Linkage maps of human chromosomes / Howard Hughes Medical Institute.

Contributors

Howard Hughes Medical Institute.

Publication/Creation

Salt Lake City, Utah: The Institute, 1987.

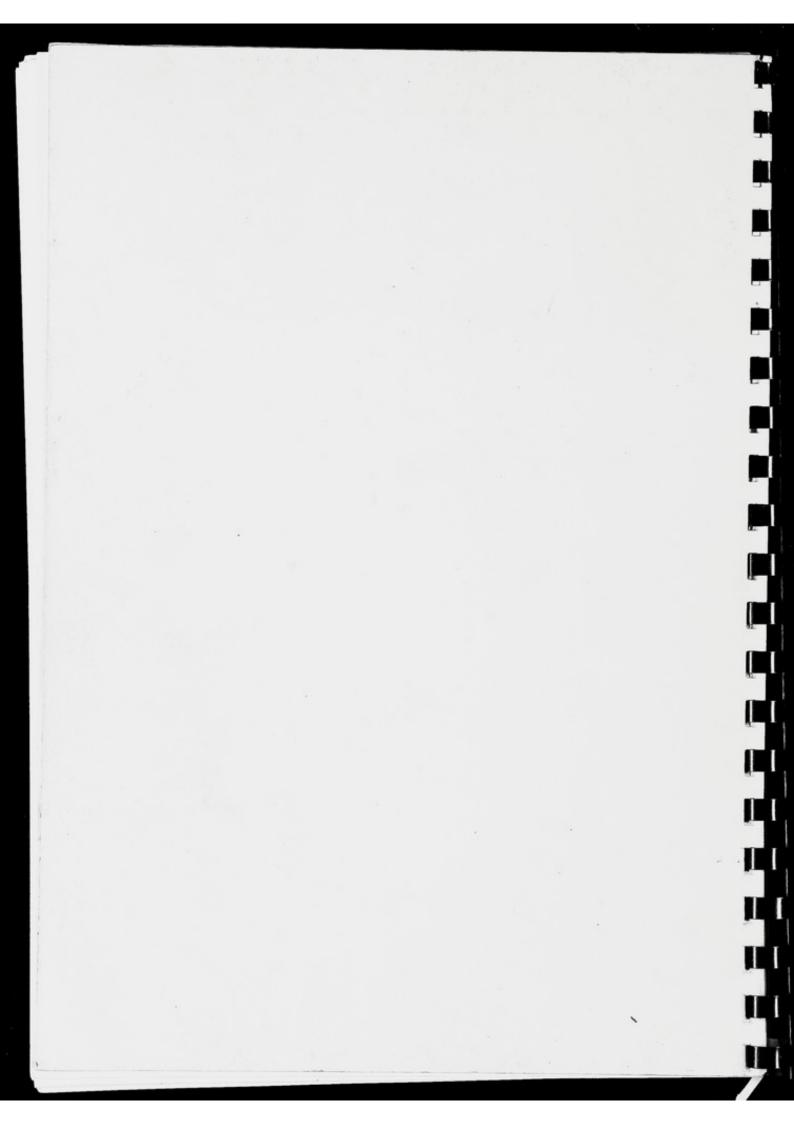
Persistent URL

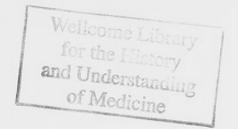
https://wellcomecollection.org/works/g82u3pcu

License and attribution

You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.


Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

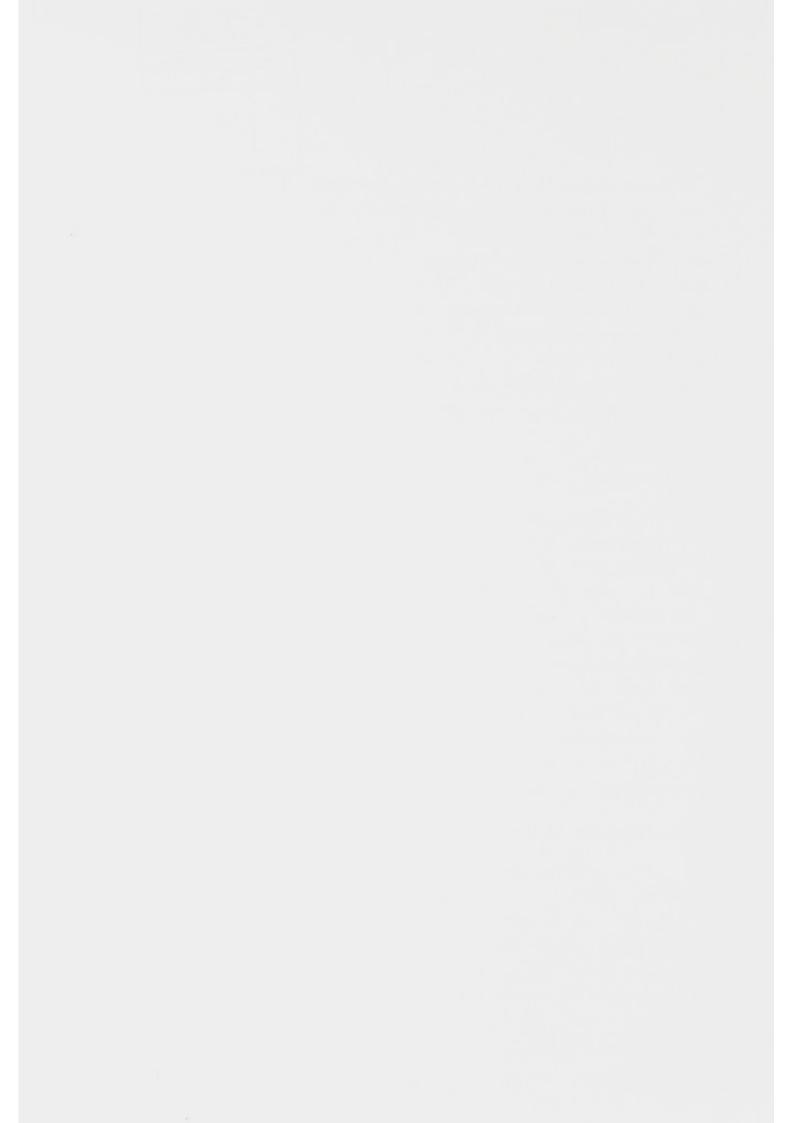

LINKAGE MAPS OF HUMAN CHROMOSOMES

Howard Hughes Medical Institute
Salt Lake City, Utah

36053

WELLCOME LIBRARY General Collections M

I. Introduction

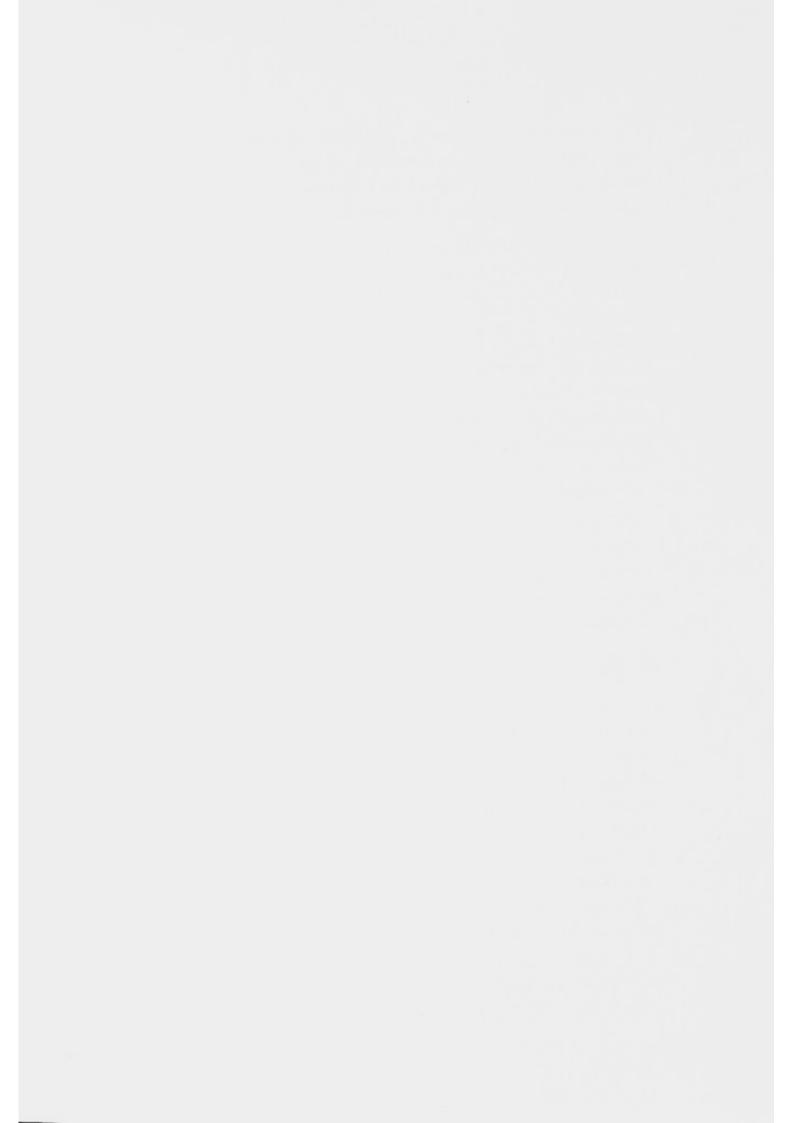

Over the past seven years, the major focus of the Salt Lake City linkage group has been on the development of tools that would permit, through family studies, the localization of genes that cause human genetic disease. It is well understood now that gene localization can be the first step in the identification and cloning of a gene. Our goal was to develop economical sets of mapped DNA marker loci capable of detecting a disease gene wherever it might lie. Progress toward that goal made by the Salt Lake City group is documented in this collection of abstracts and chromosome maps.

II. Overall Strategy

The overall strategy has been to identify DNA sequence polymorphisms, determine the segregation pattern of the polymorphisms in three generation families with large sibships and build linkage maps based on analysis of the segregation patterns. The polymorphic loci, identified with restriction enzymes and DNA probes, become the primary tools for searching out linkages with genetic disease loci. In addition, however, maps of the marker loci have already proven valuable and will become more so both in defining the set of marker loci that span a large region and in identifying clusters of tightly linked marker loci that map within a region of interest.

A. Probe Development

The probe-enzyme combinations that reveal polymorphism were, in the beginning, detected by random searches, picking arbitrary clones and screening panels of unrelated individuals for variation. Although many site polymorphisms have been detected in this manner, these two-allele systems leave many individuals uninformative


for linkage. A large percentage of uninformative matings in either a disease linkage study or in high resolution studies with closely linked markers in the CEPH families can be devastating, yielding quite inconclusive results.

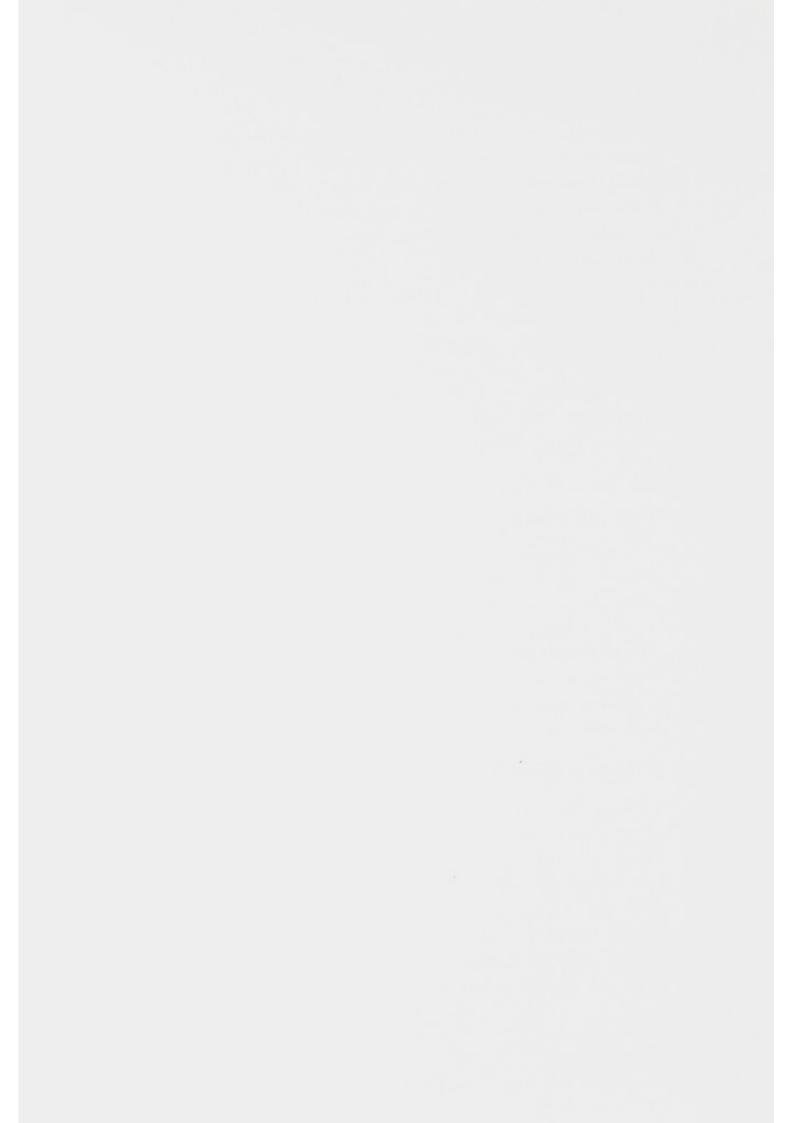
Fortunately, a paradigm approach developed by Alec Jeffreys using sequences from known, highly polymorphic loci to screen genomic libraries at low stringency has, permitted the ascertainment by our group of a large collection of highly informative, multi-allelic markers based on Variable Number Tandem Repeat (VNTR) loci. We expect these marker loci to become the primary anchor points of the genetic linkage maps, especially useful in the initial localization phase of linkage studies with disease families and in the development of high resolution chromosome maps.

In addition, the screening produces a number of single and multiple restriction site polymorphisms. These become particularly important in genetically defining regions where the VNTR loci are only widely spaced and in fine structure mapping.

B. Reference Families

The choice of family resources for the development of the linkage maps has been critical. Complete, three generation families with large sibships have proven a highly efficient source of segregation data. ascertained, sampled and established lymphoblastoid cell all available members lines from of 46 large Utah families. Interestingly, the efficiency has been found not only in the collection of data, but in the analysis as well. The CEPH initiative has made DNAs defined set of 40 reference pedigrees, including 27 of the Utah families, widely available to investigators. Use of this archival set of reference families makes it possible for an investigator to take advantage of the

segregation patterns already characterized for a large number of marker loci by other investigators in these families. An investigator need, therefore, only develop the segregation pattern of his marker locus in the CEPH families in order to map his marker locus with respect to many other marker loci.

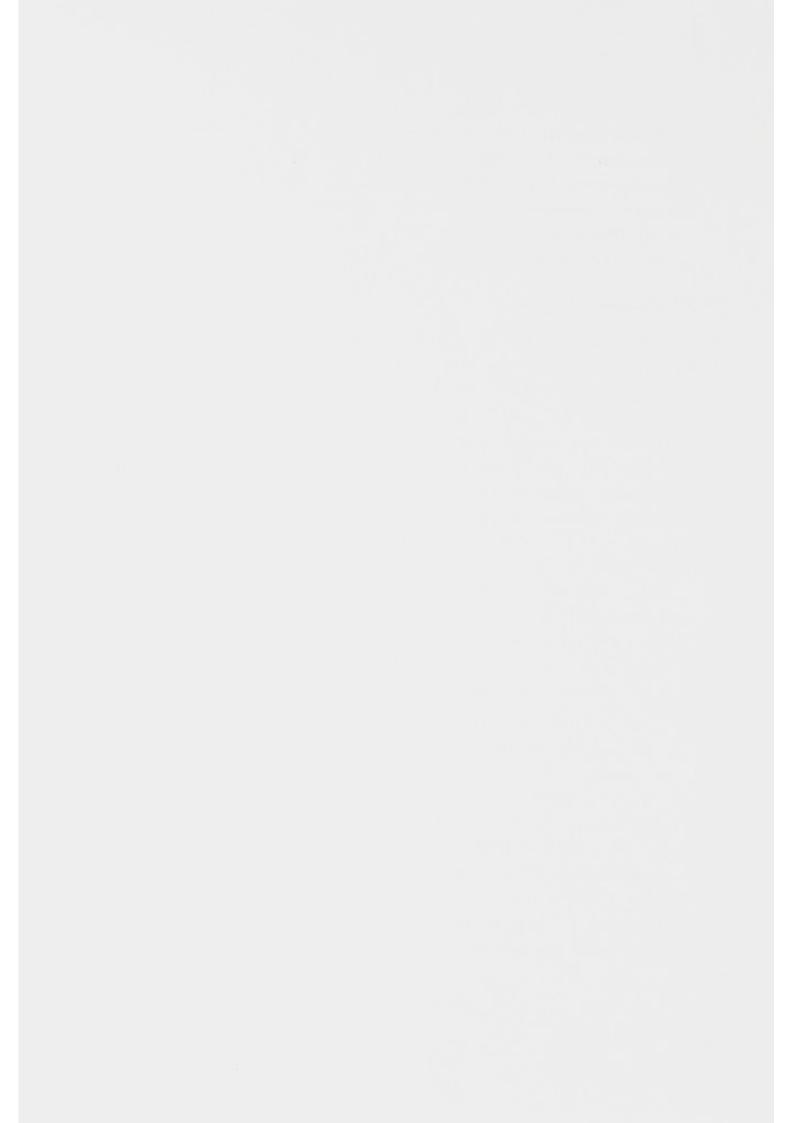

Ultimately, for high resolution studies with tightly linked markers, even more families than the CEPH collection are required and we routinely type the entire collection of 59 families available to us. As shown in the accompanying abstract, the complete set of 59 reference families does represent an adequate panel for fine structure mapping.

C. Chromosome Assignment of Linkage Groups through Assigned Genes

Family studies develop linkage groups, but do not reveal their chromosomal assignment. However, if even only one member of the linkage group has been assigned to a chromosome, it specifies the chromosomal location of the entire linkage group. We have, therefore, taken care to include in our linkage studies a number of gene loci that have been previously assigned to a chromosome or that were assigned as part of a collaborative effort.

D. Marker Order Determined by Rational Strategy

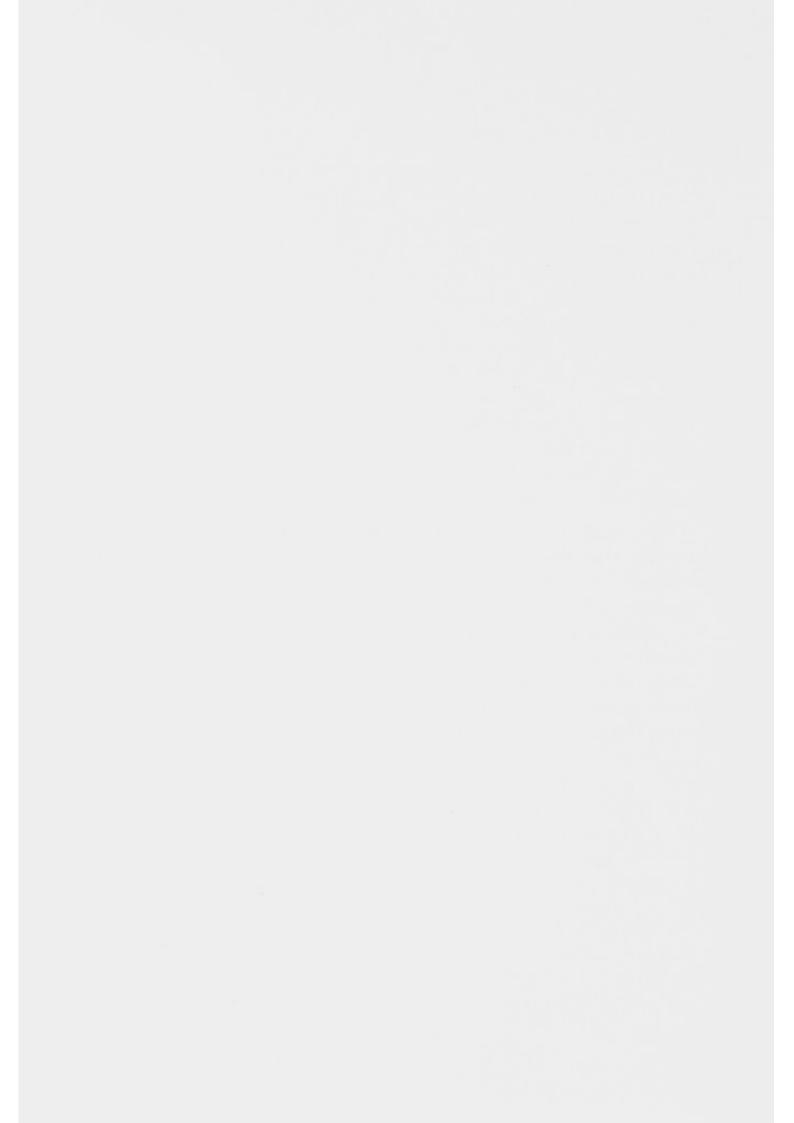
The linkage groups that form the chromosome maps are often now continuous with over 20 linked marker loci. The number of calculations required to determine the most favored gene order by brute force would be 20!/2. Even with new, high speed algorithms for the calculation of likelihoods, it has proven useful to develop methods that permit the exclusion of broad classes of marker orders that are clearly not favored. Furthermore, keeping track



of the results of the thousands of likelihoods that are calculated in such analyses has proven exceptionally burdensome. For this reason an intelligent database system consisting of the results of the likelihood calculations has been developed and combined with an automated system of analysis.

III. Progress Report

This collection of abstracts and chromosome linkage maps constitutes a preliminary progress report from the Utah linkage group. As such, the data reported herein should be regarded as provisional and likely to be revised in detail, although not in substance. Because significant differences between male and female recombination frequencies have been observed, the analyses include a preliminary look at the question of sex specific map distances. However, the reader should take careful note that the analyses of sex specific map distance are indeed very preliminary and have been carried out only under the assumption of a constant ratio of sex specific map distance for each chromosome. We fully expect that further examination will often reveal regions of intrachromasomal heterogeneity in this ratio, as has been found for both chromosomes 11 and 12.

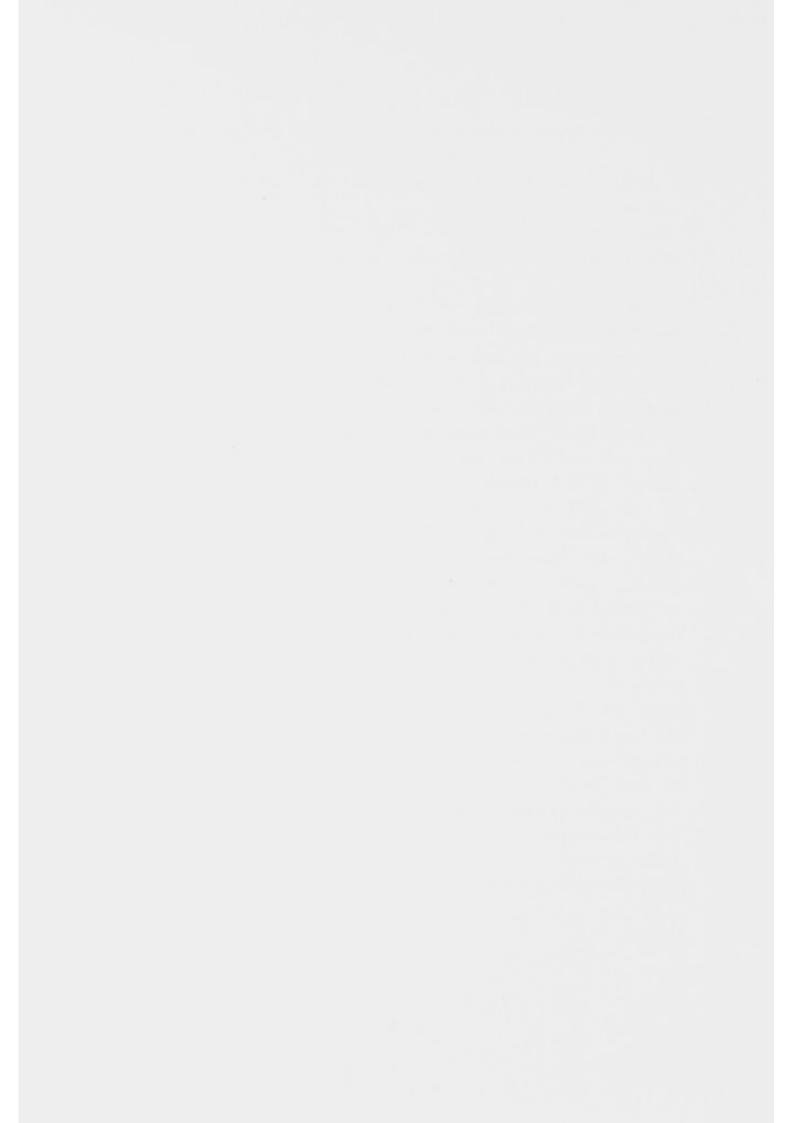

The great majority of our marker loci lie within chromosomally assigned linkage groups. However, a significant number of markers are as yet unassigned and are likely to fall within the sparsely populated regions of a few chromosomes. In particular, the genotyping of a number of very informative VNTR markers is still in progress and is expected to add a number of strong anchor points to the maps. Even with that, however, most chromosomes are now well described; the probability of linkage of an unknown marker with one of the linkage groups is now well over 90%.

IV. Use of the Maps and Markers

The primary use of the markers and maps will be in the initial localization of genes that cause disease. We expect that it will very soon be possible to derive, for each chromosome, a set of evenly spaced and highly informative markers that will reveal whether or not a disease gene is located on that chromosome. Furthermore, once a disease gene is initially localized, the availability of a secondary collection of markers mapped to the region for the purpose of more precise localization as a prerequisite for physical approaches to the gene will become critically important. As there are literally thousands of human genes that will be handled in this fashion it is well worthwhile to contemplate the development of a higher resolution set of chromosomal maps, with markers spaced at 1 cM intervals.

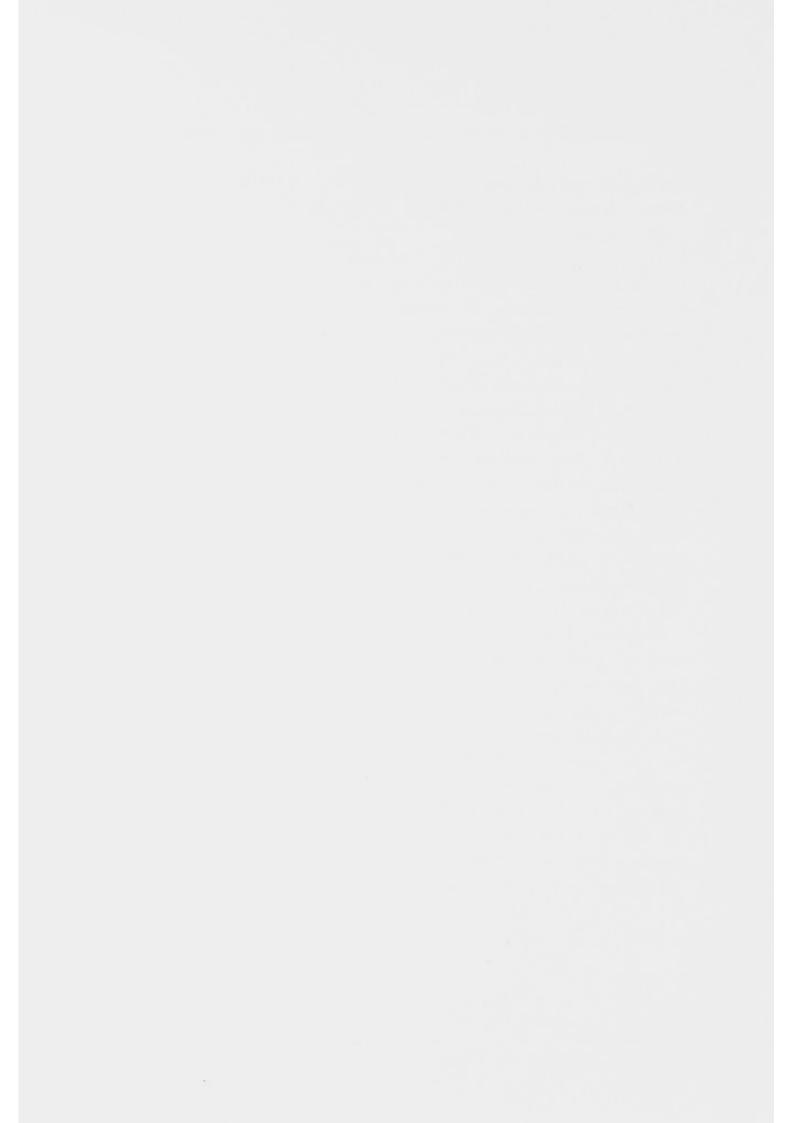
Finally, the CEPH families and CEPH database should now become a primary tool for localizing new genes as they are cloned. The resolution obtainable at present can expected to be, on the average, perhaps 10 (10 CM megabases), making linkage an efficient tool for this primary identification. Furthermore, the localization of genes of known identity within the linkage maps may prove an invaluable tool in the future as disease genes are mapped within the same linkage groups. Positional overlap will identify already cloned and characterized genes as important candidates for the disease gene. Of perhaps importance, many physiologically suggested candidate genes will be rigorously eliminated by the demontration that they are not linked to the region of the disease locus.

CURRENT STATUS IN MAPPING THE HUMAN GENOME: 470 RFLPs in 59 FAMILIES AND 600 NEW RFLPs

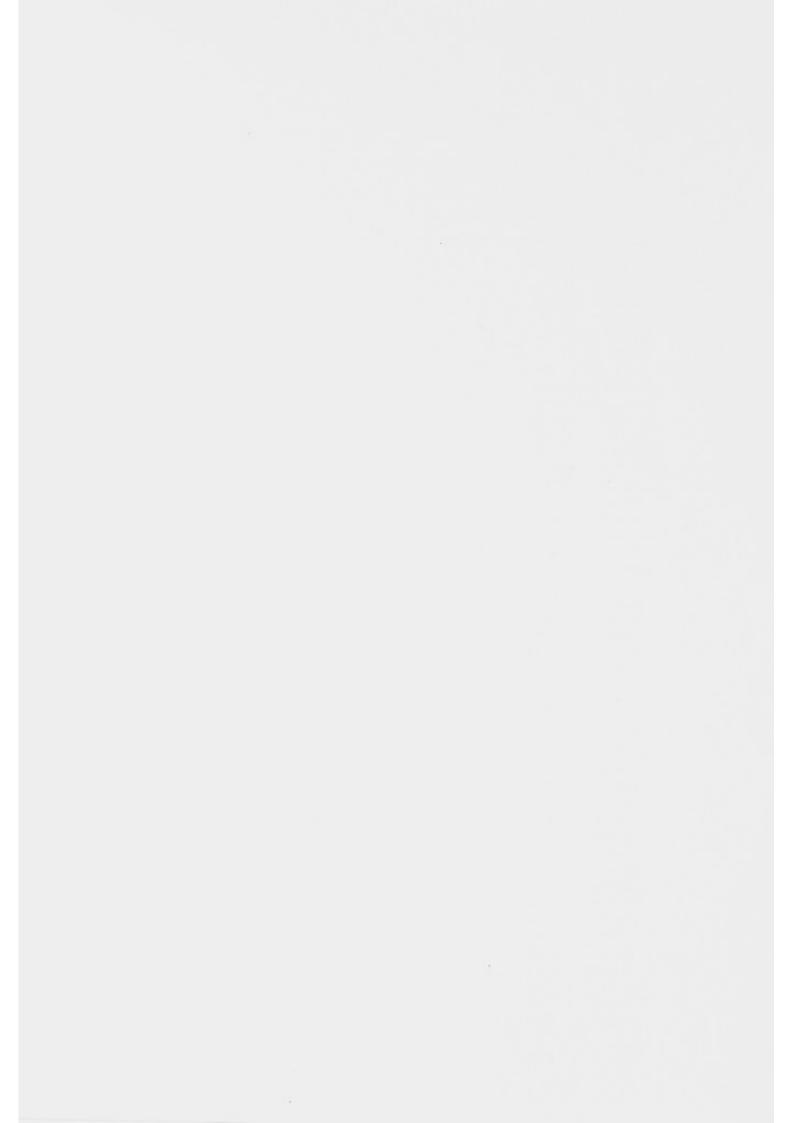

R. White, J.-M. Lalouel, P. O'Connell, Y. Nakamura, M. Leppert, and M. Lathrop.

Howard Hughes Medical Institute and Department of Human Genetics, University of Utah Medical Center, Salt Lake City, UT

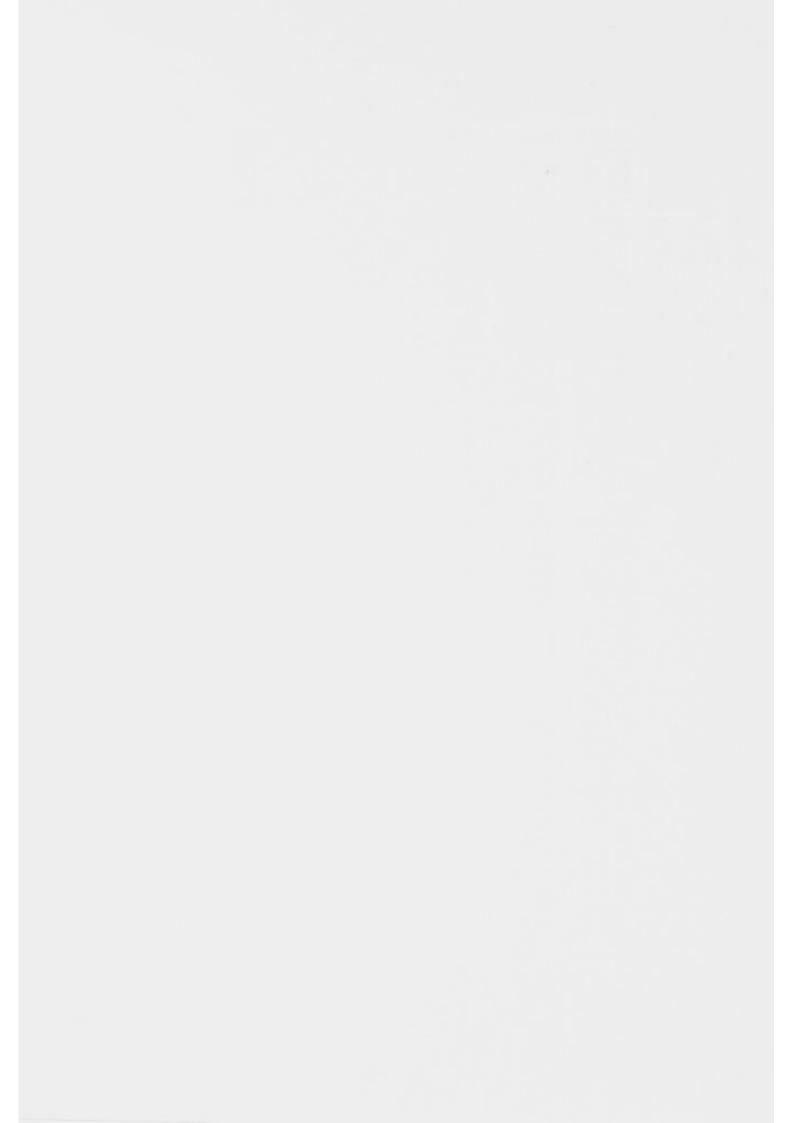
More than 600 new RFLPs, including 207 VNTR loci, have been isolated from a human cosmid library (Nakamura et al., Science 235:1616-1622, 1987 and accompanying abstract). As these new clones are isolated, the genotypes of the more informative ones are determined in a set of 59 large, three-generation families (White et al., Nature 313:101-105, 1985) that include 822 individuals; 40 of these families constitute the CEPH panel. This sample size is a minimum requirement for determining gene order between closely linked loci with reasonable statistical power.


In addition, 165 RFLPs cloned previously in our laboratory and in others, as well as 24 protein polymorphisms (almost all assigned to specific chromosomes), have been characterized in these families. They serve as reference points for mapping and chromosomal assignment of the new markers by linkage analysis. At present, genotypes at 470 marker loci have been determined in our reference panel of families. Linkage analysis routinely performed using the LINKAGE programs on this expanding data set has allowed us to demonstrate linkage for more than 90% of the markers. Efficient multilocus linkage analysis, coupled with an automated computer system for the construction of genetic maps (see accompanying abstract), has yielded primary genetic maps of most human chromosomes (see accompanying abstracts on chromosomes 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19) as well as linkage groups on other chromosomes.

The availability of these markers, genetic maps, genotypic data, and analytical tools is proving of great value for the efficient mapping of new loci, for known genes and for Mendelian disorders.


Yusuke Nakamura, M. Leppert, P. O'Connell, J.-M. Lalouel, and R. White Howard Hughes Medical Institute, University of Utah Medical Center, Salt Lake City, UT

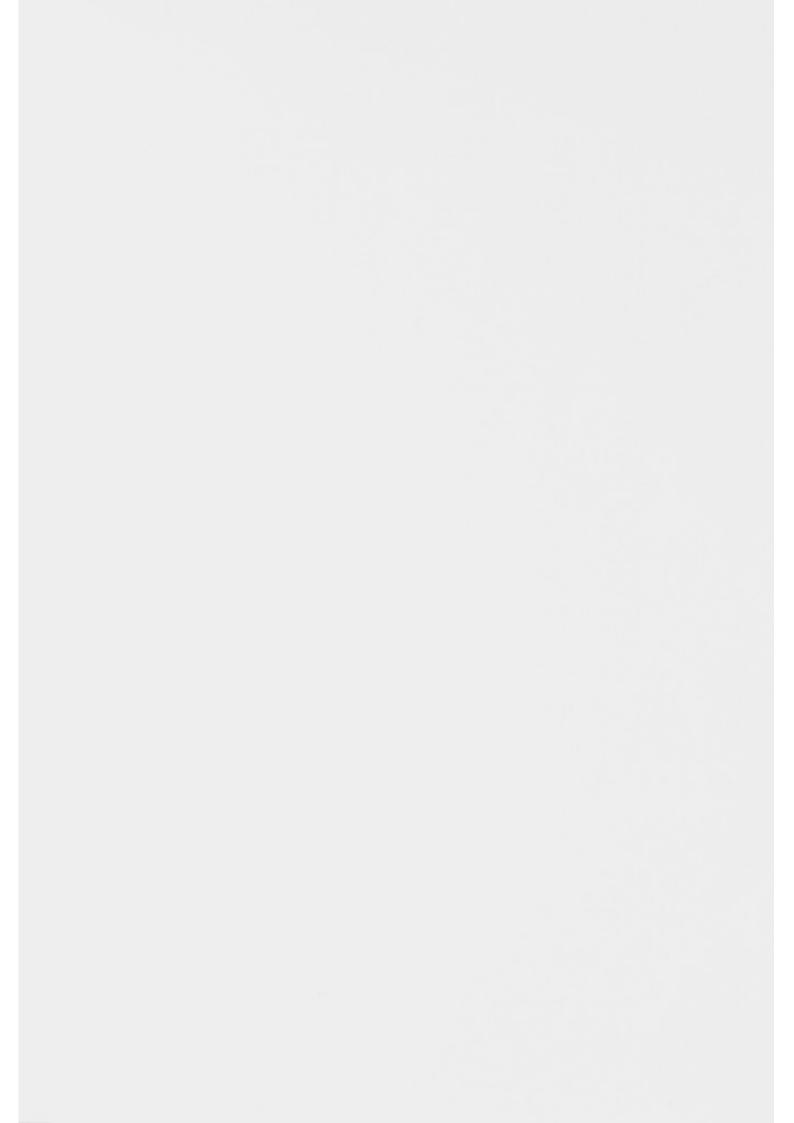
A large collection of good genetic markers is needed to map the genes that cause human genetic diseases. Although hundreds of polymorphic DNA markers for human chromosomes have been described, the majority have only two alleles and are thus uninformative for analysis of genetic linkage in many families. However, a small proportion of these markers detect loci that respond to restriction enzyme cleavage by producing a fragment that can have many different lengths, due to variation in the number of tandem repeats of a short DNA sequence. Because most individuals will be heterozygous at such loci, these markers will provide linkage information in almost all families. Ten oligomeric sequences derived from the tandem repeat regions of the myoglobin gene, the zeta-globin pseudogene and the insulin gene, and from the X-gene region of hepatitis B virus, (GT)10, were used to screen a human cosmid library, yielding a series of single-copy probes. (Y. Nakamura et al., Science 235:1616-1621, 1987). This abstract updates the previous publication. A total of 500 cosmid clones hybridized with oligonucleotides have been tested for polymorphism. In 128 such DNA markers (26%), polymorphism in allele sizes reflected variation in the number of tandem repeats (only three of 89, 3%, of unselected cosmid clones showed the same type of polymorphism). These VMTR markers revealed 33-97% heterozygosity, with an average of 70%. Fifty-seven of them have been examined for linkage to localized markers; 39 clones showed linkage with marker loci on chromosomes 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19. Thus, VMTR marker loci are well dispersed in the genome and they will become a very powerful tool for mapping human chromosomes. Detailed mapping information is provided in accompanying abstracts.



