neither parent is heterozygous, then the conditional
probability of their having a child with a new dominant mutation is 2u which
is equal to 2pg(l — f) provided there is balance between mutation and
selection. The probability of an affected child is then 2pg(1 — f)P. The joint
and posterior probabilities are then calculated in the usual manner:

One parent Both parents
Probability heterozygous normal
@® Prior 4pg(l — P) —= ]
@ Conditional P2 2pg(1 — /)P

@ Joint 2pq(l — P)P 2pg(1 — f)P
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The posterior probability that one of the parents is heterozygous is therefore

2pgq(l1 — P)P
2pq(1 — P)P + 2pg(1 — f)P
1—-P
“2-P-f

The risk of the next child inheriting the mutant gene and also being affected
is therefore

P 1-P

30—
_ =Ry
==

If there is no reduction in fitness (f = 1) then the risk simply becomes P/2.
Alternatively if the disorder confers sterility (f = 0) then the risk becomes

_P1-P)
T 22-P)

However, when dealing with disorders with reduced penetrance, fitness is
always assessed only for affected heterozygotes (say /) and the true fitness of
all heterozygotes ( f) will be somewhat greater. Using fitness values derived
from affected individuals only, will therefore tend to underestimate risks
calculated in this way. However selection against all heterozygotes (5) 1s equal
to selection against those that are affected (5') multiplied by the penetrance:

s=5P
therefore
(1=r)=(-1)P
fi=1 (1 —fIF

Substituting this value of fin the above risk equation, the risks to the next
child become:

P(1 — P)
22 —B =l (1 f)]

which reduces to:

P[]—ﬂ
21 — Pf)
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Thus in tuberous sclerosis where penetrance is around 90 % and fitness of
affecteds is about .25, then the risks to the sib of an isolated case:

_ (090)(1 — 0.90)
©2{1 — (0.90)(0.25)}

= 0.058

or about 6 %. Or in the case of myotonic dystrophy where P is at least 95 %
and /" i1s about 0.75, then the risk is 0.083 (8.3 %).

However, too much faith should not be placed on such figures because
estimates of fitness vary considerably in different studies. Further, as
techniques for detecting heterozygotes become increasingly more sophis-
ticated and sensitive, so the proportion of heterozygotes who remain
completely undetected may become so small that penetrance is virtually
100 %. In the situation where both parents can be shown not to be
heterozygotes. there would be wvirtually no risk to subsequent children.
However, it has to be admitted that the whole concept of penetrance i1s a
difficult one and has been the subject of much debate in recent years. This is
well summarized by Opitz (1981).

Multifactorial disorders

By determining the frequency of a particular disorder among relatives it is
possible to predict recurrence risks, for example, to children born subsequent
to an affected child in a family. Such information is also important in
segregation analysis when unifactorial inheritance is suspected (see Ch. 4) or
for calculating the heritability when multifactorial inheritance is suspected
(p. 57).

Empiric risk figures for sibs may be determined by considering the proportion
of affected individuals among all sibs as is usually done in segregation
analysis. However this assumes that the risks to children born before the
proband are no different from the risks to children born after the proband.
This is true for unifactorial disorders but may not be true in other situations,
for example, if there is the possibility that the recurrence of the disorder may
be related to maternal age or birth order. This problem is illustrated in the case
of endocardial fibroelastosis a disorder characterized by progressive cardiac
failure beginning in early childhood and associated with gross cardiomegaly
and characteristic cardiac histology, possibly at biopsy but usually at autopsy.
The cause is not known, but various suggestions have been proposed
including autoimmunity, viral infection, a recessive metabolic disorder or a
multifactorial aetiology. In an extensive study of 119 families with this
disorder, Chen and her colleagues (Chen et al, 1971) found that whereas the
frequency of the disorder in the general population is about 0.017 %, the
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Table 8.2 Empiric risks (%) for some common disorders. (From Emery, 1983.)

Mormal AfTected
parents  Affected parent
having a parent having a
second  having an  second

Sex ratio  affected affected  affected
Disorder Incidence M:F child child child
Anencephaly 0.20 1:2 Sk = —
Asthma 34 I:1 10 26 —
Cerebral palsy 0.20 3:2 1t —- —
Cleft palate only 0.04 =% 2 7 15
Cleft lip £ cleft palate 0.10 3:2 4 4 10
Club foot 0.10 2:1 i 3 10
Congenital heart disease 0.50 1:1 1-4 1-4 10
(all types)
Mabetes mellitus 0.20 I:1 (i 1-2
(juvenile, insulin-dependent)
Dislocation of hip 0.07 1:6 6 12 36
Exomphalos 0.02 L:1 < | - —
{omphalocoele)
Epilepsy 0.50 I:1 5 5 10
("idiopathic’)
Hirschsprung’s discase 0.02 4:1
short segment 3 2
long segment 12 = =
Hydrocephalus 0.05 1:1 A — —
(isolated, not XR)
Hypospadias 0.20 — 10 10 —
{1in males)
Manic-depressive psychosis 0.40 2:3 10-15 10-15 =
Mental retardation 0.30-0.50 1:1 3-5 i 20
("idiopathic’)
Profound childhood deafness 0.10 1:1 1] hd —
Pyloric stenosis 0.30 5:1
male index 2 4 13
female index 10 17 i%
Renal agenesis (bilat.) 0.01 3:1
male index 3 — -
female index 7 — -
Schizophrenia 1-2 1:1 10 16 —
Secoliosis 0.22 1:6 7 5 —
(‘idiopathic, adolescent’)
Spina bifida 0.30 2:3 3-5* 4* —
Tracheo-oesophageal fistula 0.03 1:1 1 1

* Risk for anencephaly or spana bihda
t Il associated with ataxia, or symmetrical spastic paraplegia or athetosis risk approximately 107,
** Addiponal | 2% nsk of other newral defects

frequency among all sibs was 3.8 % compared with a frequency of 17.7 %
among sibs born subsequent to the index cases. The latter figure is clearly the
appropriate one for genetic counselling when parents have already had an
affected child. Therefore when determining empiric risks for genetic
counselling purposes it is clearly important first of all to exclude the
possibilities of a parental age or birth order effect on the recurrence in
subsequent sibs. It would be ideal to base recurrence risks always on the
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frequency in subsequent sibs. However, in practice, this is often difficult
because family limitation, subsequent to the birth of an affected child, may
result in insufficient data being available.

Risk tables for genetic counselling in various family situations for cleft lip
+/— cleft palate, pyloric stenosis and CNS malformations are available
( Bonaiti-Pelli¢c & Smith, 1974). For some relatively common disorders empiric
risks to sibs and to the children of affected individuals are given in Table 8.2.
These are average figures but are usually adequate for genetic counselling
purposes. There are computer programs for risk calculations either dis-
regarding consanguinity, e.g. RISKMF (Smith, 1972b), or taking consangu-
inity into account (Bonaiti, 1978).



Disease associations

One approach to demonstrating the role of genetic factors in the aetiology of
a disorder is to determine if there is any association with an inherited marker
trait such as a particular blood group or HLA type. If a disorder is found to
be associated with a particular marker more frequently than would be
expected by chance, this may suggest a causal relationship, that is the
association may be due to multiple effects of the same gene. It should be
remembered, however, that association can be due to other causes which
include epistatic interaction (e.g. between the Lewis and secretor loci),
selective interaction (e.g. between G6PD deficiency, thalassaemia and
resistance to malaria in certain areas of the Mediterranean), population
stratification (p. 122) and very close linkage resulting in ‘linkage
disequilibrium’ that is certain alleles at adjacent loci are preferentially
maintained in coupling (Bodmer et al, 1969).

The first large-scale study of association was made by the late Professor
Aird and his colleagues in 1953 (Aird et al, 1953). He had proposed that since
cancer of the stomach and blood group O were both commoner in the North
of England the two might be associated. In fact the association proved to be
not with group O but with group A and the association was highly significant
in all parts of the country. Since then, there have been many studies of disease
associations either with blood groups (Roberts, 1957; Clarke, 1961; Vogel &
Helmbold, 1972) or more recently with HLA types (McDevitt & Bodmer,
1974; Svejgaard et al, 1975; Ryder & Svejgaard, 1981).

Penrose sib method

Penrose (1935) sib method for detecting association (or linkage) depends on
the fact that if pairs of sibs are selected at random from a series of families
certain types of sib pairs will be more frequent if there is association or linkage
than if there is free assortment of the characters studied. The method is also
applicable when there are more than two sibs in a famuily. If there are three sibs
then the family will provide three pairs for comparison: if there are four sibs
then six pairs can be compared. That is, a family of size s can be partitioned
into s(s-1)/2 possible pairs. If association or linkage exists the number of
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classes where sibs are both alike or are both unlike will be relatively increased
over other classes. To determine if such a deviation is statistically significant
Fisher's exact probability test may be used (Fisher, 1970). Thus if we consider
two traits, say X and Y, then the findings in pairs of sibs can be expressed as:

Tram X
£ i b ]
Like Unlike Total
s Like a b a+ b
L { Unlike ¢ d ek
Total a+c b+d N

where the total number of sib pair compansons studied (N) is equal to
(¢ + b + ¢ + d), and the exact probability of observing the proportions in the
various classes:
fa+b)!c+d!'la+c)b+d!
= N'a bl d '

where " denotes ‘factorial’ and means successive multiplications in a
descending series. Thus 4! means 4 x 3 x 2 x | or 24, and by convention
0! = 1. Tables of factorials are available as well as logarithms of factorials, the
latter being necessary when large numbers are involved (Fisher & Yates,
1963). Many pocket calculators are also now available which give factorials.

The application of the method is provided by Penrose who studied the
relationship between blood group A and red hair in 60 sib-pair comparisons
and obtained the following results:

Blood group A

i = B
Like Unlike Total
! Like 40 17 i
Redbair 3 {1 1ike 0 3 3
Total 40 20 60

The probability of obtaining this distribution of results by chance:
57! 3! 400 20!
60! 40! 17! 0! 3!
= 1/30

Such a result, though indicating a relationship between two traits, does not
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give any indication whether this is the result of association or linkage. The
Penrose sib method (1935), subsequently elaborated by him (Penrose, 1953a),
is useful however inasmuch as the result may indicate that a particular
possibility is worthy of further study. Also, since it is not necessary to know
parental genotypes, this method can be particularly valuable when there are
difficulties in obtaining such data, as in the case of traits that may only become
manifest in middle or old age. The method can therefore be of particular value
in studying factors associated with longevity. However, though Penrose’s
method is simple, it is not very efficient, and when there is more than one sib
pair per family it becomes less reliable.

Woolf's method

To determine the statistical significance of an association the method most
widely used is that of Woolf (1955). This method has the advantage that it
allows us to combine data from various centres, in which the marker trait may
have different incidences, and it also allows us to test for heterogeneity
between centres. The method involves essentially four steps.

1. The relative incidence

The patients and controls are divided into two groups depending on whether
they have a particular marker (say &) or not (either for not @). For example,
those with blood group O as compared to those with blood group A, or those
without group O (A, B and AB). The relative incidence of the disease in
persons with marker o compared to persons with marker 8 is obtained by
cross-multiphication. Thus if

h = number of patients with marker o
H = number of controls with marker «
k = number of patients with marker f8
K = number of controls with marker f

then we can draw up a table thus:

marker patients controls
4 h H
B k K

and the relative incidence (‘x’) of the marker « in patients

kK

~ Hk
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Forexample in a large study in Liverpool there were 505 Os and 263 As among
patients with duodenal ulcer, and 7536 Os and 6013 As in controls (Clarke,
1961). The relative incidence of duodenal ulcer in persons with group O
compared to | in persons of group A is therefore

505 x 6013
7536 x 263

= 1.53

To test the significance of this finding and in order to combine results from
different centres it is necessary to calculate the total y*. pooled y* and
heterogeneity y* (for the significance of which see Appendix 2).

2. Total
If the relative incidence (x)
= hK
HEk
and if y = log . x
k' k H K

then the significance of *y’ in individual studies is determined by calculating
z* for each study which is equal to wy? with one degree of freedom. ¥* values
for individual studies are then summed to give the roral y* (= Zw)?), the
number of degrees of freedom of which is equal to the number of studies being
combined.

3. Pooled y*

This tests the significance of the overall mean value of *x” from unity and is
equal to

(Zwy)
Tw

and has one degree of freedom.
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4. Heterogeneiry y*

This tests the departure of individual values of “x* from the overall mean. It
is obtained by subtracting the pooled »° from the total »*:

o [Ewy]z

2
Zwy S

The number of degrees of freedom is one less than the number of studies being
combined.

In combining data from several studies the weighted estimated mean value
of “x” is the natural antilogarithm of EZwy/Zw and its SE is the natural

natural antilogarithm of . /1/Zw.

The method of calculation is illustrated with data from various centres in
the UK on the association of peptic ulcer and blood group O (Woolf, 1955).
The data and related calculations are summarized in Table 9.1. The results
indicate that in all three centres there is a significant association between
peptic ulcer and blood group O.

The pooled y?

(Zwy)?
Zw

_ (189.94)
~ 5760

= 62.63

and heterogeneity »*
|fE'.-.r_1.::I2
Ew

= 2.99

= Twy?

With two degrees of freedom 0.2 < P < 0.3. Therefore there is no apparent
heterogeneity in the results of the three studies, which may therefore be
combined.
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The weighted mean value of “x is the natural antilogarithm of

= 0.33, the natural antilogarithm of
which 1s 1.39.

Its SE is the natural antilogarithm of

V1/Zw

= ./1/576.0

= 0.0417

The 95%, confidence limits are therefore
0.33 + (1.96) (0.0417)
=025 to 0.41

Taking natural antilogarithms the 95 % confidence limits are 1.28 to 1.51.
Another instructive example is afforded by data from Los Angeles
(Schlosstein et al, 1973) and London ( Brewerton et al, 1973) on the association
between ankylosing spondylitis and the HLA antigen B27 (Table 9.2). Clearly
both studies reveal a highly significant association. Here the total x*is 137.63,
and the pooled »? is (27.20)%/5.54 or 133.55. The heterogeneity »° is therefore

= 137.63 — 133.55
= 4.08

With one degree of freedom this value of »* is just significant
(0.02 < P < 0.05). There is therefore a suggestion of heterogeneity in the data
and it may not be entirely justified to combine the data from these two studies.
However if one does, the weighted estimated mean value of the relative
incidence is 135 (the natural antilogarithm of 27.20/5.54 or 4.91). Therefore
this association is very much greater than has been observed in the case of any
of the blood group associations.

It should be noted however that from a clinical point of view relative
incidence is not of great practical value since it only tells us the relative risk
of a disease in individuals with a particular HLA type compared with
individuals without this HLA type. What a clinician is more likely to want to
know is the likelihood of a particular disease if the patient has a particular
HLA type. To answer this question we have to use Bayes’ theorem (p. 93). Thus
in the case of ankylosing spondylitis, the incidence in males is approximately
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0.2%, and HLA B27 is present in approximately 90 %, of patients and 5%, of
controls. Thus if a male patient is suspected of having ankylosing spondylitis
and he has HLA B27 then:

Probability Affected Normal
® Prior 0.002 (0.998
® Conditional

HLA B27 positive 0.900 (0.050
® Joint 0.0018 (0.0499

The posterior probability of such an individual being affected is therefore:

0.0018
0.0018 + 0.0499

== § 5%

which is much greater than if information on HLA were not available.
However it assumes that the physician’s suspicion (prior probability) of the
disease is merely based on the disease incidence (0.2 %) but in fact it may be
considerably greater because of the patient’s symptoms and signs. For
example, the probability of ankylosing spondylitis in an adult male with
persistent low back pain. Ideally such information should be included in the
calculations.

Smith’s method

Another approach to the problem of disease associations is Professor C. A.
B. Smith’s method of analysing sibships (see Clarke, 1959a, 1961). The
principle of this method is to assess in each sibship in which the particular
marker trait under consideration is segregating (in which some sibs have
marker trait  and some f3) the probability of the proband (the individual with
the particular disorder under consideration) having marker trait & and then
compare the total ‘observed’ result with the total *expected’. Thus in a sibship
of four in which two are of group O and two of group A, the ‘expected’
probability of the proband being group O is 0.5. If in fact he is group O the
‘observed’ score 1s 1, whereas if he is in group A the ‘observed’ score is 0. The
observed and expected scores are then summed and the difference compared
statistically. The disadvantage of the method is that a great number of families
are required for such analysis since many will be uninformative. For this
reason the method has not been widely adopted.
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Problems of disease association studies

Wiener (1970) has been particularly critical of studies of blood group
associations but some of his criticisms are equally valid in any study of disease
association. Excluding technical problems of erroneous typing and
ambiguities in diagnosis and classification of disease, which should really not
be problems in present day studies, the other main criticisms are largely
concerned with the statistical treatment of the data.

Firstly, if a large enough number of different studies are made between a
particular blood group and a particular disease then the results of 1 in 20 of
these studies might appear “significant’ by chance alone. Or when studying
many different HLA antigens for possible association with one particular
disease one would expect that even if none of the antigens 1s really associated
| out of 20 would appear associated by chance alone. This statistical problem
15 referred to as the ‘Bonferroni inequality’ and Bodmer has suggested one
answer to the problem is to multiply each P value obtained by the ¥ test by
the number of antigens tested, i.e. the number of comparisons. Thus with 20
comparisons an individual P value would have to be less than 0.05/20 or
0.0025 to be significant. Better still the results of a pilot study should be
confirmed by a more extensive prospective study.

Secondly, prior probabilities of their being an association are not taken into
account. If diseases are selected at random and without clear rationale then
the likelihood of an association may be remote. In such studies a P value of
0.05 would hardly be enough to overcome the presumption that no
association exists. Unless there is a valid biological explanation for an
observed association then perhaps a P value of 0.01 might be considered a
more appropriate level of statistical significance.

Thirdly. in combining data from different centres there are a number of
statistical problems, perhaps the most important of which is pooling
heterogeneous data.

Finally, there are the problems of *stratification” and the choice of adequate
controls. For example. there may be a stratum of the population in which both
a particular disorder and blood group are especially frequent but with no
causal connection between them. Controls must therefore be chosen from the
same population as the patients. Also there is the possibility that healthy
controls may be biased in favour of blood group O (Vogel, 1970).

With careful selection of controls and appropriate statistical analysis these
problems can be avoided. However there remains the problem of the
biological relevance of a blood group association. The strongest association
is between duodenal ulcer and blood group O and non-secretor, yet even here
the contribution of the ABO and secretor loci to the total variance is only
about 2.5% (Edwards, 1965). Thus the blood group loci would appear to
contribute little to the genetic component of liability. However this seems
unlikely to be the case with the HLA loci where the associations with certain
diseases are very much stronger (McDevitt & Bodmer, 1974; Svejgaard et al,
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1975; Ryder & Svejgaard, 1981). The rather unrewarding results of studies of
blood group associations should therefore not deter the investigator from
considering disease associations with other marker traits, but always bearing
in mind the importance of carefully selecting matched controls and the
underlying problems of statistical analysis.

Value of disease association studies

There are a number of important practical reasons for studying disease
associations. Firstly, an association with a genetic marker indicates an
identifiable genetic component in the aetiology of the disorder. Possible
explanations for blood group associations with various non-infectious and
infectious diseases have been discussed respectively by Clarke (1961) and
Vogel (1970). These associations are comparatively weak. However several
associations which have recently been demonstrated with HLA antigens are
much stronger (McDevitt & Bodmer, 1974; Svejgaard et al, 1975; Ryder &
Svejgaard, 1981). Some significant associations between various blood groups
and HLA types are given in Tables 9.3 and 9.4. The figures for relative
incidences are only approximate since they continually change as more studies
are reported.

One of the most likely interpretations for the strong associations with HLA
antigens is that immunological mechanisms, mediated by the HLA loci are
involved in pathogenesis perhaps even by immunological cross-reaction
between the HLA antigen and a possible aetiological agent(s). It could be that
the homozygote for the particular HLA type may be at a higher risk of
becoming affected or of manifesting a more severe form of the disease.

The identification of groups at risk through their HLA type (or other marker)
may be useful in recognizing preclinical cases in families where the marker
trait 1s segregating and where a strong association has been demonstrated
between the marker trait and the disorder in question. Clearly such

Table 9.3  Significant associations between blood groups and disease

Disease Blood group Relative incidence (ave.)

Non-infectious
Cancer of various siles
Pernicious anaemia
Ischaemic heart disease
Duodenal ulcer
Giastric ulcer

OO
b e b b L

Infectious
Leprosy
Hepatitis
Smallpox A and AB
Influenza A, O

= =

e e
L o= L ==
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Table 9.4 Significant associations between HLA types and disease

Disease HLA Antigen Relative incidence (ave.)
Non-malignant
Ankylosing spondylitis B27 135
Reiter’s discase B27 40
Anterior uveitis B27 1)
Coeliac disease BX 10
Myasthenia gravis BH 5
A2
Multiple sclerosis B7 5
Al 1.8
[DMiabetes mellitus BE i
B&, B15 10
Malignant
Hodgkins disease B18 1.9
B5 I .6
Al 1.4

information could be valuable in genetic counselling. For example, consider
the risk to the children of an individual with ankylosing spondylitis. Family
studies have shown that the empiric risk of the disease in first-degree relatives
is about 4 % (higher in males than females). Further, the chance of having
HLA antigen B27 if one has ankylosing spondylitis is approximately 90 %
whereas the proportion of healthy individuals with this HLA antigen is only
about 5 %. If an affected parent has B27 antigen and if a particular offspring
is also found to have the B27 antigen then the chances of its developing
ankylosing spondylitis can be calculated to be in the order of 9 %. However
if in this case the offspring is found not to have B27 then the chances of its
developing the disease is less than 1 %. Thus in this condition information on
HLA typing may significantly affect the genetic advice one gives to relatives.

Finally when there is a strong association with a genetic marker this may
be helpful in resolving genetic heterogeneity. For example myasthenia gravis
of adult onset may be a heterogeneous disorder because one form has been
shown to be associated with HLA B8, has an earlier onset, and thymomas are
uncommon. However another form is associated with HLA A2 and has a
later onset and thymomas are common (Feltkamp et al, 1974). These findings
may have important practical implications as there is a suggestion that the two
forms may respond differently to treatment by thymectomy (Fritze et al,
1974). Therefore the resolution of heterogeneity by HLA typing may prove to
have considerable practical importance in this disorder.

In conclusion, the study of disease associations has evolved over the last few
years. Early studies on blood group associations, though not particularly
rewarding, highlighted the importance of carefully choosing controls and
applying the right statistical methods. The HLA system is without doubt the
most polymorphic locus so far identified in man and therefore there is plenty
of scope for studying possible disease associations (Bodmer, 1978; Harris,






10

Resolution of genetic heterogeneity

It is now well recognized that clinically similar disorders may be genetically
different and this is referred to as genetic heterogeneity. The recognition of
such heterogeneity is important for several reasons: firstly, in order to have
accurate risks for genetic counselling; secondly, to know the prognosis in the
individual case, since this may be different in disorders which though clinically
similar are genetically different; thirdly, a precise genetic diagnosis is essential
in interpreting the results of studies designed to investigate aetiology and
pathogenesis; finally, genetically different disease entities may well respond
differently to any proposed therapy — what is effective in one form of a
disease may prove to be ineffective or even deleterious in another.

Genetic heterogeneity may involve mutant genes at different loci or
different mutations at the same locus (i.e. different alleles). Heterogeneity may
be demonstrated in various ways (Table 10.1). here we shall only be concerned
with some relatively simple statistical methods which can be used for
demonstrating and resolving genetic heterogeneity.

Table 10.1 Various ways in which genetic heterogeneity may be demonstrated

Clinical
clinical features
response Lo therapy, ete.
Biochemical
enzyme assays and kinetics
in vitro complementation

Grenetic
modes of inheritance
tests for allelism
variations within and between families
consanguinity studies
disease associabions
linkage
Maolecular
restriction mapping
DMNA hybridization, ete.

126
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Pedigree studies

The fact that clinically similar disorders are inherited differently implies that
they are due to different genes and there are numerous examples of this
phenomenon. In general, recessive forms of a disorder are more severe (earhier
onset, more severe manifestations, poorer prognosis) than dominant ones,
while X-linked forms tend to be intermediate in severity. This is sometimes
referred to as *Allen’s law’. If in a particular disorder clinical differences are
sufficiently clearcut then even in an isolated case it may be possible to make
a specific genetic diagnosis. For example, of the two commonest forms of
mucopolysacchandosis, in the autosomal recessive form (Hurler's syndrome)
there i1s clouding of the cornea, whereas in the X-linked recessive form
(Hunter’s syndrome) the cornea is clear and vision is unimpaired. Otherwise
these two disorders are clinically almost identical though they differ
biochemically. Unfortunately in many genetically heterogeneous disorders
there is considerable overlap of clinical features in the different disease entities
and a clear diagnosis of a dominant, recessive, or X-linked form may only be
possible when there is an extensive pedigree of the disorder. Even if a disorder
is clinically similar and inherited in the same manner in two different families
this does not necessarily mean that the disorder in the two families is due to
exactly the same mutation. Recent studies of the molecular pathology of the
thalassaemias, for example, have illustrated this point very well indeed.