VNIR DNA Markers

	Enzyme*	Allele size range (kb)	Allele number		Chromosome
YNZ2	RsaI	1.0 - 3.0	5	65%*	1
YNZ21	MspI	1.0 - 4.0	>10	898*	
YNZ22	BamHI	1.1 - 2.0	>10	868∗	17
YNZ23	PstI	2.0 / 2.5	2	41%	1
YNZ32	TaqI	2.3 - 2.8	5	57%∗	4
YNZ86	MspI	0.6 - 0.8	3	52∜*	3
YNZ132	TaqI	1.8 - 2.3	6	698*	8
YNZ186	BamHI	1.2 - 2.0	6	83%	
YNZ195	TagI	1.0 - 2.5	6	83%	
JCZ3	TagI	1.5 - 3.0	7	82%*	19
JCZ19	BglII	1.8 - 3.1	6	83%	
JCZ30	ECORI	3.0 - 4.8	4	75%*	6
JCZ37	BglII	0.8 - 1.5	5	83%	
JCZ42	TagI	2.8 - 3.5	5	75%	
JCZ45	PstI	1.4 / 1.9	2	50%	
JCZ67	RsaI	3.5 - 5.0	>10	83%*	
JCZ69	PvuII	0.9 - 1.3	4	67%	
JCZ70	MspI	1.5 / 1.7	2	50%	
YNM3	RsaI	2.5 - 2.8	4	34%*	8
YNM4	TuqI	2.3/3.0/5.0	3	60%*	
MIJ1	HinfI	2.0 - 3.0	5	64**	
MLJ14	RsaI	4.0 - 15.0	>20	95%*	14
MLJ101	MspI	2.2 - 3.5	6	89%	
MLJ102	BqlII	6.0 - 8.0	6	78%	
MIJ103	TagI	0.6 - 0.8	4	67%	
CMM1	MspI	0.9 / 1.0	2	45%	
CMM3	BamHI	1.9 - 3.3	7	83%	
CMM5	RsaI	2.5 - 3.4	4	67%	
CMM6	TagI	2.5 - 4.3	>10	90%*	
CMM8	MspI	2.3 / 2.8	3	598*	1
CMM12	BamHI	3.5 - 6.0	6	78%*	
CMM19	RsaI	1.2 - 2.0	4	67%	
CMM22	MspI	2.0 / 2.8	2	44%	
CMM62	PstI	4.3 - 8.0	4	61%	
CMM64	PvuII	3.7 / 4.3	2	50%	
CMM65	RsaI	2.3 / 3.0	2	39**	16
CMM66	PstI	5.0 -10.0	>10	83%	
CMM71	BglII	2.0 - 4.5	6	78%	
CMM73	PstI	1.0 - 2.0	5	83%	
CMM77	PstI	2.1/4.2/6.0	3	50%	
CMM86	RsaI	3.0 - 5.0	>10	93%*	
CMM101	MspI	1.0 - 5.0	>10	908*	1
QMM103	PvuII	4.3 - 5.0	5	75%	
YNI10	TaqI	10.0 - 15.0	>10	85%	1
CMI37	RsaI	2.3 - 3.0	6	68%*	7
CMI40	TagI	2.5 - 4.5	4	46%	

CMI214	BglII	4.0 - 5.0	3	61%	
CMI296	RsaI	2.3 - 6.0	5	75%	
CMI297	MspI	4.0 - 8.0	5	83%	
CMI327	PvuII	2.5 - 4.0	>10	83%	
THI54	PvuII	5.0 / 6.0	2	46**	1
THI 62	RsaI	1.0 - 2.0	5	80%*	13
THIZ53	BamHI	2.1 / 2.3	2	27%*	12
THH5	PvuII	1.1 - 2.0	4	55%*	8
THH7	RsaI	3.0 - 4.3	4	66%	
THH18	MspI	4.5 / 4.8	2	50%*	
THH33	RsaI	3.5 - 5.0	>10	78%	
THH39	PstI	2.1 - 3.0	4	61%*	14
THH50	TagI	4.0 / 4.4	2	50%	
THH51	MspI	5.0 - 7.0	3	67%	
THH59	PvuII	0.8 - 1.8	6	75%*	17
HHH104	RsaI	0.8 - 1.8	6	67%	
HHH116	RsaI	2.5 - 2.8	3	67%	
HHH123	MspI	0.8 - 1.2	4	56%	
HHH129	TagI	3.2 - 5.0	3	64**	
HHH141	BamHI	4.5 - 6.0	4	67%	
HHH164	HindIII	14.0/16.0	2	30%	
HHH170	HindIII	5.0 / 6.0	2	50%	
HHH212	TagI	3.4 / 3.8	2	41%*	1
YNH24	MspI	1.0 - 7.0	31	978*	2
YNH37	TagI	2.0 - 4.0	5	78%*	17
EKZ101	RsaI	2.0 / 2.2	2	71%*	
EKZ103	MspI	2.0 - 2.4	3	50%	
EKZ107	TagI	2.5 - 4.4	4	67%	
EKZ109	TagI	2.0 - 2.5	2	50%	
EKZ127	MspI	3.0 - 4.5	4	61%	
EKZ130	RsaI	1.0 - 2.0	5	78%	
EFD4	PvuII	2.1 / 2.4	2	44%*	19
EFD6	RsaI	2.0/2.4/3.5	3	67%	
EFD7	PvuII	1.0 - 1.8	3	56%	
EFD11	MspI	1.0 - 2.0	3	48%*	
EFD13	TagI	2.0 - 3.0	3	67%	
EFD19	MspI	3.0 - 4.5	6	83%	
EFD20	MspI	3.2 - 3.7	3	67%	
EFD33	MspI	3.0 - 9.0	4	68%*	12
EFD52	PstI	4.0 -10.0	>10	908*	17
EFD61	MspI	1.0 - 2.3	6	78%	
EFD63	RsaI	2.0 - 4.0	4	72%	
EFD64	MspI	1.0 - 5.0	>10	85%*	
EFD70	PvuII	1.8 - 2.0	4	558*	
			3	61%	
EFD72	PvuII	0.6 - 0.8			
EFD75	RsaI	1.5 - 2.0	6	65%*	
EFD77	MspI	2.0 - 2.7	4	56%	
EFD91	PvuII	2.5 - 2.9	3	61%	
EFD95	MspI	4.0 - 7.0	4	78%	
EFD97	<u>Eco</u> RI	6.0 / 8.0	2	45%	
EFD126	TagI	1.5 - 2.0	6	71%*	9
EFD127	MspI	2.0 - 2.5	3	61%	
EFD131	TagI	1.8 - 2.3	3	61%	
EFD134	MspI	1.5 - 2.5	6	75%*	



EFD137	MspI	2.5 - 3.0	4	75%	
EFD139	PstI	5.0 - 8.0	>10	85%*	
MHZ10	MspI	1.4 - 2.0	6	83%*	9
MHZ13	PstI	1.5 - 2.3	5	78%*	9
MHZ15	MspI	3.0 - 3.6	3	67%	
MHZ16	MspI	1.2 / 1.3	2	38%	
MHZ19	MspI	0.8 - 1.2	4	67%	
MHZ30	TagI	2.7 / 3.9	2	33%	
MHZ32	MspI	3.2 - 4.3	4	67%	
MHZ44	TagI	2.4 - 3.3	4	78%	
MHZ45	MspI	2.0 - 3.0	5	75%	
MHZ47	MspI	1.5 - 3.2	>10	83%*	
MHZ48	PstI	3.0 - 3.3	3	61%	
MCK2	RsaI	0.9 - 1.5	6	50%*	10
MCT6	BamHI	8.5 -12.0	3	53%*	19
MCT7	PstI	4.0 - 8.0	4	70%	
MCT15	MspI	1.0 - 1.5	4	49**	
MCT32	TagI	2.8 - 6.0	4	75**	3
MCT46	TagI	1.7 / 2.2	2	45%	
MCT58	PvuII	1.4 - 1.6	6	75%*	
MCT96	MspI	0.9 - 1.5	4	48%*	
MCT106	PvuII	2.3 - 3.5	3	67%	
MCT118	PvuII	1.5 - 1.8	3	67%	
MCT128	PstI	1.0 - 1.6	4	65**	11
MCT136	PstI	2.0 / 2.2	2	50%*	9
TBAB5.7	PvuII	4.3 - 5.0	5	65**	2
ATBI20	MspI	1.0 - 1.5	5	75%	
TBZ27	PvuII	5.0 -10.0	8	80%	
EFZ10	PstI	3.4 - 6.0	6	75%*	18
EKMDA2	RsaI	3.0 - 5.3	8	83%*	16
RMU3	PvuII	0.7 - 1.3	>10	85**	17

^{*} Only the enzymes that gave the best resolution are shown. Probes YNZ and JCZ were isolated by the zetaglobin oligonucleotide; YNM and MIJ, by myoglobin-1; CMM, by myoglobin-2 or 3; THH, by HBV-1; YNH, by HBV-2; YNI and CMI, by insulin; EKZ, by HBV-3; EFD, by HBV-4 and -5; MHZ and TB, by YNZ22; MC, by (GT)₁₀.

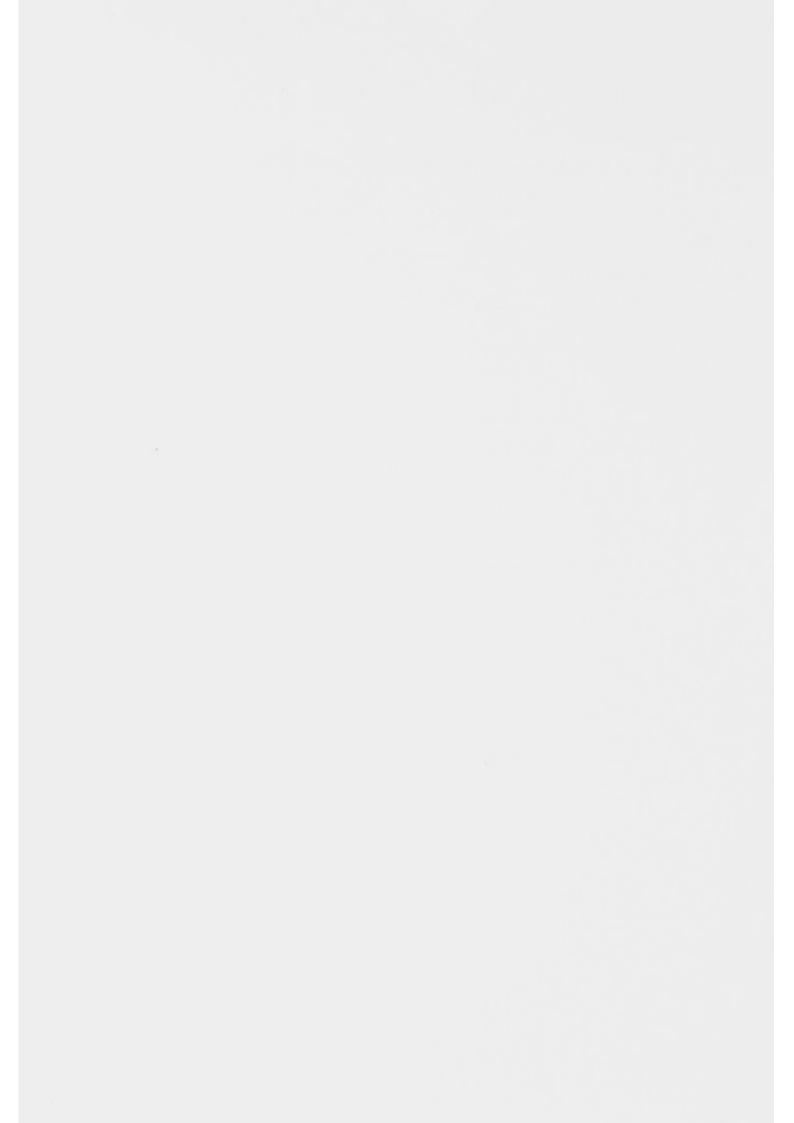
^{*:} the result in 120 unrelated individuals


[:] the result in 18 unelated individuals

DNA Sequences and Hybridization Conditions for Oligonucleotide Probes

		lybridization Vemperature	Washing Temperature
Zetaglobin (18mer)	TOOOGCACACG ^T IGIGAG	42 ⁰ C	48 ^o C
Insulin (14mer)	YCAOOGGIGIOOOG	30°C	37°C
Myoglobin-1 (16mer)	GGAGGTGGGGAAG	37 ⁹ C	44°C
Myoglobin-2 (14mer)	OCACCCTOCACCAC	37 ⁹ C	42°C
HBV-1 (16mer)	GCAGTTGGGGCAGGAG	37 ⁹ C	44°C
HBV-2 (20mer)	GCACTGGGAGGAGTTGGG	og 50 ^o c	60°C
HBV-3 (15mer)	GGIGAAGCA ^G AGGIG	37 ⁹ C	42 ^o C
HBV-4 (15mer)	CACACCCCTCTACAC	37 ⁹ C	42 ⁹ C
HBV-5 (15mer)	CCICIACACACCCCI	37 ⁹ C	42 ⁹ C
YNZ22 (15mer)	CICIOGGIGIOGIGC	37 ⁹ C	42 ^o C
(GT) ₁₀ (20mer)	<u>erararararararara</u>	GT 45 ^o C	55°C

Hybridization was carried out in a solution of 5 X SSC (1 X SSC = 0.15M NaCl and 0.015M Na Citrate); 50mM Tris.HCl (pH 7.4); 1 X Denhardt's solution (0.02% Bovine serum albumin, 0.02% Polyvinyl-Pyrrolidone, 0.02% Ficoll); 10 mcg/mL of yeast tRNA; and 1 X 10⁵ cpm/ml of ³²P 5'-end labeled probe (2 X 10⁶ cpm/pmol) for 16 hours. Washing was done three times in 5 X SSC-0.1% SDS for 5 min.



Summary of screening for VNIR polymorphism

	Positive clones per genome	Clones tested for RFLPs	VNIR marker	* *		poly- phism
Zetaglobin	180	86	18	21	33	(7)
Insulin	220	48	10	21	19	(1)
Myoglobin-1	150	35	7	20	19	(8)
Myoglobin-2 an	d 3 38	50	18	36	19	(8)
HBV-1	200	65	16	25	38	(13)
HBV-2	40	9	2	22	6	(3)
HBV DR 1	50	20	6	30	6	(2)
HBV DR 2 and 3	150	86	25	29	40	(25)
YNZ22-1 and 2	68	50	14	28	25	(11)
(GT) ₁₀	100	48	12	25	19	(6)
Totals		497	128	26	224	(84)
Random		89	3	3	45	(18)

^{*} The proportion of VNIR DNA markers among the tested cosmids.

^() The number of cosmids which showed site polymorphisms with two or more restriction enzymes.

THE NUMBER OF MEIOSES NEEDED TO RESOLVE GENE ORDER IN A 1% LINKAGE MAP M. Lathrop, J.M. Lalouel, and R. White

Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT

Maps of highly polymorphic loci, based on VNTR's (Nakamura et al., Science 235: 1616, 1987), in which adjacent loci span approximately lcM (3000 to 4000 loci) are technically feasible; they could provide a powerful tool for the localization and the isolation of disease genes. Because of the close linkage between adjacent markers, large samples sizes will be needed to determine the map order.

Ordering of the linkage map will require the observation of at least one recombinant between each pair of adjacent loci A and B. Using VNTR's, informative flanking loci, F1 and F2, would be available to distinguish the true order F1-A-B-F2 from the alternative F1-B-A-F2: one recombination under the true order (F1-A-x-B-F2) requires three recombinations under the alternative order (F1-x-B-x-A-x-F2). The observation of two or more recombinants between A and B would be desirable to exclude typing error. Based on Poisson recombination events and 1% recombination between adjacent loci, we have calculated the probability distribution of the number of unresolved orders in a 4000 locus map in terms of meioses informative for adjacent markers:

	At least one	recombinant	At least two recombinants		
Phase-Known Informative Meioses	Prob. to Resolve All Orders	95% Upper ¹ Limit on Number NOT Resolved	Prob. to Resolve All Orders	95% Upper ² Limit on Number NOT Resolved	
1200	0.98	0	0.73	1	
1000	0.83	1	0.00	5	
800	0.26	3	0.00	18	
600	0.00	15	0.00	82	
400	0.00	87	0.00	397	
200	0,00	577	0.00	1675	

The number of intervals in which no recombinants will be observed equals or exceeds this bound with 95% probability.

The assumption of 1% recombination between adjacent loci throughout the map is an approximation; calculations taking account of unequal recombination will be presented elsewhere. Average heterozygosity of 70% will require sample sizes at least twice those we report to obtain the requisite number of doubly informative matings.

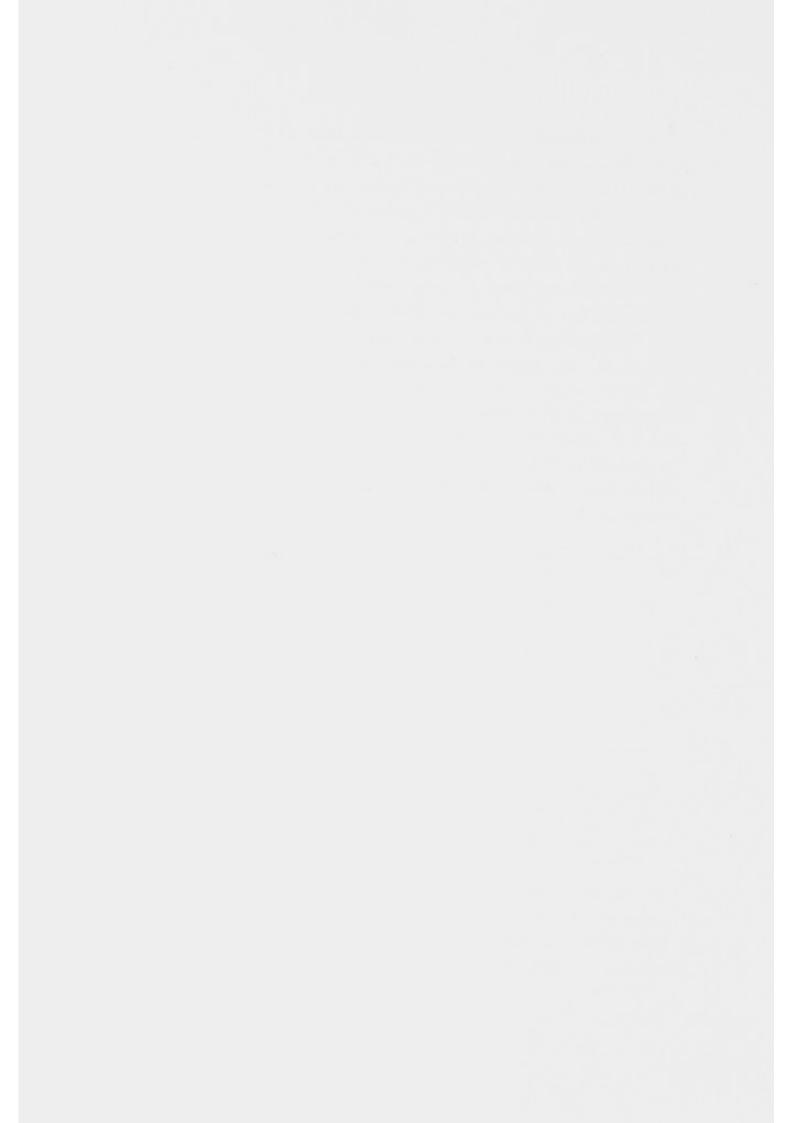
The number of intervals in which 0 or 1 recombinant will be observed equals or exceeds this bound with 95% probability.

COMPUTATION TIMES FOR LINKAGE ANALYSIS IN GENE MAPPING G.M. Lathrop and J.M. Lalouel

Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT

Initial computer implementations of multilocus analysis in the LINKAGE programs were designed primarily to investigate the scientific merits of this approach for the detection of linkage and the construction of linkage maps of human chromosomes. The proven usefulness of multilocus analysis has led to the search for more efficient likelihood calculations.

Optimization of the original LINKAGE algorithms, and the application of statistical techniques as described in Lathrop et al. (Genet Epidem 3: 39-52, 1986) makes extensive multilocus analysis feasible on a wide range of computers. As an example, we provide the following benchmarks of CPU times and the number of likelihood evaluations required to obtain estimates of recombination under a single gene order for various number of codominant marker loci typed in 30 reference families (416 individuals) from the CEPH family panel:


Number of Loci	Seconds a Single	Number of Evaluations		
	VAX 8650 ¹	Micro-VAXII ²	IBM-AT ^{3,4}	to Convergence
5	0.05	0.45	7.52	71
10	0.20	1.64	37.40	320
15	0.43	3.48	83.10	1145
20	0.56	4.60	110.51	1162
50	6.34	54.48	not done	7386

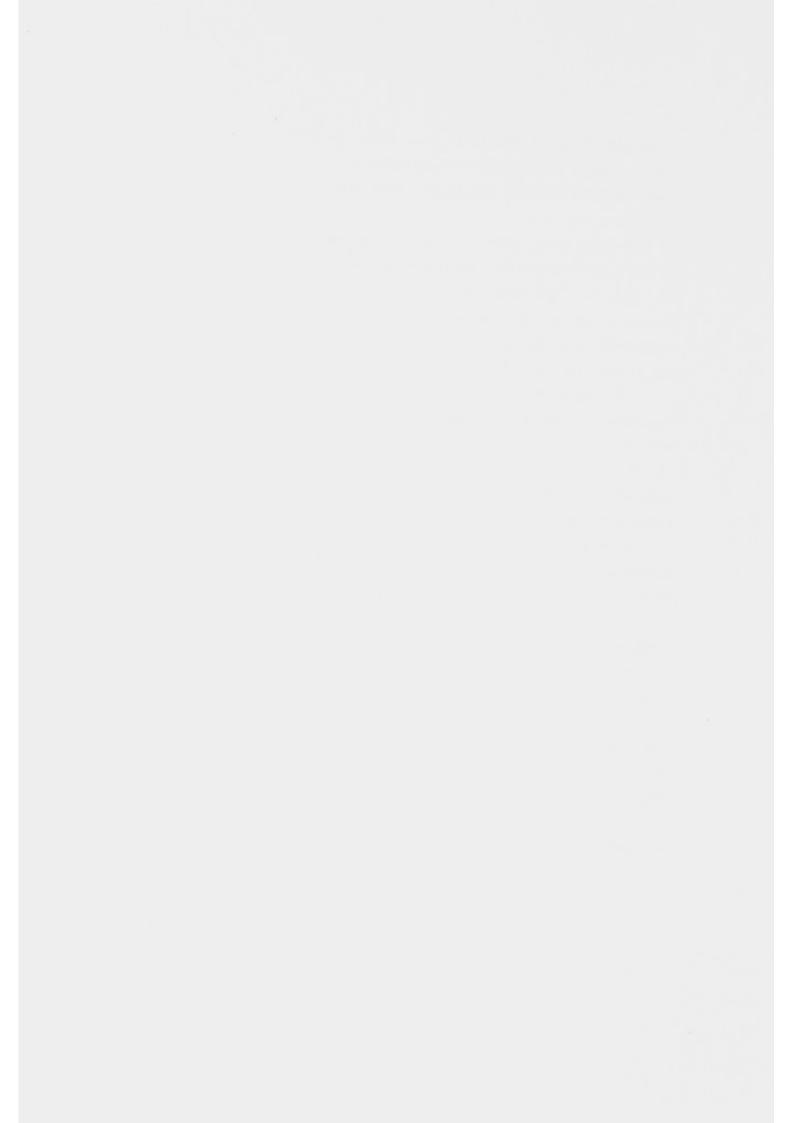
¹ VAX 8650 with 80 Mbytes of memory; DEC Pascal Compiler V3.5

4 The 50 locus calculation was not possible because of memory limitations.

Maximum likelihood estimates are obtained by numerical optimization; a large number of likelihood evaluations is required to meet conservative convergence criteria. Calculation times for general pedigrees and disease loci are described in Lathrop and Lalouel (submitted).

Micro-VaxII with 9 Mbytes of memory; DEC Pascal Compiler V3.5 3 IBM-AT at 6 Mhz with 640 Kbytes of memory; TURBO Pascal without 8087 support.

AN AUTOMATED SYSTEM OF LINKAGE ANALYSIS (Gene Mapping System or GMS)
G.M. Lathrop, P.Cartwright, J.M. Lalouel
Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA.


We have developed an automated system of linkage analysis, GMS, to aid in the construction of human genetic maps.

The GMS program interfaces with LINKAGE, and uses a database of genotypes on 59 reference families, including 38 families from the CEPH panel. Genetic maps are constructed from markers assigned to each chromosome using a series of algorithms to select appropriate multilocus tests.

The strategy employed in GMS is to use two-point lod scores to construct a preliminary map (trial map). Multilocus analysis of the trial map gene order results in the division of the loci into sub-linkage groups of closely linked markers; gene orders are determined within each group separately, and the order and orientations of the groups are established by multilocus analysis.

A variety of different algorithms have been implemented for the selection of the appropriate tests when the number of sub-linkage groups excludes the possibility of testing all orders and orientations. Validation runs are made using different gene orders within the sub-linkage groups, and different initial divisions of the loci. When the maximum likelihood gene order is not the same as the trial map, the former is used to establish new sub-linkage groups, and the analysis is repeated.

The GMS program has been used to establish primary maps of most chromosomes (see abstracts on chromosomes 1, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, and 19). Recombination rates and likelihoods from all tests are stored in a results database. This database will permit rapid evaluation of other algorithms for obtaining trial maps and for restricting tests of alternatives when searching for the maximum likelihood gene order.

Mark Leppert¹, Mark Dobbs², Peter Scambler³, Peter O'Connell¹, Yusuke Nakamura¹, Dora Stauffer¹, Scott Woodward¹, Randall Burt⁴, J.P. Hughes⁵, Eldon Gardner⁶, Mark Lathrop¹, John Wasmuth², Jean-Marc Lalouel¹, and Ray White¹.

¹Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA

²Department of Biological Chemistry, Calif. Coll. of Medicine, Irvine, USA

³St. Mary's Hospital, Dept. of Biochemistry, Univ. of London, London, UK

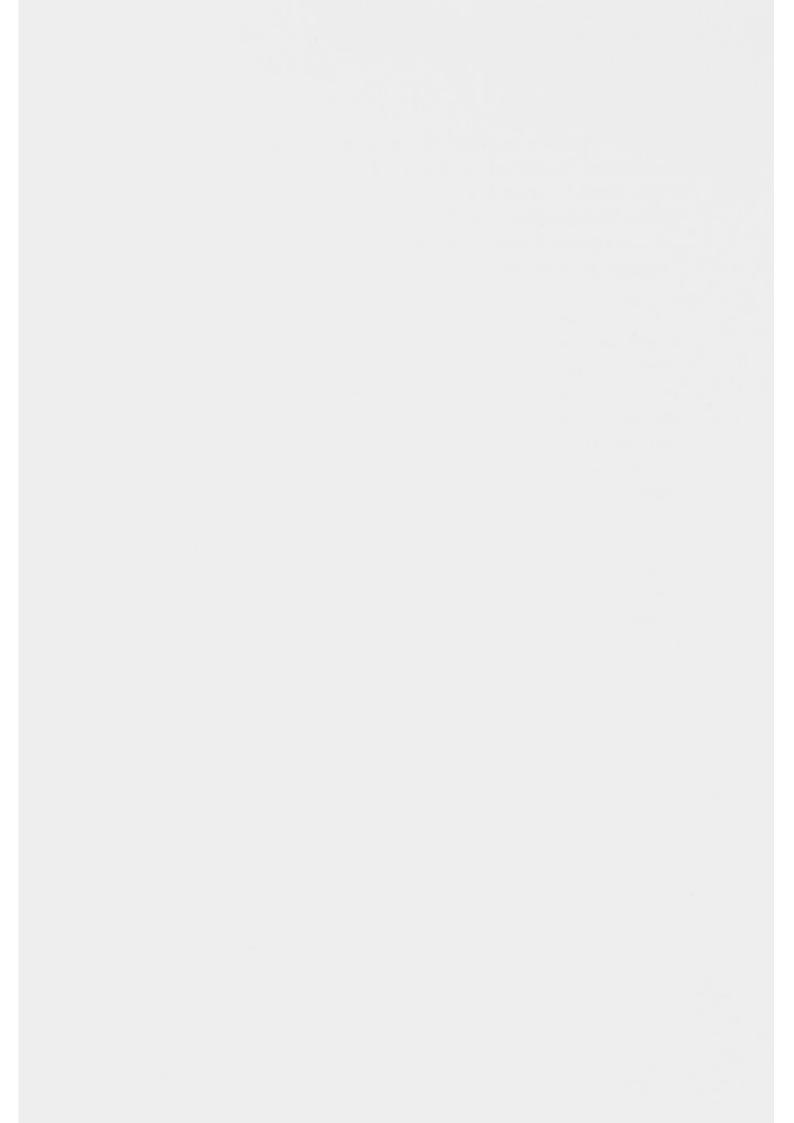
⁴Division of Gastroenterology, University of Utah, Salt Lake City, USA

⁵St. Mark's Hospital, Salt Lake City, USA

⁶Department of Biology, Utah State University, Logan, USA

Multiple, or adenomatous, polyposis coli is characterized by the presence of hundreds of adenomatous polyps in the colon and by the inevitable development of adenocarcinoma of the colon at a relatively young age. Persons with inherited colonic adenomatous polyposis are frequently divided into two groups, familial polyposis coli (FPC) and Gardner's syndrome (GS). While both conditions are similar with respect to colonic polyposis and colorectal cancer, individuals with Gardner's syndrome are distinguished by a number of benign extraintestinal growths.

Using five polyposis pedigrees, we found evidence for linkage of the disease gene to three markers on the long arm of chromosome 5. A maximum lod score of 3.37 at a recombination fraction of zero was observed with the marker Cllpll (one-lod-unit confidence upper bound 0.023). Two other markers, J0205E-C and TP5E, yielded positive, yet non-significant lod scores. All four loci were analyzed with the LINKAGE programs in the 5 GS/FPC and 59 normal reference families to determine gene order and to test the significance of linkage. The gene order (FPC, Cllpll) - TP5E - p213-205 (where the orientation of (FPC,Cllpll) cannot be established), is supported by odds of nine to one over the second most likely order,(FPC,Cllpll)-p213-205 - TP5E. Support for linkage between FPC and Cllpll was strengthened by multilocus analysis, with a lod score of 5.0. Moreover, multilocus analysis of both data sets jointly allowed us to establish the significance of linkage between Cllpll and TP5E, which was not achieved in each data set when considered singly, and between TP5E and p213-205.

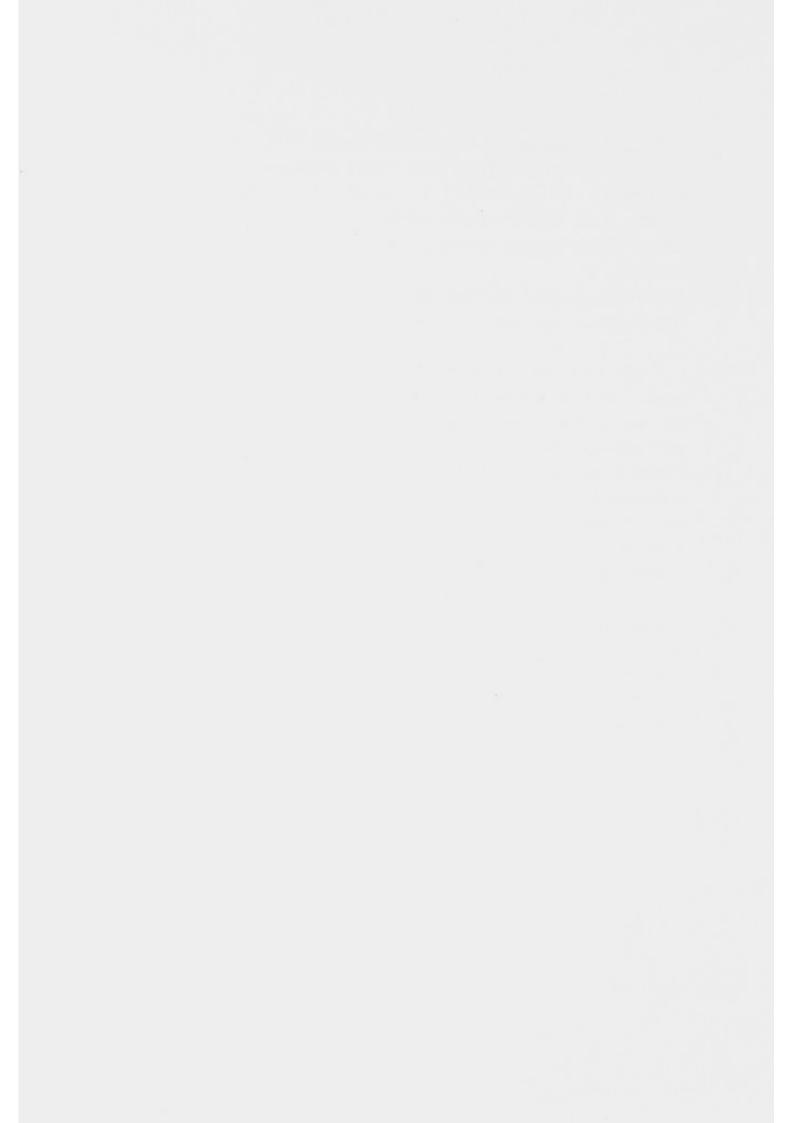

ETTOLOGICAL HETEROGENEITY IN X-LINKED SPASTIC PARAPLEGIA

M. Leppert, *L. Keppen, P. O'Connell, Y. Nakamura, D. Stauffer, M. Lathrop, J.-M. Lalouel, and R. White

Howard Hughes Medical Institute and Department of Human Genetics, University of Utah Medical Center, Salt Lake City, UT

We describe a large family (K313) having 12 males affected with Xlinked recessive hereditary spastic paraplegia. The disease phenotype in K313 is characterized by hyperreflexia and a spastic gait, but intelligence is normal. Carrier females have normal gait and unremarkable reurologic profies. Eight widely spaced X-chromosome linked DBA markers were used to genotype 43 family members. In contrast to a published report of complete linkage of X-linked spastic paraplegia in another family to distal chromosome Xg markers DXS15 and DXS52 (Kenwrick et al., Hum. Genet. 73:264-266, 1986), we observed complete linkage with two DNA markers located on the middle of the long arm of the X chromosome, pYNH3 and DXS17. Lod scores for linkage between the disease locus and the DNA markers were 4.48 for pYNH3 and 4.00 for DXS17. In contrast to the linkage reported by Kenwrick to markers in the X227-28 region, our family (K313) is unlinked to the distal markers DXS15 and DXS52. Location score analysis showed evidence of significant genetic heterogeneity between the two pedigrees $(X^2 = 21.08)$. suggesting that both pure and complicated forms of spastic paraplegia exist on the X chromosome.

^{*}Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR

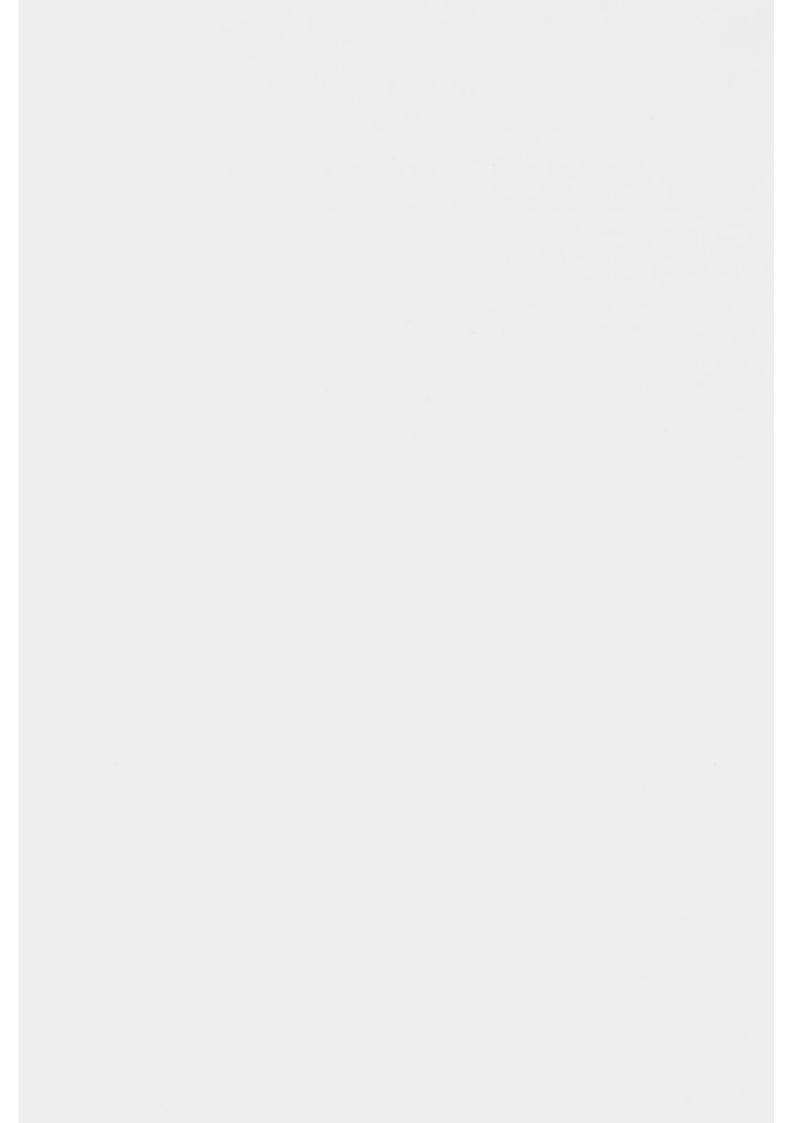

LINKAGE OF THE POLYMORPHIC PROTEIN MARKERS F13B, C1S, C1R, AND BLOOD GROUP ANTIGEN KIDD IN CEPH REFERENCE FAMILIES

M. Leppert, *R. Ferrell, *M.I. Kamboh, *J. Beasley, P. O'Connell, M. Lathrop, J.-M. Lalouel, and R. White.

Howard Hughes Medical Institute, University of Utah Medical Center, Salt Lake City, UT.

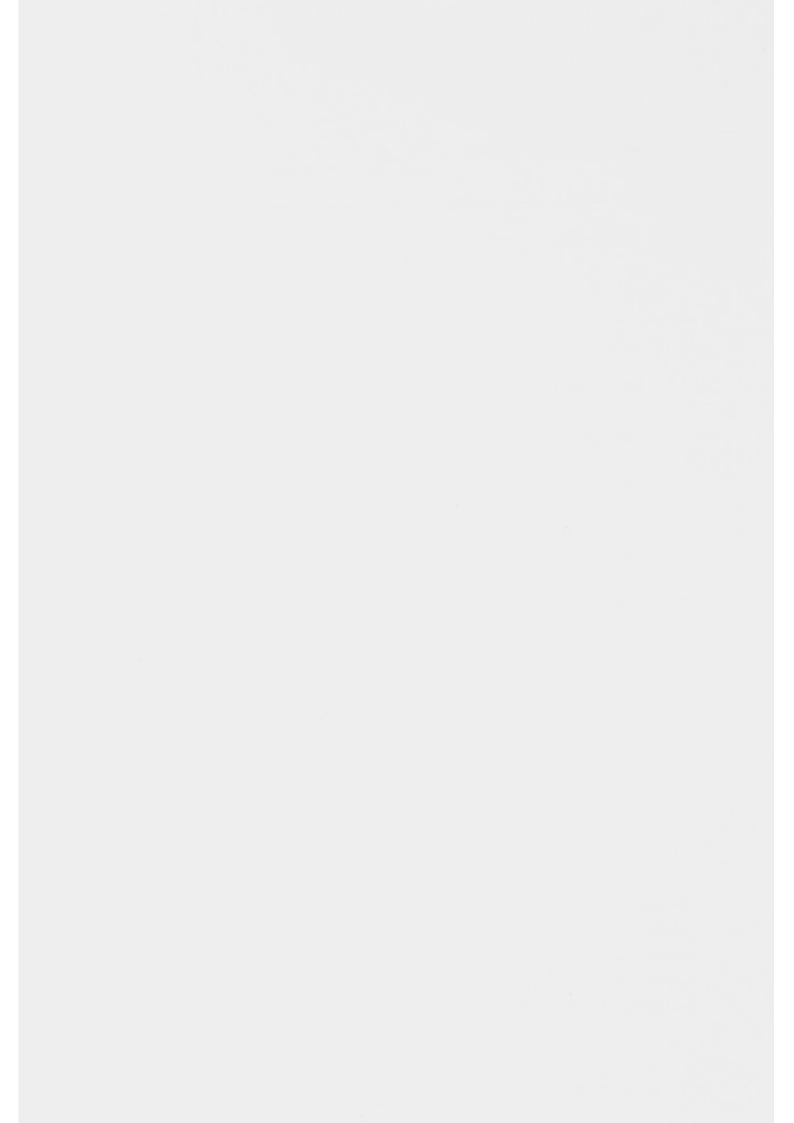
The gene for blood clotting factor 13B (F13B) was localized to chromosome 1 by linkage to two DNA markers, pMLAJ1 and EKH7.4. The maximum lod scores were 6.00 at a theta of 0.217, and 18.69 at theta 0.088, respectively. CLS and CLR (subcomponents of human complement 1) were closely linked to the proline-rich protein (PRP) gene cluster on chromosome 12p13.2. A maximum lod score of 5.99 at theta 0.038 was found between CLS and one of the PRP loci; the maximum lod score between CLR and another PRP locus was 4.21 at theta 0.001. Another subcomponent of human complement, ClQ-previously assigned to the short arm of chromosome 1— is thus unlinked to CLS and CLR. The gene for blood group antigen Kidd was localized to chromosome 18 by linkage to two DNA markers, pL2.7 and pHF12-62 (maximum lod scores 3.61 at theta 0.168 and 4.18 at 0.218, respectively). Protein and blood type marker data were collected on the Utah subset (29 families) of the CEPH panel. Linkage analysis was carried out as two-factor analysis on the program LINKAGE.

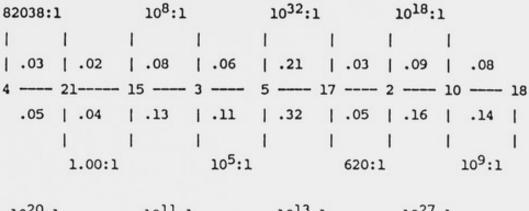
^{*}Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA +IDS Hospital, Salt Lake City, UT


A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 1

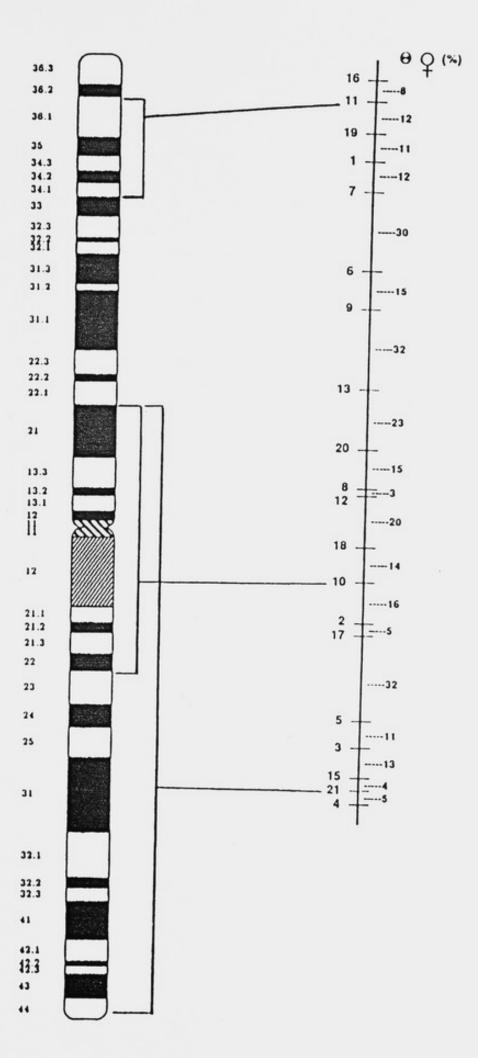
P. O'Connell, M. Leppert, Y. Nakamura, G.M. Lathrop, P. Cartwright, J.-M. Lalouel, and R. White.

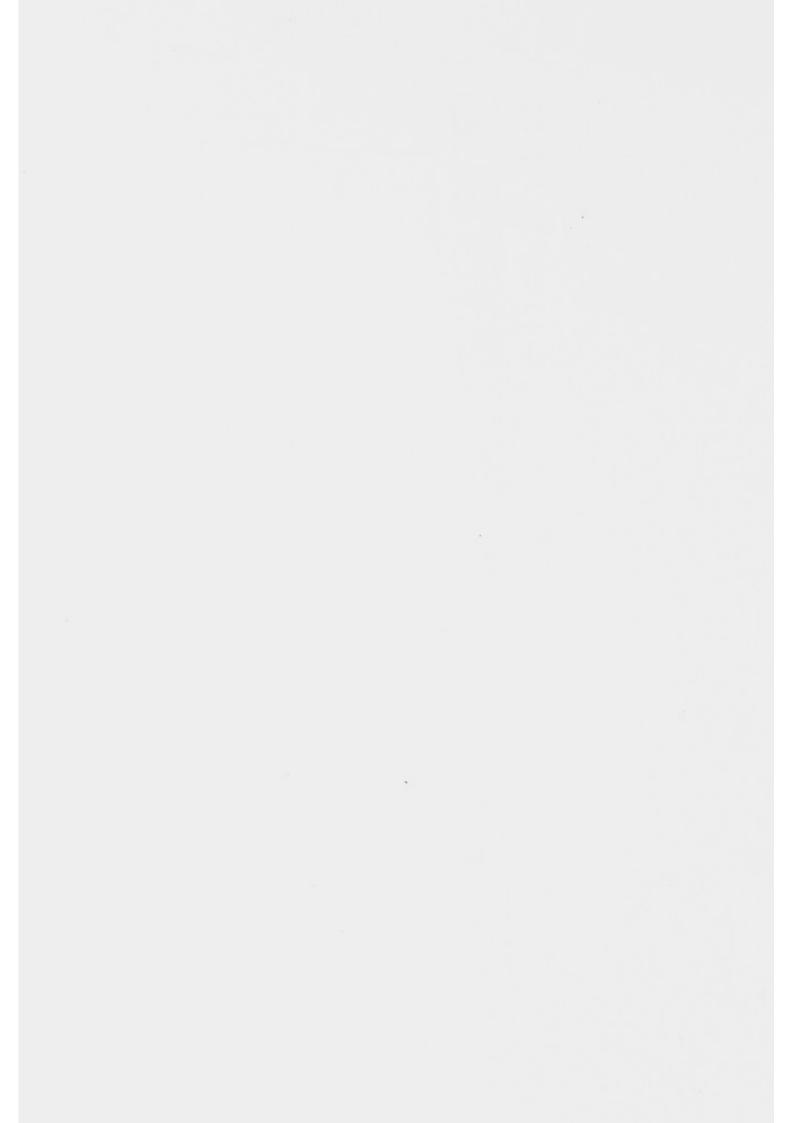
Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA


A primary genetic linkage map of chromosome 1 was constructed from data
on 24 markers typed in 40-60 reference families (including the 38 families of the CEPH reference panel). The following loci were studied:

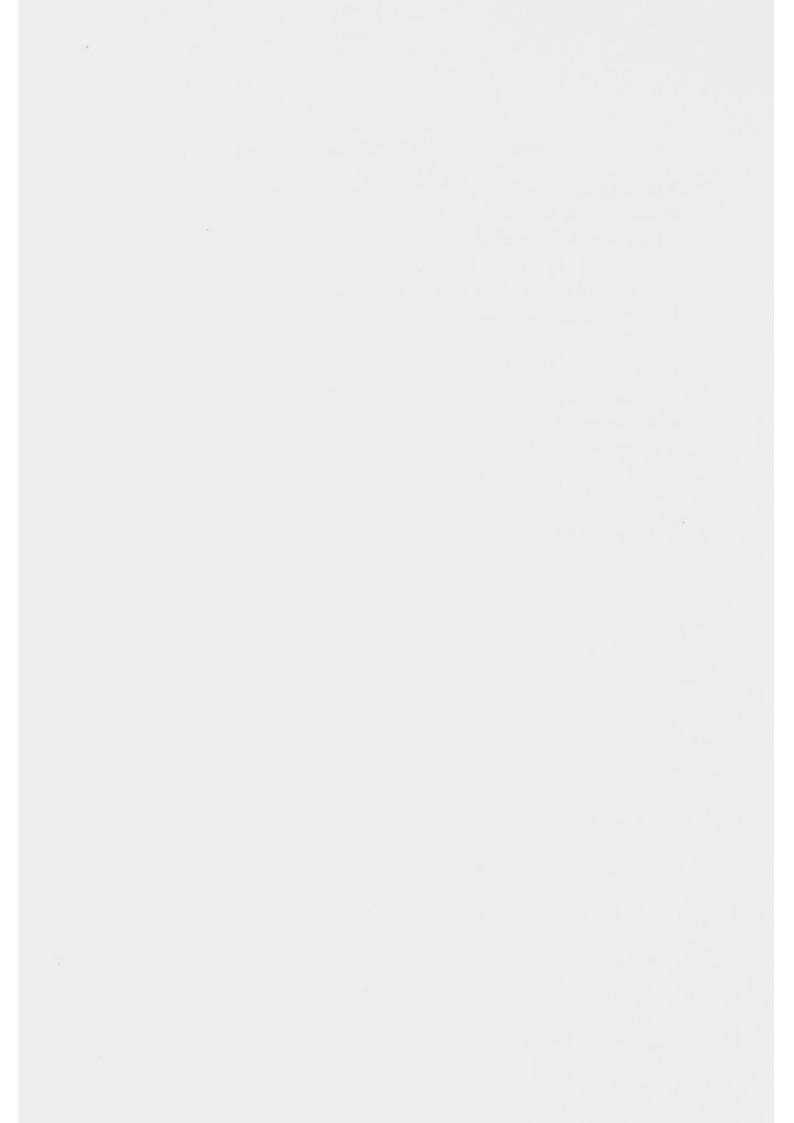

P	ROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED	
1	pYNZ2	MspI	VNIR >10 ALLE 0.5-2.5K		0.65		
2	pMLAJ1	HinfI	VNIR >6 ALLEL 1.5-3.0K		0.64	359	
3	рЕКН7.4	TaqI	5.0 3.8	0.47 0.52	0.53	674	
4	pTHH18.1	MspI	5.6 5.0	0.46 0.54	0.40	657	
5	FXIIIB	FXIIIB	A1 A2 A3 A4	0.72 0.12 0.16 0.01	0.45	598	
6	PGM	PGM	A1 A2 A3 A4	0.64 0.12 0.20 0.05	0.58	584	
7	рТНІ54	PvuII	6.0 5.0	0.51 0.49	0.46	661	
8	N8C6 (NGFB)	BglII	6.0	0.19 0.81	0.36	588	
9	pLl.22(D1S2)	BglII	10.0	0.81 0.19	0.37	675	
10	Duffy(FY)	FY	Al A2	0.44 0.56	0.49	630	

	PROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
11	Rhesus (RH)	RH	A1 A2 A3 A4 A5 A6 A7	0.41 0.44 0.12 0.01 0.01 >0.01	0.60	639
			A8	0.01		
12	pMCR3 (NRAS)	EcoRI	6.0 4.8	0.74 0.26	0.36	707
13	pAP8 (HIF)	MspI	3.2	0.29 0.71	0.36	397
14	AT3 (AT3)	AT3	A1 A2 A3	0.88 0.11 0.01	0.22	580
15	PHHH119	MspI	6.2 4.4	0.10 0.90	0.15	514
16	pCMM8.1	MspI	1.6	0.74 0.26	0.40	667
17	pHBI40	MspI	8.0 4.4	0.72 0.28	0.37	786
18	БИНН 106	MspI	2.3	0.45 0.55	0.53	746
19	pMHZ5	MspI	2.5 1.9	0.08 0.92	0.17	654
20	pEFZ13	MspI	5.0 3.3	0.66 0.34	0.51	640
21	pHRnES1.9(REN)	HindIII	8.7 6.2	0.70 0.30	0.40	674


Twenty loci form a continuous linkage map spanning approximately 198 cM in males and 370 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant ratio of female/male genetic distances, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

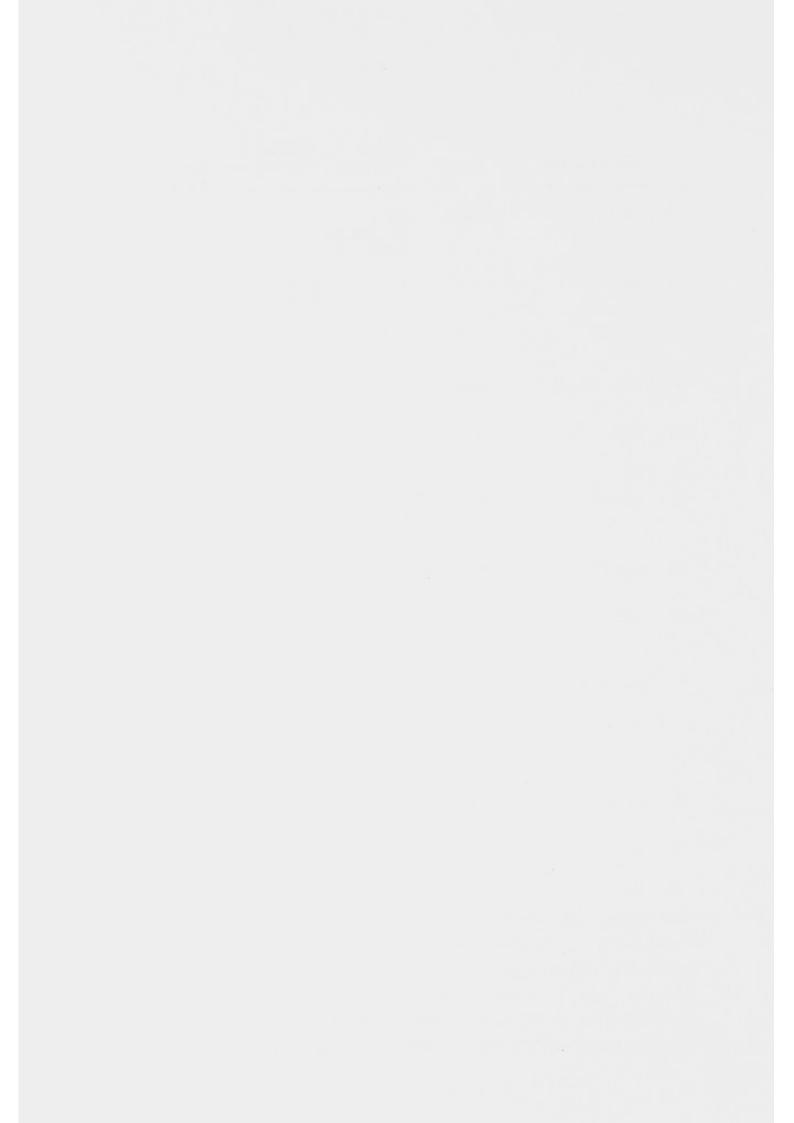


Locus 14 is not linked to others in this map.

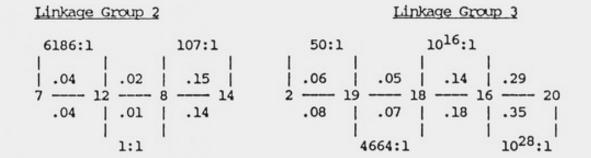

THREE GENETIC LINKAGE GROUPS ON CHROMOSOME 2

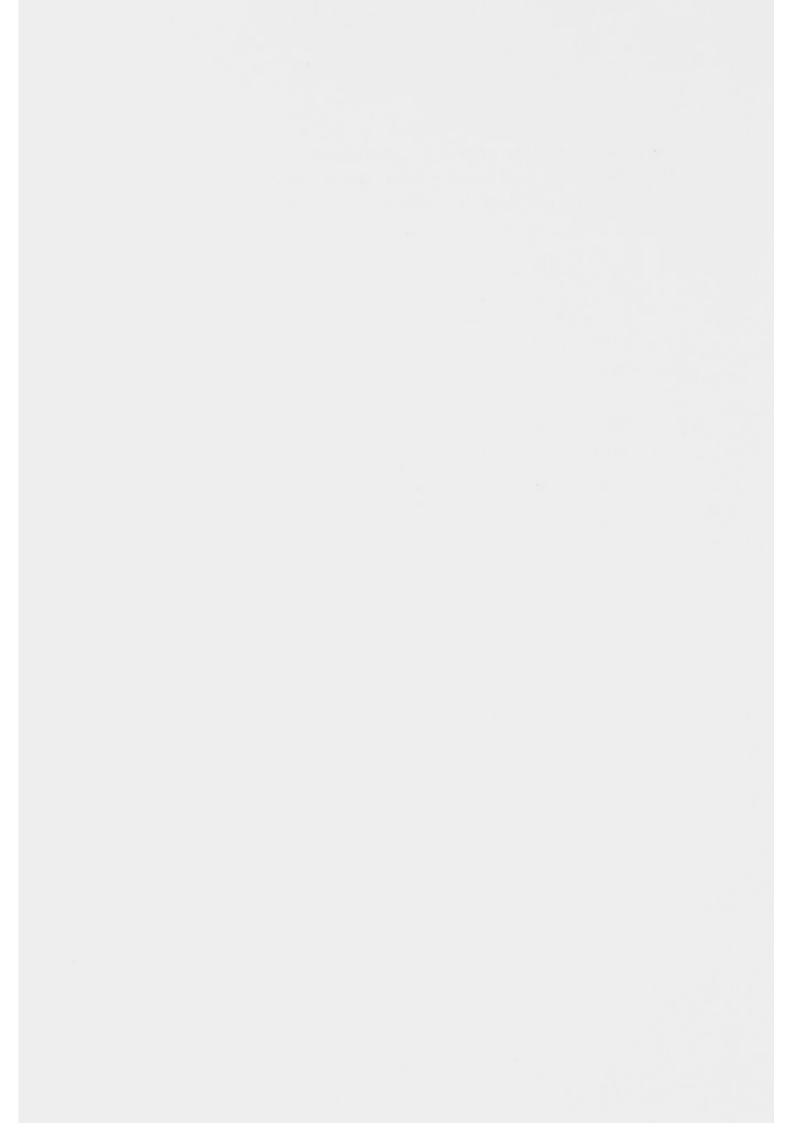
G.M. Lathrop, P. O'Connell, Y. Nakamura, M. Leppert, P. Cartwright, J.-M. Lalouel and R. White.

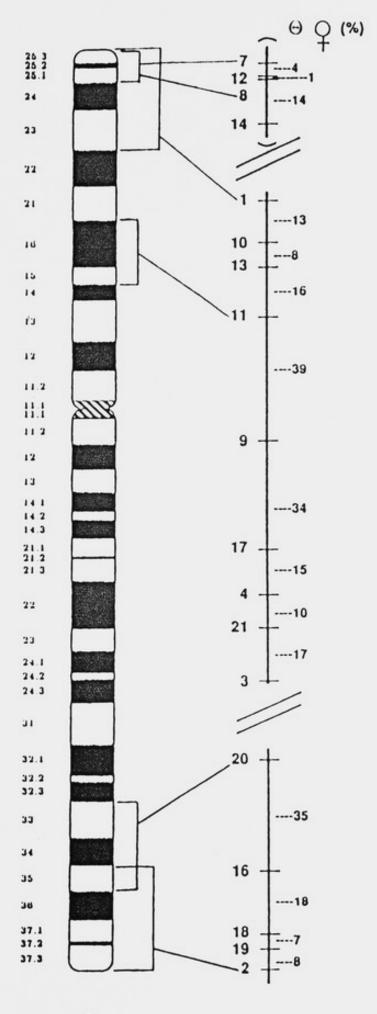
Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA

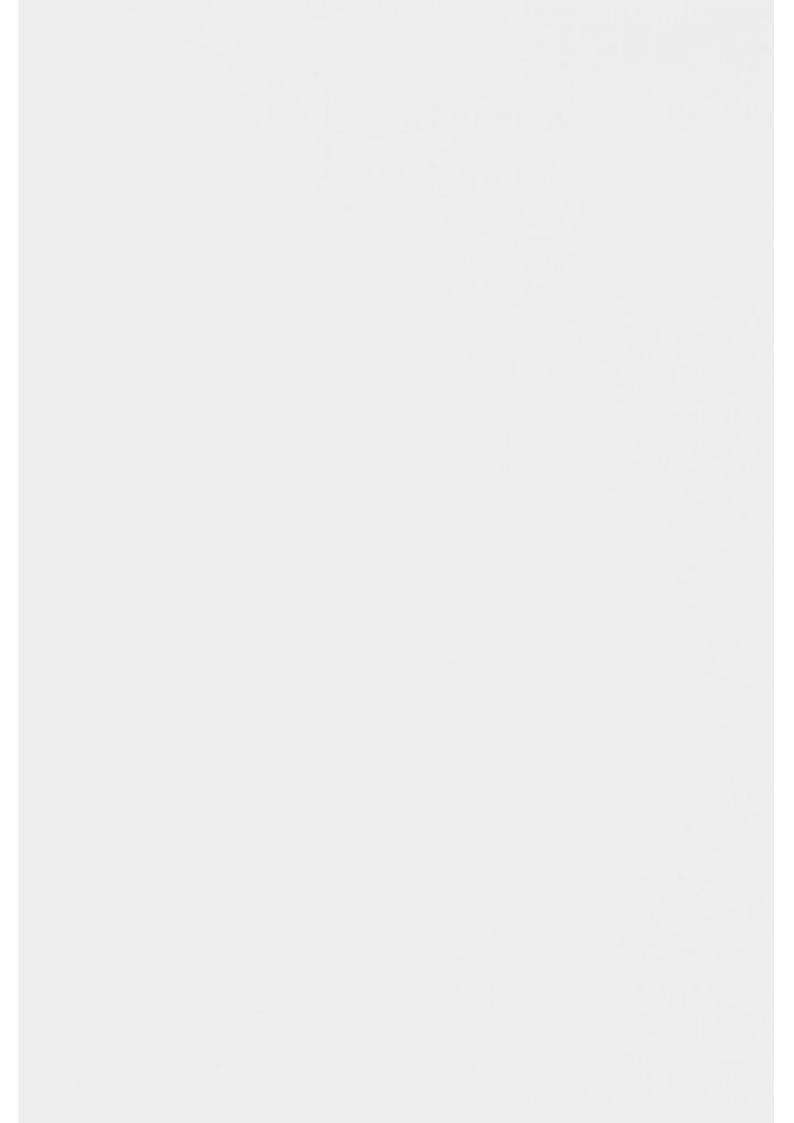

Three linkage groups have been constructed from data for twenty loci typed in 40-60 reference families (including the forty families of the CEPH panel). The following loci were studied:

	PROBE (L	ocus)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	(APOB)	pB23	XbaI	8.6 5.0	0.44	0.71	220
		pB8	EcoRI	13.0	0.16 0.84	0.27	646
2	p5-1-25	(D2S3)	PstI	VNIR 4 ALLELES 2.5-3.0KB		0.55	417
3	pYNZ15		TaqI	1.8	0.53 0.47	0.56	672
4	pYNH24		MspI	VNIR >20 ALLELE 1.3-6.0KB	S	0.91	632
5	KM (IGK)		KM	Al A2	0.41 0.59	0.31	510
7	ACP		ACP	Al A2	0.33 0.67	0.37	614
8	pL2.3(D2	2S1)	BglII	9.0 6.3	0.66 0.34	0.57	371
9	рнин133		MspI	1.4	0.29 0.71	0.37	563
10	pYNZ9.1		TaqI	1.1	0.55 0.45	0.59	602
11	pXG-18(I	02S6)	TaqI	5.5 4.6	0.45 0.55	0.56	661


<u> </u>	PROBE(LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
12	pTBAB-5-7	PvuII	VNTR >4 ALLELES 3.0-6.0KB		0.55	602
13	pEFD122	MspI	3.2 3.0	0.45 0.55	0.43	760
14	pYNA15.1	MspI	7.0 6.0	0.60 0.40	0.53	312
15	IMR-6(D2S5)	MspI	6.8 6.1,0.7	0.74 0.26	0.37	310
16	CYNA4	MspI	VNIR >7 ALLELES 3.0-6.0KB		0.79	717
17	рФМ63	MspI	7.0 4.5 4.3	0.07 0.02 0.91	0.15	759
18	pEKZ105	RsaI	3.0 2.6	0.52 0.48	0.45	666
19	cMCCE32	TaqI	VNIR >5 ALLELES 1.7-6.0KB		0.74	733
20	p5G1 (CRYG)	TaqI	3.5 3.3	0.68 0.32	0.46	656
		TaqI	2.1	0.33 0.67	0.47	656
		TaqI	2.3	0.18 0.82	0.32	656
21	рнин115	MspI	4.8 4.6 4.5	0.17 0.83 0.01	0.31	650
		MspI	2.4	0.42	0.49	616

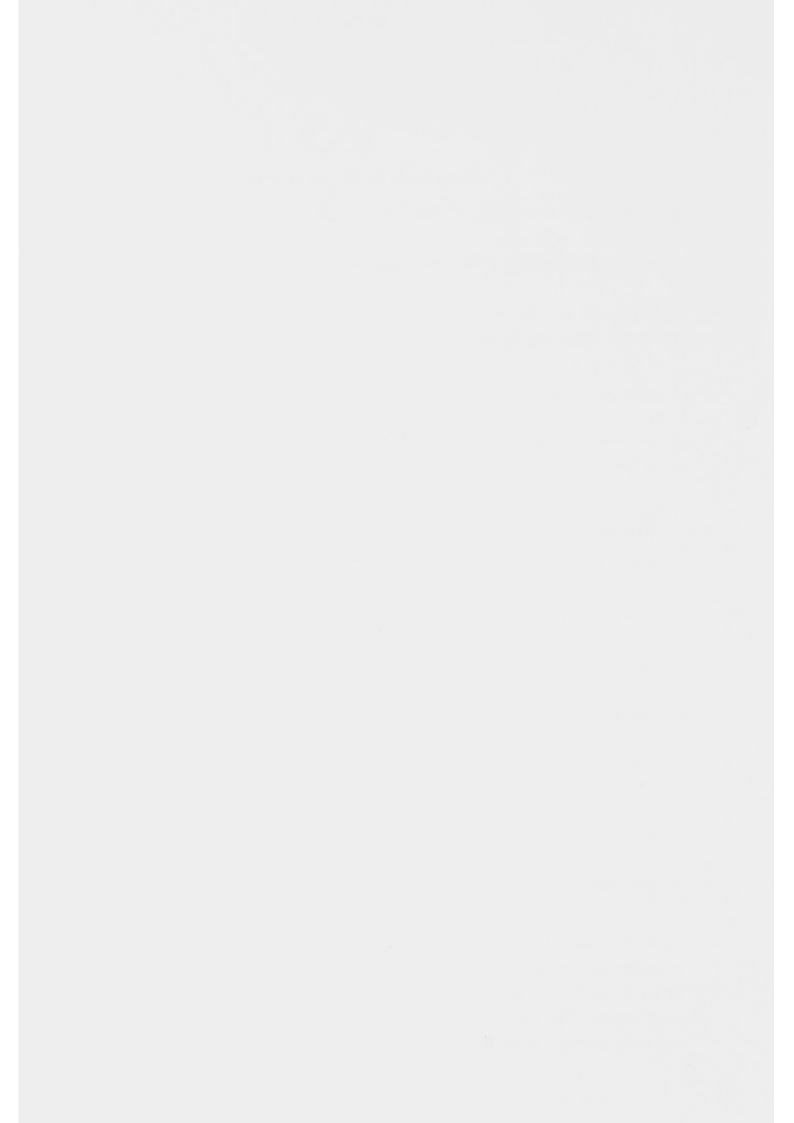

The twenty loci form three linkage groups spanning approximately 226 cM in females and 188 in males for linkage group 1; 22 cM in females and 24 cM in males for linkage group 2; and 99 cM in females and 70 cM in males for linkage group 3. Locus 5, IGK, does not show linkage to the map and may be on chromosome 18 with JK. Locus 15 (D2S5) shows no evidence of linkage to other elements of the map. Multilocus analysis with the LINKAGE programs,

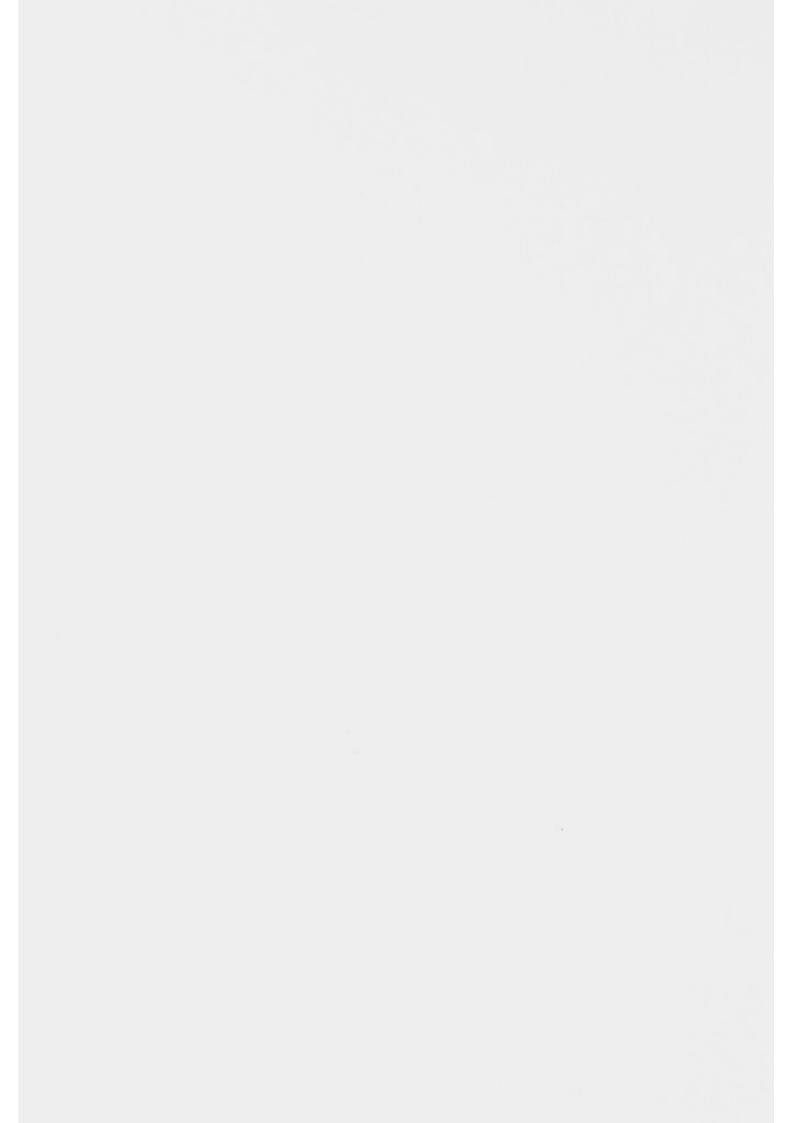


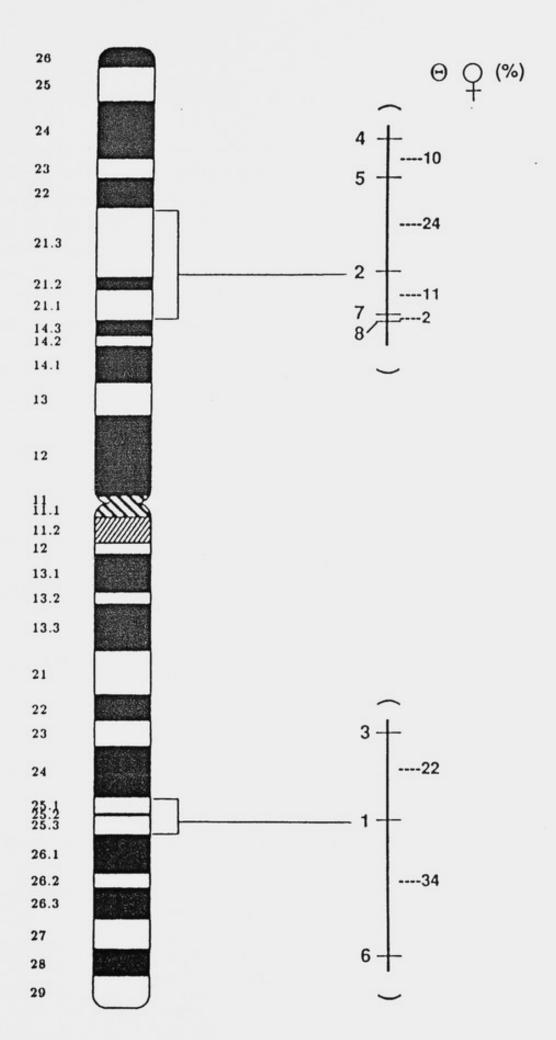

under the assumption of a constant female/male genetic distance ratio, gave the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci: Linkage Group 1

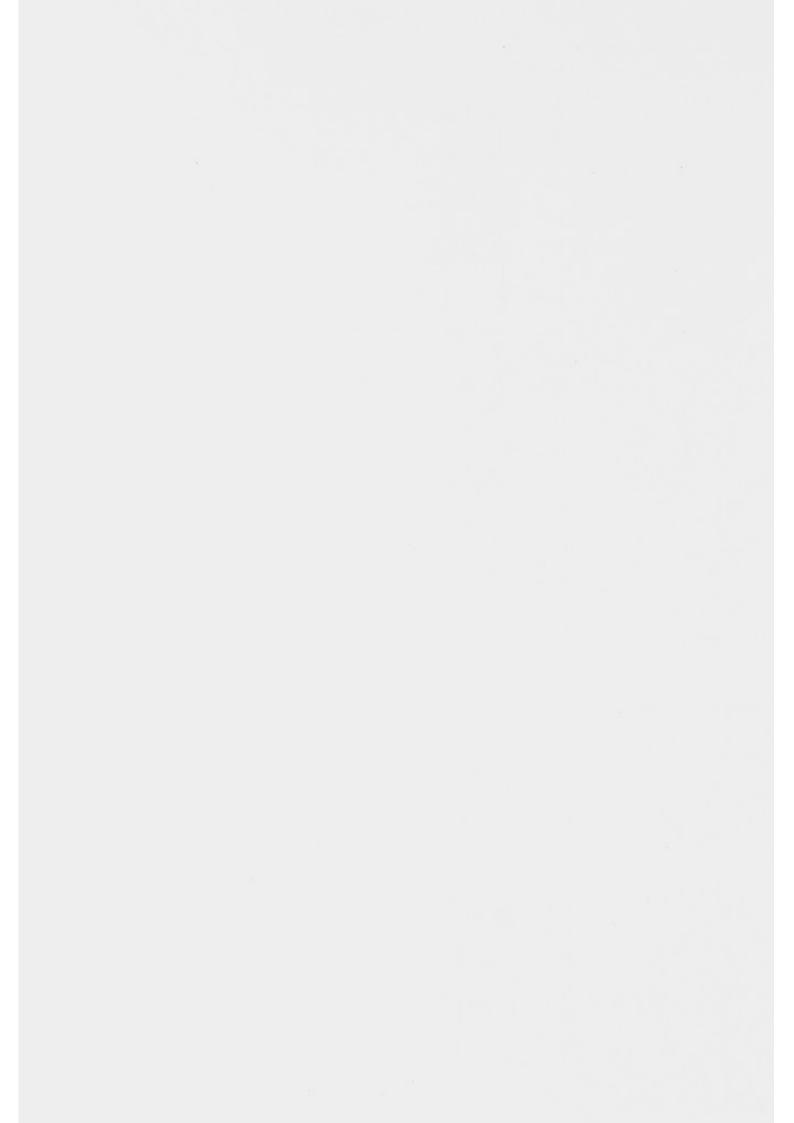
73496:1
$$10^{20}$$
:1 10^{6} :1 10^{15} :1

TWO LINKAGE GROUPS ON CHROMOSOME 3

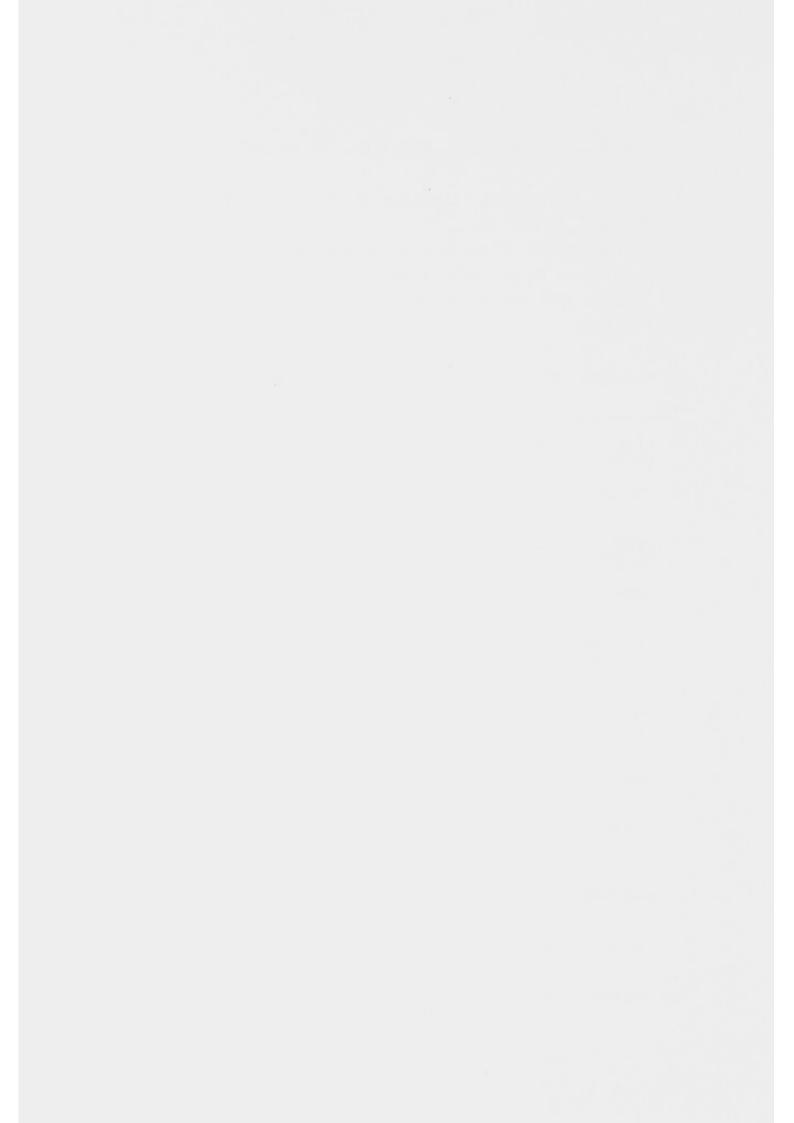

M. Leppert, P. O'Connell, Y. Nakamura, P. Cartwright, M. Lathrop, J.-M. Lalouel, and R. White.


Howard Hughes Medical Institute, Salt Lake City, Utah USA


Linkage was found for eight loci on chromosome 3. They were typed in 40-60 families (including 38 from CEPH). The loci are:

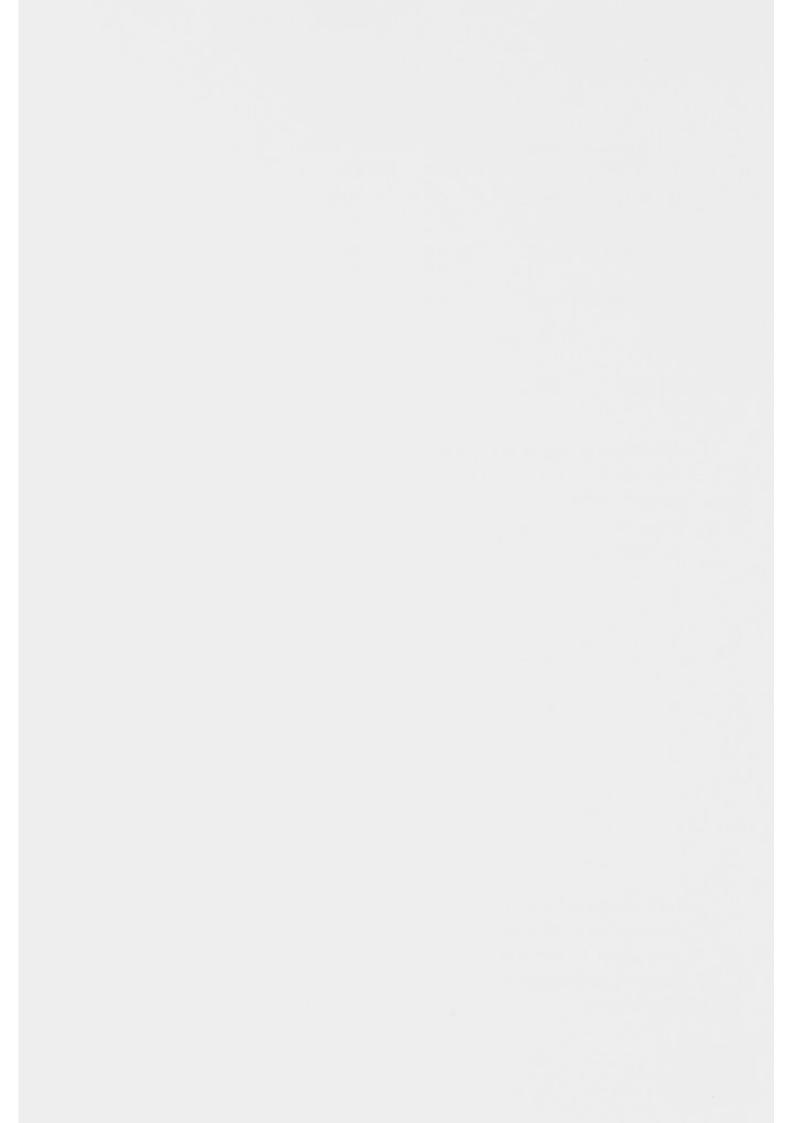

PF	OBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER OF INDIVIDUALS TYPED
1	pHCP-1 (CP)	PstI	14.0 11.5	0.39 0.61	0.48	456
2	H3H2 (DNF15S2)	HindIII	2.3	0.46 0.54	0.50	378
3	ABL11-3	TaqI	8.5 1.5	0.54 0.46	0.58	656
	ABIL11-3	PVuII	4.1	0.48 0.52	0.61	169
4	pB67 (D3S4)	TaqI	13.0 12.0	0.14 0.86	0.27	599
5	pYNZ86.1	MspI	2.6 2.1	0.51 0.49	0.52	564
6	pMCT32.1	PVuII	15.0 14.0 12.0	0.11 0.37 0.52	0.75	346
7	pEFD145.1	RsaI	2.4	0.46 0.54	0.46	568
8	pHF12-32 (D3S2)	MspI	2.9 1.3	0.83 0.17	0.23	448