From pedigree studies it is possible to test for allelism in two ways. In the
case of autosomal recessive traits, when both parents are homozygous for
mutant genes but at different loci, than all their offspring will be normal. But
if they are homozygous for a mutant gene at the same locus, then all their
offspring will be affected. In this way it has been shown for example that
autosomal recessive albinism, deaf mutism and amaurosis can each be due to
mutations at different loci. Secondly, in the case of co-dominant traits, if they
are due to allelic genes at the same locus, then the individual offspring of a
parent who carries two different alleles will inherit either trait, but never both
or neither. However, if the mutant genes are not allelic then individual
offspring can inherit both traits, one trait or neither trait. That is, genes at the
same locus (alleles) segregate, whereas genes at different loci (non-alleles)
assort. Such tests for allelism are only possible when the traits are relatively
common so that the study of doubly heterozygous individuals is feasible. For
this reason they have found most use in studying the genetics of various
haemoglobinopathies.

Pedigree studies can provide a simple and valuable approach to resolving
genetic heterogeneity but there are serious limitations. Firstly, since many
genetic disorders are uncommon, matings which could be informative are
often very rare. Secondly, heterogeneity frequently exists between disorders
which appear to be inherited in the same manner. Thirdly, many cases may
be isolated with no family history. A frequent problem is that the investigator
has collected together several cases of a rare disorder in which the clinical
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features suggest that more than one disease entity may be involved, but in only
a few instances is there another affected relative. It is in this sort of situation
that various statistical approaches may be usefully applied.

Analysis of variance

When investigating whether or not significantly heterogeneity exists between
families, it is best to consider some characteristic which can be quantified. In
practice age at onset 1s often used but since this 1s somewhat subjective, more
objective measures are preferred. such as age at death, nerve conduction
velocity, etc. Differences in the characteristic between families may be merely
due to chance, as would be expected for random samples taken from the same
population, or may signify real differences between families and thus be
indicative of genetic heterogeneity. The usual parametric method for testing
whether several independent samples have come from the same population is
the so called ‘one-way analysis of variance” or F test. But this assumes that the
measured characteristic is normally distributed, and family sizes being small,
there is no assurance of this. The alternative is to use a non-parametric test,
such as the Kruskal-Wallis test (Kruskal & Wallis, 1952; Siegel, 1956). In this
test the statistic

12 k R?
= L —3(N +1
N(N + H.—Zl n; k)

where (in studying familial variation)

k = number of families

n; = number of individuals in each family
N = total number of individuals
R,

= sum of ranks in each family

[‘-l“ln-
[

sum over all k families

[}
—

i

§ is distributed approximately as y* with (k — 1) degrees of freedom.

Consider for example an apparently autosomal recessive disorder in which the
age of onset (in months) has been recorded in each sib in 6 families (A to F):
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A B i D E F
4 4 6 10 2 9
10 3 6 9 4 7
6 4 3 8
12 2
8
mean 6.67 3.50 7.20 9.50 275 8.00

Inspection suggests there may be two different diseases with a somewhat
earlier onset in families 8 and E compared with the other families. Applying
the Kruskal-Wallis test, the ages of onset are ranked, and when ties occur
between two or more values, each score is given the mean of the ranks which
are tied. Thus

A B € D E F
6.5 6.5 10.0 17.5 1.5 15.5
17.5 3.5 10.0 15.5 6.5 12.0
10.0 6.5 3.5 13.5
19.0 1.5
13.5
n, 3 2 5 2 4 3
R 34.0 10.0 59.0 33.0 13.0 41.0

Therefore

12 (342 (10 (597  (33)* (13> (41)?
5=19“9+”[ + T +----—]—3[|9+1}

e 5 g 3
— 11.96

With (6 — 1) degrees of freedom the probability of the observed values
occurring by chanceis 0.01 < P < 0.05(Appendix 2). Thus it seems that in this
example age at onset varies significantly between families and suggests that
there may well be genetic heterogeneity.

Evidence of bimodality

When studying a particular measurable characteristic in different families,
provided the data are sufficient, the frequency distribution curve may appear
bimodal. suggesting the existence of two genetically different groups. But it
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may be difficult to decide if this apparent bimodality is made up of two distinct
but overlapping curves, or merely a dip in an otherwise normal distribution.
If a large enough sample is studied mere inspection of the frequency
distribution curve may be sufficiently convincing. Otherwise it 1s necessary to
resort (o a statistical approach to determine if any apparent bimodality is
really significant.

A very simple method was devised by Haldane (1951). If x represents the
various measured values, and n, the number of times each value occurs, if
there is bimodality then some value of n, (after further grouping if necessary)
should be significantly different from H{n, | + n, , ).

If

d.=n._; —2n . +n,.,
and

Ny=n_y +n,+ 0,44
the standard deviation 5 = \/E_NI

then any value of n, differs significantly from the mean of its neighbours if

3
|d;|.'| = E
— > 196

5

and the exact probability can be read off from tables of the ‘normal
distribution’ (Table I, in Fisher & Yates, 1963).
Consider the following imaginary data of measurements on 100 individuals:

5 10 15 20 25 30 35 40
4 30 6 4 6 40 5 3

[ ot I ===

Mere inspection suggests two modes, one at x = 10, and the other at x = 30.

At x = 10

d, = —50
N, = 40
5 = 8.944
3
Pl -

= 5423 P < 0.01

5
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At x = 30
d, = —69
N =51
s = 10.100
3
T = 6.683 P < (001
But at x = 20
d, =4
N.=16
5 = 5.657
3
Fofls
|d,| 3

Other more complicated examples are given by Haldane (1951) who further
refines the test which is a useful preliminary for confirming a suspicion of
bimodality.

When biomodality results from the overlapping of two normally
distributed curves then the proportion of each group misclassified will be the
same (Fig. 10.1), and will be equal to the one-tail area under the normal curve.
The point of overlap (x), measured in standard deviation units from either
mean, can be determined from the means (m, and m,) and standard deviations
(5, and s,) of the two curves (Penrose, 1951):

m, —m,
5, + 83

2 —

Thus if the point where two curves overlapped corresponded to 1.96 standard
deviations from the means of either, then, since 95 % of observations lie
within 1.96 standard deviations on either side of the mean of a normal curve,
2.5 % (one-tail) will lie outside and therefore be misclassified. The percentage
misclassification for various values of x can be obtained from tables of the
‘normal probability integral’ (Table II, in Fisher & Yates, 1963). For
convenience the percentage misclassification for various values of x has been
plotted (Fig. 10.2).
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Fig. 10.1 Two overlapping normal distnbutions. The point of overlap (x) is such that
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Fig. 10.2 Percentage misclassification for various values of x

This approach has been applied for example to data on Becker and Duchenne
types of X-linked muscular dystrophy (Table 10.2). These two disorders are
clinically similar in their manifestations though the former is more benign
than the latter.
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Table 10.2  Clinical course in Becker and Duchenne types of X-linked muscular dystrophy.

(From Emery & Skinner, 1976.)

Onset Chair-bound Death
Mean Mean Mean
No. age sD No. age sSD No. age SD
[vears) [years) {years)
Becker 27 11.1 4.9 9 271 5.4 10 42.2 13.8
Duchenne 88 2.8 1.5 67 8.6 1.4 26 16.0 2.7
P £ < 0.001 P < 0.001 P = 0,001
b 1.297 1. .BRE |.588
2% misclassification 9.9 3l 5.8

The value of x and the percentage misclassification (in parentheses) for age at
onset, age of becoming chair-bound and age at death are 1.297 (9.9 %). 1.888
(3.1 %) and 1.588 (5.8 %) respectively. Thus in (100 — 9.9) or 90.1 % of boys
with Duchenne muscular dystrophy the onset is before the age of
2.8 4+ (1.297)(1.5) years or 4.7 years, whereas 90.1 % of males with Becker
muscular dystrophy develop symptoms after the age of 4.7 years. Similarly
(100 — 3.1) or 96.9 % of boys with Duchenne muscular dystrophy become
chair-bound before the age of 8.6 + (1.888)(1.4) years or 11.2 years, whereas
96.9 % of males with Becker muscular dystrophy become chair-bound after
this age. Finally (100 — 5.8) or 94.2% of boys with Duchenne muscular
dystrophy die before the age of 16.0 + (1.588)(2.7) years, or 20.3 years.
whereas 94.2 % of males with Becker muscular dystrophy die after this age.

This approach is useful because it provides a simple means for determining
which of several criteria might be the best for distinguishing between two
somewhat similar disorders in, say. an isolated case. In the above example for
instance it would appear that the age of becoming chair-bound is the best
criterion for distinguishing between Becker and Duchenne types of X-linked
muscular dystrophy.

The methods devised by Haldane and Penrose are simple and easy to apply
in practice. The problems of resolving bimodality are explored in more detail,
for example, by Murphy & Bolling (1967).

Correlations between relatives

An idea of the nature of genetic factors in aetiology and the possibility of
genetic heterogeneity may be gained by considering correlations between
relatives with regard to some measurable characteristic (such as age at onset,
or age at death) associated with a disease (Haldane, 1941; Harris & Smith,
1947). Provided the characteristic being considered is normally distributed,
the expected correlations between first-degree relatives will be:
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a. around 0.5 for a major gene with many modifying genes

b. approach 1.0 if there are two (or more) major genes

c. approach zero for a single major locus with only random environmental
effects.

A number of investigators have used this approach in searching for evidence
of heterogeneity. Thus in a study of proximal spinal muscular atrophy of
childhood, in 69 sibships. the correlation coefficients (with 95 % confidence
limits) for age at onset and age at death (transformed to logarithms because
of their skewed distributions) were 0.77 (0.67 to 0.86) and 0.72 (0.47 to 0.87)
respectively. These results suggest that heterogeneity exists in this disorder
with the operation of at least two major genes (Emery et al, 1975).

Here we have been referring to the usual (product-moment) correlation
coefficient. However, if the number of sibs in each sibship varies a great deal
then correlations are more reliably estimated from an analysis of variance (see
Winter et al, 1981).

If a disease inherited on a multifactorial basis can be split into two (or more)
groups on any criterion, Smith (1976) has shown how to test for the groups
being genetically distinct. The frequency of the two groups in the general
population and among first-degree relatives are determined and the data
presented as in Table 10.3.

Table 10.3 Data on probands and their relatives for two disease groups

Alfected relatives

: Group | Group 2
Proband Population All
group  frequency Number  Proportion  MNumber  Proportion  relatives
I PJ AI] P'II l"I,II FII "'.rl
2 P! AJ 1 P! 1 "'"!J F Pl F N!

Two simple tests can then be applied to the data to determine if the two
postulated groups are genetically different. Firstly, a test of genetic identity
between the two disease groups can be made by a y* test using a 2 x 2
contingency table whose elements are represented by a, b, ¢, and d. where

n=a+b+c+d
n 3
n[iad — be| —2—|

Lo
“(a+bc+dia+ )b+ d

&

Thus in a population and family study of neural tube defects quoted by Smith,
probands with anencephaly had 16 first-degree relatives with anencephaly and
13 with spina bifida, while probands with spina bifida had 20 first-degree
relatives with anencephaly and 32 with spina bifida. These data can be
arranged thus:
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Relatives with
Probands with Anencephaly Spina bifida
Anencephaly 16(a) 13(b)
Spina bifida 20(c) 32(d)
Therefore

, _ 81[I512 — 260] — 40.5)2
L= T(29)(52)(36) (45)

= 1.48

With 1 degree of freedom this is not significant and therefore the genetic
liabilities in the two proposed groups do nor differ significantly. That is,
anencephaly and spina bifida are not genetically distinct, but merely different
expressions of the same genetic liability.

Secondly, if there is no genetic correlation in liability between two proposed
groups, that is they are genetically distinct, then the proportions P;; and P,
in Table 10.3 should be equal to the population frequencies P, and P,
respectively. The observed and expected numbers (N P; and N,P,) can be
compared using an appropriate statistical test. These two simple tests for
suspected heterogeneity in multifactorial disorders are further elaborated by
Smith (1976).

Cousins and parental consanguinity

[t is possible to estimate the number of gene loci involved in an autosomal
recessive disease by:

I. Studying the incidence of the disease in first cousins of affected individuals

2. Comparing the observed incidence of the disease in the general population
with that calculated from knowing the frequency of consanguinity in the
general population and among the parents of affected individuals

3. Comparing the observed consanguinity rate among parents of affected
individuals with that expected if the disorder is due to different numbers
of gene loci.

If the incidence of an autosomal recessive disease in the general population
is known, it is possible to calculate the expected number of affected first
cousins of affected individuals. If the incidence in the general population is
I,, and only one gene locus is involved, then the gene frequency (g) is equal to
J I,, and the incidence among first cousins is:
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However, if the disease under consideration is genetically heterogeneous with
more than one gene locus being involved. then the incidence in first cousins
will be fess than expected. If the disorder is due to mutant genes at n different
loci, then the gene frequency for each (assuming they have equal frequencies)
is:

Ip

and therefore the incidence of the disease in first cousins (/).