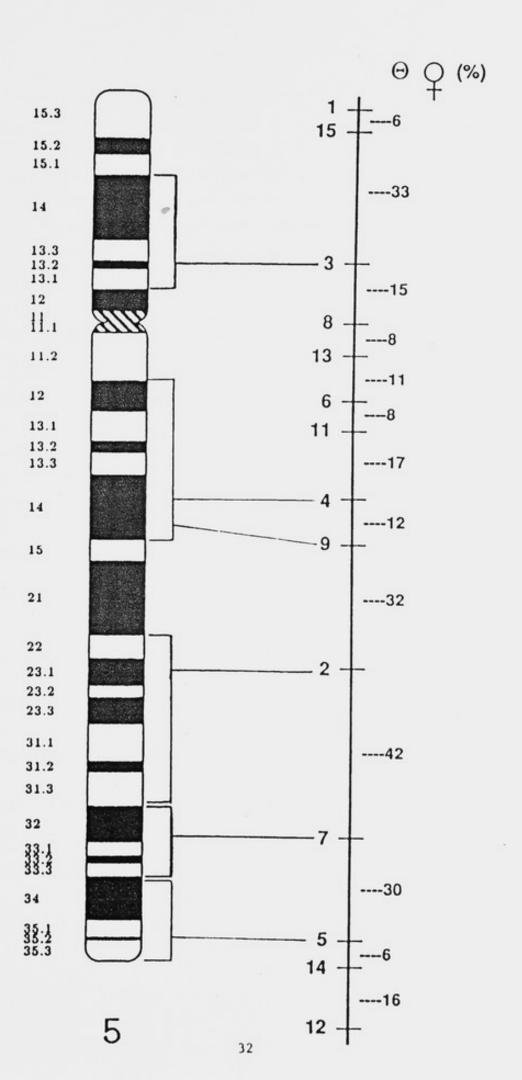
Multilocus analysis with the LINKAGE program under the assumption of a constant effect of sex on crossing overfrequency yielded two separate linkage groups, of 44 and 56 cM in males and 86 and 58 cM in females. The gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of the adjacent loci are:

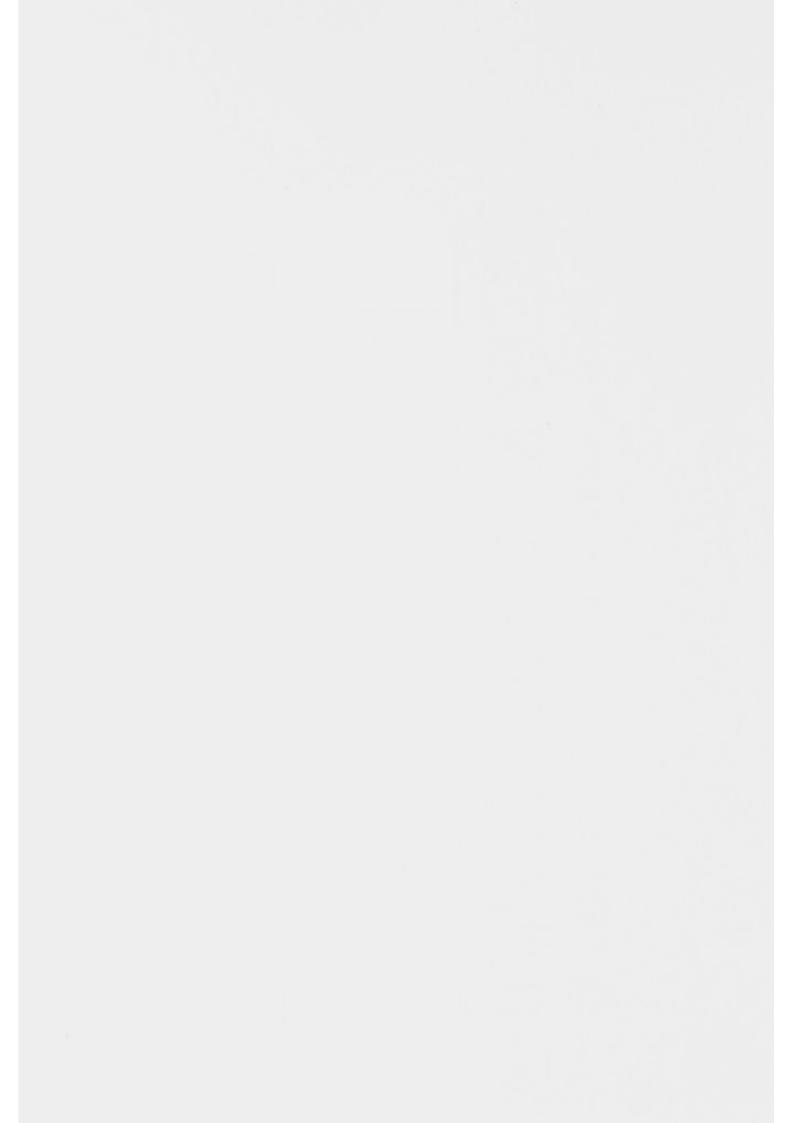


A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 5

M. Leppert, *J. Wasmuth, *J. Overhauser, *M Dobbs, Y. Nakamura, M. Lathrop, P. O'Connell, P. Cartwright, J.-M. Lalouel, and R. White Howard Hughes Medical Institute, Salt Lake City, USA *Dept. of Biol. Chemistry, California College of Medicine, Irvine, USA Sixteen loci were characterized in 40 to 60 families (including 38 from CEPH):

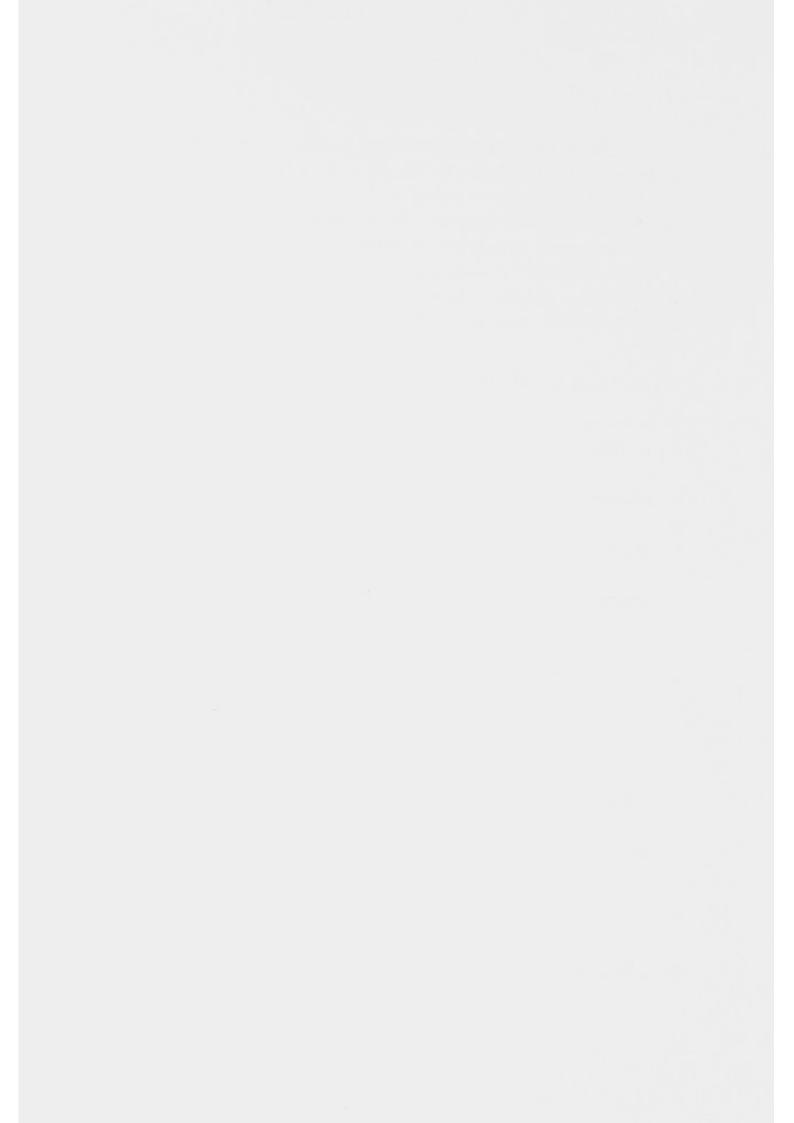

PROBE(LOCUS)				ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER OF INDIVIDUALS TYPED
1	L1.4 (D5S4)	EcoRI	0.7	0.80 0.20	0.31	346
2	pCllpl1	TaqI	4.2	0.17 0.83	0.32	681
3	pL500 (HPRTP2)	MspI	3.6 1.3	0.23 0.77	0.42	460
4	p105-153Ra	MspI	8.0 5.0	0.40 0.60	0.53	771
5	p213-205Ed	MspI	6.0 3.9 3.8	0.43 0.35 0.22	0.60	721
6	LM4 (D5S6)	BamHI	11.0 9.6 7.6	0.36 0.54 0.11	0.68	264
7	TP5E	TaqI	13.0 5.0	0.77 0.23	0.40	597
8	pJ0110HC	MspI	8.7 7.2 6.9	0.69 0.30 0.00	0.38	751
9	p105-798Rb	MspI	14.0	0.57 0.43	0.58	471
10	L565RI-b	MspI	6.2 4.6	0.44	0.44	192
11	L599H-a	TaqI	17.0 14.0 10.0	0.32 0.16 0.52	0.67	748




12	pHF12-65 (D5S2)	MspI	4.1 3.7	0.87 0.13	0.23	621
13	PP8C	TaqI	5.0 4.8	0.31 0.69	0.42	539
14	J0157E-A	MspI	4.0 3.5	0.38 0.63	0.52	754
15	L647H-C	MspI	9.0 7.0 5.5 4.4	0.07 0.29 0.33 0.31	0.74	273
16	Kell	Kel		0.02 0.98	0.04	630

Multilocus analysis was performed with the LINKAGE program. Fourteen of these loci form a continuous map of the chromosome spanning 207 cM in males and 357 cM in females. The gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of the adjacent loci are:

Kell (locus 16) has a maximum lod score of 3.92 with L565RI-b (locus 10) at a recombination rate of 0.0. The latter was isolated from a chromosome specific library. Because no linkage was observed with our other markers, the assignment of the these two loci to chromosome 5 remains unproven.

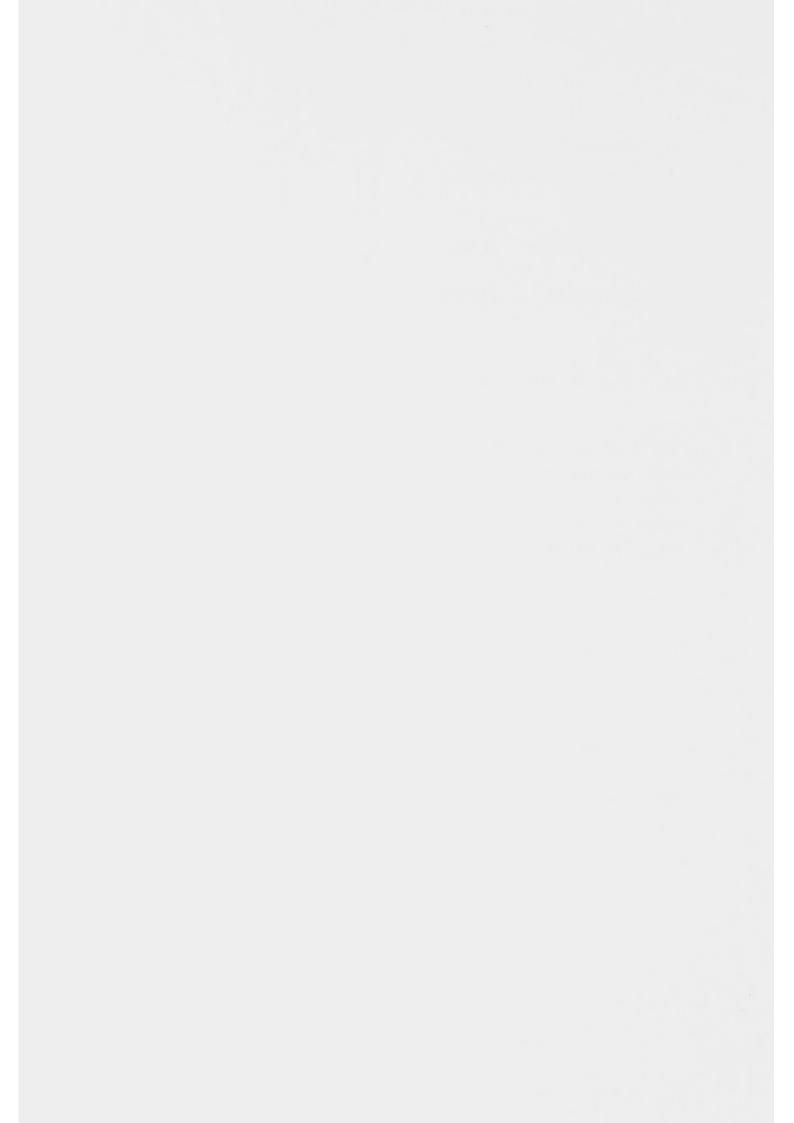


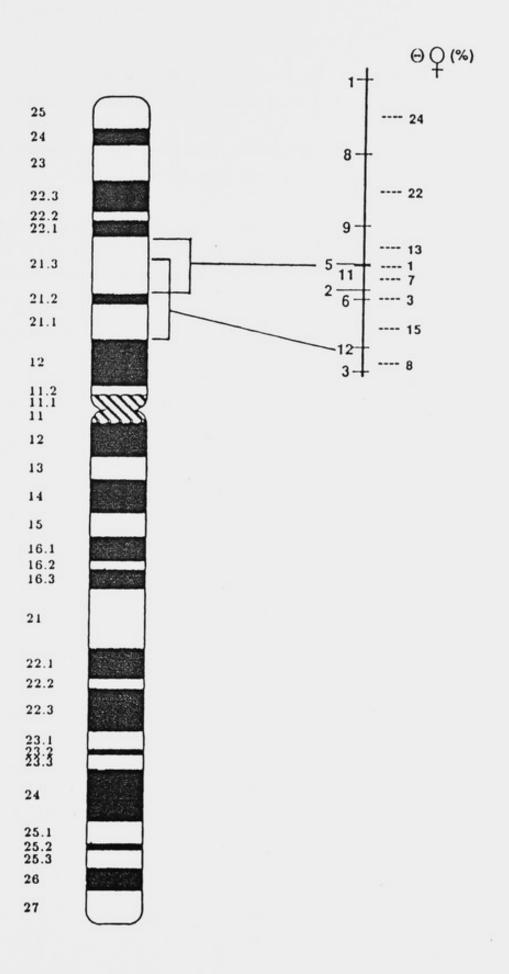
EXTENSION TO A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 6p

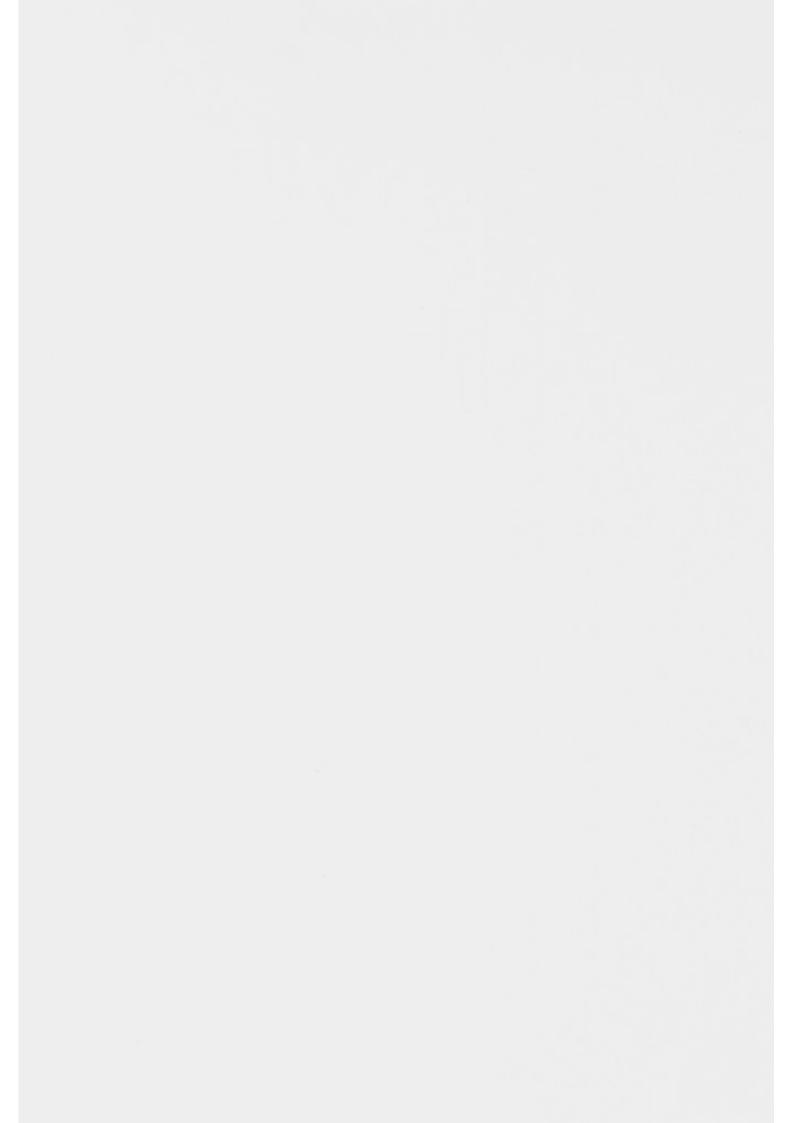
M. Leppert, P. O'Connell, Y. Nakamura, R. Leach, G.M. Lathrop, P. Cartwright, J.-M. Lalouel, and R. White.

Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA. A primary genetic linkage map of chromosome 6 was constructed from data on 12 markers typed in 30-60 reference families (including 38 families of the CEPH reference panel). This map revises and extends that of Leach et al. (PNAS USA 83:3909-3913, 1986). The following loci were studied:

	PROBE(LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSTTY	NUMBER INDIV. TYPED
1	pYNB3.6	MspI	7.5 4.5	0.45 0.55	0.55	623
2	рин157	BamHI	13.0 6.0	0.50 0.50	0.50	719
3	pAGB6	MspI	6.0 4.0	0.14 0.86	0.25	400
4	p7H4 (D6S7)	EcoRI	11.0 10.5 9.2 9.1	0.82 0.04 0.05 0.08	0.30	403
5	pCH6 (D6S10)	TaqI	5.8 5.0 3.7	0.43 0.51 0.06	0.43	396
6	p2C5 (D6S8)	MspI	5.9 0.6	0.19 0.81	0.38	395
7	pHM26 (MYB)	EcoRI	2.6 1.5	0.56 0.44	0.58	604
8	p4cl1(D6S4)	BglII	6.5 5.7	0.59	0.60	483
9	OL43 (DNF14)	EcoRI	5.0 4.7	0.88 0.13	0.25	718
10	p2-2 (D6S2)	PvuII	2.9 2.8 2.6 2.2	0.57 0.24 0.19 0.00	0.60	351

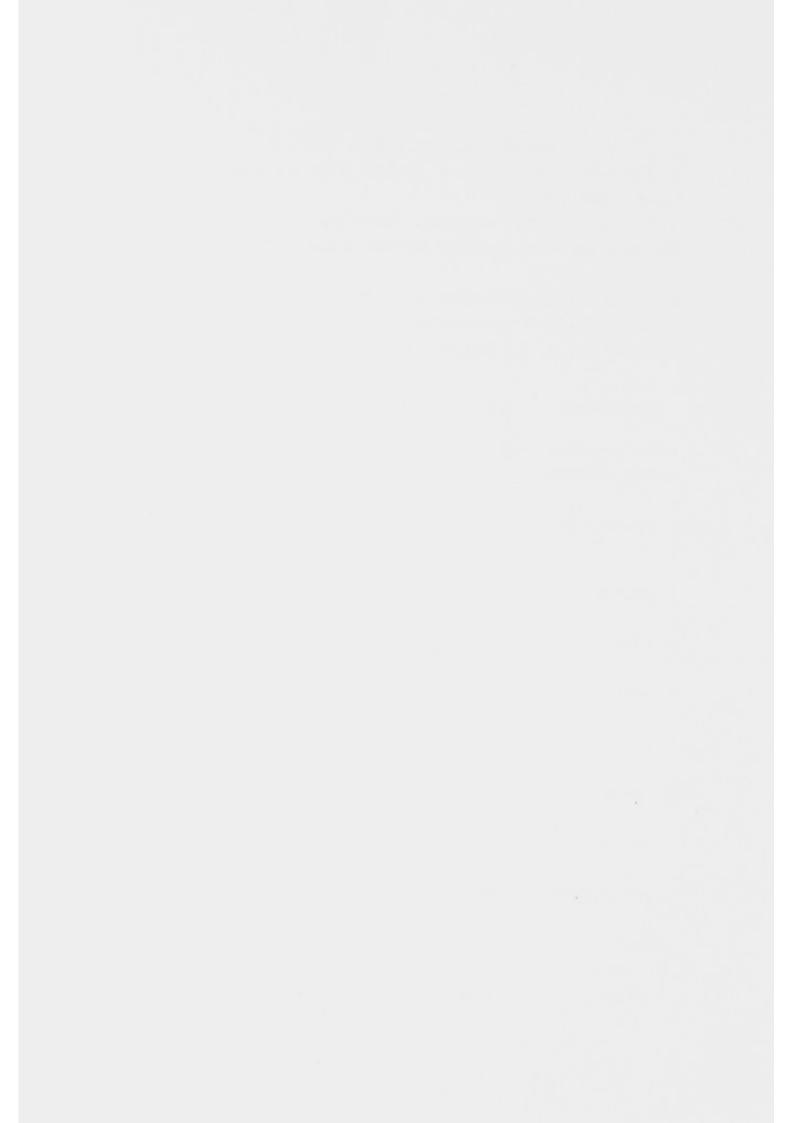



11	DRH7 (HLA-D)	EcoRV	13.1	0.76	0.38	399
			9.1	0.24		
		BglII	4.3	0.74	0.38	397
			4.1	0.07		
			3.8	0.19		
	pDP001 (HLA-D)	EcoRV	8.6	0.13	0.25	388
	- ' '			0.87		
	pDCH1 (HLA-D)	HindIII	7.7	0.03	0.62	394
			7.3	0.28		
			5.6	0.25		
			4.6	0.43		
12	Glyoxalase(GLO)	GLO	Al	0.44	0.55	389
	-		A2	0.56		


Nine loci form a continuous linkage map spanning approximately 39 cM in males and 113 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant ratio of female/male genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

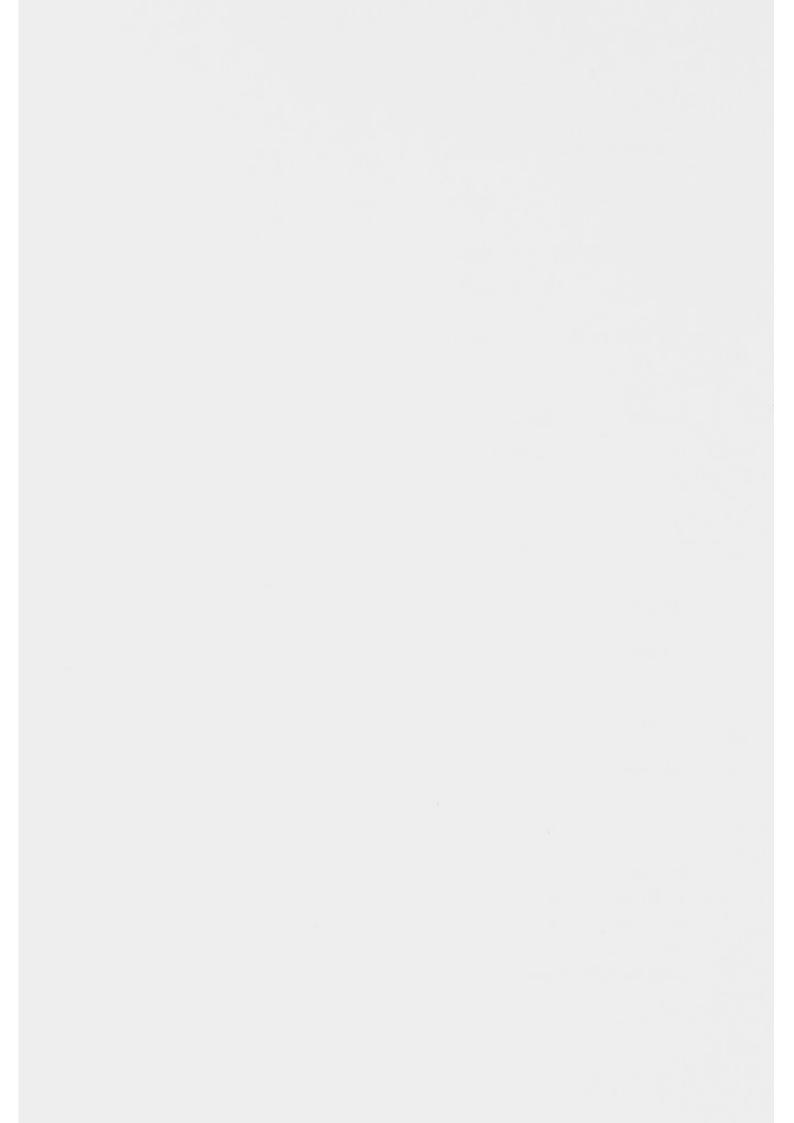
	1.4:1			20:1				3:1			:	1:801			
1		1	-		1		-1		1		1		١		1
1	.03	1.06	-	.01	1	.03	1	.00	1	.05	1	.09	١	.10	1
3		12	- 6		2		11		5		9		8		1
	.08	.15	-1	.03	1	.07	-1	.01	1	.13	1	.22	1	.24	1
		1	-1		1		-1		1		1		1		1
		1011	:1			1.1:	1			1010	:1			6515	3:1

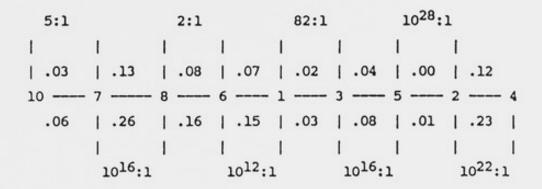
The other three loci are unlinked to the markers in this map, and to each other.

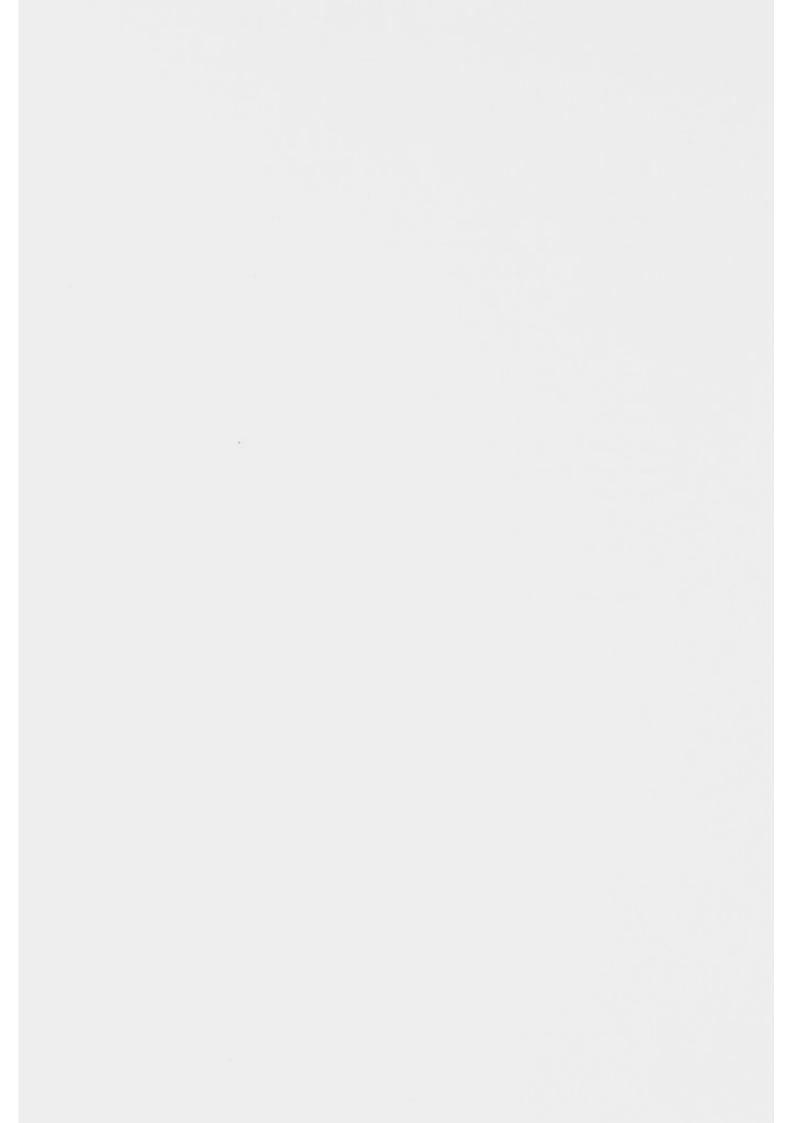

A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 7

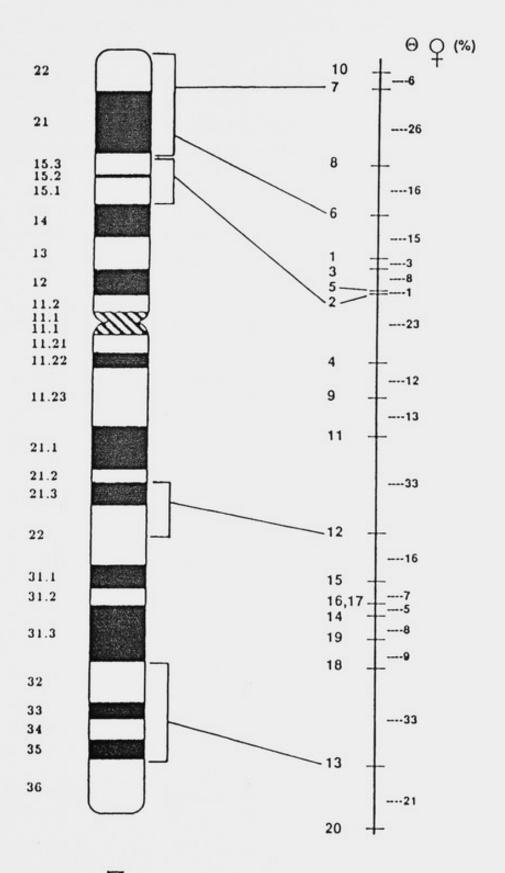
P. O'Connell, G.M. Lathrop, M. Leppert, Y. Nakamura, L.-C. Tsui⁺, J.-M. Lalouel, and R. White

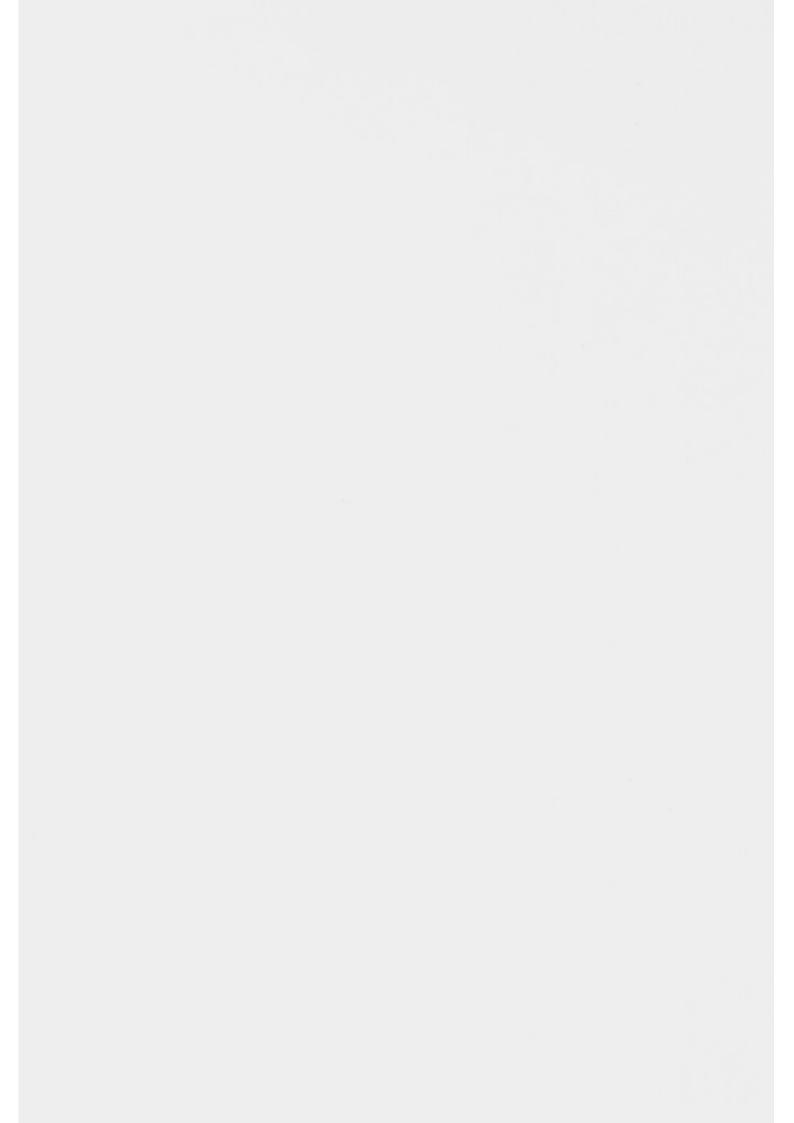
Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT †Research Institute, Hospital for Sick Children, Toronto, Ontario


A primary genetic linkage map of chromosome 7p was constructed from data on 20 loci typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:

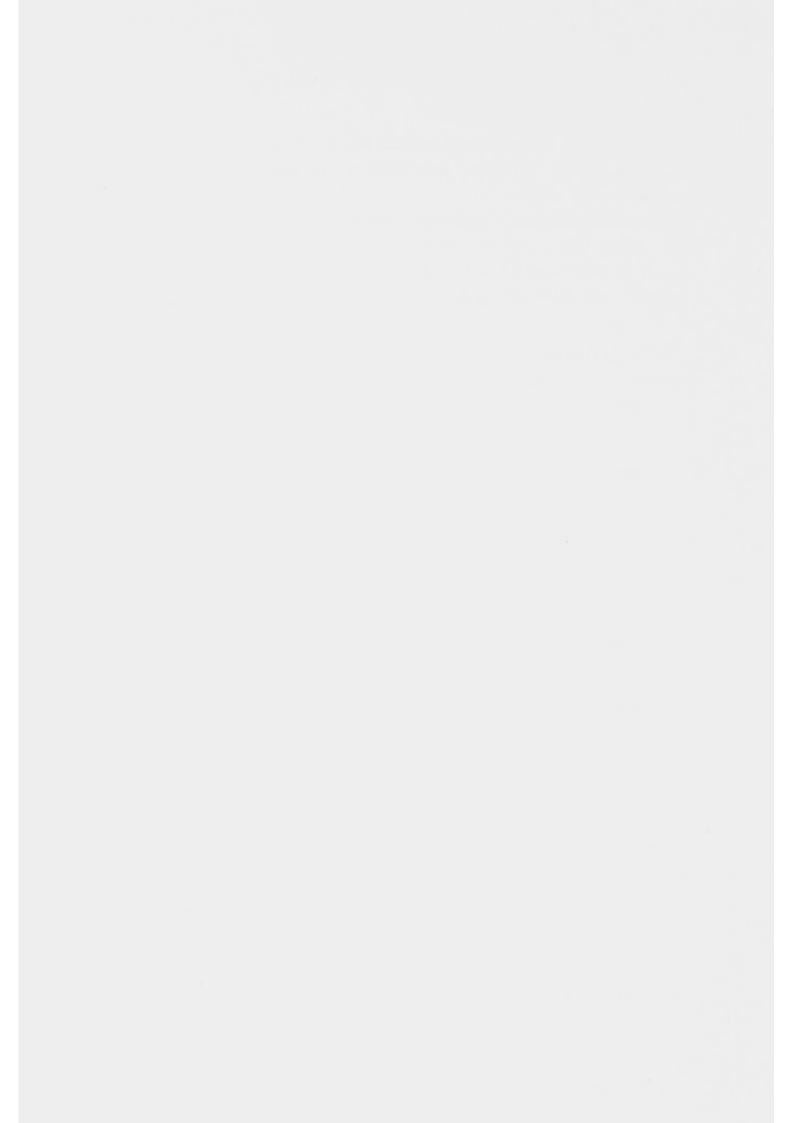

	PROBE (LOCUS)	ENZYME	ALIFIE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	phage-6(D7S11)	HindIII	9.8 7.8	0.23 0.77	0.36	387
2	Pst/Bam(TCRG)	PvuII	14.7 12.6 10.5	0.20 0.59 0.21	0.57	665
3	pADJ641	TaqI	2.0	0.20 0.80	0.34	672
4	рТНН28	MspI	3.4 2.3	0.29 0.71	0.43	453
5	PM60	TaqI	5.3 5.0	0.37 0.63	0.47	648
6	pS194	TaqI	1.8 1.5	0.79 0.21	0.42	654
7	PWI02L	TaqI	12.0 8.5	0.37 0.63	0.49	668
8	pRM7-4	MspI	5.5 2.3	0.38 0.62	0.49	545
9	pHP1.7(ERV3)	MspI	3.3 2.8	0.55 0.45	0.37	713
10	pS93	PstI	4.4	0.28 0.72	0.38	579
11	рсм137	RsaI	VNIR >4 ALLE 2.0-5.0		0.50	675


12 pNJ-3(COLIA2)	EccRI	13.0 9.5	0.66 0.34	0.45	624
13 pJ-2 (TCRB)	BglII	10.0 9.5	0.55 0.45	0.56	583
14 pJ3.11(D7S8)	MspI	4.0	0.38 0.62	0.55	639
	TaqI	6.0 3.1	0.96 0.04	0.08	587
15 pB79a(D7S13)	HindIII	8.1	0.16 0.84	0.24	628
	MspI	11.6	0.31	0.41	654
16 MET pmetD	TaqI	5.0 4.3	0.80 0.20	0.31	659
pmetH	MspI	4.8	0.05	0.62	185
	TaqI	1.7 7.0 4.2	0.42 0.51 0.49	0.64	432
pHOS6	TaqI	3.0 2.9 1.3	0.00 0.34 0.66	0.47	663
17 p7C22(D7S16)	EcoRI	7.0 5.0	0.80 0.20	0.35	507
18 C33	HindIII	4.3 4.0 3.6	0.20 0.14 0.66	0.51	543
19 A37	PstI	7.0 5.0	0.45 0.55	0.38	716
20 pYNB3.1R	RsaI	3.9 2.4	0.29 0.71	0.46	672

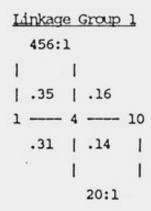

The loci form a continuous linkage group spanning approximately 148 cM in males and 338 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant ratio of female/male genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

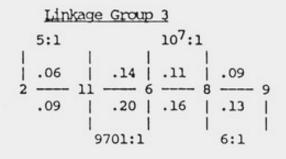


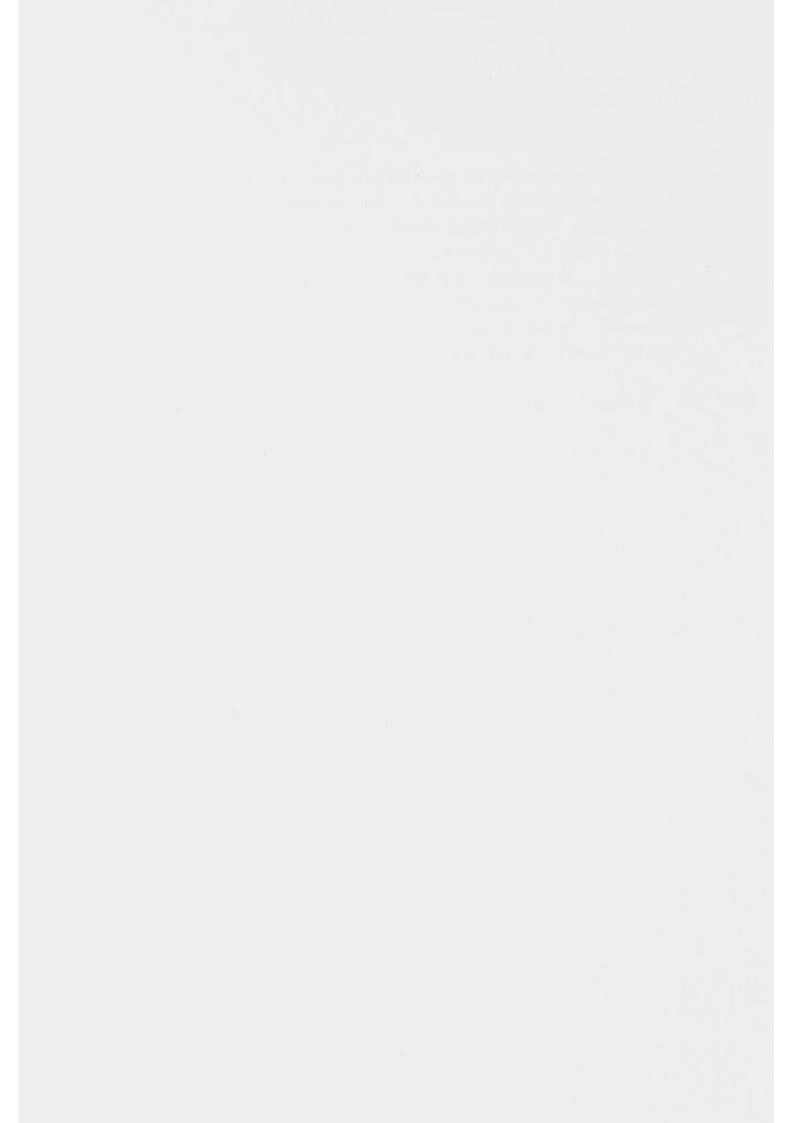
Brackets indicate that the loci were haplotyped for the analysis.