Ir
n

4

and, following an original suggestion by Steinberg (see Crow, 1965) the
number of loci is therefore:

_ e
1612

For simplicity equal gene frequencies have been assumed but it 1s also possible
to make similar calculations for different gene frequencies.

The value of this approach depends very much on the completeness of
ascertainment of cases in both the general population as well as among first
cousins of affected individuals. Also if the disorder is rare, the differences
between the expected incidences in first cousins for different numbers of loci
will be slight (Fig. 10.3), and therefore to demonstrate that any differences are
statistically significant may require the study of a very large number of
affected families, which may not be feasible.
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Fig. 10.3 The observed incidence of an autosomal recessive disorder in the general population
[p} and the expected incidence in first cousins {{J‘ ]ﬁ-ﬂjl] for different numbers of gene loci
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The second approach involves comparing the incidence in the general
population with that calculated from the known consanguinity rates in the
general population and among parents of affected individuals. Dahlberg
(1947) has shown that for an autosomal recessive trait, the gene frequency (g)
can be estimated from:

a(l — C)
16C — Ca — 15a

where a and C are the frequencies of first cousin marriages in the general
population and among the parents of aflfected individuals respectively
(p. 22). The expected incidence of a recessive disorder (I, = g°) derived in this
way can then be compared with the observed incidence (/) in the general
population. Note that here the expected incidence refers to the expected
incidence in the general population and not in first cousins as previously. If
only one locus is involved then the observed and expected values will be
roughly equal. However, if the observed incidence of affected individuals is
greater than the expected incidence this could indicate that there is more than
one disease locus. In fact the ratio of the observed incidence of a disorder to
the expected incidence provides an estimate of the number of loci,
homozygosity at any one of which can produce the disease.
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Thus

where n is the number of loci each with the same gene frequency. Values of n
have been calculated for various disease incidences and for different
frequencies of consanguinity in the general population and among parents of
affected individuals (Table 10.4).

Table 10.4 Estimated numbers of gene loci for autosomal recessive traits with different
population incidences (1 in 2000 to 1 in 100000} and different frequencies (%) of first cousin
marriages among the parents of affected individuals and in the general population
(a=02%:a = 0.5%)

Parental 1 in 2000 1 in 10000 1 in 20000 1 in 100000
consanguinity a a a a’ a a a a
2 1 1 2 0 | 0 0 0

3 27 i 5 1 3 0 1 ]

5 82 12 16 2 8 1 2 0

7 172 25 4 5 17 i 3 |

10 380 57 16 1 38 6 8 1

It will be seen that the values obtained are very much affected by relatively
small changes in the frequency of first cousin marriages in the general
population and therefore this figure should be determined as accurately as
possible in the population under consideration. From the table a rough
estimate of the possible number of loci involved in any particular disorder can
be obtained. A more rigorous approach to the problem is to be found, for
example, in Dewey et al (1965).

Finally, the observed consanguinity rate among parents of affected
individuals can be compared with that expected as calculated from Dahlberg’s
formula (p. 22). If more than one gene locus is involved then the observed
value will be greater than the expected value. When there is only one gene
locus the frequency of first cousin marriages (C) among parents of individuals
affected with an autosomal recessive disorder which is relatively rare (and
therefore g is very small) is approximately (p. 22):

a
a+ lé6g

o
a+ Iﬁﬂp

where ‘@’ is the frequency of such marriages in the general population. But it
can be shown that if there are n different loci then:
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an

C = —
an + 16,/ ,n

The weakness of this method is again the dependence on estimates of the
frequency of first cousin marriages in the general population. This point is
illustrated by applying the method to data from a UK study of Friedreich’s
ataxia. The birth incidence of the disorder was estimated to be 4.29 x 107,
and the consanguinity rate among parents was 5.38 %, while in the general
population it was assumed to be 0.2 % (Winter et al, 1981). If we now solve
the above equation, n works out to be approximately 8 (which is also
consistent with the value obtained if these parameters are used in Table 10.4).
But if the consanguinity rate in the general population is assumed to be nearer
0.5 % (with which many investigators would agree) then n works out to be
nearly unity!

Disease associations and linkage

Disease associations and genetic linkage studies may also be used to resolve
genetic heterogeneity. For example, two clinically similar forms of myasthenia
gravis have been shown to be associated with different HLA types and this has
been discussed already (p. 124).

Linkage studies also have great value in the detection and analysis of genetic
heterogeneity. One form of a disease may be linked to a genetic marker trait
(‘test character’) and another not, as in the case of elliptocytosis and the rhesus
blood group (Morton, 1956). Alternatively two forms of a disease may both
be linked to a genetic marker but at different distances so that the distribution
of recombination fractions is bimodial. Further, two forms of a disease may
both be located on the same side and at similar distances from a genetic
marker, which then suggests that heterogeneity is between alleles. It should be
noted however that though linkage studies may disprove allelism, because of
their relative crudity they can never prove allelism. Testing for heterogeneity
using linkage is considered in detail by C. A. B. Smith (1963). He describes a
method for detecting heterogeneity by comparing likelihood values assuming
that in a proportion of families the disease locus is linked to a specific genetic
marker with a particular recombination fraction, whereas in the remainder the
locus is unlinked. This latter approach has recently been applied, along with
other methods, to the possibility of resolving heterogeneity in insulin
dependent diabetes mellitus (Harris et al, 1985).

In this brief discussion of methods which may be used in attempting to
resolve genetic heterogeneity, emphasis has been on those methods which are
relatively simple and easy to apply. However, no one method is likely to
produce an entirely convincing answer. Evidence should always be drawn
from as many sources (clinical, biochemical and genetic) and analysed in as
many ways as possible.



11

Parental age and birth order

Probably the earliest report of a significant effect of parental age on the
incidence of a genetic disorder was Sewall Wright's demonstration in 1926 of
a maternal age effect in polydactyly and colour pattern in guinea pig (Wright,
1926). The rationale of studying parental age and birth order effects in human
disorders and congenital malformations is that the results of such studies may
throw some light on pathogenesis. Thus the demonstration of a parental age
effect in sporadic cases of a chromosomal, autosomal dominant of X-linked
disorder would indicate that mutation was related to parental age. Conversely
in sporadic disorders of unknown aetiology where affected individuals do not
reproduce, and so dominant inheritance cannot be proved, the demonstration
of a parental age effect would suggest that such cases are perhaps due to fresh
dominant mutations. In disorders not inherited in any simple manner (such
as many congenital malformations) the demonstration of a parental age or
birth order effect provides strong presumptive evidence of an environmental
influence. Further, if the incidence of a disorder is shown to be related to
parental age or birth order this information could be valuable for genetic
counselling provided the effect is large enough. Such information is important
in the derivation of empiric risks (p. 111).

So far the only abnormalities shown to be unequivocally related to maternal
age are certain chromosomal disorders: trisomy-13 (Patau’s syndrome),
trisomy-18 (Edwards’ syndrome) and trisomy-21 (Down’s syndrome), and the
XXX and XXY (Klinefelter’s syndrome). On the other hand a number of
unifactorial disorders have been shown to be related to paternal age. These
include autosomal dominant disorders such as acrocephalosyndactyly
(Apert’s syndrome), achondroplasia, Marfan’s syndrome, myositis ossificans,
bilateral retinoblastoma and to a lesser extent some other dominant disorders
(Jones et al, 1975). There is also evidence that paternal age may be a factor in
new mutations in X-linked haemophilia A and perhaps Duchenne muscular
dystrophy, in these cases the maternal grandfather’s age being the important
factor. Finally, certain sporadic disorders of unknown actiology have also
been shown to be related to paternal age, such as progeria and acrodysostosis
(Jones et al, 1975).

Birth order effects have also been studied extensively (Carter, 1965). First

140
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born children are more often affected in congenital dislocation of the hip and
to a lesser extent in congenital pyloric stenosis. On the other hand. haemolytic
disease of the newborn is commoner in later born children, and whereas CNS
malformations (anencephaly and spina bifida) are commonest in first born
children, the incidence rises again in high birth orders. In fact it seems that in
CNS malformations among primiparae it is younger mothers who are at high
risk. whereas among parities of three or more it is older mothers who are at
greater risk (Fedrick, 1970).

In all such studies the main problem is disentangling the separate effects of
maternal age, paternal age and birth order which are all correlated with each
other. A number of statistical techniques have been developed for tackling this
problem.

Method of Haldane and Smith

Haldane & Smith’s (1947) method is perhaps the one most widely used for
determining if there is a parental age or birth order effect. In this method the
sum of the birth orders of all affected sibs (A) is compared with the theoretical
value calculated on the assumption that there is no birth order effect. If A4
exceeds the theoretical value by more than about twice its standard error we
may conclude that later born sibs are more likely to be affected, whereas if 4
is less than the theoretical value by more than twice its standard error then
earlier born sibs are more often affected. The arithmetic is much simplified by
testing 64 rather than 4. Unclassified members of a sibship which occur only
at the beginning or at the end of a sibship may be omitted. Thus if *N” denotes
a normal sib, ‘a’ an affected sib and *—' an unclassified sib, then a sibship
—Na would be recorded as a sibship of size 2 with 4 equal to 2.

From knowing the total number of classified sibs (k) and affected sibs (h)
in a sibship it is possible to determine the mean and varnance of 64 from Table
11.2. A special case is when unclassified sibs do not occur at the beginning or
end of a sibship. In such a case we have to calculate the mean and variance of
6A.

6hS,
k

The mean =

and the variance

~ 36h(k — h)(kS; — S7)
= ki(k — 1)

where h = number of affected sibs

number of classified sibs

sum of the birth orders of all *k’ classified sibs

sum of the squares of the birth orders for all 'k’ classified sibs

el O
[T
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Thus in a sibship N — a, the mean of 64

_(6xix1 +3)
)

=42
and the variance of 64
_36@ -1z x 10— 47
» 252 - 1)
— ol

Having determined the birth order (.4) and the mean and variance of 6.4 for
each sibship, the data may then be tabulated as in the form given in Table 11.1,
which in this case is based on data from 70 non-familial cases of adult onset
myasthenia gravis, kindly made available by Dr Anne Jacob (Jacob et al,
1968). In this example the theoretical mean value is 1240 and its standard error
is 4,/6399.50 or 80.0. The difference between the sum of 6.4 and the theoretical
mean value is only 62 which is even less than the standard error. We may
therefore conclude that in this disorder there is no significant parental age or
birth order effect.

Table 11.1 Analysis of birth order in non-familial adult onset myasthenia gravis. N = normal;

a = affected; — = unclassified; k = number of classified sibs; # = number of affected sibs;
A = birth order

Family no. Sibship k h A hA Mean Varnance
1 aMN 2 l 1 3] 9 9

2 N MalN 4 1 6 i6 28.5 186.75
3 a [ 1 1 & [\ 0
4 MNaN i 1 2 12 12 24
5 aN 2 1 1 6 9 9
i1 aNNMNNMNNM 9 | | il a0 240
7 NNNaNNNN 8 1 4 24 27 189
*3 — — NMNNMaNN 7 | 5 a0 24 144
70 NINMNNa - 1 3 30 18 72

Total 330 70 217 1302 1240  6399.50

* Unclassified sibs omitted

Though this test is easy to apply it does not answer the question whether
it is maternal age, paternal age, birth order or a combination of these factors
which is important. Other methods have to be used to determine the separate
effects of these various factors. Further, this test will not be informative if the
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disorder in question is associated with both early and late pregnancies, these
two effects tending to cancel each other out. If such a situation is a possibility
then the method of Barton & David (1958) may be used to resolve the
problem.

Choice of controls

The simplest way of demonstrating a parental age or birth order effect is to
make comparisons with the birth of unaffected sibs. However this assumes
that the disorder in question is not likely to affect the parents’ decision to have
further children. A serious disorder present at birth or with onset in childhood
may well deter some parents from having further children. In such a situation
the use of normal sibs as controls would result in an apparent greater parental
age and birth order. This method is therefore only justified in the case of
disorders with onset in adulthood.

An alternative approach is to make comparisons with a sample of control
families in which the disorder in question does not occur. But here the
difficulty is to choose as controls parents who are truly comparable to the
parents of affected individuals. This is notoriously difficult.

A simple method which has often been used and which avoids some of these
difficulties is to compare maternal age, paternal age and birth order in a series
of families with comparable data from the general population. This has been
done for example in Apert’s syndrome (Blank, 1960), myositis ossificans
(Tinte et al. 1967). achondroplasia (Murdoch et al, 1970) and Marfan’s
syndrome (Murdoch et al, 1972). Some population data on parental age and
birth order in three different countries are given in Table 11.3. Unfortunately
in Britain population statistics for paternal age were not available before 1961.
However on the basis of studies over a number of years of a large series of
births in England and Wales, Fraser & Friedmann (1967) have calculated that
between 1900 and 1962 the mean difference between paternal and maternal
ages at the birth of a child was about 3.1 years. Therefore for this period an
approximate estimate of paternal age can be derived from maternal age by
adding 3.1 years. Bundey and her colleagues (1975) have derived more
accurate estimates of paternal age by determining the appropriate age
difference between spouses according to the mother’s age, since this difference
is not the same for all maternal ages, and then adding this difference to
maternal age. Armed with such information one may then compare not only
the mean parental ages in patients’ families with those expected, but also the
mean differences between parental ages in patients’ families with those
expected.

It should be noted that in making such comparisons with the general
population secular changes in parental ages over the years covered by the
births of affected individuals being studied must be taken into account.
Comparisons should therefore be made with controls of roughly the same
period of time and from a similar environment. In Table 11.4 are given data on
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Table 11.3 Population data on parental age and birth order

Maternal age Paternal age Birth order
Source Mean 5D Mean sSD Mean sD
England and Wales, 1950 28.04 5.97 — - 2.24 1.57
{Blank, 1960)
London, 1960 - 31.69 6.47 1.86 1.21
(Blank, 1960)
*England and Wales, 1983 2645 5.39 29.80 6.12 1.96 1.10
Australia, 1953 27.65 5.84 31.04 6.79 — —
(Blank, 1960}
United States, 1955 26.54 6.07 29.85 6.95 2.64 1.73

(Murdoch et al, 1970)

* Calculated from data in Registrar General’s Staristical Review of England and Wales. Part 2. HMS0, London, 1983

parental ages and birth order calculated from information in the Registrar
General's Reports for England and Wales.

A simple and effective graphical way of demonstrating a parental age effect
is to determine for each age group the number of parents of affected
individuals relative to the number in the general population (Fig. 11.1). A five-
year interval size is useful for this purpose.

To determine if there is any significant difference between the mean ages of
parents and controls one may use the ‘student’s ¢ test’. If a farge general
population is being used for comparison then

_m=u

[ =
s,f'\f'_n

where m = mean parental age in the sample
s = standard deviation of parental age in the sample
n = number of fathers or mothers in the sample
4 = mean parental age in the general population

Thus in a study of Marfan’s syndrome (Murdoch et al, 1972) the mean
maternal age of 23 sporadic cases was 29.30 (SD 5.36) compared with the

mean maternal age in the general population of 26.54 (SD 6.07). iec. a
difference of 2.76 years.

,_ 2930 — 2654

5.36/./23

=23

Therefore

With (n — 1) degrees of freedom, i.e. 22, from Tables of student’s ¢
distribution, P = 0.02, and therefore the mean age of mothers at the birth of
offspring with Marfan’s syndrome is significantly greater than in the general
population. In this study however, the mean paternal age was 36.61 (SD 9.06)
compared with a mean paternal age in the general population of 29.85 (SD
6.95). Here the difference is 6.76 years which is highly significant (P < 0.01).



PARENTAL AGE AND BIRTH ORDER 147

Table 11.4 Parental age and birth order in England and Wales calculated from information
in the Registrar General's Reports

Maternal age Paternal age Birth order
Year Mean sD Mean SD Mean sD
1940 28.53 5.98% - — 2.37 1.50
1941 28.55 6.06 — : 2.36 1.91
1942 28.66 5.99 — — 2.25 1.81
1943 28 84 606 — — 2.21 L:75
1944 209.06 6.09 — — 2.26 1.68
1945 29.12 6.19 — — 2.27 1.69
1946 29.01 5.91 - 2.16 1.59
1947 28.54 5.90 — — 2.09 1.53
1948 28.26 5.99 — — 2.15 1.56
1949 2803 5.94 — — 2.16 1.54
1950 28.04 597 — — 224 1.57
1951 28.02 5.89 — — 2.22 .54
1952 21.79 5.81 — == 2.24 .56
1953 27.70 5.74 - 2.23 1.54
1954 27.62 575 — — 223 1.54
1955 LT 575 — — 223 .54
1956 2746 5.75 — — 2.22 1.53
1957 27.40 ala — — 222 1.53
1958 27.30 5.73 2.22 1.52
1959 27.22 573 — — 2.24 1.53
1960 27.20 577 — — 2.27 1.53
1961 27.09 5.80 3017 6.68 2.28 1.54
1962 26.96 5.80 30,04 6.66 2.29 .54
1963 26.87 5.71 2993 6.62 2.31 1.54
1964 26.K0 2Tl 29.85 f.62 252 1.53
1965 26.63 .77 29.67 6.64 227 1.49
1966 26.38 5.74 29.42 6.64 2.24 .47
1967 26.26 5.69 29.27 6.63 2.20 .43
1968 26.13 5.59 2911 6.56 2.18 1.40
1969 26.02 5.51 28.94 6.50 2.14 .36
1970 2587 5.41 28.75 6.42 2.11 1.31
1971 25.78 5.32 28.60 6.35 2.06 1.27
1972 25.78 5.22 28.59 f.25 2.01 1.22
1973 25.79 5.10 28 58 6.13 1.95 1.16
1974 25.72 5.23 28.59 fr.04 1.94 1.13
1975 25.81 5.21 28.71 6.02 1.93 1.11
1976 25.89 5.15 28.80 595 1.92 1.09
1977 26.05 518 29.01 593 1.90 1.07
1978 26.16 523 29.15 595 1.90 1.07
1979 26.24 5.26 29.28 2.96 1.91 1.07
1980 26.25 5.30 2033 6.00 1.93 1.08
1981 26.31 532 29.49 6.05 1.94 1.08
1982 26.37 5.37 29.63 6.09 1.96 1.09
1983 2645 5.39 29.80 6.12 1.96 L.10

Thus paternal age is elevated more than maternal age but in fact both are
significantly greater than the general population.

Birth order is not normally distributed and therefore it is not statistically
legitimate to make comparisons in this way. Further, this approach is limited
in distinguishing the separate effects of parental age and birth order. The so-
called Greenwood-Yule method (Greenwood & Yule, 1914), subsequently
modified by McKeown & Record (1956), was developed in order to separate
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Fig. 11.1 Number of fathers of affected offspring relative to the number in the general
population in various age groups (calculated from the onginal data)

the effects of maternal age and birth order but the method does not take into
account paternal age. To evaluate separately these various factors the method
of partial correlations is usually used.

Table 11.5 Correlations from various population studies

Source Correlation Reference
Paternal and maternal Australia (1953) 0.73 Blank (1960)
age USA (1955) 0.76 Murdoch et al
(1970)
England and Wales (1973) 0.72 Unpublished*
Scotland (1973) 0.77 Unpublished*
Paternal age and birth London (1960) 0.30 Blank (1960)
order
Maternal age and birth England and Wales (1950) 0.49 Blank (1960)
order USA (1955) 0.52 Murdoch et al
(1970)
England and Wales (1973) 0.45 Unpublished*
Scotland (1973) 0.49 Unpublished*

* Calculated from data in; Regustrar General { 1975) Stafisiical Review of England and Wales for the year [973. Pari 2. HM S50,
London. Registrar General, Scotland (1974) dArmual Reporr for 1973 Parts | + 2. HM30, Edinburgh.
Method of partial correlations

This method has been widely used in determining the separate effects of
paternal age, maternal age and birth order (Penrose, 1957), though it has to
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be recognized that it may not be statistically entirely satisfactory (C.A.B.
Smith, 1972).

Essentially the method allows one to compare the effect of a single variable
on incidence while other variables are held constant, for example, to estimate
the effect of paternal age on incidence while maternal age and birth order are
held constant. In statistics wherever there are more than two variables and a
correlation between any pair is to be determined, the effect of one or more of
the remaining variables being eliminated (held constant), this is referred to as
a partial correlation coefficient. Thus if there are four variables represented as
I, 2, 3 and 4, then we first determine the usual (product-moment) correlation
between each pair of variables: ry», 3. ry;. etc. The partial correlation between
any pair of variables (e.g. incidence and maternal age, paternal age or birth
order) eliminating the other two variables can then be calculated. Thus
between | and 2 eliminating 3 and 4 (written as r;; 14) by

- e Fiz.a —Ti13.4l23.4
12.34 = 3 3
V(1 —riza(l —r3s4)

where coefficients like r;, , can be calculated by

F13 — F14F24

R ey

In practice, to determine the independent effects of parental age and birth
order we calculate the following correlations:

A. From population data (see Table 11.5)

I. Paternal age and maternal age 2 pag
2. Paternal age and birth order g
3. Maternal age and birth order A A

B. From families being studied

4. Paternal age and disease incidence Fpp
5. Maternal age and disease incidence g
6. Birth order and disease incidence P Al

and from these we derive the partial correlations between

7. Paternal age and disease incidence, maternal age and

birth order being eliminated Pr MA
8. Maternal age and disease incidence, paternal age and
birth order being eliminated Al Pa

9. Birth order and disease incidence, paternal age and
maternal age being eliminated ¥ AL PM
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The partial correlation between paternal age and disease incidence, birth
order being eliminated, is
__Ter — Tpal1a
2 2
V=301 = ri)

and between paternal age and maternal age, birth order being eliminated, is

Fpr.a=

- = Fepme — Fpalma
M=
V=31 =)

and between maternal age and disease incidence, birth order being eliminated,
IS

Faar — Tagalra

e OF T R e

and so on. From these partial correlation coefficients we can then calculate the
partial correlation between paternal age and disease incidence, maternal age
and birth order being eliminated:

Yer.a — Tem. ATMI. A

Fpr . MA = —F
\{[“ — Fon. D1 — 73 )

Thus in Blank’s study of Apert’s syndrome (Blank, 1960):

from population data

rp.“' = 0173
By — 14
rM’.& = [},49
from the families being studied
Fpr = 0-34
rk” = n.}]
rg=0.14
Therefore
2 034 —(0.73)(0.31)
SN =0 = 0317
= (.18
Similarly

rer.a=032 ry; p=010, ry 4 =028,
r_.‘j‘_p-=ﬂ.[}4, r_'{;_“ — _D-ﬂl., ﬂl‘ld rFH.A =n_?l}
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Finally the partial correlation between paternal age and disease incidence,
maternal age and birth order being eliminated, is calculated

0.32 — (0.70)(0.28)

J( =070 (1 — 0.287)
=018

Fpr Ma =

Similarly
Far.pa =009 and r,; py =000

Therefore paternal age is the main factor because when maternal age and birth
order are eliminated there remains a positive partial correlation of 0.18
between paternal age and disease incidence. On the other hand when paternal
age and birth order are eliminated then the correlation between maternal age
and disease incidence is only 0.09, and there is no correlation between birth
order and disease incidence when paternal and maternal age are eliminated.

In all these calculations it is necessary to re-emphasize a word of caution in
using population data on parental ages or correlations between parental ages
and birth order. The general population with which comparisons are being
made must be similar to the parents being studied both in time and place since
these parameters are known to be affected by a variety of socio-economic
factors.

The significance of an ordinary correlation coefficient, for a relatively small
sample size (as is the case in most family studies), may be determined from
tables (Appendix 3) or by calculating student’s r, which for an ordinary

correlation coefficient is
r./n— 2

—=

\/'i —
with (n — 2) degrees of freedom. In the case of a partial correlation coefficient
where two variables have been eliminated, student’s 7 is

with (n — 4) degrees of freedom. The significance of f values can be determined

from tables (Appendix 1).
In order to determine if two correlation coefficients differ significantly they
are first transformed to so-called *z* values where:

1+r

z =’flﬂgel _rl

1

1 +r

and zy = $log, —2
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Fortunately there are tables (see Appendix 4) for transforming *r' values into
"z" values. We can then calculate the normal dewiate:

|2, — z;|

= I . —
=3 n,—3

If the second sample represents the general population, and therefore n; 1s very
large, then the normal deviate becomes:

|z, — 2z,
|
ﬂ1 e 3

We can then determine if the difference is significant from tables (p. 155).