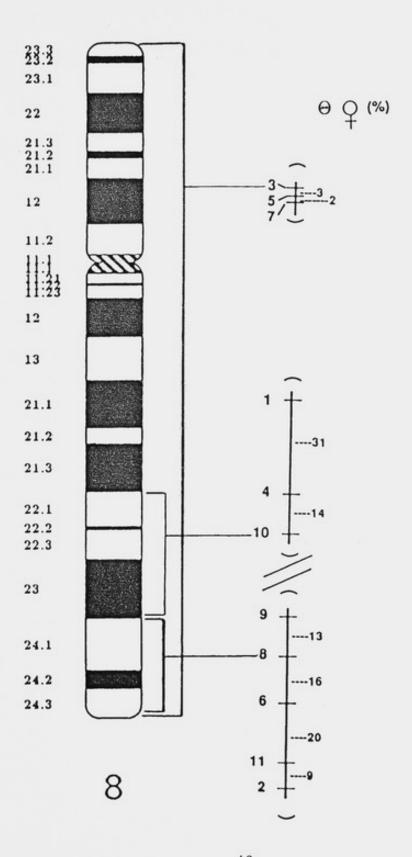

THREE GENETIC LINKAGE GROUPS ON CHROMOSOME 8

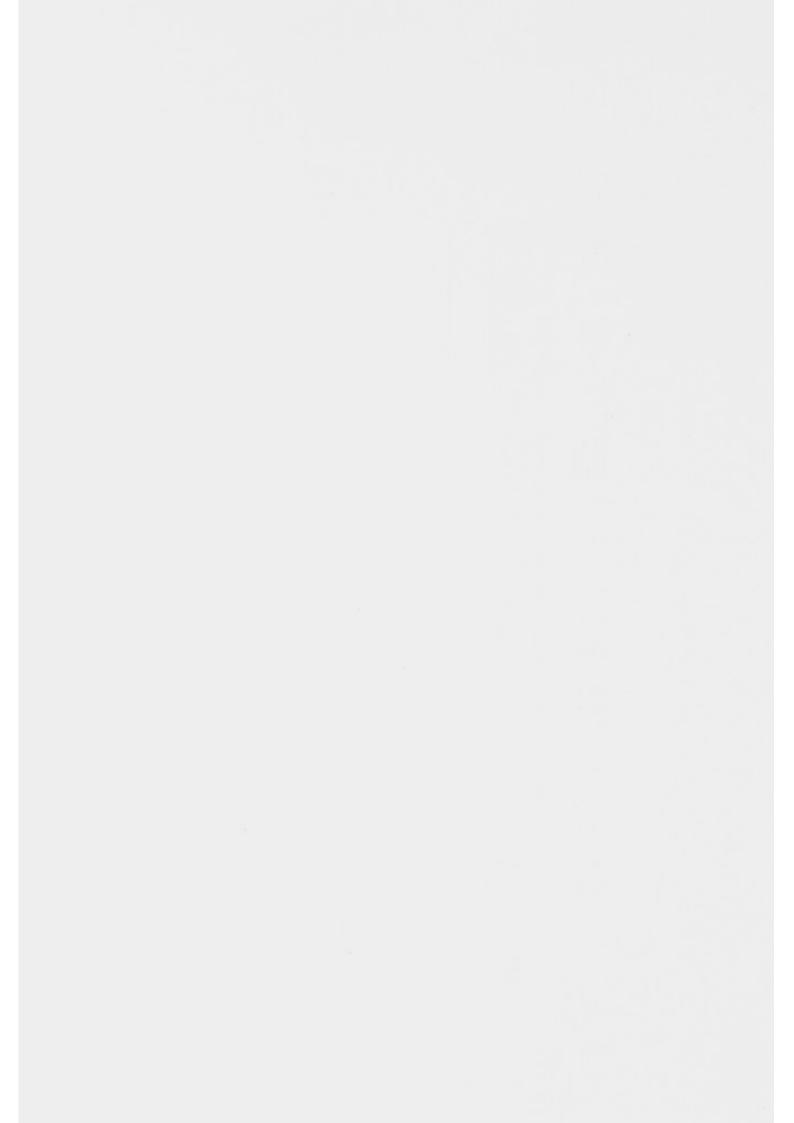
P. O'Connell, Y. Nakamura, G.M. Lathrop, M. Leppert, P. Cartwright, J.-M. Lalouel and R. White.

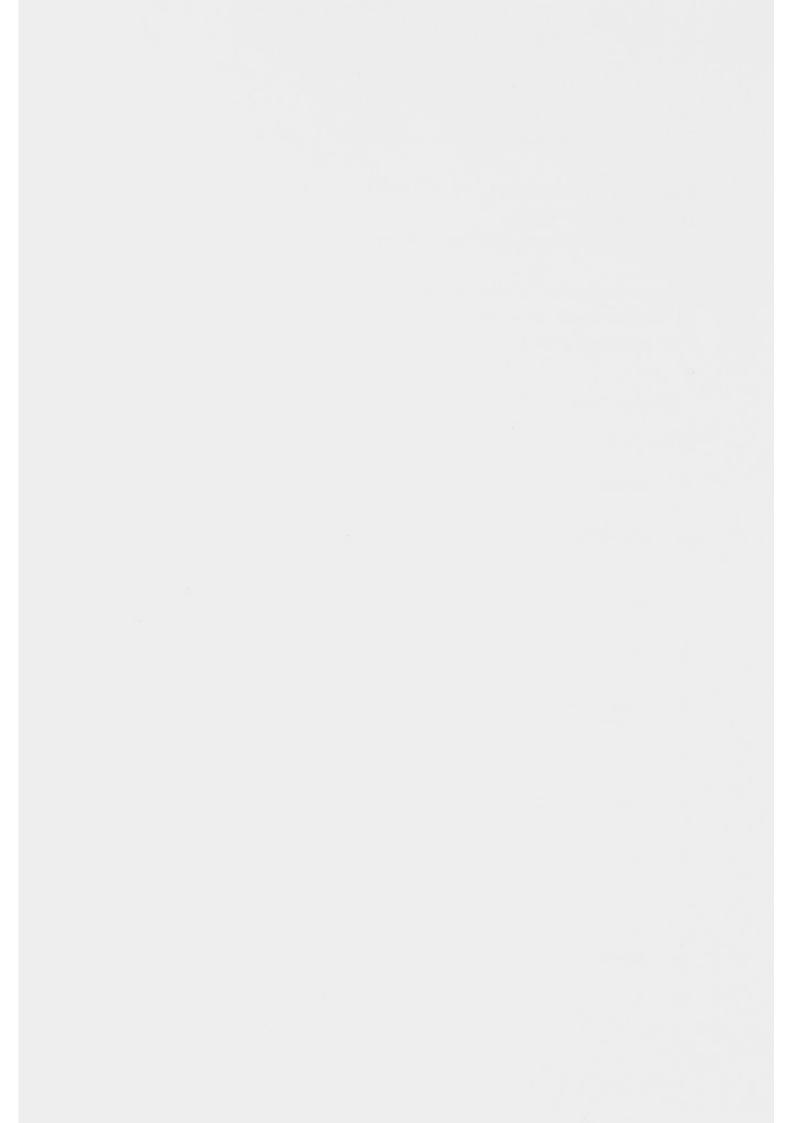

Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA


Three linkage groups have been constructed from data for eleven loci
typed in 40-60 reference families (including the forty families of the CEPH
panel). The following loci were studied:


	PROBE(LOCUS)	ENZYME	ALIELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	£MMZd	PstI	VNIR 3 ALLELES 3.2-3.6KB		0.33	685
2	GPT (GPT)	GPT	Al A2	0.53 0.47	0.45	596
3	pTHH5	HindIII	4.0 2.5 2.3	0.56 0.43 0.01	0.55	696
4	pABL4-2	RsaI	2.3 1.8	0.32 0.68	0.42	593
5	pYNZ132	TaqI	VNIR 4 ALLELES 1.7-2.3		0.69	666
6	рнин171	MspI	2.3 1.9	0.74 0.26	0.39	642
7	LILA-2	PstI	VNTR 5 ALLELES 4.0-6.5KB		0.46	636
8	pCHT16-8.0(TG)	TaqI	5.8 5.2	0.20 0.80	0.35	712
9	p380-8A	TaqI	3.3 2.5 2.3	0.47 0.44 0.09	0.54	708
10	LTL11 (D8S5)	HindIII	11.8	0.76 0.24	0.35	457
11	pMCT128.2	PstI	VNIR 3 ALLELES 1.4-1.8KB		0.54	166

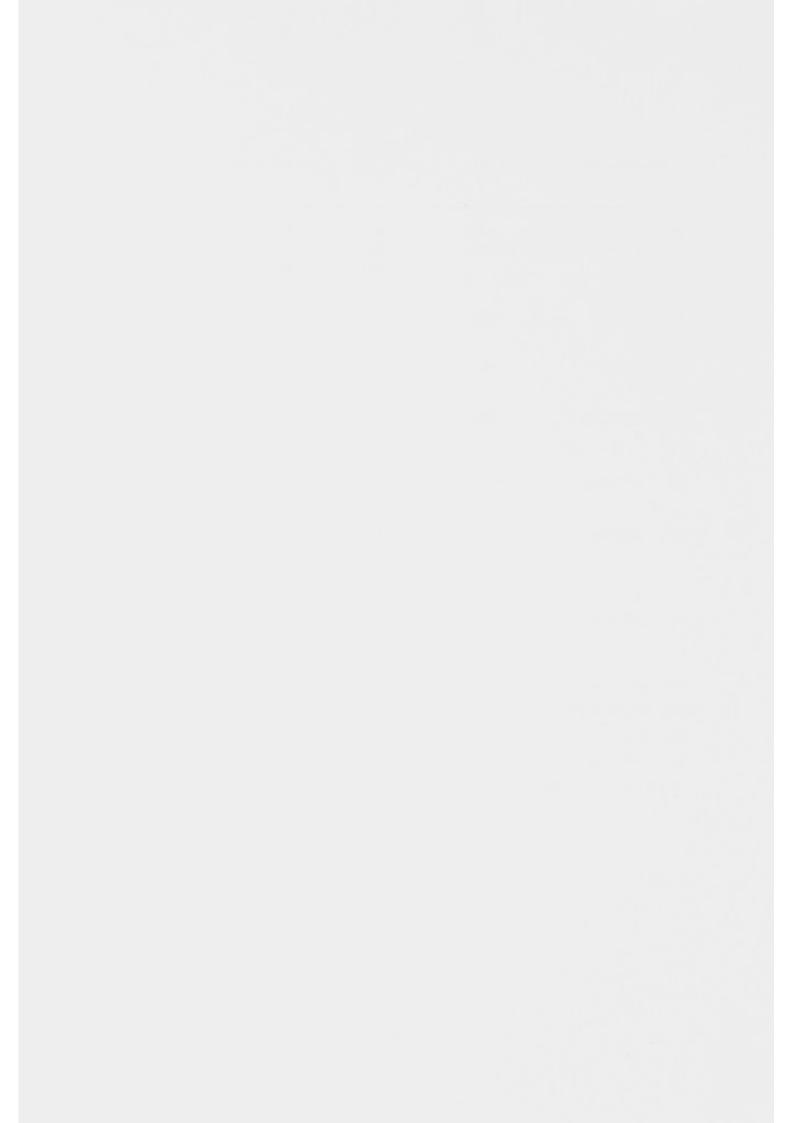



The eleven loci form three linkage groups spanning approximately 65 cM in females and 79 cM in males for linkage group 1; 5 cM in females and 6 cM in males for linkage group 2; and 55 cM in females and 44 cM in males for linkage group 3. The assignment of linkage group 2 to chromosome 8 is provisional. Multilocus analysis with the LINKAGE programs, under the assumption of a constant female/male genetic distance ratio, gave the following gene orders, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:


A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 9

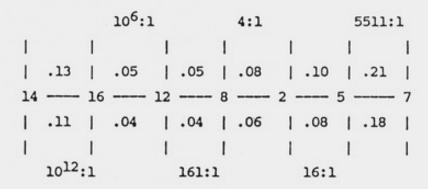
G.M. Lathrop, M. Leppert, P. O'Connell, Y. Nakamura, P. Cartwright, J.-M. Lalouel and R. White.

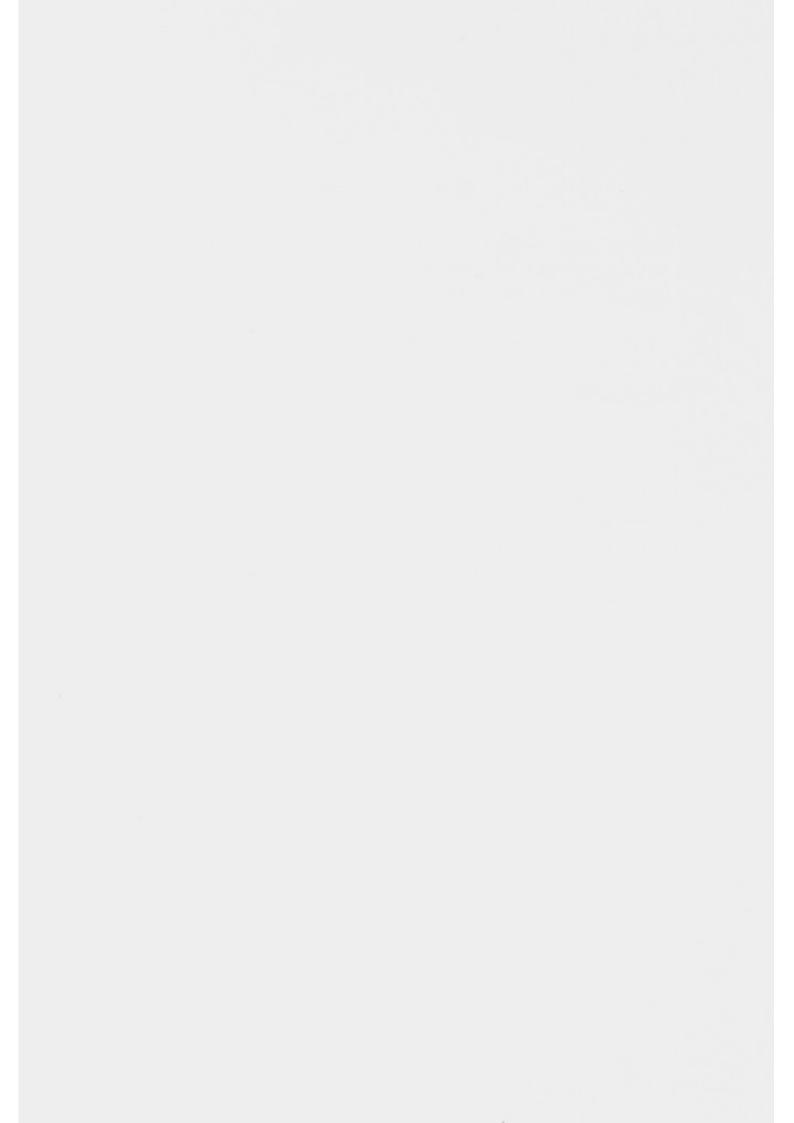
Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA

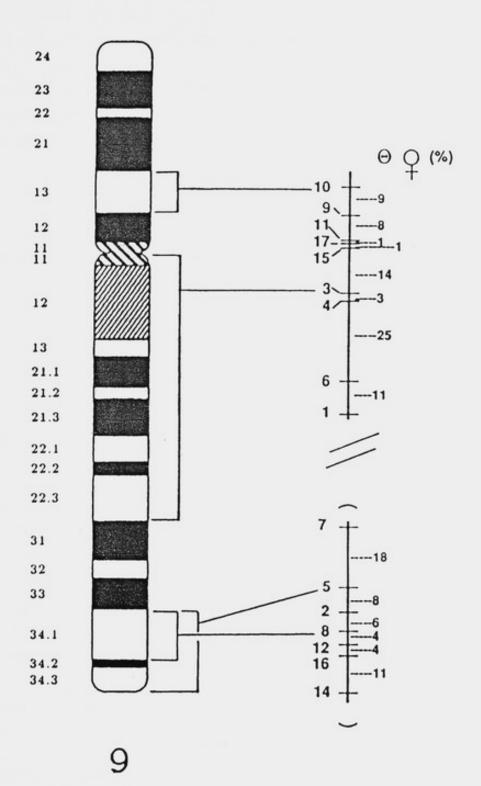

A primary genetic linkage map of chromosome 9 was constructed from data on 16 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:

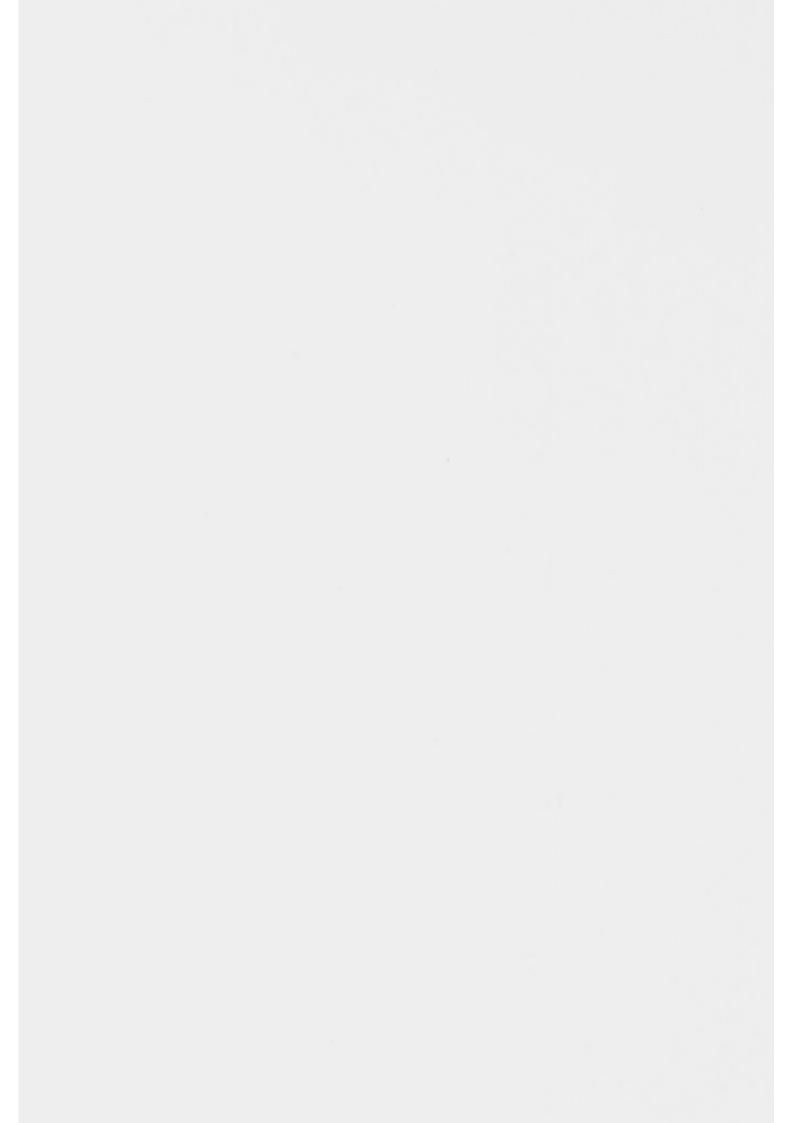
P	ROBE (LOCUS)	BE(LOCUS) ENZYME				ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED	
1	pYNM17	TaqI	7.5 5.0	0.62 0.38	0.47	581			
			5.0	0.38					
2	pAblK2 (ABL)	TaqI	7.6	0.09	0.17	657			
			6.7	0.91					
			5.0	0.01					
3	pAS-1(ASSP3)	HindIII	10.1	0.74	0.43	662			
			5.3	0.26					
4	pHF12-8(D9S1)	TaqI	3.6	0.40	0.36	665			
	F==== -(====/		3.2	0.60		000			
5	Adenylate(AK1)	AK1	Al	0.95	0.10	626			
•	kinase 1		A2	0.05	0.20	020			
6	рЛНН22	TaqI	12.0	0.09	0.16	711			
	Pilling	1441	8.0	0.91	0.10	,			
7	Orosamucoid(ORM) ORM	Al	0.58	0.58	619			
	020000000000000000000000000000000000000	,	A2	0.42					
8	ABO	ABO	Al	0.69	0.44	553			
•			A2	0.17					
			A3	0.07					
			A4	>0.01					
			A5	0.07					
9	рНН1220	TaqI	4.3	0.78	0.32	614			
373	•		3.0	0.21					
			2.3	0.01					

P	ROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
10	Galactose(GAIM) 1-P-uridyltrans	GAIN ferase	A1 A2 A3	0.93 0.06 0.01	0.14	637
11	pEK130	MspI	6.2 4.5	0.72	0.41	609
12	pMCT136	Pstl	2.2	0.46	0.50	767
14	pEFD126.3	BamHI	VNIR >5 ALLI 1.0-3.0		0.66	747
15	pEFD40.3	MspI	5.3 4.4	0.70 0.30	0.38	763
16	pMCT96.1	RsaI	4.7	0.76 0.24	0.36	608
		RsaI	1.0	0.99 0.01	0.02	602
17	pMCT112	MspI	6.0 4.9	0.71 0.29	0.37	783

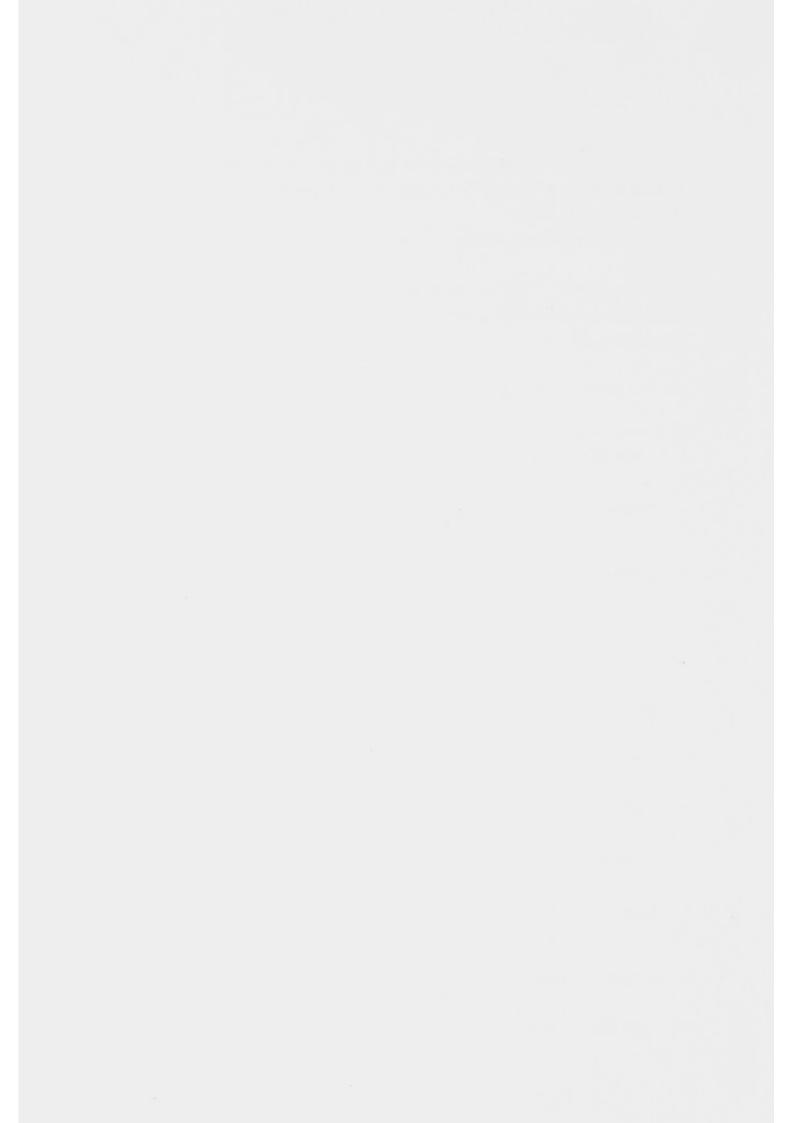

The loci form two linkage groups spanning approximately 178 cM in males and 207 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of constant female/male ratio of genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:




Linkage group 1


			1010:	1			1023	:1			3056:	1			4:1	
1		1		1		1		1		1		1		1		1
1	.07	1	.17	1	.02	1	.09	-1	.01	1	.01	1	.05	1	.06	1
1		6		4		3		15		17		11		9		10
	.11	1	.25	1	.03	1	.14	-1	.01	1	.01	1	.08	1	.09	1
		1		1		1		-1		1		1		1		1
	75:1				88:1				5289:	1			152:1			

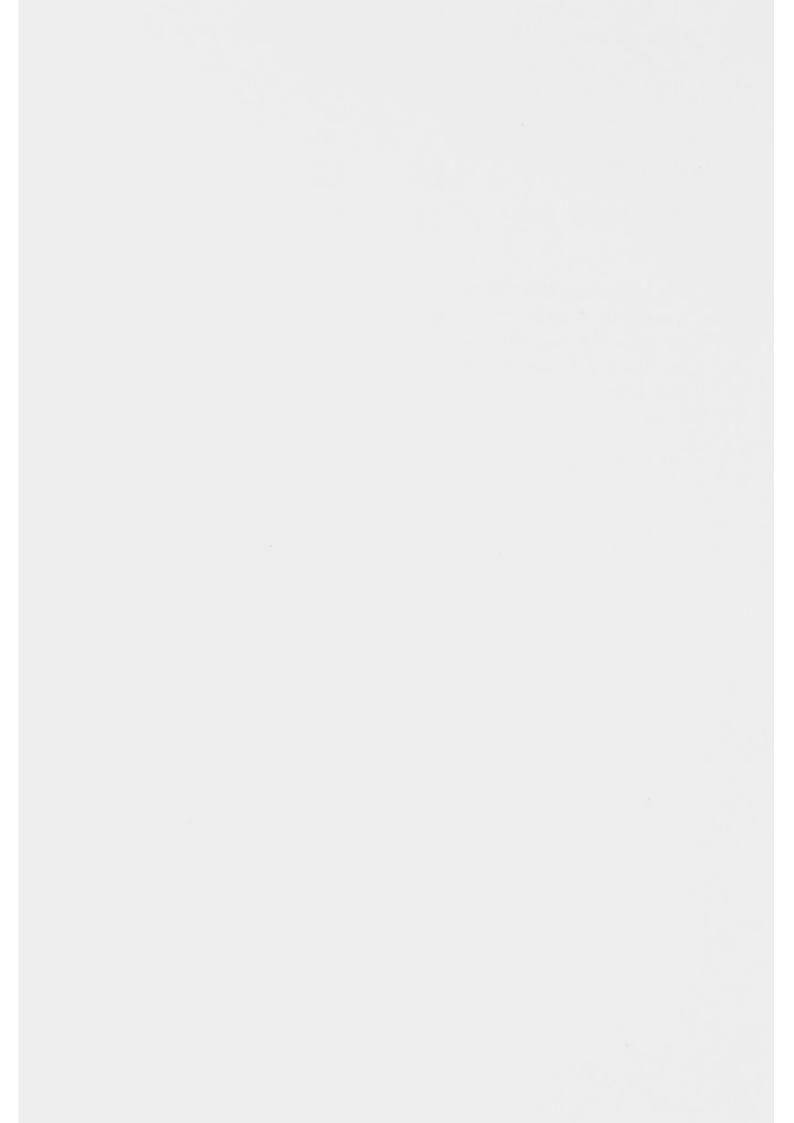
Linkage group 2

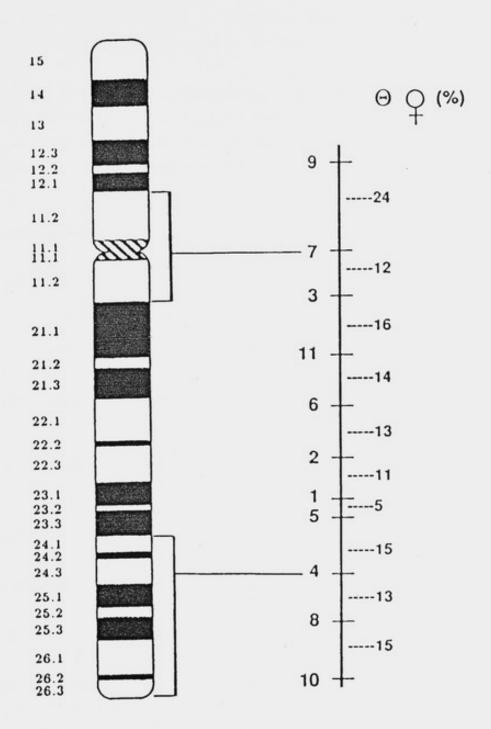

A PRIMARY LINKAGE MAP OF CHROMOSOME 10

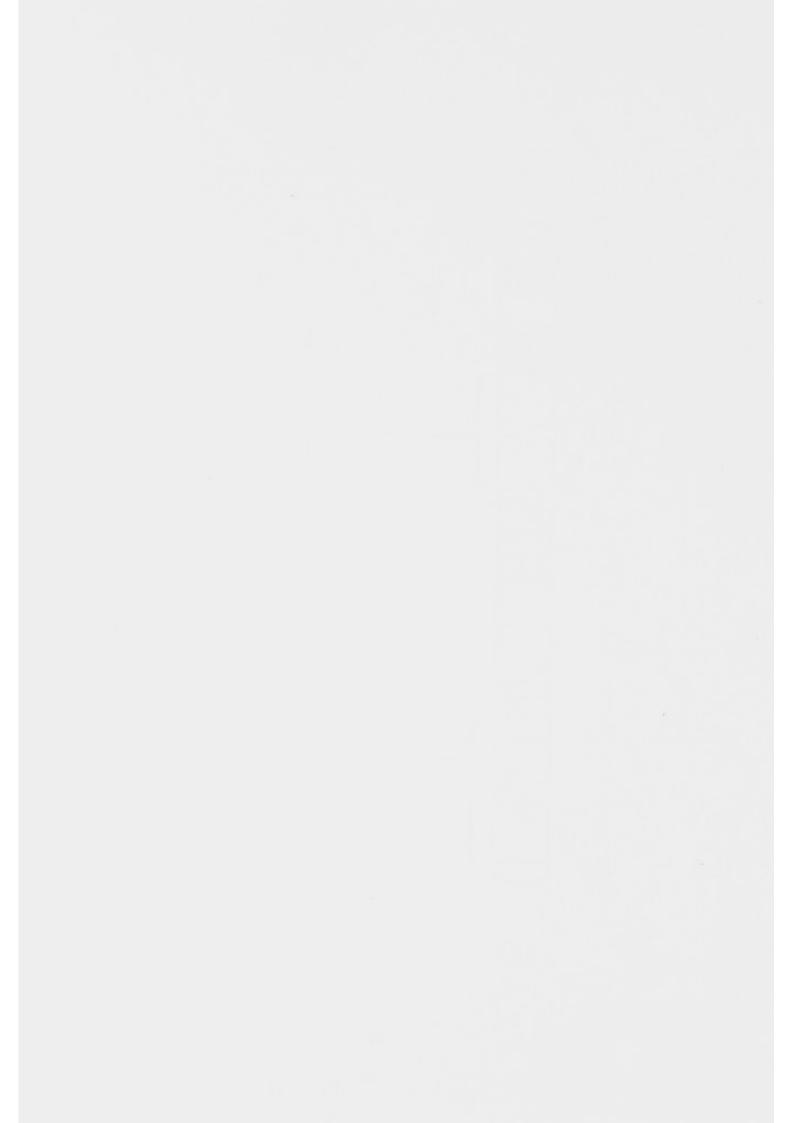
Y. Nakamura, M. Lathrop, P. O'Connell, M. Leppert, P. Cartwright, J.-M. Lalouel, and R. White

Howard Hughes Medical Institute, Salt Lake City, Utah USA

Eleven loci typed in 40-60 families (including 40 from the CEPH panel) constitute a continuous genetic map of chromosome 10. The following loci were studied:

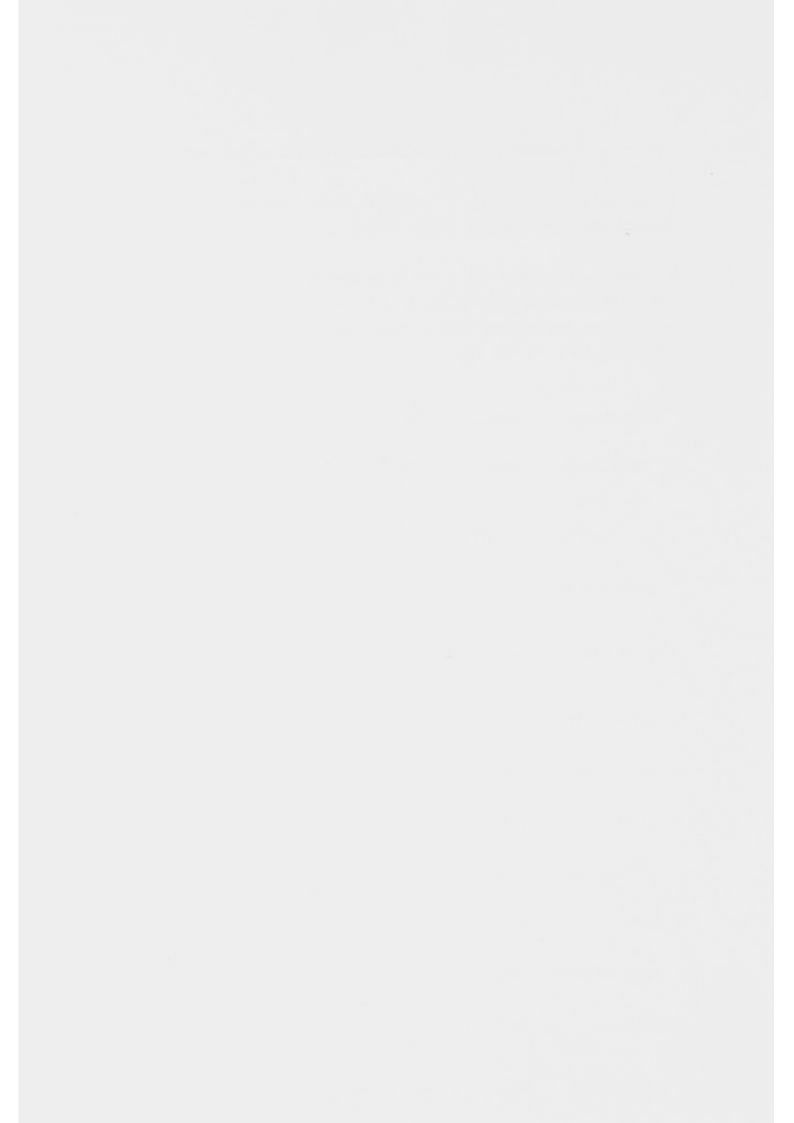

PRO	DBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER OF INDIVIDUALS TYPED
1	рин105.1	BglII	8.5 8.3	0.24 0.76	0.33	544
2	pTHH54	MspI	3.7 2.9 1.9	0.52 0.40 0.08	0.62	574
3	pMCK2	PvuII	VMTR >6 alleles 2.0 -2.5		0.26	646
4	pl-101	TaqI	8.5 7.0 5.0	0.02 0.60 0.38	0.55	625
5	dry5-1 (D10S1)	TaqI	6.3 3.6	0.83 0.17	0.34	316
6	pCMM17.1	MspI	2.3 1.5	0.35 0.65	0.43	658
7	IRBPH.4	BglII	6.0 4.2	0.91 0.09	0.14	396
	IRBPH.4	MspI	3.0 2.5	0.76 0.24	0.31	654
8	OS-2	HindIII	10.0 5.2 3.2	0.38 0.52 0.10	0.64	602
9	pMHZ15	MspI	3.6 2.1	0.61 0.39	0.54	549
10	pYNZ156	MspI	11.5 9.6	0.79 0.21	0.26	525



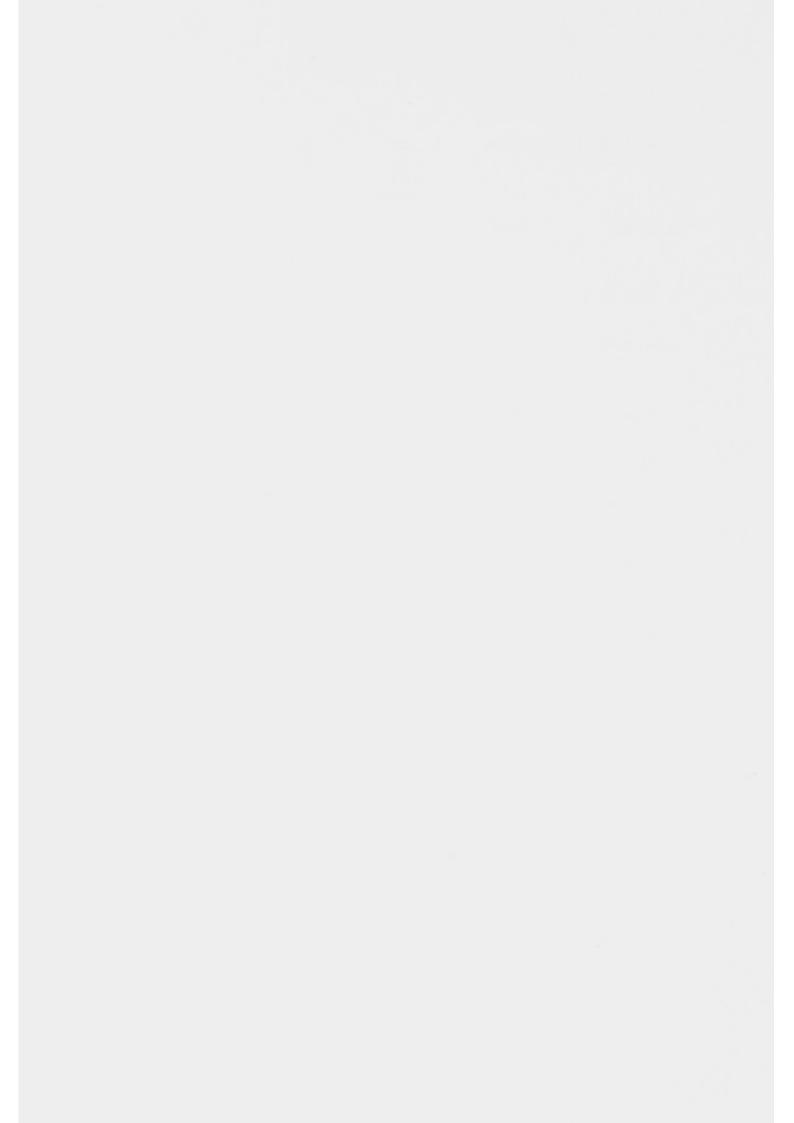

10	pYNZ156	MspI	11.5 9.6	0.79 0.21	0.26	525
11	pTB10.171	PvuII	8.0 6.5	0.65 0.35	0.48	731