Partial correlation coefficients may be compared in the same way as
ordinary (product-moment) correlation coefficients except that in the above
formulae ‘n’ is replaced by n minus as many variables as have been eliminated
from the comparison in question. Thus if we were comparing the partial
correlation coefficients of paternal age and disease incidence with maternal
age and disease incidence, in each case eliminating birth order and the other
parental age, then the normal deviate would be:

{2y =25

1_'7
n—35 n;—>5

In conclusion, proving that a parental age or birth order effect on disease
incidence exists, if not obvious on casual inspection of family data, may be
difficult. The method of partial correlations is relatively simple to apply but
it may not be statistically entirely satisfactory, though it can be used to give
at least a first approximation. Probably the best method of estimating the
separate effects of maternal age, paternal age and birth order is by multiple
regression analysis. Multiple regression analysis is a method for analysing the
relationships between several variables and for estimating their relative
importance. The multiple regression equation is given by

y=da-+ b|."l:| -+ b;x; b o o o

where by, b, ... b, are the partial regression coefficients of the dependent
variable (y, say the incidence of Down’s syndrome) on each independent
variable (x,. x» ... x,. say birth order, maternal age and paternal age), and a
is the point of intersection on the y axis. Details of the computations, which
are complex, are given in textbooks of statistics and nowadays computer
programs for multiple regression analysis are available. The use of the
technique for dissecting out the independent effects of parental ages are
detailed in C.A.B. Smith (1972).
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All of these approaches assume that parental ages are normally distributed
and birth incidence is linearly related to parental age, assumptions which are
not really justified. The resultant weakness of methods of assessing parental
age and birth order effects are critically reviewed by Stene & Stene (1977) who
propose an alternative ‘conditional probability test’. It has to be admitted,
however, that in some cases, even with the most sophisticated statistical
analysis it may be difficult to separate the effects of birth order from maternal
or paternal age which may be more convincingly demonstrated by a simple 3-
dimensional grid of birth order and parental age (see for example Record et
el, 1969).

Should a parental age or birth order effect be demonstrated this should not
be regarded as the end of the investigation. It is rather the beginning of an
enquiry, since it may suggest possible lines for further research. In the case of
a congenital malformation of unknown aetiology it suggests the importance
of environmental factors in causation, which should then be sought for in
relation to parental age and/or birth order.

Thus persistent patent ductus arteriosus is commoner in first borns. Now
the normal closure of the ductus shortly after birth depends upon adequate
oxygenation of the blood. Since difficulties in labour, with possible resultant
fetal anoxia, are commoner in first pregnancies than in later pregnancies this
may be the explanation for the birth order effect in this abnormality. In fact
the incidence of fetal distress is higher among affecteds than would be
expected.

Finally if the effect is sufficiently marked. information on parental age and
birth order may also be used to construct risk tables for use in genetic
counselling as in the case of Down’s syndrome and maternal age.
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Recognition and estimation of changes in
disease frequency

In studying the possible relevance of environmental factors in the aetiology
of say a particular congenital malformation, one approach to the problem is
to study changes in frequency over time. If there is a dramatic change at a
particular point in time one would then attempt to identify the environmental
factor which caused this change. Such a change might be recognized by an
astute observer without recourse to statistical techniques. An outstanding
example of this was the recognition by Lenz in Germany and McBride in
Austrahia of the teratogenic effects of thalidomide, a drug which first appeared
on the market as a sedative in the late 1950s. During 1961. Lenz (1961) and
McBride (1961) reported that they were seeing many more cases of a rare form
of limb deformity (a type of phocomelia) than had been their previous
experience. On taking a careful history they discovered that the mothers of
these children had all taken the drug thalidomide in early pregnancy. This
approach, however, is not possible with relatively common disorders because
a very large number of cases would be needed to detect any significant change
in frequency. In such situations we have to rely on statistical methods.

Incidence and prevalence

So far, for the sake of simplicity. we have usually referred to the number of
cases of a disorder in a population as its frequency. There are, however, two
estimates of frequency which are not necessarily identical. Incidence refers to
the number of new cases per unit of population. For example, the incidence
of Down’s syndrome is 1.4 per 1000 live births or about 1 in 700 live births.
Prevalence on the other hand refers to all cases present in a population, either
within a given period (so-called period prevalence rate) or a particular point
in time (so-called poinr prevalence rate), per unit of population at risk at that
time. In the case of Down’s syndrome prevalence is much less than incidence
because of early mortality in this condition. In the case of congenital
malformations incidence is more precisely known than prevalence, the latter
being notoriously unreliable.

154



CHANGES IN DISEASE FREQUENCY 155

Comparison of proportions

If we wish to determine if there has been a significant change in the frequency
(incidence or prevalence) of a particular disorder we could merely compare the
proportion of cases in one year with the proportion in another using standard
statistical techniques.

Thus if the proportion of cases (P,) in the first period was

ny /N,
and in the second period (P,) was
/Ny
and if
_np+ny
CT N %N,

then in the usual manner (see Snedecor & Cochran, 1967) we can calculate *x’,
the so-called normal deviate, where

e |_P1 =&l
VPoll = Po)(1/N; + 1/N,)

(The vertical lines |P, — P,| mean that we subtract whichever is the smaller
from the larger of the proportions.) If the sample size (N) is relatively small
(say less than 200) then in such calculations a correction for continuity may be
included. Details are to be found in most standard statistical texts. If the value
of *x” exceeds 1.96 then the proportions differ significantly (P = 0.05). The
exact level of significance of *x" can be determined from tables of the normal
distribution (Fisher & Yates, 1963). The points most commonly required for
significance are given in Table 12.1.

Table 12.1 Probability (P) of deviations (x) in units of standard deviation from the mean
assuming normal distribution

P (.20 0.10 (.05 0.02 0.01 0.002 0.001 0.0001

X 1.28 1.65 1.96 2,33 2.58 3.09 32 3.89

It should be noted that x> = »* and the same results may be obtained by
presenting the data in a 2 * 2 table and determining the sigmficance of the
x° value with 1 degree of freedom. The calculation, however, is more laborious
than using proportions.

The method of calculation is illustrated with data on the incidence of CNS
malformations (anencephaly and spina bifida) in the Edinburgh region. For
several years the incidence of these malformations had remained fairly steady
at about 1 in 200 total (still and live) births. However in 1971 there appeared
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to be an increase in the incidence to 1 in 120 births and the question arises as
to whether this figure is significantly different from previous years. The actual
figures were 50 CNS malformations out of 9706 total births in 1970, and 79
out of 9771 births in 1971. Thus:

for 1970
50
1= 9706
= (.0052
for 1971
i
9771

= 0.0081
50 + 79

FPo=S706 + 9771
— 0.0066

o

and

" [P, — P,
R —
JPol = Po)(I/N, + 1/N))
y (0.0081 — 0.0052)
J/(0.0066) (0.9934) (1/9706 + 1/9771)

= 25

and

Thus the difference in proportions is statistically significant (P < 0.02). In
subsequent years the incidence returned again to about | in 200 births and no
satisfactory explanation could be found for the increase in 1971, though when,
as here, many comparisons are made, 1 in 20 could differ by chance alone.

This method is only applicable if n; and n, are reasonably large (say more
than 20).

Another approach 1s to consider an overall significance test usinga 2 x k
contingency table and determine whether there is a significant trend in the
proportions from group 1 to group k (Armitage, 1955). However the method
of calculation is somewhat tedious and does not have the immediate visual
appeal of the so-called cumulative sum or cusum technigues.

Cumulative sum techniques

These techniques (Woodward & Goldsmith, 1964) were originally developed
for use in industry to demonstrate phenomena such as trends in productivity,
but they can also be used to pinpoint the onset of an epidemic or an increase
in the incidence of a particular congenital malformation.
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The basic procedure merely consists of subtracting a previously defined
‘reference value’ (k) from each number in the series and accumulating the sum
of the differences as each additional figure is introduced. The successive
accumulated differences are referred to as the ‘cumulative sums’ (cusums) and
the graph of these sums is known as the ‘cumulative sum chart’. Thus if the
individual numbers of cases in successive years are

My, Mo, M3, .o N,

then
S, =(n — k)
S;=( -k +Mm,—k) =8, +(n,— k)
S; =8, +(n; — k)

and S, =8,_1+m —Kk=n+n,+...n,—rk

The reference value is chosen as the number around which the results are
expected to vary, usually the mean value of the results at the beginning of a
period of study. To simplify the calculation of cusums, *k” is suitably rounded
off. If the average of the results is close to the reference value, some of the
differences will be positive and some negative so that the cusum chart will be
essentially horizontal. However, if the average begins to rise more of the
differences will become positive and the cusum chart will slope upwards.

The value of the technique is illustrated in the following example. Suppose
the annual incidence (say number per 10000 births suitably rounded to the
nearest whole number for convenience) of a particular congenital
malformation is as given in Table 12.2. If the annual incidence is plotted there
is no clear trend or change over the period of study (Fig. 12.1). However, if
the cusums are calculated with k = 20 (Table 12.2), and plotted (Fig. 12.1) it
becomes clear that the annual incidence began to rise in 1967. The average
incidence during the period 1950 to 1966 was about 21. The importance of
choosing a reference value close to this is illustrated in Figure 12.2. If too low
a value is chosen the cusum plot increases steadily throughout, whereas if too
high a value is chosen all the cusums are negative.

If the method is applied to absolute numbers of cases, then in an expanding
population the number of cases would automatically increase, and be reflected
by a change in cusums, even if the relative incidence remained the same. The
method is therefore best applied to incidence rates (e.g. number per 10000
births) as in the above example.

It should be noted that this method is essentially merely a graphical means
of demonstrating a change. If the reader wishes to define such a change in
precise terms then it is best to apply one of the more conventional statistical
methods which are available for this purpose (e.g. see Armitage, 1971).
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Table 12.2  Annual incidence and cusums (k = 2(0)

Year Incidence Difference from & Cusums
1950 22 +2 2
1951 29 +9 11
1952 28 +8 19
1953 25 +3 22
1954 9 —11 11
1955 28 + 5 19
1956 12 -8 I
1957 30 + 10 2l
1958 14 — B 15
1959 28 +8 23
[ S 15 —5 |8
1961 18 —3 6
1962 27 + 7 23
1963 ') =11 i2
1964 30 + 10 22
1965 14 — b 16
1966 24 +4 20
1967 27 +7 27
19658 30 + 10 i7
1964 15 —5 i2
1970 29 +9 4]
1971 26 + 6 47
1972 30 +10 57
1973 26 +6 63
1974 19 -1 62
1975 32 +12 74
40 Annual Incidence

& 30

=

- 20
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E 10
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—
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Fig. 12.1 Annual incidence. Above: standard chart. Below: cumulative sum chart.
(Data from Table 12.2)
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Fig. 12.2 Cumulative sum charts for various values of k. (Data from Table 12.2)

Cyclical changes

There are a number of disorders which show seasonal variations or cyclical
trends in incidence; for example, hay fever is without doubt seasonal, with the
highest incidence in summer months. The demonstration of a seasonal
variation in incidence for a particular disorder or congenital malformation
would indicate that environmental factors are involved and thus give a clue
to aetiology. For this reason a number of studies in recent years have been
directed to this problem. A commonly used method of demonstrating
seasonal variation is to compare the observed incidence with the expected
incidence using a simple ¥? test. Using this method, for example, Nielsen et al
(1975) showed that there was a significant seasonal variation in the birth of
children with sex chromosomal abnormalities, with the highest incidences
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occurring in March, April and May. However, this is not a good test for
detecting cyclical trends for reasons which have been discussed by Edwards
(1961). Further, considerable difficulty can be experienced in attempting to
demonstrate a cyclical trend which is not apparent on casual inspection of the
data.

Edwards (1961) has proposed a very ingenious statistical technique for
recognizing and estimating cyclical trends. He considers monthly incidence
data as being arranged around the rim of a circle divided into equal sectors
corresponding to months of the year (i.e. mid-January, #=15"; mid-
February, @ = 45°; and so on). He has then shown that, assuming there is a
simple harmonic variation, if N is the total number of subjects in a study with
N, the number in any one sector (month)

.. N = EZN, and writing

S =Z,/N;sin#,

C =Z,/N,cosb;

W = XN,

N CET:
W

a=4d

then on the null hypothesis ¥a°N is distributed as a y* with 2 degrees of
freedom, and 6* corresponding to the maximum incidence is equal to
tan ' §/C, i.e. tan 0* = §/C. This approach has been further developed by
Walter & Elwood (1975). However this method is best used only when the
sample size is large, that is, when the total number of events (e.g. congenital
malformations) exceeds 50.

A much simpler ranking (non-parametric) method has been introduced by
Hewitt et al (1971) which can also be used for sample sizes less than 50
provided that at least 6 of the 12 months have non-zero frequencies. The
method first consists of ranking the incidence rates for each month, the highest
incidence as 12 and the lowest as unity. The next step is to decide if there is
a prior hypothesis for specifying a six month period of higher expected
incidences, or if the likely nature of any seasonal variation has to be inferred
from the data. In the latter case when no prior hypothesis exists it is necessary
to determine the six month period which yields the highest value of the rank-
sum. With a pre-assigned six month period a rank-sum equal to or greater
than 50 would be significant whereas for any six month period a rank-sum
equal to or greater than 55 is required for significance (Table 12.3).

A six month period is chosen for these calculations because the chance
probability of obtaining the largest possible rank-sum is smallest for this
period (Hewitt et al 1971).
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The method of calculation is illustrated with data on the monthly incidence
of anencephaly (still births) among total births in Scotland for the five year
period 1969 to 1973 (Registrar General, Scotland. Annual Reports).
Inspection of the data suggests a seasonal variation with most births occurring
in the winter months (Table 12.4). The maximum rank-sum is from September
to February and amounts to 56, which according to Table 12.3 is statistically

significant with P = 0.0248.

Table 12.3 Cumulative probabilities of various rank-sums for pre-assigned six month

periods or for any six month period. (From Hewitt et al, 1971.)

Cumulative probahilities

Pre-assigned Any

Rank-sum 6 month period 6 month period

57 00011 0.0134

56 0.0022 0.0248

55 (0.0043 00464

54 0.0076 0.0766

53 0.0130 01260

52 00206 01914

5l 0.0325 0. 2908

50 0.0465 0.3826

49 (0.0660 0.4958

48 (0.0898 0.6086

47 0.1201 (0.7258

46 (0.1548 0.E310

45 0.1970 09138

314 0.2424 09614

43 0.2944 09904

42 0.3496 0.9984

41 (0.4049] 10000

40 0.4686

39 or less 100D
Table 12.4 Seasonal variation in the incidence of anencephaly in Scotland from 1969 1o 1973
inclusive
Month of Total Anencephalics Maximum
birth births Nao. Incidence, 1000 Rank rank
January 34110 94 2.76 10 10
February 30 840 93 3.02 12 12
March 35 400 69 1.95 3 3
April 32 548 79 2.43 7 =
May 33635 64 1.90 2 i
June 32522 71 2.18 5
July 33037 67 2.03 4 R
August 32115 56 1.74 |
September an 79l 79 2.57 9 g
October 33365 B3 2.49 3 #
November 29 565 82 AT T 11 11
December 31304 74 2.36 f 6

Rank-sum Tj_ﬁ.
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When data can be grouped (as in the case of monthly birth incidences) and
when there is no particular reason to expect a specific parametric alternative
(such as a sinusoidal curve of period 12 months) then Freedman (1979) has
proposed the use of a Kolmogorov-Smirnov type statistic to test for seasonal
variation. If

N = total number of subjects in a study
t = ume of the occurrence of the event in question measured from
the beginning of the year. If the study covers leap years then an
‘average’ year consists of 3654 days with February having 283
days. Thus for an event in March, 1 = 31 + 28} + 31 = 904
J = cumulative number of events over the vear(s)
Fy=JIN
F, = 1{365.25

then for each month the difference (Fy — F)) is obtained, and the sum of the
maximum difference and the absolure minimum difference is denoted as V.
This is a Kolmogorov-Smirnov type statistic (see Siegel, 1956) and estimated
percentiles for the distribution of Vy/N are given in Table 12.5, though a
slightly more sensitive statistic is also available (Freedman, 1981).

Applying this approach to the data on the monthly birth incidence of
anencephaly given in Table 12.4, the calculations required to calculate V', are
set out in Table 12.6.

The maximum value of (Fy — F,)is 0.043 in February and — 0.015 in August,
Therefore

Ve =0043 4+ 0015
= (0.058
and Vy1/N = 0.0584/911
=1 7151
and from table 12.5, P < 0.01.

This non-parametric test is a little more complicated than Hewitt's test but has
the advantage of being more powerful.

The relative merits of the various tests devised by Edwards (1961 ). Walter
& Elwood (1975) and Hewitt et al (1971) for studying cyclical changes are
discussed by Walter & Elwood (1975) and Walter (1977). In general, whenever
the sample size is small (N < 50) then a non-parametric method is preferable.
But his method will only detect a fairly marked and consistent seasonal
variation. A parametric method is preferable when there is a substantial
amount of data.

It should always be borne in mind, of course, that in studying a particular
disorder or congenital malformation the demonstration of a significant
change in incidence. which may or may not be cyclical, is not an end in itself
but merely the first step in attempting to identify possible aetiological factors.
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Appendices

Student’s t distribution

¥ distribution

Correlation coefficient

Transformation of r to z

Normal distribution for estimation of A#*
Lod scores

Appendices 1, 2 and 3 are from N. T. J. Bailey (1969) Statistical Methods
in Biology, English Universities Press, London; Appendix 4 from R. R. Sokal
and F. James Rohlf {1973) Introduction to Biostatistics, W. H. Freeman &
Company © 1973; Appendix S from D. S. Falconer (1965) Annals of Human
Genetics ( London) 29:51-76; and Appendix 6 calculated from C. A. B. Smith
(1968) Annals of Human Genetics (London) 32:127-150, with some
modifications, and to which values for family sizes greater than 7 have been
added.

Sl i
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Appendix 1: Student’s f distribution

The table gives the percentage points most frequently required for significance
tests and confidence limits based on student’s ¢ distribution. Thus the
probability of observing a value of ¢, with 10 degrees of freedom, greater in
absolute value than 3.169 (i.c. < — 3.169 or > + 3.169)is exactly 0.01 or 1 %.

Degrees
of Value of P
freedom 0.10 0.05 0.02 0.01 0.002 0.001

1 6.314 12.71 31.82 63.66 3183 636.6
2 2.920 4.303 6.965 D925 2033 31.60
3 2.353 3.182 4.541 5.841  10.21 12.92
4 Rlad 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869
6 1.943 2.447 3.143 3.707 5.208 5.959
T 1.895 2.365 2,998 3.499 4.785 5.408
8 1.860 2.306 2.896 3.355 4.501 5.041
9 1.833 2.262 2.821 3.250 4.297 4.781
10 1.812 2.228 2.764 3.169 4.144 4.587
11 1.796 2.201 2.718 3.106 4.025 4.437
12 1.782 2.179 2.681 3.055 3.930 4318
13 L 2.160 2.650 3.012 3.852 4.221
14 1.761 2.145 2.624 2.977 3.787 4.140
15 1.753 2.131 2.602 2.947 3-733 4.073
16 1.746 2.120 2.583 2.921 3.686 4.015
17 1.740 2.110 2.567 2.898 3.646 3.965
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2:339 2.861 3.579 3.883
20 L5125 2.086 2.528 2.845 3.552 3.850
21 1.721 2.080 2.518 2.831 3.527 3.819
22 1.717 2.074 2.508 2.819 3.505 3.792
23 1.714 2.069 2.500 2.807 3.485 3.767
24 1.711 2.064 2.492 219 3.467 3.745
25 1.708 2.060 2.485 2.787 3.450 3.725
26 1.706 2.056 2.479 2.779 3.435 3.707
27 1.703 2.052 2.473 2.771 3.421 3.690
28 1.701 2.048 2.467 2.763 3.408 3.674
29 1.699 2.045 2.462 2.756 3.396 3.659

30 1.697 2.042 2.457 2.750 3.385 3.646
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Appendix 2: »* distribution

The table gives the percentage poinfs most frequently required for significance
tests based on y*. Thus the probability of observing a »* with 5 degrees of
freedom greater in value than 11.07 is 0.05 or 5 %. Again, the probability of
observing a y* with 5 degrees of freedom smaller in value than 0.554 is
| —0.99 = 0.01 or 1%.

Degrees
of Value of P
freedom 0.99 0.95 0.05 0.01 0.001
1 0.000 157 0.00393 3.841 6.635 10.83
2 0.0201 0.103 5.99] 9.210 13.82
3 0.115 0.352 71.815 11.34 16.27
4 0.297 0.711 9.488 13.28 18.47
5 0.554 1.145 11.07 15.09 20.51
6 0.872 1.635 12.59 16.81 22.46
7 1.239 2.167 14.07 18.48 24.32
8 1.646 2.733 15.51 20.09 26.13
9 2.088 3.325 16.92 21.67 27.88
10 2.558 3.940 18.31 s | 29.59
11 3.053 4.575 19.68 24.72 31.26
12 3.571 5.226 21.03 26.22 32.91
13 4.107 5.892 22.36 27.69 34.53
14 4.660 6.571 23.68 29.14 36.12
15 5.229 7.261 25.00 30.58 37.70
16 5.812 7.962 26.30 32.00 39.25
17 6.408 8.672 27.59 33.41 40.79
18 71.015 9.390 28.87 3481 42.31
19 7.633 10.12 30.14 36.19 43.82
20 8.260 10.85 31.41 3757 45.31
21 8.897 11.59 32.67 38.93 46.80
22 9.542 12.34 33.92 40.29 48.27
23 10.20 13.09 35.17 41.64 49.73
24 10.86 13.85 36.42 4298 51.18
25 11.52 14.61 37.65 4431 52.62
26 12.20 15.38 38.89 45.64 54.05
27 12.88 16.15 40.11 46.96 55.48
28 13.56 16.93 41.34 48.28 56.89
29 14.26 17.71 42.56 49.59 58.30
30 14.95 18.49 43.77 50.89 59.70
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Appendix 3: Correlation coefficient

The table gives percentage points for the distribution of the estimated
correlation coefficient r. Thus when there are 10 degrees of freedom (i.e. in
samples of 12) the probability of observing an r greater in absolute value than
0.576 (i.e. < —0.576 or > + 0.576) is 0.05 or 5 %.

Degrees
of Value of P
freedom 0.10 0.05 0.02 0.01 0.001
1 0.9877 099692 099951 0.99988 0.9999988
2 0.9000 (0.9500 0.9800 (0.9900 0.9990
3 0.805 0.878 0.9343 0.9587 0.9911
4 0.729 0.811 0.882 0.9172 0.9741
5 0.669 0.754 0.833 0.875 0.9509
6 0.621 0.707 0.789 0.834 0.9249
7 0.582 0.666 0.750 0.798 0.898
8 0.549 0.632 0.715 0.765 0.872
) 0.521 0.602 0.685 0.735 0.847
10 0.497 0.576 0.658 0.708 0.823
11 0.476 0.553 0.634 .684 0.801
12 0.457 0.532 0.612 0.661 0.780
13 0.441 0.514 0.592 0.641 0.760
14 0.426 0.497 0.574 0.623 0.742
15 0.412 0.482 0.558 0.606 0.725
16 0.400 0.468 0.543 0.590 0.708
17 0.389 0.456 0.529 0.575 0.693
18 0.378 0.444 0.516 0.561 0.679
19 0.369 0.433 0.503 0.549 0.665
20 0.360 0.423 0.492 0.537 0.652
L 0.323 0.381 0.445 0.487 0.597
30 0.296 0.349 0.409 0.449 0.554
35 0.275 0.325 0.381 0.418 0.519
40 0.257 0.304 0.358 0.393 0.490
45 0.243 0.288 0.338 0.372 0.465
50 0.231 0.273 0.322 0.354 0.443
60 0.211 0.250 0.295 0.325 0.408
70 0.195 0.232 0.274 0.302 0.380
80 0.183 0.217 0.257 0.283 0.357
9% 0.173 0.205 0.242 0.267 0.338

0.164 0.195 0.230 0.254 0.321

g
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Appendix 4: The ztransformation of correlation coefficient r

F Z r =
0.00 0.0000 0.35 03654
0.01 0.0100 0.36 0.3769
0.02 0.0200 0.37  0.3884
0.03 0.0300 0.38  0.4001
0.04 0.0400 039 04118
0.05 0.0500 0.40  0.4236
0.06 0.0601 0.41  0.4356
0.07 0.0701 0.42 04477
0.08 0.0802 0.43 045399
0.09 0.0902 0.44 04722
0.10 0.1003 0.45  0.4847
0.11 0.1104 0.46  0.4973
0.12 0.1206 0.47  0.5101
0.13 0.1307 048 0.5230
0.14 0.1409 0.49  0.5361
0.15 0.1511 0.50 0.5493
0.16 0.1614 0.51 0.5627
0.17 0.1717 0.52 0.5763
0.18 0.1820 0.53 0.5901
0.19 0.1923 0.54  0.6042
0.20  0.2027 0.55 0.6184
0.21 0.2132 0.56 0.6328
0.22 0.2237 0.57 0.6475
0.23 0.2342 0.58  0.6625
0.24 0.2448 0.59 0.6777
0.25 0.2554 0.60  0.693]
0.26 0.2661 0.61  (.7089
0.27 0.2769 0.62 0.7250
0.28 0.2877 0.63  0.7414
0.29 0.2986 0.64 (.7582
0.30 0.3095 0.65 0.7753
0.31 0.3205 0.66 0.7928
0.32 0.3316 0.67 0.8107
0.33 0.3428 0.68  0.829]

0.34 0.3541 0.69  0.8480
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Achondroplasia
mutation rate, 33-4
parental age effect, 140, 148