The genetic map constructed under the assumption of a constant ratio of female/male genetic distance span approximately 106 cM in males and 268 cM in females. The gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of the adjacent loci are:

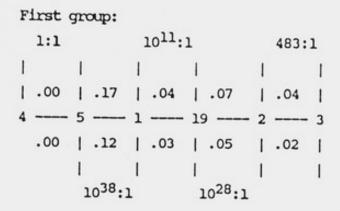
424	404:	1			272:	1		:	31257	:1		1	08:1		8	24:1			
	.10	1	.09	1	.10	1	.03	1	.07	1	.09	1	.10	.11	1	.08	-	.17	-
10 -		8		4		5		1		2		6	11		3		7		9
!	.15	1	.13	ļ	.15	!	.05	!	.10	!	.13	!	.14	.16	!	.12	!	.23	!
1		1	180:	1		1	3:1	1		1	09:1	1	108	:1	1	1124	120	0:1	J

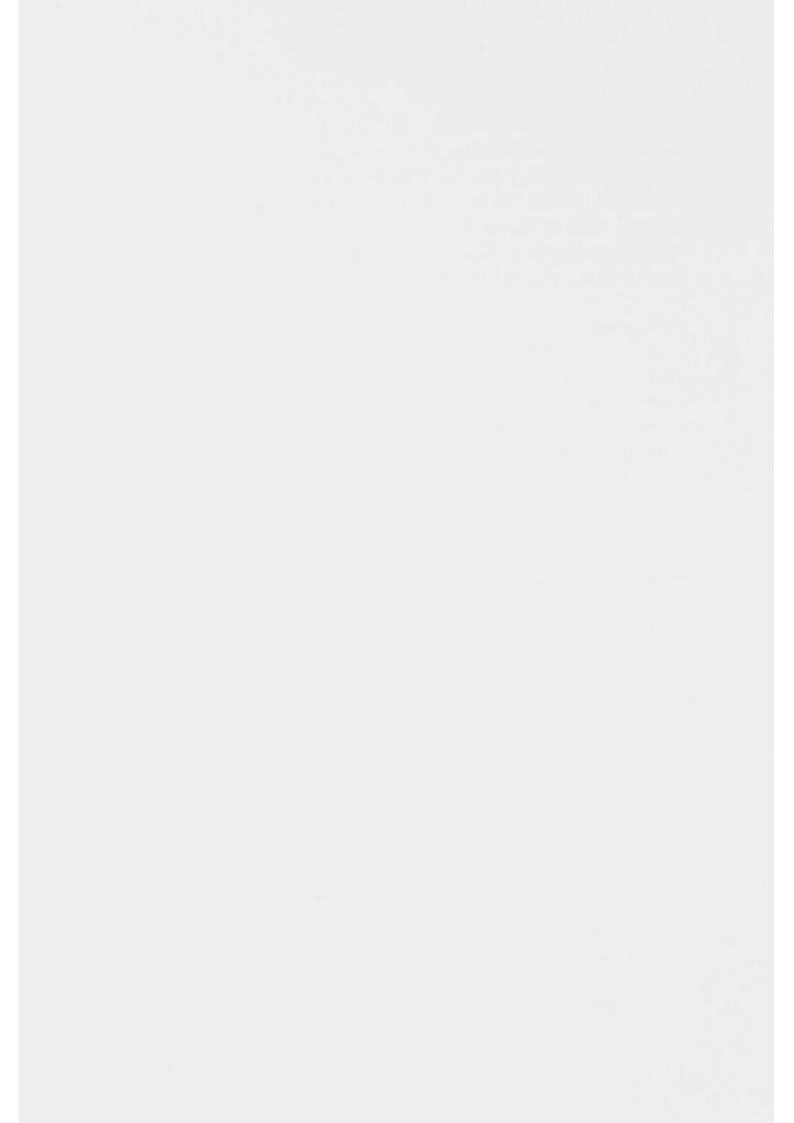


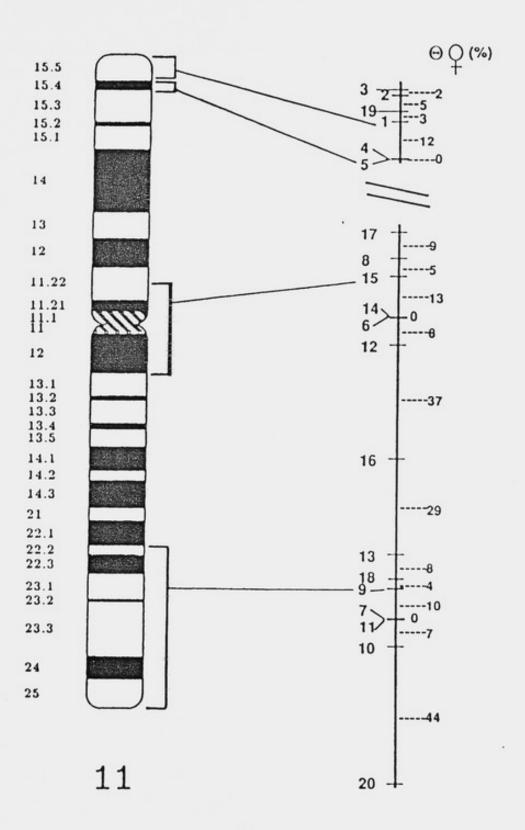
A PARTIAL PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 11

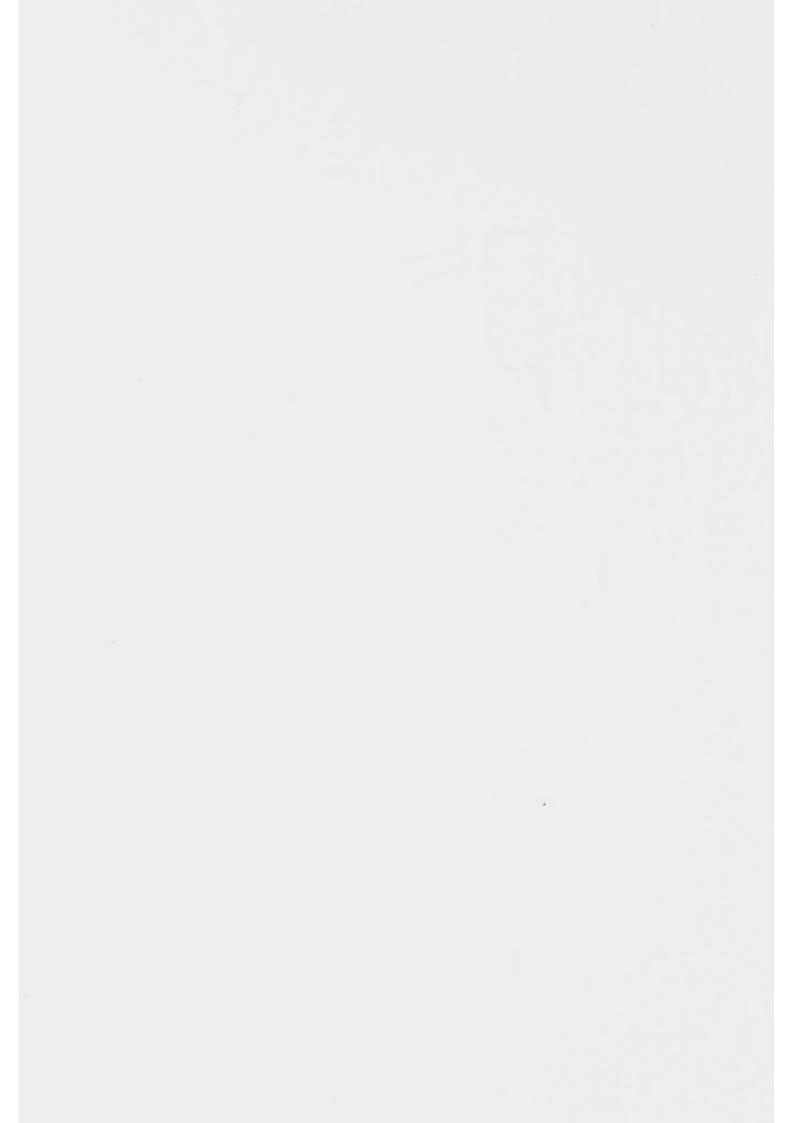

M. Leppert, P. O'Connell, Y. Nakamura, G.M. Lathrop, S. Maslen, M. Litt, P. Cartwright, J.-M. Lalouel and R. White.

A primary genetic map was constructed from data on 21 markers typed in 30-60 reference families (including 38 families of the CEPH reference panel). This map revises and extends that of White et al. (Nature 313:101-105, 1985). The following loci were studied:


	PROBE(LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
ī	(HBB) JW102	SinI	2.2	0.12 0.88	0.18	404
	JW151	HindIII	7.8 7.1	0.40	0.48	691
	JW151	HindIII	3.2	0.79 0.21	0.37	616
2	pINS-310(INS)	PvuII	VNIR >14 ALLE 0.6-4.0K		0.80	387
3	pTBB-2 (HRAS1)	TaqI	VNIR >10 ALLE 2.3-4.3K		0.84	689
4	pPIH-LF(PIH)	PstI	2.7	0.64 0.36	0.52	515
5	pTT42(CALC1)	TaqI	8.5 7.5	0.33 0.67	0.31	505
6	ртин26	PvuII	5.2 3.2	0.14 0.86	0.26	674
7	pSV2Al(APOAl)	TaqI	8.5 4.6	0.06 0.94	0.09	671
8	p3C7	MspI	5.7 3.1	0.70 0.30	0.50	395
9	LamL7 (D11S29)	TaqI	13.9 10.9	0.23 0.77	0.35	657
10	pHBI18P2	PstI	5.0 4.0	0.25 0.75	0.33	703


11 Apolipo-(APOA4) protein AIV	APOA4	A1 A2 A3 A4	0.89 0.10 0.01 0.01	0.22	616
12 pMCMP1	MspI	2.4 2.3 2.2	0.48 0.45 0.07	0.36	629
13 pMCT128.1	MspI	2.9	0.52 0.48	0.60	636
14 pMCT117	MspI	3.5 2.4 2.2	0.15 0.58 0.27	0.27	419
15 pPGA(PGA)	BglII	7.0 4.0	0.32 0.68	0.39	773
16 p2-7-1D6	TaqI	6.4 4.3	0.23 0.77	0.40	675
17 pHBI59	MspI	4.3 3.8	0.37 0.63	0.47	481
18 pYNB3.12	MspI	2.8 2.4 0.2	0.55 0.45 0.60	0.63	474
19 pADJ762	MspI	2.1	0.15 0.85	0.25	669
	MspI	1.5	0.11	0.22	696
	TaqI	3.2 3.9	0.15 0.85	0.25	406
	BelI	7.0 7.3	0.57 0.43	0.38	399
20 Phage6-3	MspI	9.5 3.9	0.53 0.47	0.50	694
	MspI	2.8	0.35 0.65	0.71	634




The loci form two continuous linkage groups, one of 6 loci (37 cM in males and 24 cM in females) and the other of 14 loci (102 cM in males and 287 cM in females). Multilocus analysis with the LINKAGE programs, assuming a constant ratio of female/male genetic distance within each group, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

Second group (brackets indicate loci have been haplotyped):

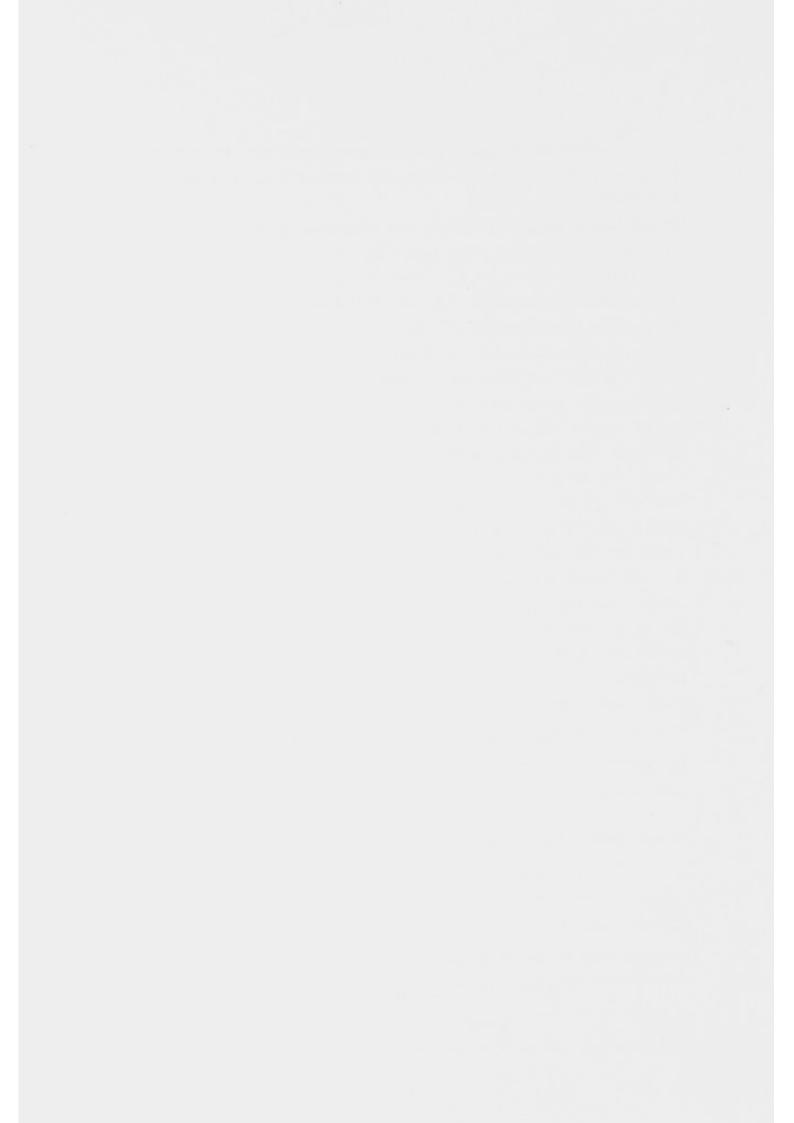
SEX-SPECIFIC VARIATION IN HUMAN RECOMBINATION FREQUENCIES

T. Holm, J.-M. Lalouel, R. White, P. O'Connell, M. Leppert, C. Julier, and M. Lathrop

Howard Hughes Medical Institute and Department of Human Genetics, University of Utah Medical Center, Salt Lake City, UT

Investigation of linkage relationships among DNA markers from the short arm of human chromosome 11 has indicated differences in recombination frequencies between males and females in the interval from HBBC to HRAS1. A second, independent set of family data has been developed in order to establish the significance of the initial finding. Examination of the recombination frequencies in the interval from HBBC to PIH/CALC1 indicated a slight excess of recombination in female meioses that was significantly different from the male excess in the HBBC-HRAS1 interval. These ratios also differ strikingly from the female/male ration of map distances previously obtained for intervals on chromosome 13 (Leppert et al., Am. J. Ham. Genet. 39:425-437, 1986). These findings were obtained in the course of adding the genes for two major calcium-regulating hormones, parathyroid hormone (PIH) and calcitonin-1 (CAICI), to an existing genetic linkage map of a region of human chromosome 11p. A new five-locus linkage map, incorporating sexspecific recombination frequencies and providing strong support for gene order, has thus been developed, using the LINKAGE programs, for the loci PIH-CALC1, HBBC, D11S12, INS and HRAS1.

First Sample: 25 families

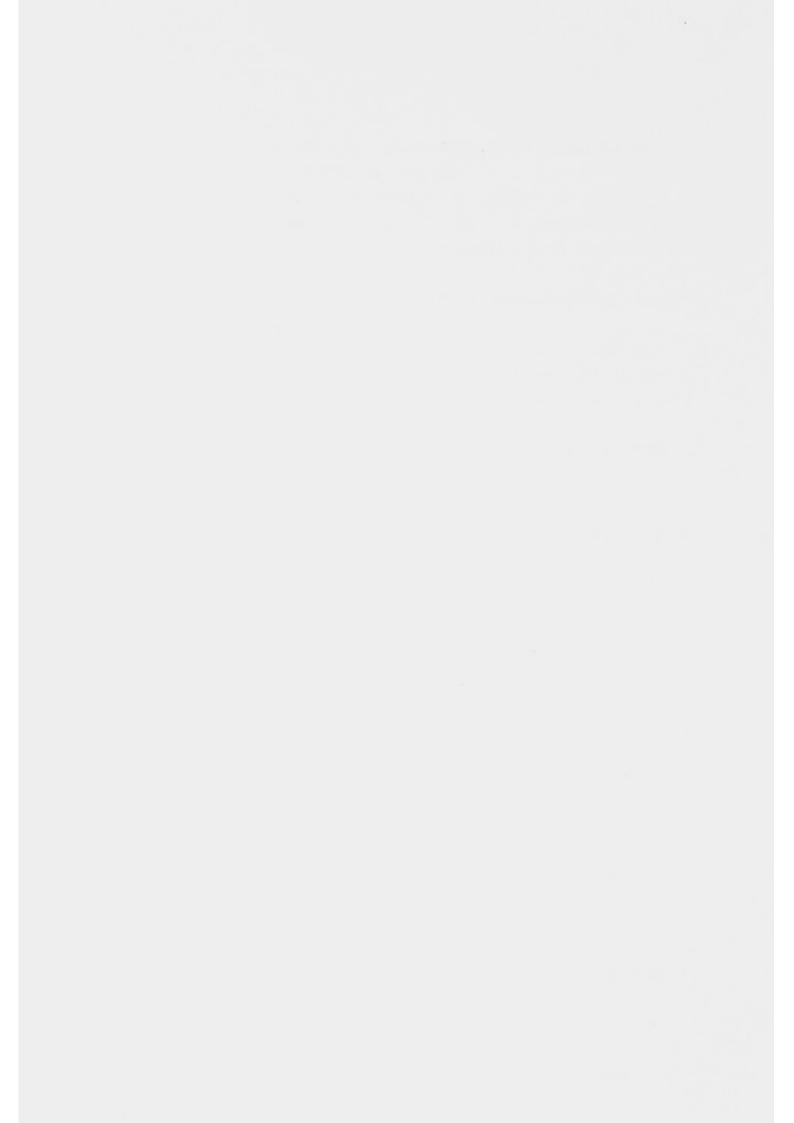

	HBBC		D11S12		HRAS1	к,	f/m	X ²
Female		0.011		0.035		0	.254	6.96
Male		0.040		0.125				

Second Sample: 34 families

	HBBC	-	D11S12	_	HRASI	K, f/m	X ²
Female	0	.028		0.069		0.209	9.90
Male		.021		0,253			

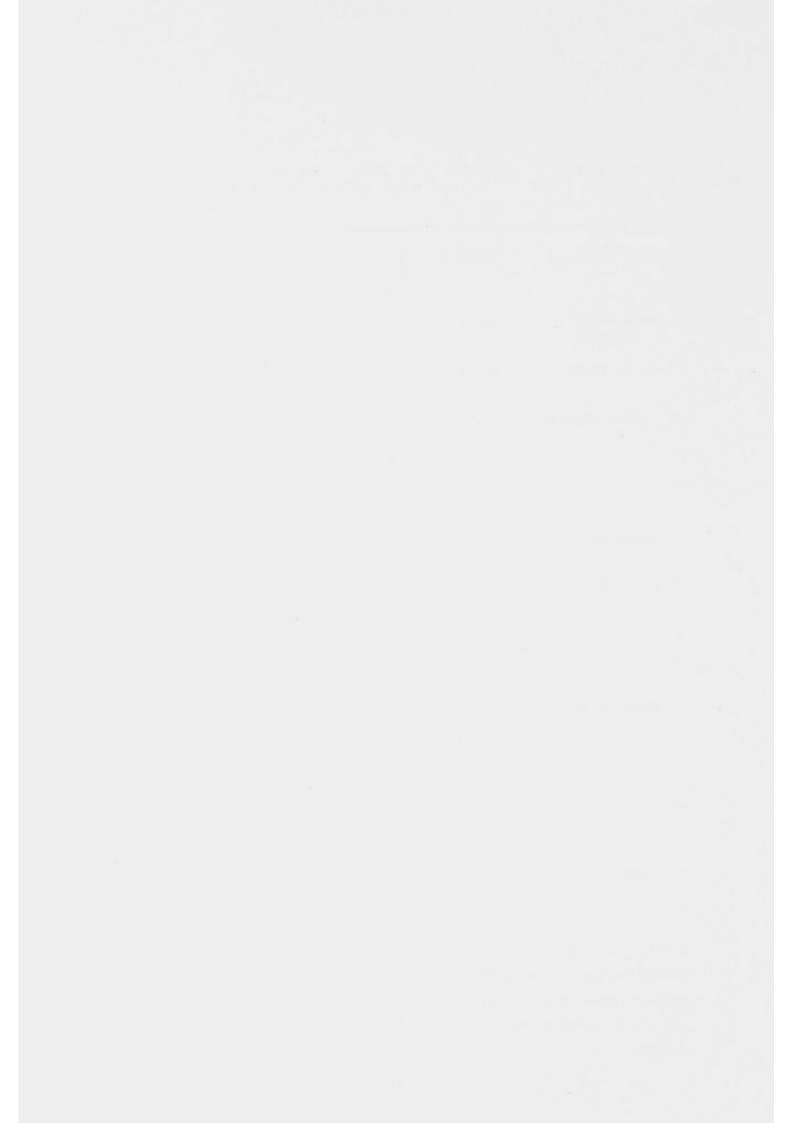
Combined Samples: 59 families

	HBBC		D11S12		HRAS1	K, f/m	X ²
Female		0.016		0.055		0.289	13.26
Male		0.053		0.167			


AN EXTENDED MAP FOR HUMAN CHROMOSOME 12 HAS A DOMAIN OF INCREASED MALE RECOMBINATION

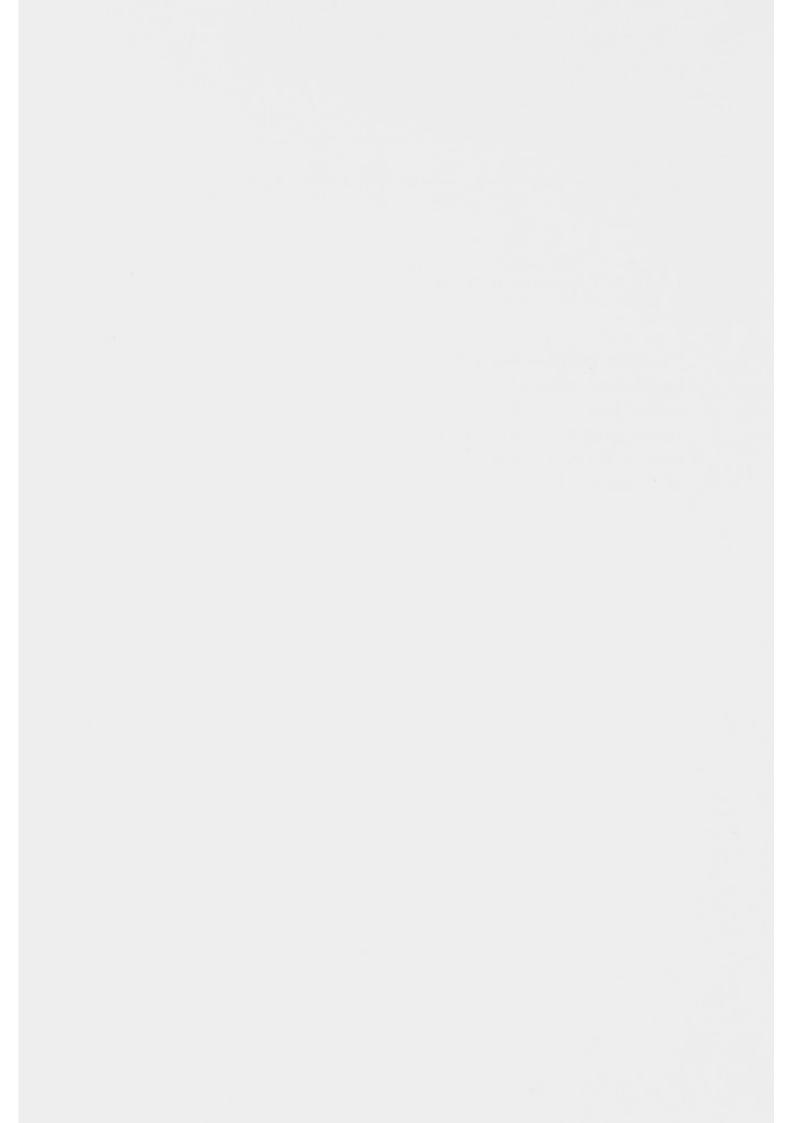
P. O'Connell, M. Lathrop, M. Leppert, Y. Nakamura, M. Hoff, E. Kimlin, W. Thomas, L. Ballard, *G.Y. Cai, *M. Law, J.-M. Lalouel, and R. White. Howard Hughes Medical Institute, University of Utah Medical Center, Salt Lake City, UT

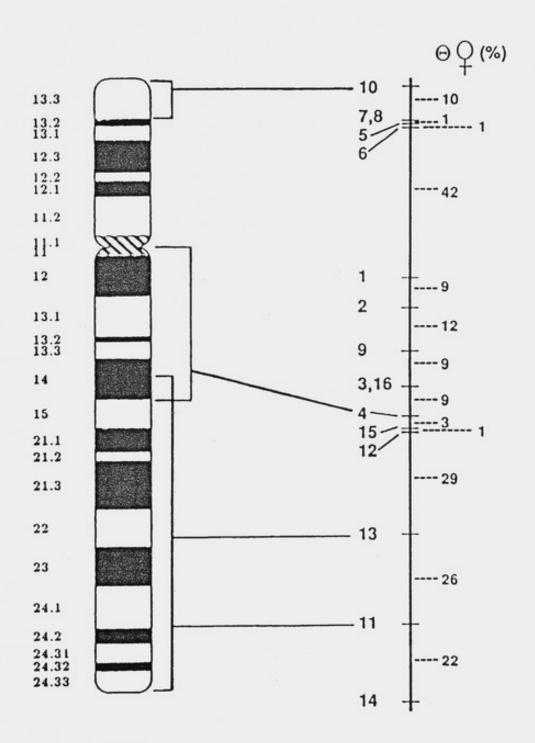
We have prepared a primary genetic map for human chromosome 12, gathering data for 23 RFLP systems from 30-50 normal families with large sibships. The following loci were studied:

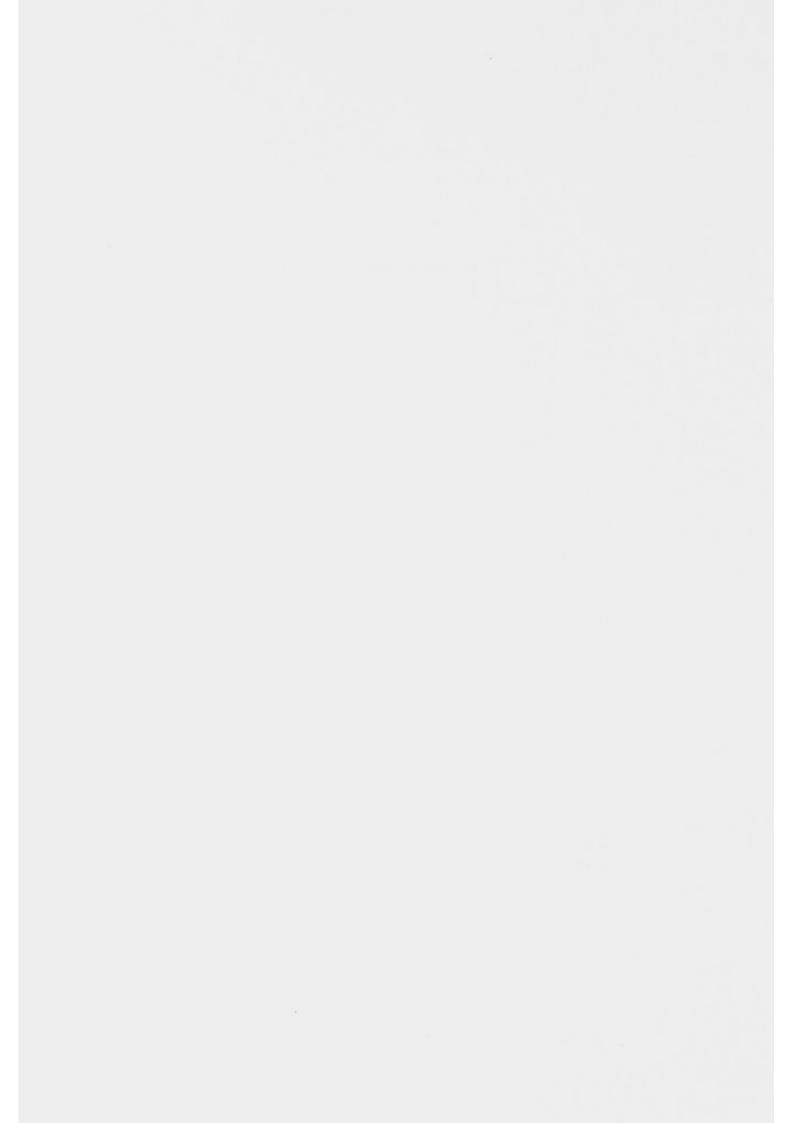

	PROBE (LOCUS)	ENZYME	ALIELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	p640 (KRAS2)	TaqI	5.7 3.3	0.76 0.24	0.32	400
2	pl2-16 (Dl2S2)	ECORI	9.7 8.5	0.89 0.11	0.22	396
3	pXP13 (ELA1)	TaqI	4.3 3.7	0.82 0.18	0.26	394
4	p9F11 (D12S4)	TaqI	8.0 3.0	0.64 0.36	0.59	391
5	pPRP (PRB1)	EccRI-1	6.5 6.3 6.1 6.3-6.3	0.35 0.48 0.07 0.01	0.66	473
			6.5-6.1 6.3-6.1	0.04 0.01 0.06		
6	pPRP (PRB2)	EcoRI-2	4.6 4.3 4.2 4.0 3.8	0.11 0.74 0.10 0.04 0.01	0.33	494
7	pPRP (PRB3)	EccRI-3	4.6 4.3 4.1 4.0	0.02 0.03 0.93 0.02	0.14	526

^{*}Eleanor Roosevelt Institute for Cancer Research, Denver, CO

PROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
8 pPRP (PRB4)	EcoRI-4	3.6 3.5 3.3	0.25 0.63 0.13	0.37	517
9 cosHcol2A (COL2A1)	HindIII	14.0 7.0	0.56 0.44	0.70	285
10 p\SV2 (VWF)	BglII	9.7 7.1	0.64 0.36	0.40	374
11 pDL32B (D12S7)	TaqI	6.5 5.1 4.1-2.7 2.7-2.4	0.08 0.29 0.55 0.07	0.66	496
12 pl-7 (Dl2S6)	MspI	4.4	0.33 0.67	0.63	429
pl-11 (D12S6)	EcoRI	4.9 3.7	0.89 0.11		
13 p7G11 (D12S8)	MspI	6.0 4.3	0.81 0.19	0.62	447
	TaqI-1	8.0 5.0	0.96		
	TaqI-2	4.0 3.0	0.60 0.40		
14 pPH72 (PAH)	MspI	18.0 16.0	0.38	0.65	386
	HindIII	3.3 3.2 3.1	0.17 0.63 0.20		
15 pYNH15	MspI	4.0 3.2 2.6	0.17 0.63 0.20	0.52	598
16 pCMM1.2	TaqI	3.0 2.8	0.15 0.85	0.28	669


Multipoint linkage analysis with the LINKAGE programs, allowing female recombination estimates to vary from those of males by a constant ratio, has ordered these markers into a continuous genetic map of 92 cM in males and 180 cM in females (male recombination estimates are above the map, female below):

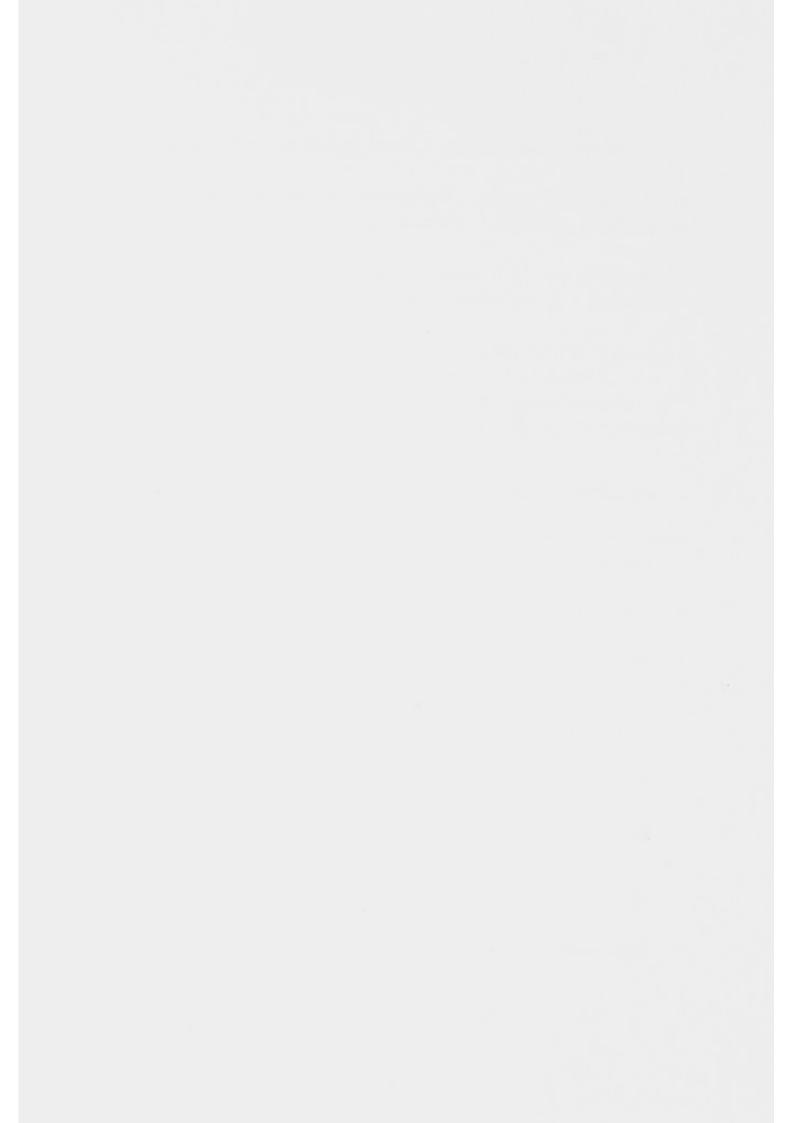



$$14 \xrightarrow{.09} 11 \xrightarrow{.12} 13 \xrightarrow{.14} 12 \xrightarrow{.00} 15 \xrightarrow{.02} 4 \xrightarrow{.02} (3, 16) \xrightarrow{.04} 9 \xrightarrow{.05} 2 \xrightarrow{.04} 1$$

$$1 - {\overset{.20}{X}} - 6 \xrightarrow{.03} 5 \xrightarrow{.02} (7, 8) \xrightarrow{.23} 10$$

The order for those markers in parentheses is provisional. The chromosome 12 genetic map shows a female/male recombination ratio of 3.17 for the long arm and proximal short arm, 2.9 between KRAS2 and PRB2, but on the distal portion of the short arm (at the X on the above order), this ratio falls to 0.39, indicating that in males recombination rates are higher in this domain of chromosome 12.

EXTENSION OF A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 13

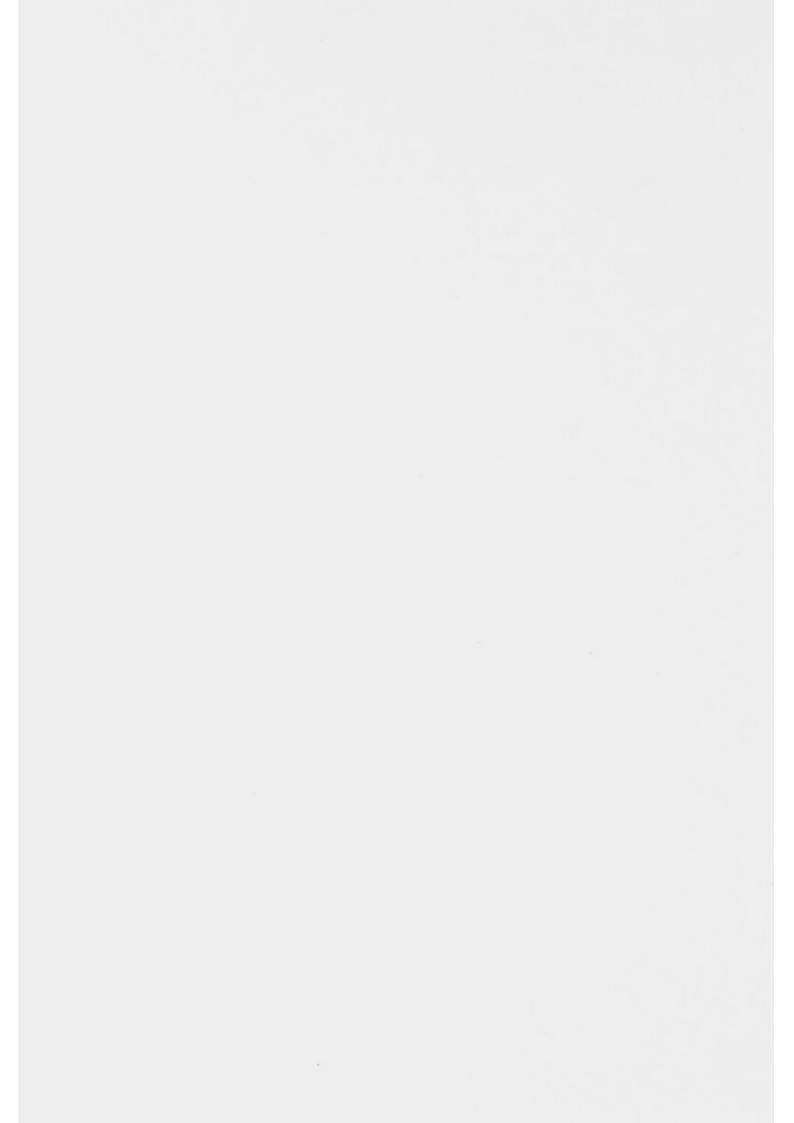

M. Leppert, G.M. Lathrop, P.O'Connell, Y. Nakamura, W.C. Cavenee⁺, P. Cartwright, J.-M. Lalouel, and R. White.

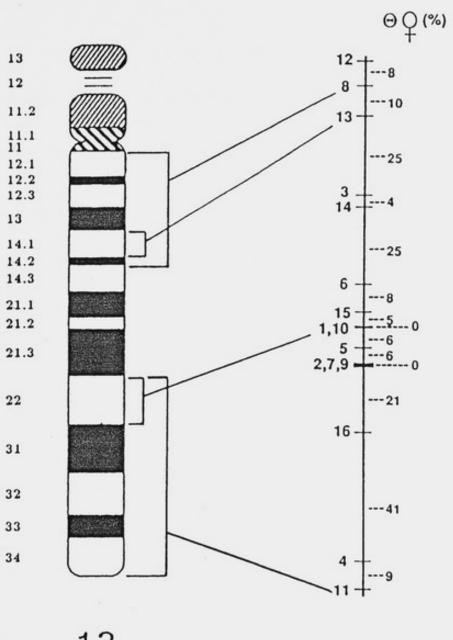
Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA.

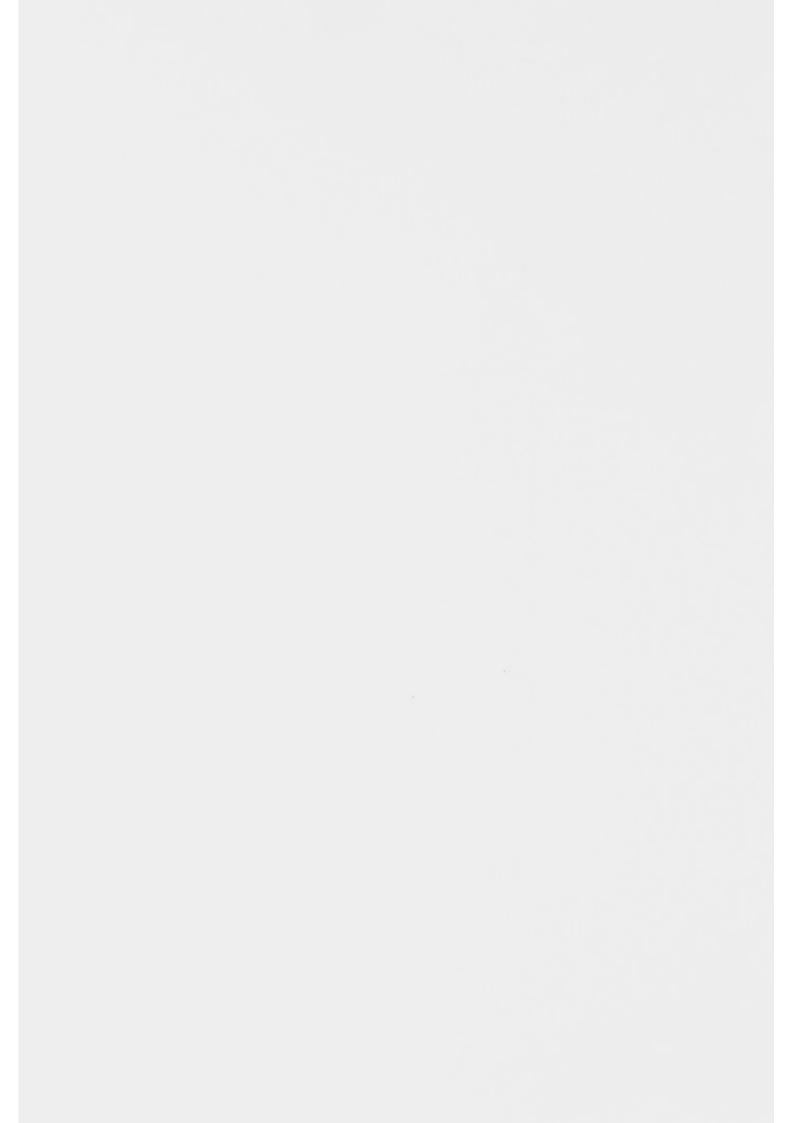
+ Ludwig Institute for Cancer Research, McGill Univ., Montreal, Canada

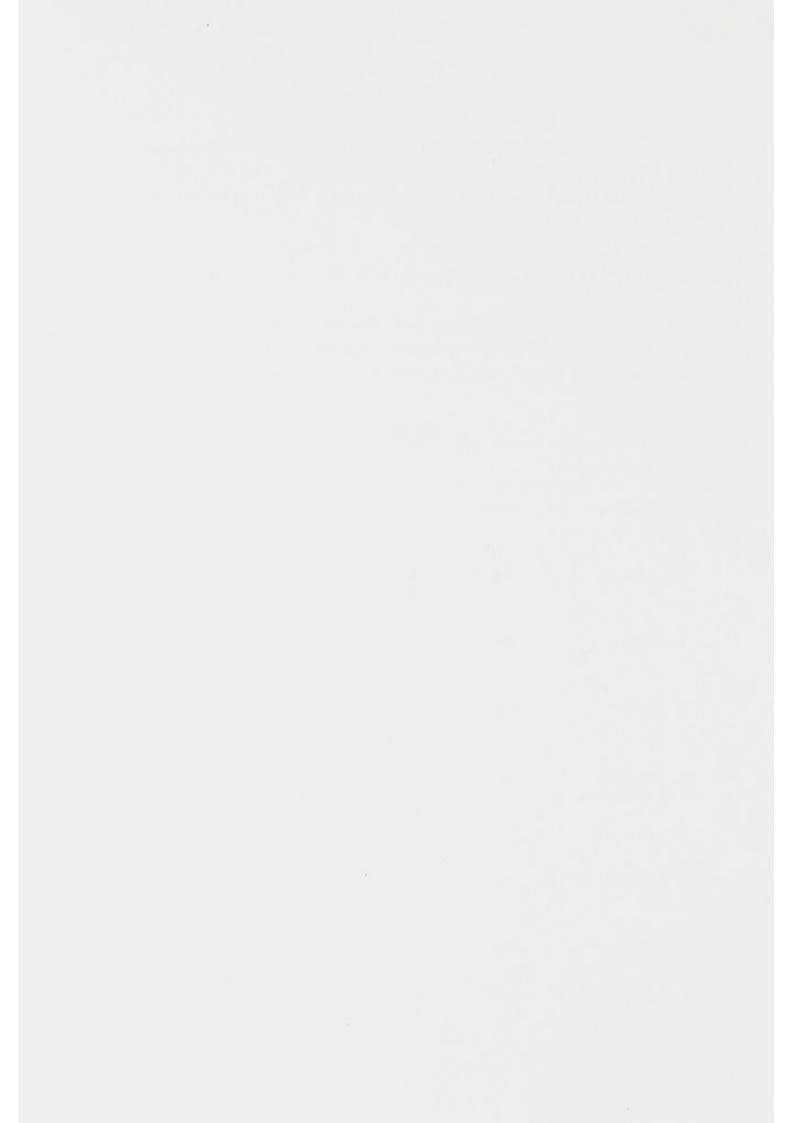
A primary genetic linkage map of chromosome 13 was constructed from data on 16 markers typed in 30-60 reference families (including 38 families of the CEPH reference panel). This map revises and extends that of Leppert et al. (Am J Hum Genet 39:425, 1986). The following loci were studied:


	PROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	pHU26(D13S7)	BglII	7.8 9.6	0.82 0.18	0.30	398
2	plE8(D13S4)	MspI	7.4 10.1	0.51 0.49	0.43	404
3	pTHI62	BglII	VNIR >4 ALL 6.0-10		0.69	604
4	S54 (COLAA1)	TaqI	2.4 1.9	0.18 0.82	0.25	439
5	WC64	BglII	5.6 5.4	0.38 0.62	0.49	729
6	WC25	MspI	4.2 2.4 2.2	0.23 0.72 0.05	0.46	721
7	WC47	EcoRI	8.0 7.0	0.17 0.83	0.27	700
8	p7F12(D13S1)	MspI	4.3 3.4,0	0.52 .9 0.48	0.55	400
		TaqI	6.9 5.9,1	0.27	0.35	404
		BclI	1.4	0.29	0.37	229



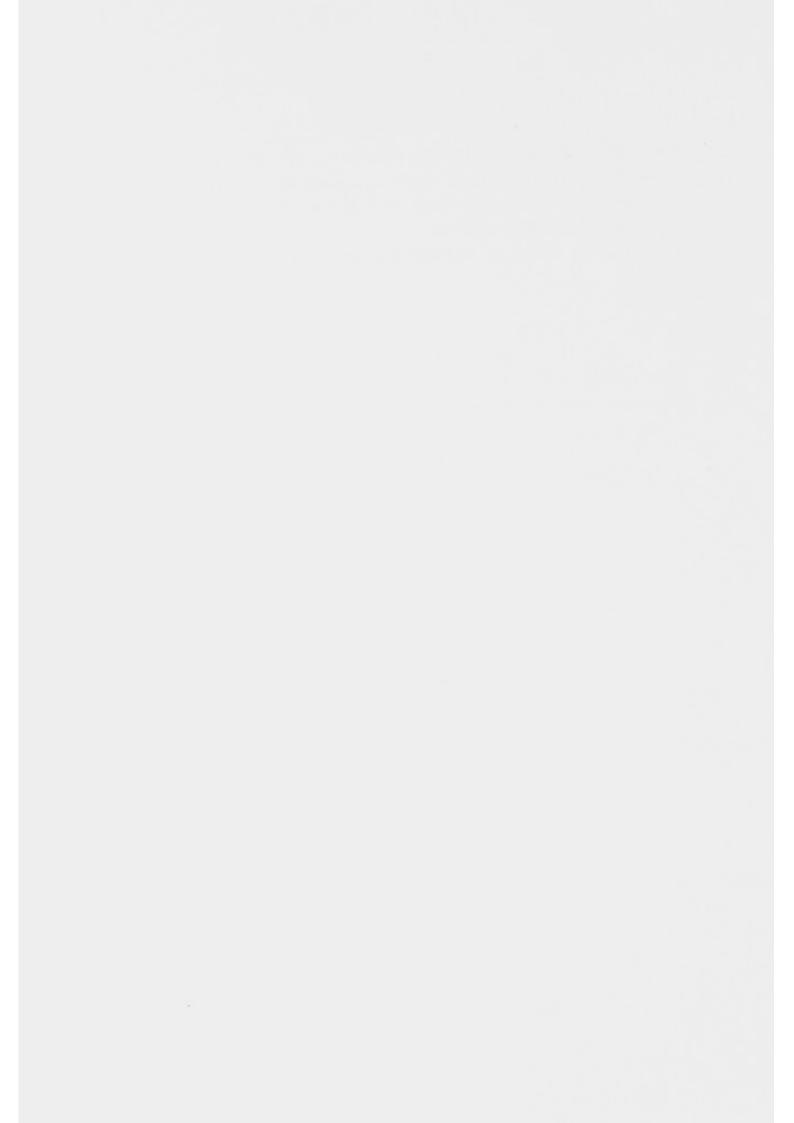

9	pHUB8 (D13S5)	ECORI	13.3	0.77	0.34	395
		HindIII	10.8	0.16	0.23	400
			8.5	0.84		
10	p9D11(D13S2)	MspI	15.0	0.61	0.47	397
			11.0	0.02		
			10.5	0.36		
		TaqI	5.6	0.18	0.28	406
			3.7	0.82		
11	p9A7 (D13S3)	MspI	1.5	0.36	0.38	403
			1.0	0.64		
		HindIII	3.2	0.62	0.42	392
			0.9	0.38		
12	pHU10(D13S6)	XmnI	8.6	0.69	0.45	393
			7.0	0.31		
		EcoRI	12.0	0.83	0.33	226
			9.0	0.17		
13	EsteraseD(ESD)	ESD	Al	0.92	0.16	621
			A2	0.08		
14	p7D2 (D13S10)	TaqI	12.0	0.21	0.38	406
		•	11.0	0.79		
15	WC83	TaqI	8.5	0.59	0.52	703
		•	2.4	0.41		
16	WC95	EcoRI	2.4	0.76	0.32	515
			1.8	0.24		

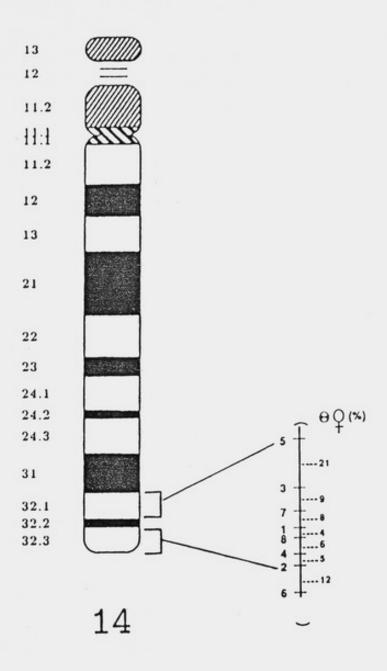

The 16 loci formed a continuous linkage map spanning approximately 80 cM in males and 243 cM in females. Multilocus analysis with the LINKAGE programs gave the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci (brackets indicate the loci were haplotyped):

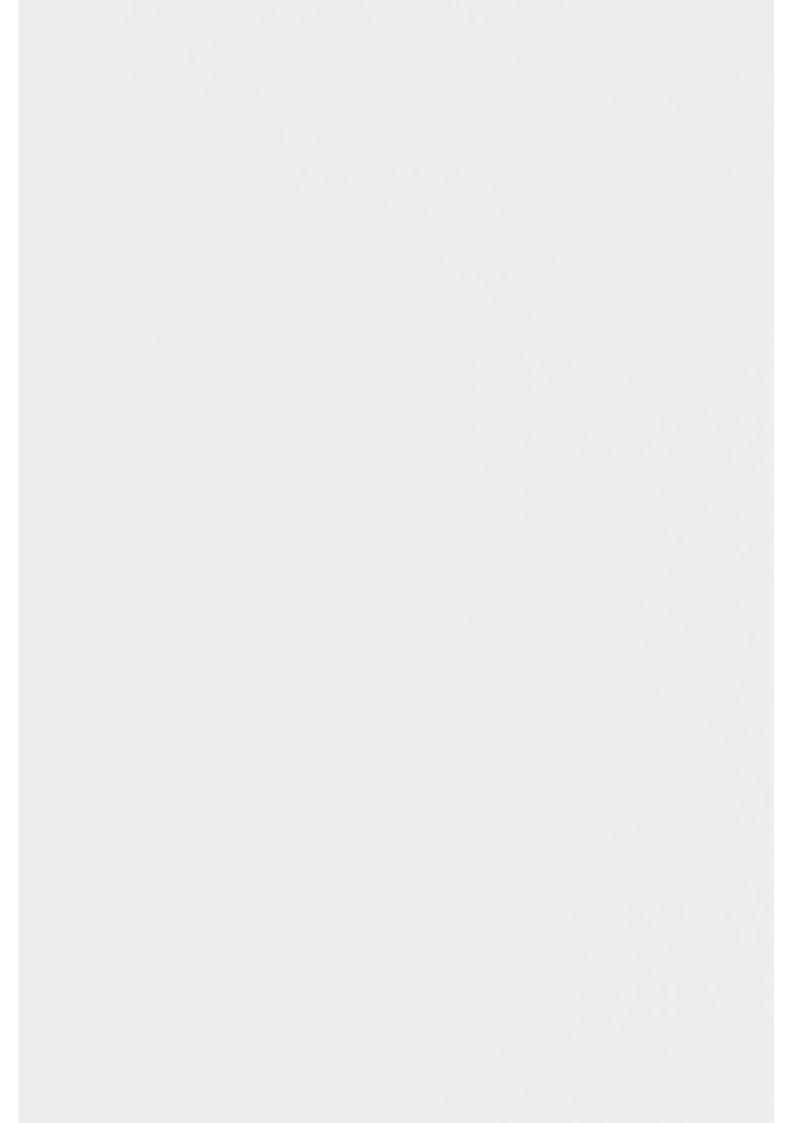

A PRIMARY GENETIC LINKAGE MAP OF DISTAL CHROMOSOME 14q

Y. Nakamura, M. Leppert, P.O'Connell, G.M. Lathrop, P. Cartwright, J.-M. Lalouel, and R. White.

Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA

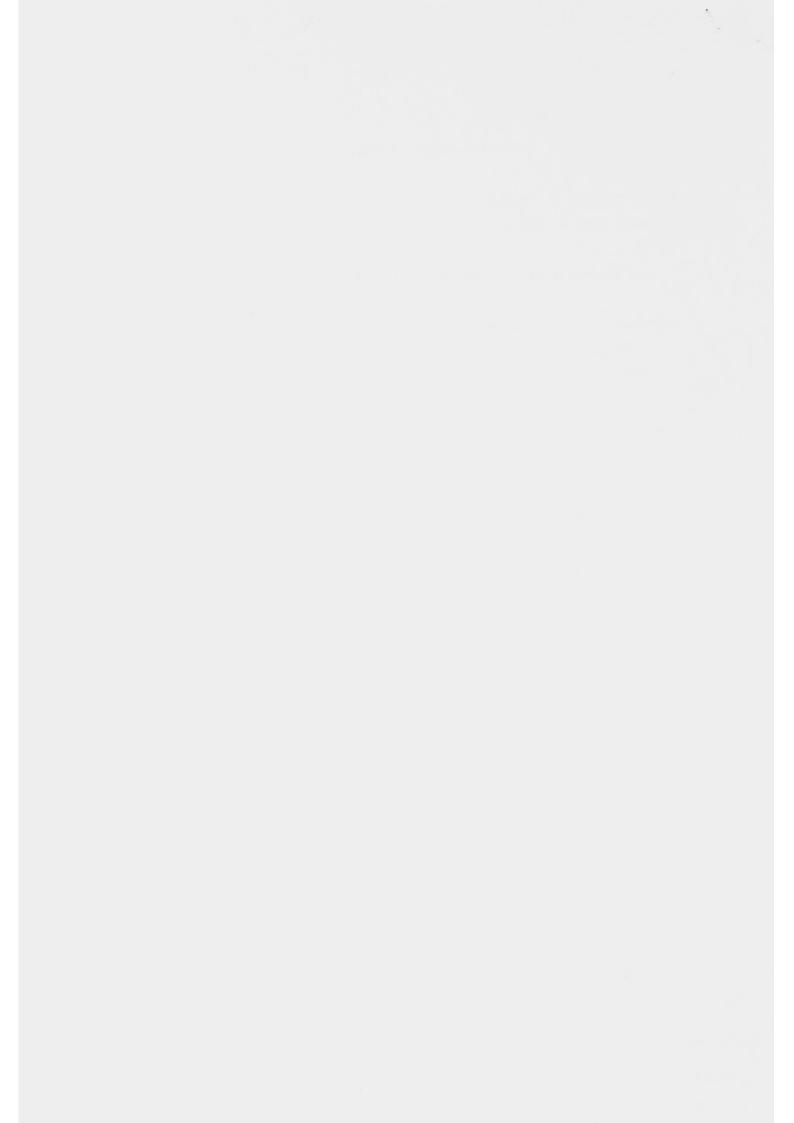

A primary genetic linkage map of chromosome 14 was constructed from data on 8 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:


	PROBE(LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	pAW101(D14S1)	EcoRI	VMIR >10 ALLEIN 15.0-25.0K		0.64	365
2	p3.4 (GM)	BglII	VMIR >5 ALLELES 2.9-3.7KB		0.83	530
3	CMIJ14	RsaI	VNIR >20 ALLELES 4.0-8.0KB	3	0.83	704
4	ртнн37	TaqI	3.0 2.3 2.1	0.59 0.02 0.39	0.48	635
5	Alpha-l antitrysin	PI	A1 A2 A3 A4 A5	0.67 0.14 0.11 0.08 >0.01	0.59	605
6	рнин208	BamHI	6.5 5.8 4.0	0.45 0.47 0.08	0.61	623
7	рМН29	EcoRI	4.0	0.91 0.09	0.16	789
8	pEFZ18.2	TaqI	4.5 3.5	0.32 0.68	0.51	755



The eight loci form a continuous linkage map spanning approximately 58 cM in males and 75 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant ratio of female/male genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

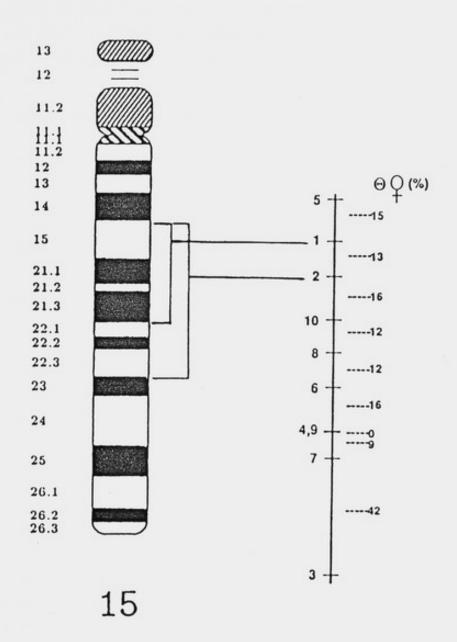
1	012:1			10	013:1				1010:	1			1030:	1
1		1		1		1		-1		1		1		1
1	.10	1	.04	1	.05	1	.03	- 1	.06	1	.07	1	.17	1
6		2.		4		8		1		7		3		5
	.12	1	.05	1	.06	1	.04	- 1	.08	1	.09	1	.21	
		1		1		1		1		1		1		
		15	523:1			1	124:1				5:1			

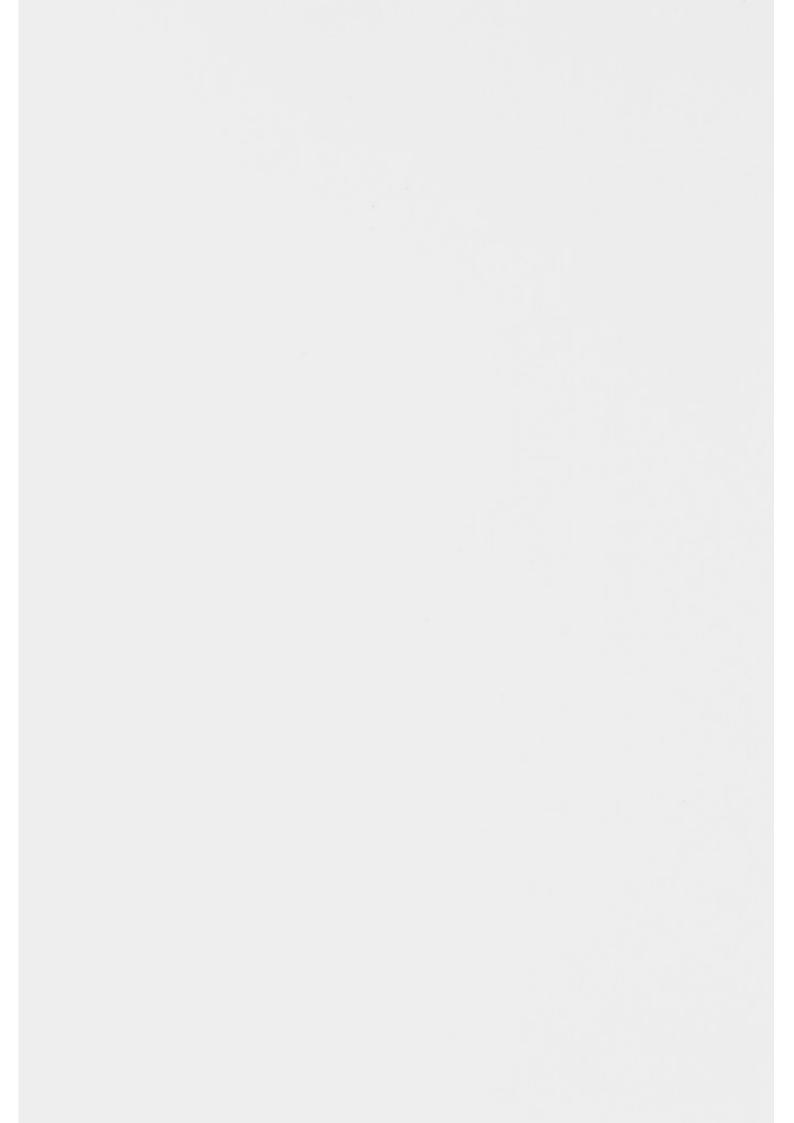

A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 15

P. O'Connell, Y. Nakamura, G. M. Lathrop, M. Leppert, P. Cartwright, J.-M. Lalouel, and R. White.

Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA

A primary genetic linkage map of chromosome 15 was constructed from data on 10 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:

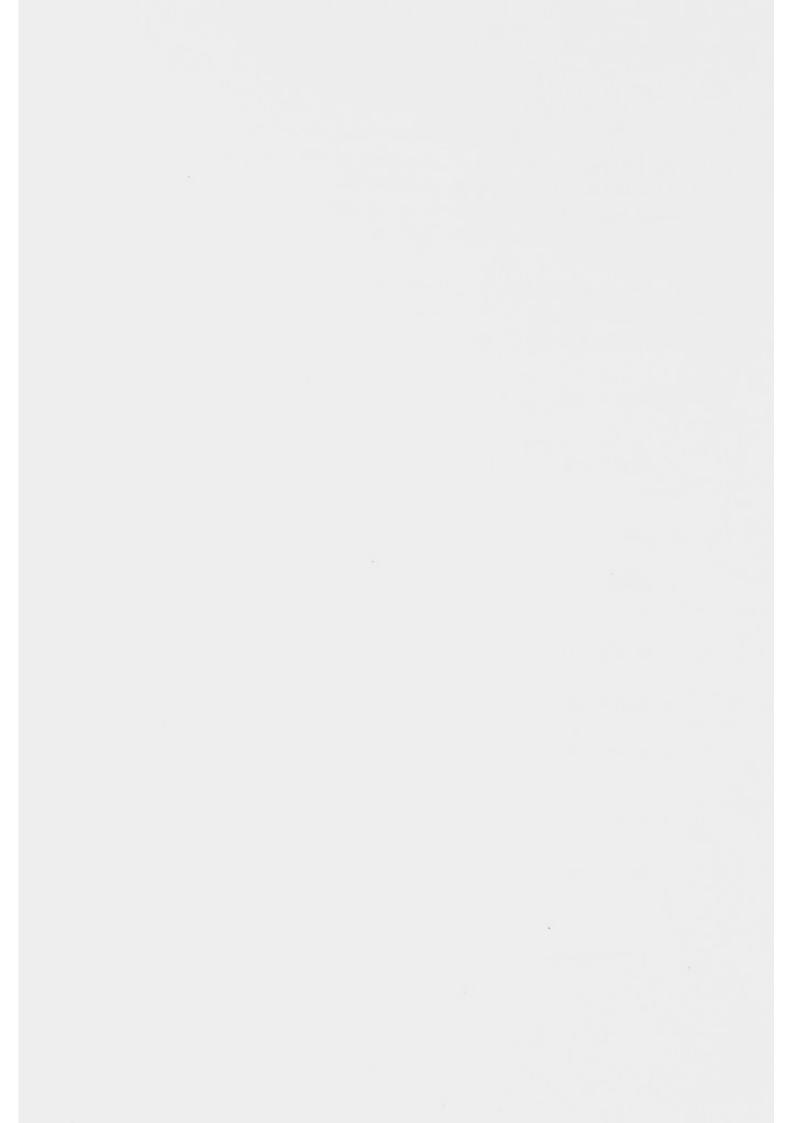

PF	DOBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED	
1	pMS1-14 (D15S1)	MspI	12.0	0.43 0.57	0.65	584	
2	pDP151(D15S2)	EcoRI	11.0	0.22 0.78	0.33	269 -	
3	pJU201(D15S3)	EcoRI	1.9 1.8	0.43 0.57	0.47	580	
4	pMCA1-1	PvuII	5.7 5.2	0.77 0.23	0.47	321	
5	ргин114	RsaI	2.6	0.62 0.38	0.44	642	
6	pYNZ90.1	BamHI	6.0 5.8	0.76 0.24	0.33	721	
7	рТНН55	MspI	4.6 3.3	0.33 0.67	0.45	586	
8	pEKZ104	MspI	4.0 3.7	0.47 0.53	0.50	569	
9	pMCT46.2	PVuII	5.9 5.3	0.87 0.13	0.26	665	
10	pEFD49.3	MspI	3.0 2.1 2.0	0.39 0.60 0.01	0.38	740	



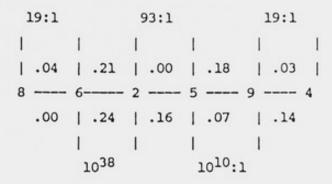
The 10 loci formed a continuous linkage map spanning approximately 75 cM in males and 200 cM in females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant ratio of female/male genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

1	105:1				67:1				32:1			:	1.0:1			1	1018:	1
1		1		1		1		1		1		1		1		1		1
1	.06	1	.05	1	.07	1	.05	1	.05	1	.07	1	.00	1	.03	1	.25	1
5		1		2		10		8		6		9		4		7		3
	.15	1	.13	1	.16	1	.12	١	.12	1	.16	1	.00	1	.09	1	.42	
		1		1		1		1		1		1		1		I		
			4:1				10 ⁵ :1			1	LO ²² ::	L		1	1012:	L		

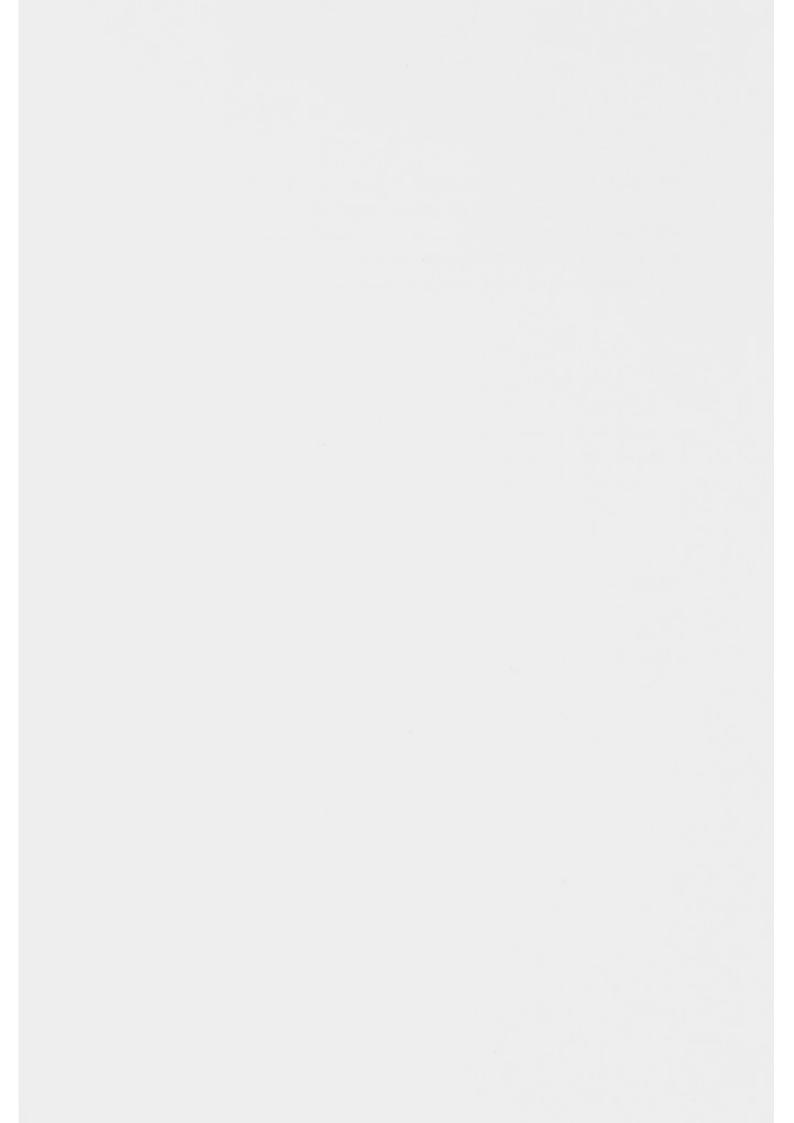
TWO GENETIC LINKAGE GROUPS ON CHROMOSOME 16

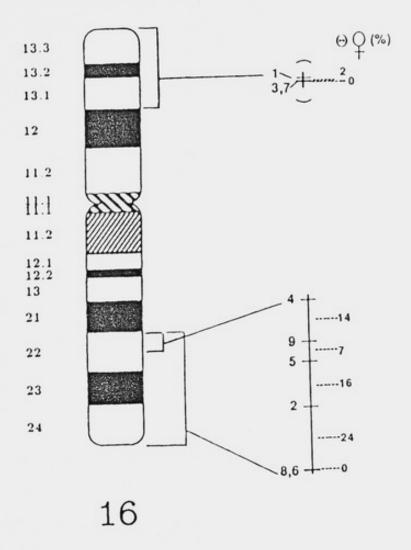

G.M. Lathrop, M. Leppert, Y. Nakamura, P. O'Connell, M. Litt⁺, S. Maslen⁺,
P. Cartwright, J.-M. Lalouel, and R. White

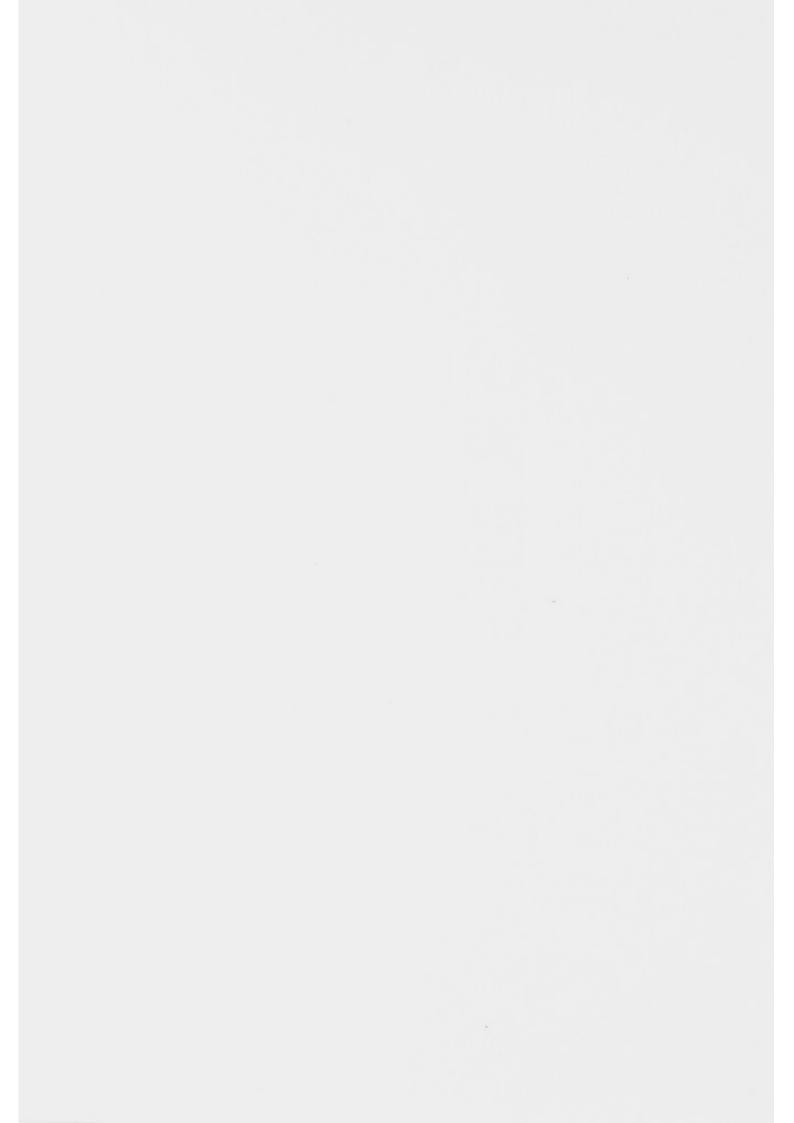
Howard Hughes Medical Institute, U. of Utah, Salt Lake City, USA


*Oregon Health Sciences University, Portland, USA


A primary genetic linkage map of chromosome 16 was constructed from data on 9 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:


	PROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	Hagl(HBZPl)	HinfI	VNIR 4 ALLEL 1.6-2.6	es	0.41	508
2	pLC9	MspI	3.0 2.7	0.72 0.28	0.42	493
3	CEKDA2	RsaI	VNIR 4 ALLEL 2.5-3.5		0.23	778
4	Haptoglobin(HP)	HP	Al A2	0.41 0.59	0.54	597
5	Phage8-9 (D16S20)	BglII	10.0	0.65 0.35	0.48	703
6	p79-2-23 (D16S7)	RsaI	VNIR >10 ALL 3.0-8.0		0.83	677
7	рСММ65	EcoRI	3.3 2.6	0.37 0.63	0.39	770
8	phuaprt (aprt)	TaqI	3.0 2.5	0.28	0.45	360
		BglII	15.0 13.0	0.05 0.95	0.10	55
9	pEKXp3B(CTRB)	PvuII	4.4	0.20 0.80	0.32	657
		PvuII	3.0 2.3 2.1	0.74 0.20 0.06	0.38	655



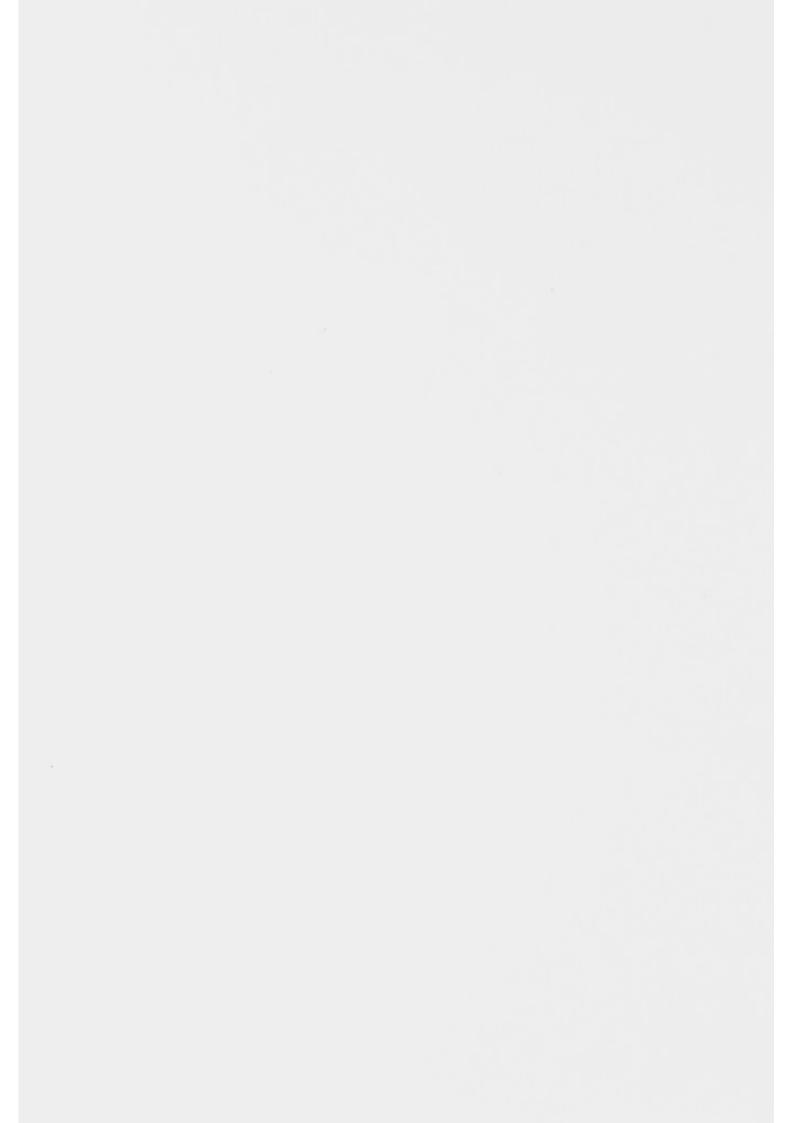

The loci fall into two linkage groups, one 56 cM in males and 76 cM in females, and the other 24 cM in males and 2 cM in females. Multilocus analysis with the LINKAGE programs, under the generalized sex difference model, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

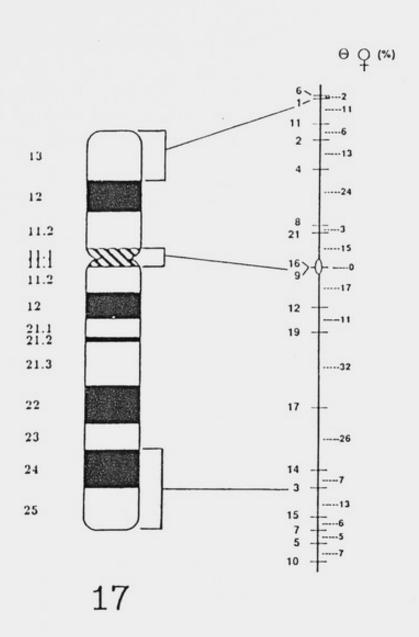
A PRIMARY GENETIC MAP OF CHROMOSOME 17

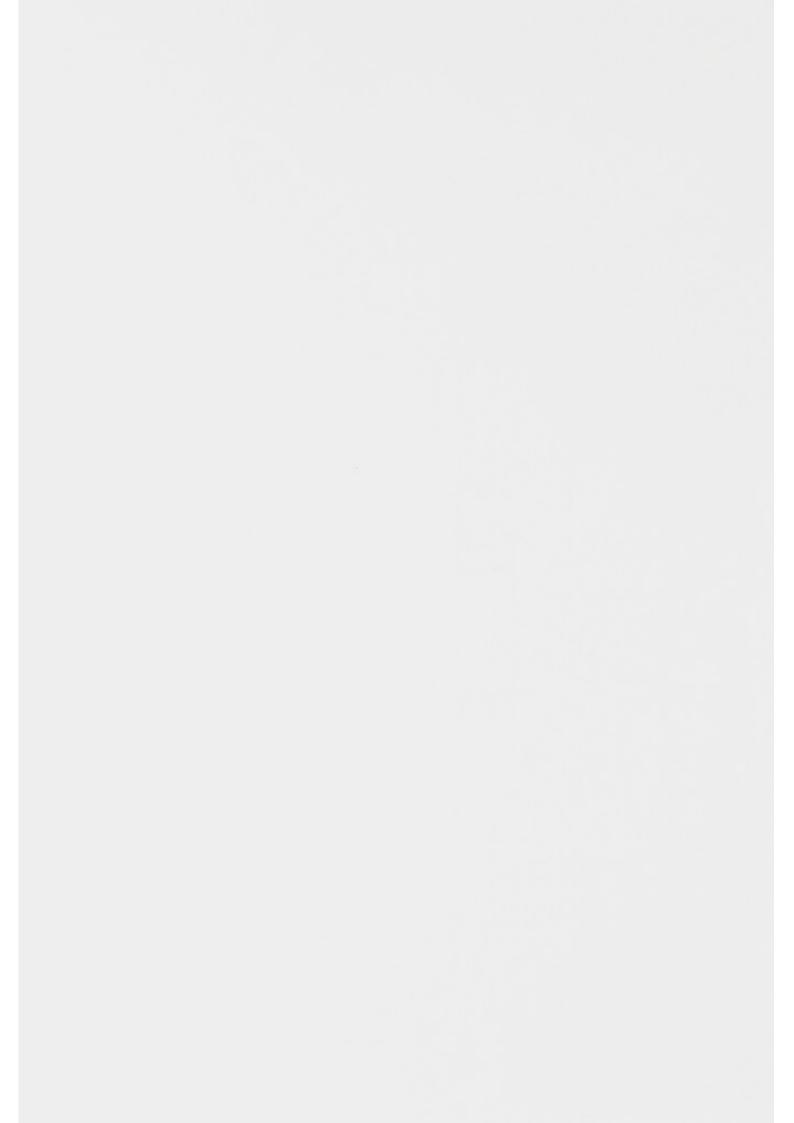
Y. Nakamura, P. O'Connell, M. Leppert, M. Lathrop, P. Cartwright, J.-M. Lalouel, and R. White