Acrocephalosyndactyly (Apert’s syndrome),

paternal age effect, 140, 148, 150

Albinism, 23
Alkaptonuria, 5, 23
Allen’s law, 127
Amish, 40
Anencephaly see CNS malformations
Ankylosing spondylitis

association HLA-B27, 119, 120, 124

heritability, 58

inheritance, 57

recurrence risks, 124

Apert’s syndrome, parental age effect, 140,

148, 150

Aryl hydrocarbon hydroxylase, 6
Ascertainment

complete, 40

multiple incomplete, 51-3

probability, 39

single incomplete, 46
Association see Disease association
Assortative mating. 15-17
Asthma

heritability, 58

recurrence risks, 112

Autosomal dominant inheritance, tesis for,

37-8
Autosomal gene frequency
heterozygote not recognizable, 4-5
heterozygote recognizable, 5-7
standard error, 5
Average inbreeding coefficient, 20

Bayes' theorem, 93
ser alse Recurrence risks
Becker muscular dystrophy
clinical course, 133
fitness, 30, 32
recurrence risks, 102
Bernstein's equation, 24

Birth order, population data

correlations, 148
means, | 46

Birth order effect

examples, 140-1

methods of estimation
choice of controls, 145
Greenwood—Yule method, 147-8
Haldane and Smith method, 141-5
partial correlations, 148-53

see also Parental age effect

Blood groups

associations, 114121
frequencies, 10-11
linkage (Lutheran), 69-71

Bonferroni inequality, 122

Cashinahua Indians, 15
Cenumorgan, 70

Cerebral palsy, recurrence nisks, 112
Cleft lip +/— cleft palate

heritability, 58
recurrence risks, 112

Cline, 23
Club foot (congenital)

heritability, 58
recurrence risks, 112

CMNS malformations

cyclical changes in incidence, 161
heritability, 58

maternal age and birth order effects, 141
recurrence risks, 112

Coefficients

average inbreeding, 20
inbreeding (F), 17
relationship (R), 21
selection (s), 23

Complele ascertainment

a priori method, 40
maximum likehhood method, 42
‘singles” method, 44

Concordance 1n twins
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Concordance in twins (conid)

pairwise, 87

proband, 87
Congenital malformations

inheritance, 55

recurrence risks, 112
Consanguinity, 17 ef seq.

genetic heterogeneity and, 135-9
Coronary artery disease, heritability, 58
Correlation

between parent-offspring, 16, 63

between sibs, 16, 63-4

between spouses, 16

in liability, 58 er seq.

intraclass, 63, 90

partial, 14853

significance, 151-3

‘z' transformation, 151

Colour blindness, linkage relationships, 75-7

Counselling, genetic see Recurrence risks
Cousin marriages, 22-3
‘Cusums’, 156-9
Cyclical changes, 159-63
Cystic librosis

gene frequency, 23

heterozygote advantage, 27 -8, 30
Cystinuria. 23

Dahlberg’s formula, 22, 138
see also Cousin marriages
Deafness, profound childhood, recurrence
risks, 112
Dermal nidge count, assortive mating, 17
Diabetes mellitus, recurrence risks, 112
Disease association
explanations for, 114, 123
genetic heterogeneity, 139
problems, 122-3
sibship analysis
Penrose method [14-16
Smith method 121
slatistical analysis (Woolll), 116- 21
value in
genetic counselling, 123-4
pathogenesis, 123
resolution of heterogeneity, 124
see also Blood groups and HLA antigens
Disease frequency, recognition and

estimation of changes in, 154 er seq.

Dislocation of the hip (congenital)
heritability, 58, 60-2
recurrence risks, 112

DNA markers, 103-9

Drift see Genetic drift

Duchenne muscular dystrophy, 32
carrier detection, 96- 100, 10]
clinical course, 133
linkage relationships, 75-7

mutation rate, 34

parental age effect, 140

recurrence risks, 96102
Down’s syndrome, 140
Dunkers, 13

‘e’ score see Linkage
Edward’s syndrome, 140
Effective population size
coefficient of inbreeding and, 25
defimition, 12
estimation, 13-14
gene frequencies and 14-15
Empiric risks see Recurrence risks
Endocardial fibroclastosis, 111-13
Epilepsy (idiopathic), recurrence risks, 112
Epistasis, disease association, cause of, 114
Evolution
Darwinian, 15
non-Darwinian, 15
Exomphalos see CNS

Fetal membranes see Zygosity
Fibrocystic disease see Cystic Fibrosis
Fitness
definition, 29
estimaltion, based on
general population, 2930
sibs, 29-30
Tanaka’'s method, 31
X-linked disorders, 32 -3
Founder effect, 28
Frequency
gene, 4-7
maling and offspring types
autosomal disorders, 8-10
X-linked disorders. 10
relative (K. 57
see also Disease frequency
Friedreich’s ataxia, 139

Ciene
flow, 23-5
frequency
effective population size and. 14-15
estimation ol autosomal
heterozygote not recogmizable, 4-5
heterozygote recognizable, 5-7
multiple allele, 10-11
standard error, §
X-linked. 10
mapping, 78

Genetic counselling see Recurrence risks
Genehie distance, 35



Genetic drft, 12-15
see alse Effective population size
Genetic heterogeneity, 126-39
Allen’s law, 127
bimodality, 129-33
consanguinity, 135-9
disease association and linkage, 139
pedigree studies, 127-8
relatives, correlation, 133-5
variance analysis, 128-9
Genetic load, 21

Haemophilia
paternal age effect, 140
recurrence risks, 99-100
Hardy-Weinberg equilibrium
factors affecting see Assortative mating,
Genetic dnft, Gene flow,
Inbreeding, Mutation and Selection
mating frequencies, 8-10
offspring frequencies, 8- 10
principle, 3-4
Heart disease (congenital)
heritability, 58
recurrence risks, 112
Hellin's law, §1-2
Heritability (h*)
definition, 57
estimates for various disorders, 58
eslimation
calculation, 59 er seq.
combining estimates, 612
continuous characters, 63
twin studies, concordances, 64-6
twin studies, correlations, 90-1
sources of error, 58-9
Heterozygote advantage, 26-9
see alvo Fitness
Hirschsprung's discase, recurrence risks, 112
Hitchhiker effect, 28
HLA antigens, disease associations, 114 er
weq.
Holzinger’s index (H), 66, 91
Hunter's syndrome, 127
Huntingdon’s chorea, 7
fitness, 32
recurrence risks, 94-5
Hurler's syndrome, 127
Hutterites, 19
Hypertension (essential), hentability, 58
Hypospadias (male), recurrence risks, 112

Inbreeding
coefficient (F), 17 i
see also Average inbreeding coefficient
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Incidence

definition, 154

mutation rate and. 35
Intelligence

assortative mating, 15-17
Isoniazid. inactivation, 8
Isonymy, 18-20

Kosambi's equation, 74
see also Linkage and Map distance
Kruskal-Wallis test, 128-9

Linkage
autosomal
three generation families, 67-8
two generation families, 6873
‘disequilibrium’, 114
DMNA markers, 103-9
‘e’ score, T2
genetic heterogeneity, 139
phase, 63
prior probabilities, 73
probability limits, 73-4
probability of linkage, 73
recombination fraction (8), 67, 74-5
relative probability, 67
RFLPs and, 103-5
X-linkage, 75-8
'z’ score, 712
LIPED, 109
Lod scores
calculation, 6873
definition, 67
‘¢’ score, 72
table, 175-83
‘'z’ score, 72

Manic-depressive psychosis, recurrence risks,
112
Map distance, 74-5
Marfan’s syndrome, parental age effect, 140,
146-7, 148
Mast syndrome, 40-1
Maternal age effect see Parental age effect
Mental retardation (idiopathic), recurrence
risks, 112
Migration, 23
Multifactorial disorders, empiric nisks, 112
Multifactorial inheritance
models
other than threshold, 62
threshold, 55
tests for, 55-7
Multiple allele, frequency, 10-11
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Muscular dystrophy see Becker and
Duchenne types
Mutation, 33
Mutation rate
estimation, direct
dominant disorders, 334
X -linked disorders, 34
estimation, indirect, 34-5
Myvasthenia gravis, 142

Myositis ossificans, paternal age effect, 140,

148
Myotonic dystrophy
linkage with secretor, 68, 72-3
recurrence nsks, 96

MNeurofibromatosis. filness, 31
Mormal deviate (*x")
comparison of proportions, 155-6
correlation coefficient, 152-3
table, 155

Omphalocoele see CNS mallormations
Opalescent dentine, 37-8
Ower dominance, 26

see also Heterozygote advantage

Parental age
population data
correlations, 148
means, 1467
Parental age effect
examples of
malernal age, 140
paternal age, 140
methods of estimation
choice of controls, 145
Greenwood-Yule method, 147-8
Haldane and Smith method, 141-5
multiple regression analysis, 152
partial correlations, 148
see alvo Birth order effect
Patau’s syndrome, 140
Paternal age effect see Parental age effect
Path analysis, 18
Penetrance, 109-11
Penrose sib method, 114-16
Peptic ulcer
blood group association, 117-20, 123
heritability, 58
Phase see Linkage
Phenylketonuria
gene frequency, 23
heterozygote advantage, 27-8, 30
segregation analysis in, 51-2

Polyposis coli, recurrence risks, 95
Prevalence

definition, 154

period, 154

point, 154
Probabilities

conditional, 84, 93-7

joint, 84, 93-7

posterior, 93-7

prior, 73, 84, 93-7

see afso Bayes' theorem and Linkage
Proportions, comparison, 155-6
Pyloric stenosis (congenital)

birth order effect. 141

heritability, 58

recurrence risks, 112

Racial admixture, 23
Recombination fraction
defimtion, 67
map distance and, 74-5
Recurrence risks
heritability and, 63
HLA types and, 122-5
multifactorial disorders (empiric risks),
111-13
parental age and birth order effects,
11113, 140
unifactorial disorders, 93-102
see alse Bayes' theorem
Reference tables see Tables of reference
Relationship coefficient (R), 21
Renal agenesis, recurrence risks, 112
Restriction fragment length polymorphisms
(RFLPs), 1035
Retinoblastoma, parental age effect, 140
RISKMF, 113

Sacro-ilius, hentability, 57
Schizophrenia, 3

fitness, 31

heritability, 58, 65-6

recurrence risks, 112

twin studies, 65-6
Scoliosis (idiopathic), recurrence risks, 112
Secretor status, linkage, 2, 68-713
SEGRAMN, 53
Segregation analysis, 37 ef seq.

see alve Ascertainment
Selection

artificial, 25

coelficient (s), 25

estimation from gene frequencies, 27, 28-9

from fitness, 29
fitness and, 25
natural, 25



Selective interaction, disease association,
cause of, 114

Serum crealine kinase, carrier detection,
95102

Sickle-cell anaemia, heterozygole advantage,

27-8
Sickle—cell trant, 6
Smith method, disease association, 121-3
Spina bifida see CNS malformations
Stature, assortative mating, 17
Stratification, discase association, cause of,
114, 122

Tables of reference
birth order (mean and variance), 143 -4
blood group frequencies (UK), 11
chi® distribution, 166
correlation coefficient (significance), 167
correlation in liability (Table) for
estimation of k%, 64
cyclical changes (rank sums), 161
linkage (lod) scores, 175-84
normal deviate, 155
normal distribution, for estimation of k%,
1704
number of gene loci and consanguinity,
138
parental age and birth order
correlations, 148
means, 146, 147
‘r" to ‘z" transformation, 168-9
recurrence risks (empiric), 112
segregation analysis (complete
ascertainment), 41, 43, 47-50
‘student’s’ ¢ distribution, 165
Tanaka's method, for estimating fitness, 31
Tay-Sachs disease, heterozygote advantage,
27-8, 30
Thalassaemia, heterozygote advantage, 27-8
Thalidomide, teratogenicity, 154
Tracheo-oesophageal fistula, recurrence
risks, 112
Twinning rates, 79-80
affecting factors, 79-80
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Twins
concordance rates, 87-9
correlations between, 90-91
dizygous, 7980
heritability estimates from, 646, %0
monozygous, 7498l
problems and limitations, 91-2
use in genetic analysis, 86-41
variances, §9-91
see also Zygosity

Variance
genetic, partition of, 16-17
heritahity, 59
heterogeneity, 128-9
interpair in twins, 89-90
intrapair in twins, 8990

Weinberg method, for determining zygosity.
80-2
proband method, 51
Werdnig-Hoffmann disease, 5
Wooll method, disease association, 116-21

Xavante Indians, 15

X-linkage, 53- 4

X-linked gene
frequency, 10
mating types, 10
offspring types. 10

‘7" score see Linkage

‘z" transformation, 151-2, 168-9

Zygosity, twin, diagnosis, fetal membranes,
&2

similarity, 83-6
Weinberg's method, 80-2
