Howard Hughes Medical Insitute, Salt Lake City, Utah USA

Twenty-one markers were characterized in 40-60 families (including 38 from CEPH), yielding a continuous genetic map of chromosome 17. The following markers were studied:

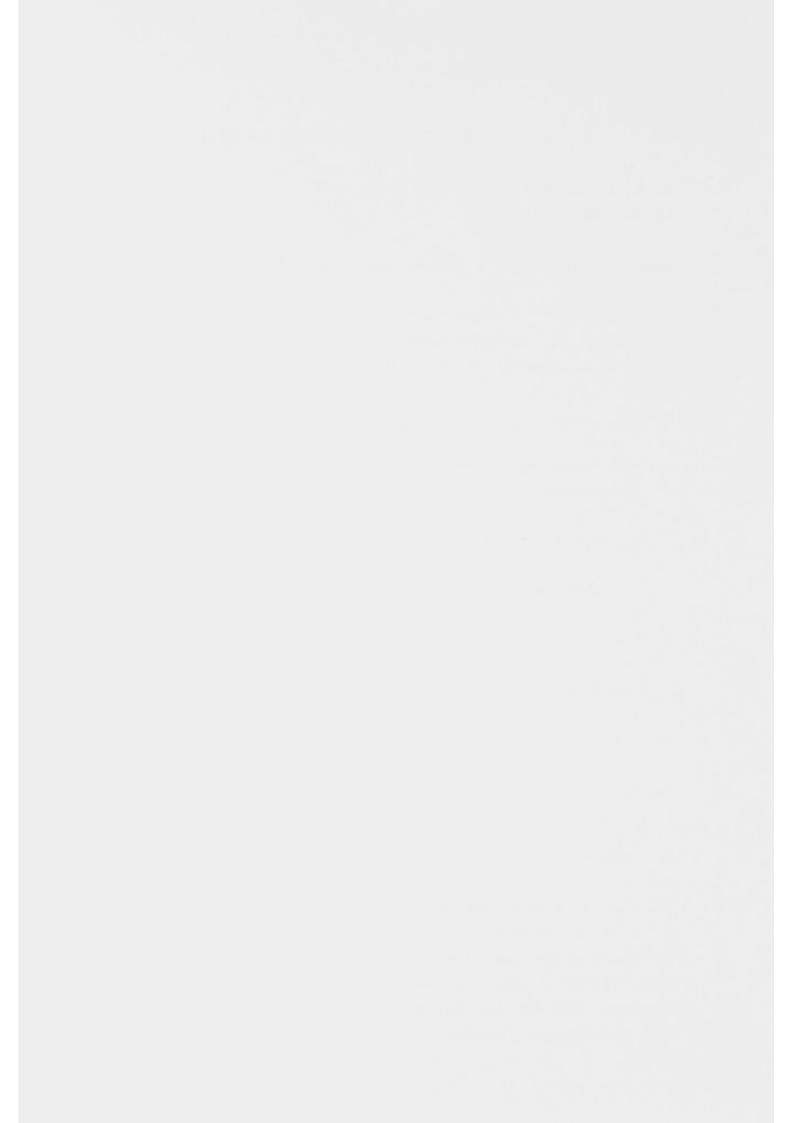

PRO	BE (LOCUS)	ENZYME		ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER OF INDIVIDUALS TYPED
1	pYNZ22	RsaI	VNTR >6 allele 1.3-2.3 K		0.83	703
2	pHF12-1 (D17S1)	MspI	2.9 2.1	0.78 0.22	0.40	343
3	рТНН59	TaqI	VNIR >6 allele 3.0-4.0 K		0.71	669
4	p10.5 (MYH2)	HindIII	5.3 4.9	0.26 0.74	0.38	626
5	pRMU-3	TaqI	VNIR >4 allele 3.2-3.8 K		0.65	651
6	pYNH37-3	TaqI	VNTR >5 allele 2.0-4.0 K		0.65	654
7	pAC256	PvuII	VNTR >6 allele 3 - 7 KB	s	0.73	646
8	pABL10-41	PvuII	2.7 2.6	0.17 0.83	0.29	658
9	рНН202	RsaI	2.5 1.9	0.55 0.45	0.49	688
10	pRMU1	PstI	2.0 1.0	0.75 0.25	0.32	540




11	pMCT35.1	MspI	2.4 1.8	0.75 0.25	0.43	735
12	рНИН152	BamHI	10.5 9.6	0.39 0.61	0.45	572
14	pHtK9 (TK1)	TaqI	4.3	0.54 0.46	0.60	588
15	CEFD52	PvuII	VNTR >10 all 3-10 KB		0.83	594
16	p3.6 (D17Z1)	EcoRI	2.0	0.81 0.19	0.28	465
17	LEW101	MspI	15.0 7.0	0.63 0.37	0.47	541
19	LEW102	TaqI	8.0 5.5	0.34 0.66	0.47	627
21	pYNM67	TaqI	3.8 3.2	0.69 0.31	0.41	593
	lpYNM67	RsaI	3.0 1.3	0.09 0.91	0.18	544
	2pYNM67	RsaI	1.8	0.18 0.82	0.31	490

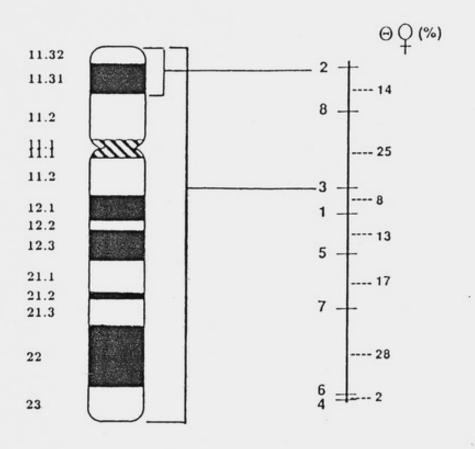
The genetic map generated with these loci spans 294 cM in males and 251 cM in females. Multilocus analysis with the LINKAGE program under the assumption of constant ratio of female/male genetic distance, yields the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

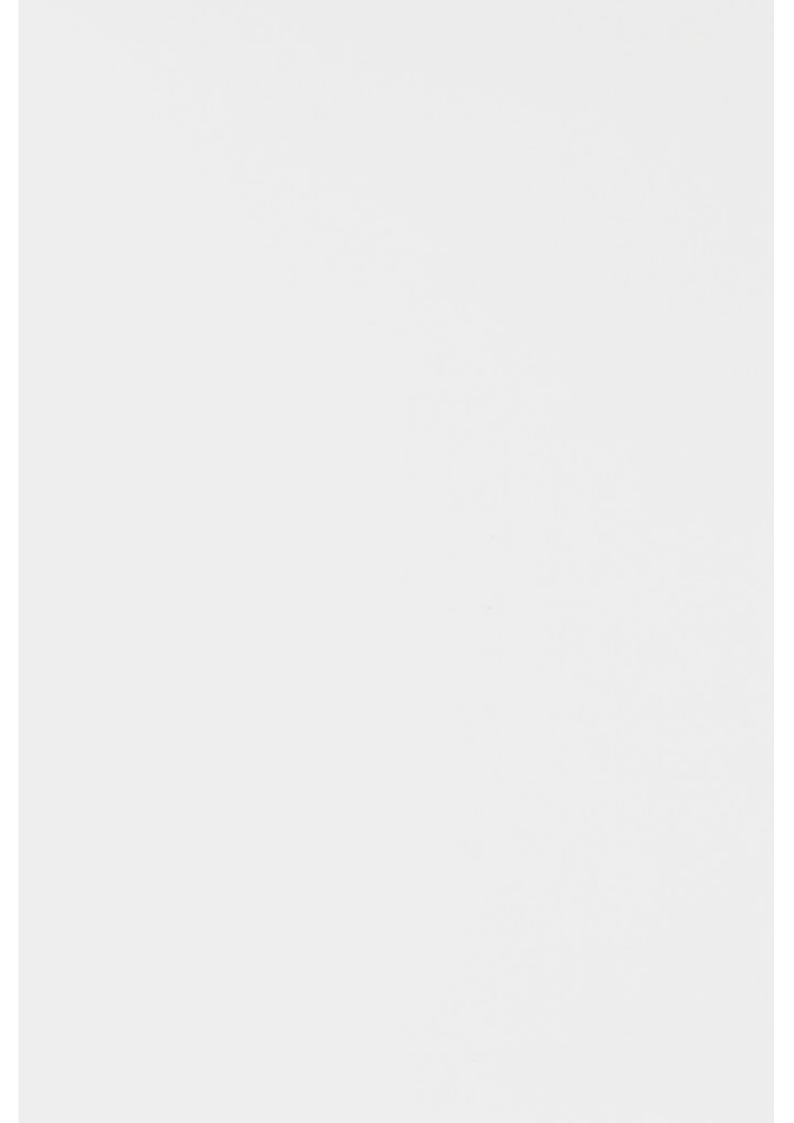
A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 18


P. O'Connell, G.M. Lathrop, M. Leppert, Y. Nakamura, P. Cartwright, J.-M. Lalouel, and R. White

Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA


A primary genetic linkage map of chromosome 18 was constructed from data on 8 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:


	PROBE(LOCUS)	ENZYME	ALIFIE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	pI2.7(D17S3)	PstI	10.0	0.23 0.77	0.41	448
2 .	B74 (D18S3)	MspI	4.8	0.50 0.50	0.41	641
3	pHF12-62(D18S1)	TaqI	6.0	0.47 0.53	0.58	586
4	pMS1-3	PstI	4.4 3.4	0.55 0.45	0.49	610
5	Kidd(JK)	JK	Al A2	0.51 0.49	0.50	632
6	OS-4	TaqI	7.6 6.0	0.81 0.19	0.33	648
7	EFZ10	PvuII	VNIR 4 ALLEIES 3.5-5.0KB		0.70	586
8	рини 63	PvuII	4.7	0.45 0.55	0.38	649


The eight loci form a continuous linkage map spanning approximately 91 cM in males and 139 cM in females. PL2.7 shows tight linkage to the chromosome 18 linkage group despite its designation as D17S3 (HGM 8). Multilocus analysis with the LINKAGE programs, assuming a constant ratio of female/male genetic distance, gives the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

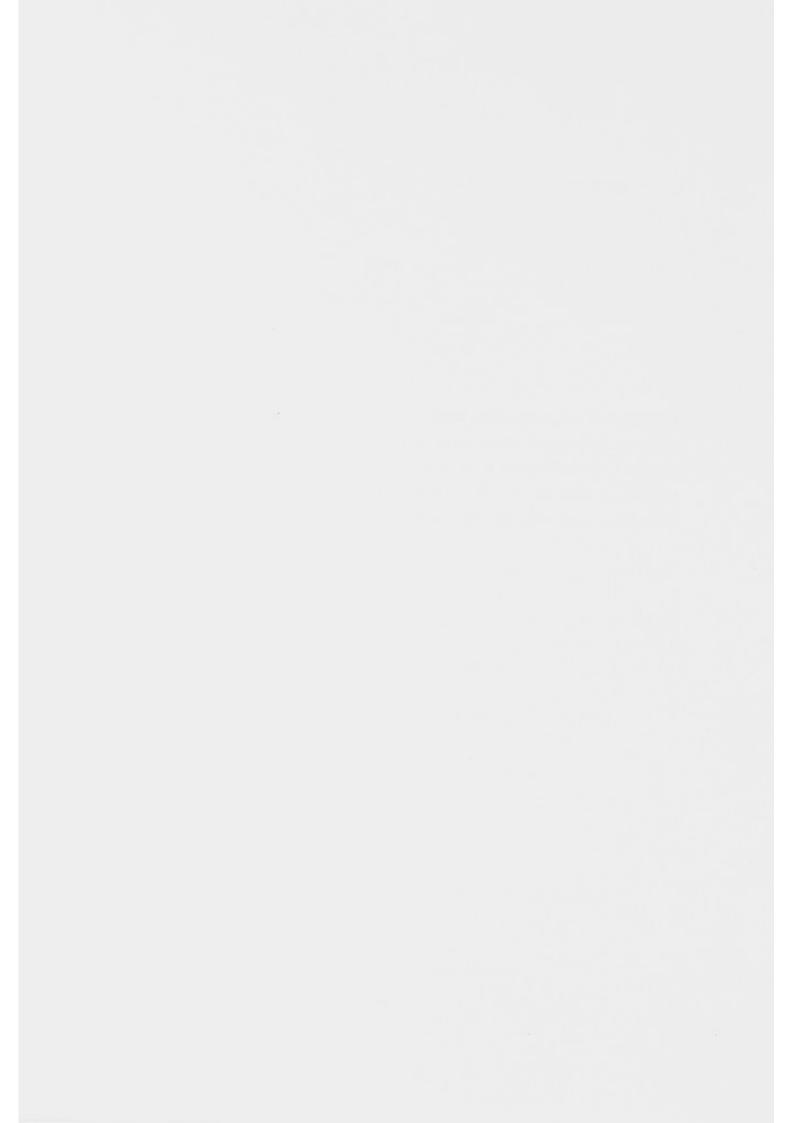
69	932:1			:	2753:	1			54:1				1.02	:1
1		1		1		1		1		1		1		1
1	.10	1	.18	1	.05	1	.09	1	.12	1	.21	1	.01	1
2		8		3		1		5		7		6		4
	.14	1	.25	1	.08	1	.13	1	.17	1	.28	1	.02	
		1		1		1		1		1		1		
		10	⁵ :1			2	28:1			1	1029:	L		

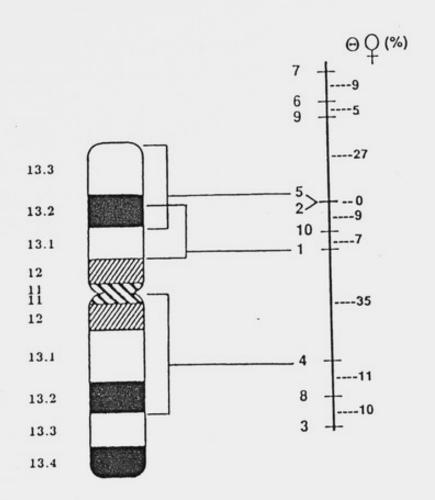

A PRIMARY GENETIC LINKAGE MAP OF CHROMOSOME 19

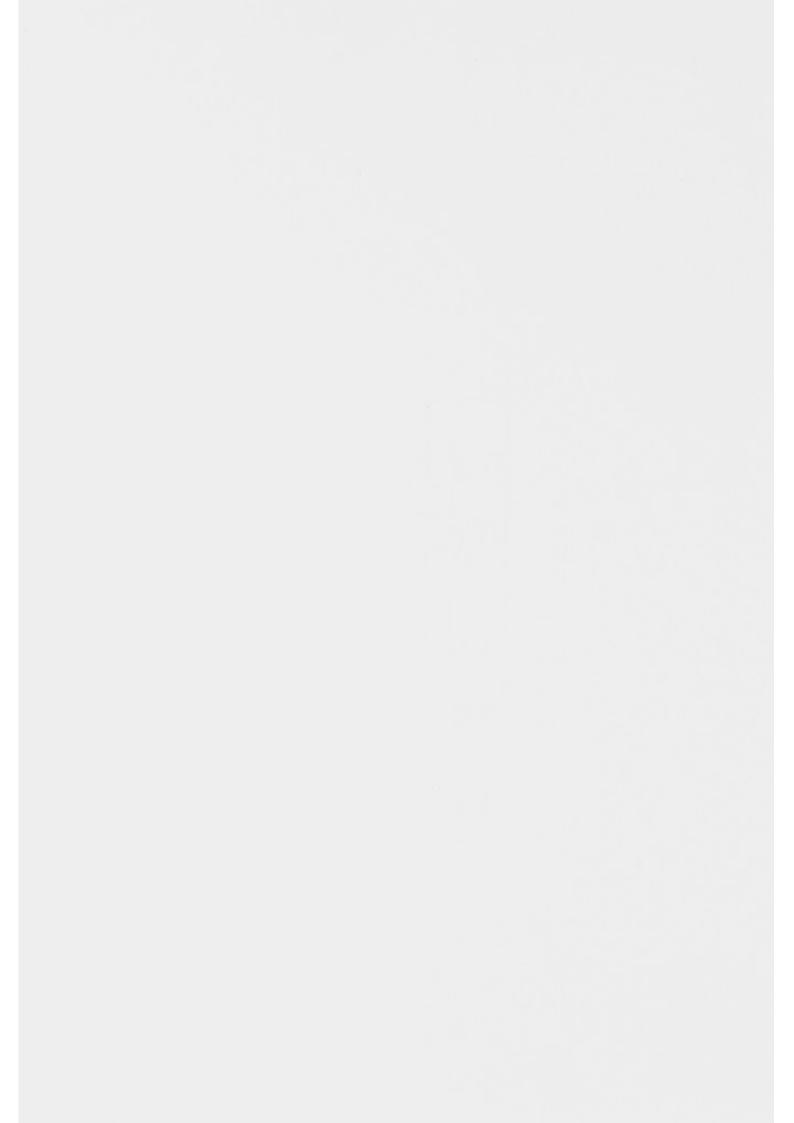
Y. Nakamura, M. Leppert, G.M. Lathrop, P. O'Connell, P. Cartwright, J.-M. Lalouel and R. White.

Howard Hughes Medical Institute, University of Utah, Salt Lake City, USA

A primary genetic linkage map of chromosome 19 was constructed from data on 10 markers typed in 40-60 reference families (including 38 families of the CEPH reference panel). The following loci were studied:

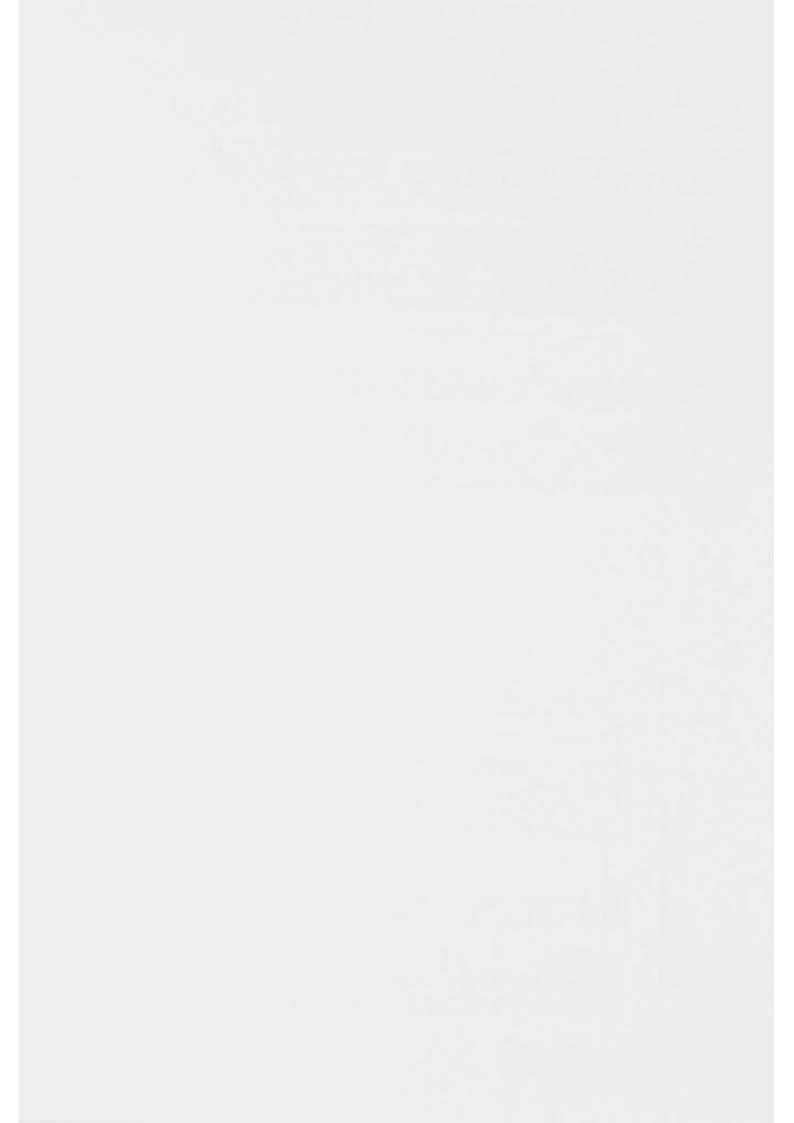

	PROBE (LOCUS)	ENZYME	ALLELE SIZE (KB)	ALLELE FREQUENCIES	OBSERVED HETERO- ZYGOSITY	NUMBER INDIV. TYPED
1	HHI (LDLR)	PvuII	18.6 16.0,2.6	0.72 0.28	0.40	674
2	Lewis(LE)	IE	Al A2	0.38 0.62	0:68	108
3	ABH secretion(SE)	SE	Al A2	0.29 0.71	0.58	276
4	pCII-711(APOC2)	TaqI	3.9 3.5	0.47 0.53	0.51	670
5	12.1p1.6(INSR)	BglII	12.0 10.0	0.77 0.23	0.32	618
6	pJCZ3.1	HinfI	VNIR >10 ALLELE 1.5-4.0KB	S	0.80	706
7	cMCOB5	PstI	VNIR 5 ALLELES 5.0-10.0KI	В	0.64	710
8	pEFD4.2	PvuII	2.4	0.62 0.38	0.44	645




9	cMCCB19	BglII	VMIR 5 ALLEI 5.0-8.0		0.70	604
10	pMCT6	BamHI	VNTR 5 ALLEL		0.53	336
		BamHI	8.5-15. 5.5	0.90	0.19	507
		Deliuit	5.3	0.10	0.15	507
		BamHI	2.3	0.36	0.23	301
			2.5	0.64		

The 10 loci form a continuous linkage map spanning approximately 152 cM in males and females. Multilocus analysis with the LINKAGE programs, under the assumption of a constant female/male genetic distance ratio, gave the following gene order, male (above map) and female (below map) recombination fractions, and odds for the inversion of adjacent loci:

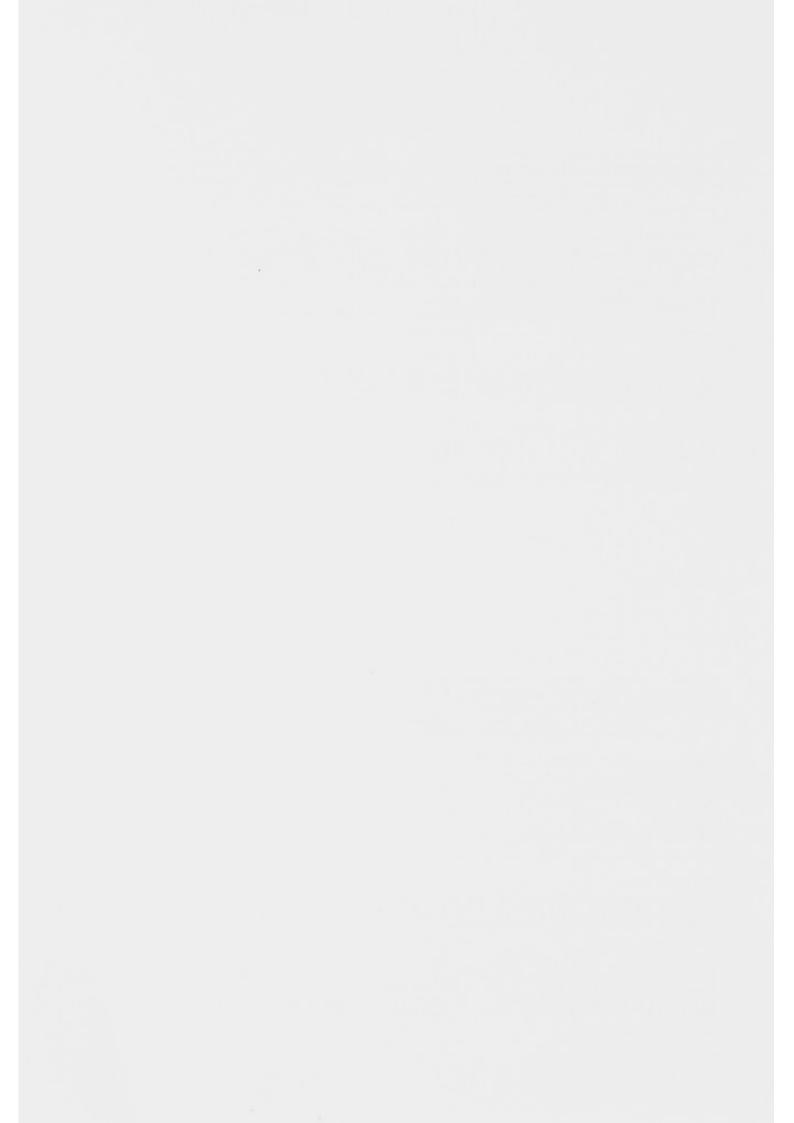
	119:1				10 ³⁵ :	1		:	10 ⁵ :1			:	1020:	1]	1022:	1
1		1		1		1		-1		1		1		1		1		1
1	.10	1	.11	1	.35	1	.07	-1	.09	1	.00	1	.26	1	.05	1	.08	1
3		8		4		1		10		5		2		9		6		7
	.10	1	.11	1	.35	1	.07	1	.09	1	.00	1	.27	1	.05	1	.09	
		1		1		1		1		1		1		1		١		
		9	99:1				58:1				1:1			10	12:1			



DISTRIBUTION OF SYSTEMS BY CHROMOSOME


r
н
ń
ú
ľ
7
٠
1/11/11/11/11
2
٦
٠
í
ч
Ľ
4
1
٠
:
٠
ſ
•
2
ζ
3
٩
2
,
٢
ĸ
٠
٥
۰
۰
9

000000000000000000000000000000000000000


The state of the s	Commercial Action Commercial Comm			
00.0100.0100.0100.0100.0100.0100.0100.	800000000000000000000000000000000000000	20000000000000000000000000000000000000		0000000000000000
88888889999	********	444444444444444444444444444444444444444	************	**************
Hindili Pruli Hindi Pruli Hindi Hindi Pruli Prul	Taqi Kaspi Kaspi Kaspi FXIIIB PYUII Taqi Kaspi Hinfi Kaspi	Booki Bylli Bylli Bylli PGA Hapi Pooki Ari Ari Ari	Tagi Hibdili Hibdili Hibdili Hibdi Bylii Hibdi Hibdi Argi Argi Krai	Mspl Pstl Mspl Mspl Tapl Tagl Tagl Tagl Mspl Tagl Mspl Mspl Mspl Mspl
p2.1 prc758 prc758 prc715 pc717.4 prc7122.2 prc7122.2 prc7126	prinza prinza prenios prenios prenios prenza prinza p prinza prinza prin	POCKB NBC6 NBC6 NBC6 PCR PCR PCR PCR PCR NT3 NT3 PFRCR3 PFRCR3 PFRCR3 PFRCR3 PFRCR3 PFRCR3 NT3	PTB236 PHRAES1.9 INR-6 PNALS.1 PB8 PTBAB-5-7. PL2.30 PETD122 PR3.3	PO#63 p5-1-25 crnx4 2p4bH115 pYN-24 3p5c1 1p4BH113 2p5c1 1p5c1 pro-18 cwce32 pro-18 cwce32 pro-18
2001 1001 1001 1001 1001 1001 1001 1001	350231155358 350231155358	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1153 3545 1153 3546 1153 3546 1154 3546 1155 3546 1156 3	

98788444														_				
000000000	0.000	12867	3.5.5		95.00	35.63	2000	0.33	0.00	12.22		0.58	0.66	9.32	0.35	0.48		0.33
~~~~~~	nnnn	4444	4040	4-00	*"	900	9999	9999	4444		400	nnn	v v	m m n	144	aaa	400	e (14 m
15.0 15.0 13.0 15.1 100.0 15.1 15.0 15.0 100.0 15.0 100.0 15.0 32.0 22.0		9000	2000			100.010	100.0100.001	000000000000000000000000000000000000000	00000	0000		100.0100.0		100.0100.0			100.001	100.0100.0
555555555		ב ב ב ב	2228	888	9222	322		8888			777	222	88.	223			999	999
Pvuli Pati Pati Hapi Taqi Hapi Mapi	EcoRI Mspl Rsal EcoRI	raqi Bglii Taqi Taqi	Tagi Hindili	Psti Hindili Psti		MspI Peti	Real Peti Real	Mspl Mspl Rsal	Mapi Tagi	Pst102 Tagi	Tagi	Hindili ORN MspI	ABO BamHI	Tagi	Bglii	Pouli	Tagi	Bglii
		CHMAN	METH B79a BARA-2		p380-8A LTL11 ECST16-8	GPT p4084171			PHONI2			-	-		-			
2022	2000	149	148	255	213 399 388	239	255	329	117	281	1707	189	299	254	453	419	334	269
*																0		
20000000000000000000000000000000000000	00000	20.000	6431	0.23	0.0.0	0.53	90.00	20000	90.00	0.98	00.00	000	0.00	0.65	0.39	4.00	0.57	0.42
44444444444444444444444444444444444444	00000	0.000	0000	1 2 2 0 0 2 3 3 2 2 3 3 3 2 3 3 3 3 3 3 3	0.000	3 2 2 0 0 0 5 6 8 9 0 0 0 6 8 9 0 0 0 6 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, n <del>-</del>	+77	7000	3 0.46	2 0.42
35 100.0 21.0 2 0.27 37 100.0 100.0 21.0 2 0.29 37 100.0 100.0 2 0.48 37 100.0 100.0 2 0.48 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 3 0.45 45 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100	16.1 16.1 2 0 0 100.0100.0 3 0 0 100.0100.0 5 0 0 100.0100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 100.0 5 0 1	28.013.0	100.0100.00	100.0100.0	0000 amaa	12.0 13.0 2 2 22.0 31.0 3	21.0 22.0	100.0100.0	100.0100.0 2 0	21.3 21.3 2 0 0 100.0100.0 2 0	100.0100.0	21.3 21.3	22.0 24.0	100.0100.0	100.0100.0	100.0 22.0 2 0.3	100.0100.	150.
35 100.0 21.0 2 2 2 2 3 3 3 4 4 5 100.0 100.0 2 2 2 3 4 5 100.0 100.0 2 2 3 3 3 4 5 100.0 100.0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4P 16.1 16.1 2 0 0 4P 100.0100.0 3 0 0 4P 16.1 16.1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	444 444 120 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sb 100.0100.0 2 0 0 100.0100.0 3 0 0 100.0100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	55 100.0100.0 55 100.0100.0 55 100.0100.0	56 100.0100.0 57 100.0100.0 58 100.0100.0 59 100.0100.0	\$4 100.0100.0 2 \$4 12.0 13.0 2 \$4 22.0 31.0 3	\$4 100.0100.0 2 0.0 54 11.0 12.0 3 0.0 56 11.0 12.0 3 0.0 56 11.0 12.0 3 0.0 56 11.0 12.0 3 0.0 56 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	6p 121.0 0.0 4 0.0 6p 100100.0 2 0.0 6p 100100.0	6p 100.0100.0 6p 11.0 0.0 2 6p 100.0100.0 4	V 6P 100.0100.0 3 0 0 6P 21.3 21.3 2 0 0 6P 100.0100.0 2 0	6p 100.0100.0 6p 100.0100.0	6p 100.0100.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69 100.0100.0 2 0 64 120.0100.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64 100.0100.0	75 100.0100.0 4	75 100.0100.0 3 0.4	75 100.0100.	75 100.
100.0 21.0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pst	MNS 44 28.0 31.0 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ECCRI Sb 100.0100.0 2 0 17aqi Sb 100.0100.0 3 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hapi Sb 100.0100.0 2 2 Hapi Sb 100.0100.0 2 4 Hapi Sb 100.0100.0 2	56 100.0100.0 57 100.0100.0 58 100.0100.0 59 100.0100.0	Mspi Sq 12.0 13.0 2 Mspi Sq 12.0 13.0 2 Banti Sq 22.0 31.0 3	MSPI Sq 100.0100.0 2 0. HSPI Sq 11.0 12.0 3 0. SER 6p 21.3 21.1 2 0.	100.0100.0	Bglii 6p 100.0100.0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tagi 6p 100.0100.0 3 0 EcoRV 6p 21.3 21.3 2 0 Mapi 6p 100.0100.0 2 0	6p 100.0100.0 6p 100.0100.0	Mapi 6p 100.0100.0 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mapi 6p 100.0100.0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100.0100.0	Real 75 100.0100.0 4 00 Pati 75 100.0100.0 2 00	Hibdiii 7b 100.0100.0 3 0.4	RsaI 75 100.0100.	Tagi 75 100.



8448888448	5.43.82	256889	9.50	X 2 8 8 8	8888		3444	22282442424
anaaaaaaaa	aaaaa	444 A W	aaaaaa		nnaaa	aaaaa	aaaaaa	44444444444444444444444444444444444444
15.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	12222	2000000 2000000 2000000000000000000000	14.1 14.1 14.1 100.0100.0100.0100.0100.0	32.3 32.3 32.1 32.2 32.3 32.3 100.0100.0	32.1 32.1 100.0100.0 100.0100.0 100.0100.0	100.0100.0 100.0100.0 100.0100.0	100.0100.0 100.0100.0 100.0100.0 100.0100.0	75000000000000000000000000000000000000
2222222222	33335	<u> </u>	22422	2 2 2 2 2	*8888	35222	XXXXXX3	200000000000000000000000000000000000000
Taqi Mapi EcoRi EcoRi Taqi Taqi Mapi Mapi Mapi Mapi Mapi Mapi Mapi Map	serol Taqi Taqi EccRi Xmal	Hindili Mspi Bglii Mspi Taqi Mspi	ESD HSpl EcoRl BamHi Taqi	Con Ecori Belli Rsal Rsal	PI Mapi Bamii Mapi Mapi	EcoRI Prull Hapi Hapi	Taqi Ecoki Hapi Raai Pruli	Maspi Prouli Psal Eccal Taqi Hindi Bgliii Bglii Bglii Taqi
702 pp9011 wc47 wc33 s54 p97712 p7712 p4712	Esterase-D P7D2 P7F12 PMUB8 PMU10	pHUBB plEB pTM162 D13S12 P9D11 HC25	ESD D13511 pr9429 pr94208 pr2718.2	CH pANG01 p3.4 ccxx39 HLJ14	PI pero49.3 prik290.1 EXII04 pri#155	prozot prozite.2 prozite.2 prozite.2 prozite.14 prozite.14	pernes.7 pernes.7 pmenia porisi proul-1 2pexpls	LPCX LPCX LPCX PCMCS PCMCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMOCS PMO
20.25.25.23.82.82.82.82.82.82.82.82.82.82.82.82.82.	¥577491		188 338 352 352 352	78E87				1100 1100 1100 1100 1100 1100 1100 110
					12			
						_		
4446654664	#r.0%86	\$ 22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	88.88.88	51.5000	18701	100000	1699999	20000010000000000000000000000000000000
000000000	00000	00000	000000	00000	00000	000000	000000	300000000000000000000000000000000000000
***********	uuuudi	*******	4444A	aaaaa	44444	44840	10000000	244444444444444444444444444444444444444
00000000000000000000000000000000000000	15.5 15.5	15.4 15.1 15.4 15.1 15.5 15.5 15.5 15.5	100.0100.0 13.0100.0 22.0100.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	100.0100.0 100.0100.0 13.2 13.2	20.00.00	132010000000000000000000000000000000000	14.0100.0 14.0100.0 14.014.3 14.014.0 14.014.0 14.0100.0 14.0100.0 100.0100.0
888888		nanan Ranan		######	33333		រដ្ឋជំពុធជំពុធ	*************
Hibbii Hapii Hapii Hapii Hapii Hapii Hapii Hapii	Beli Taqi Hindiii Mapi Pruli	Aspi Taqi Psti Hibdili Sini Hspi	Mspi Bglli Mspi APOM Taqi Psti	Tagi Hapi Peuli Hapi Tagi	Taqi Ecori Ecori Taqi Ecori-3	CLR TaqI EccRI-1 BglII EccRI-2	Real Tagi Cocki-4 Hindilii	Tagl-1 Tagl-1 Tagl Tagl Hapl Hapl Hapl Hapl Hapl Hapl Hapl Hap
								POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE POLIZE PO



	_			_	_	_			_	_		_	_	_		_	_	_		_		-			_	_	_	_		_	_		_	_
88	8	8	8	7	8	25	18					8	8	10		8							8			8	8	8	8	8	8	8	8	25
00	0	o	i	0	-	io		i.	÷	i	o	-	-	o	0	-	i	o	0	o	o	0	ö	o	0	o	0	o	-	0	0	0	0	0
m ra	*	r	C	7	0	0		4 (	7	6	C	7	C	r	~	C	7	re	r	•	+	+	+	*	*	c	0	+	N	-	n	٣	m	~
00																							0.	0.										
55	CA	4	9	2	2	10	-	4:	2	4	~	C	28	26	22	27	4	4	C	2	2	0	-	100	2	-	2	9	C	21	4	4		
0.4	-	0		-	-					-													0.0											
22	N	9	CH	C	2	100		•	4	ä	4	7	N	4	4	N	N	ñ	4	2	0	9	0	0	0	0	0	0	-	-	-	-	-	-
23p	23p	23p	239	230	230	230	230	7	730	239	239	239	239	239	239	239	239	239	23p	25p	25p	25p	25p	25p	25p	25p	25p	25p	250	269	269	269	269	260
Fagi	MspI	Bell	Bglii	RSAI	Balli	Tagi		1501	Tadi	Barrell	MspI	Beli	MspI	Tagi	Tagi	Tagi	Tagi	B	MspI	Tagi	Tagi	Hindill	Tagi	Tagi	Tagi	×	EcoRI	MspI	Tagi	Tagi	Tagi	Barrill	PstI	Pati
P754	pHO731	dicse	P43-15	DYNH3	X13	221	86	2.5	27V	poski	p19-2	F8C	St14-1	22-33	p19-2	2	St14-1	620	pERT87-1	pDP230	109	pDP230	1130	2901	pOP411a	SEX	pDP411a	pDP230	pDP34	p1	p31	pDP132	470	DCP7a
41			-	3	-	-	14		- 1	-	8	-	-	-	0	-		0	m						68									

Notes: 23 is ch X, 25 is the pseudoautoscmal region of X, 26 are DXYS1-like probes. Heterorygosity is 0.0 when it has not been computed. For very early ch X probes, an heterorygosity of 1.0 indicates that only families with an heterorygous mother were tested. The number of alleles of most VNTRs is arbitrary, as they are interpreted within families. The heterorygosity of most VNTRs is highly dependent of the conditions of migration, significantly greater heterorygosity can be achieved at higher resolution or with other enzymes than used in our standard screen. This is a working document, some of the information reported is provisional.



We gratefully acknowledge the technical assistance of the following groups of individuals who have worked on this project over the past seven years:

> Family Sampling, DNA Preparation and Cell Lines:

Diane Christopherson Mary Hadley Leslie Jerominski Lesa Nelson Barbara Ogden Joanna Rendi Leslie Rowe Linda Schmidt Pam Smith Jeff Stevens

Editing:

Ruth Foltz


Data Management:

Sacid Akhtari Trish Callahan Tami Elsner Melinda Mitchell Kathy Smith Probe Development:

Tara Bragg
Mary Carlson
Esther Fujimoto
Mark Hoff
Tom Holm
Karen Krapcho
Cindy Martin
Rick Myers
Erika Wolff

Genotyping:

Linda Ballard
Jon Berkowitz
Candace Brown
John Cowan
Melanie Culver
Russ Eldridge
Kine Frej
Janice Gill
Scott Gillilan
Robert Payson
Margaret Robertson
Leslie Sargeant
Tena Sears
Dora Stauffer



