Ms loose notes, (6/7), D88-D108(3), testing enzymes and polymerase on DNA.

Publication/Creation

1973 - 1974

Persistent URL

https://wellcomecollection.org/works/yab8nuzx

License and attribution

You have permission to make copies of this work under a Creative Commons, Attribution, Non-commercial license.

Non-commercial use includes private study, academic research, teaching, and other activities that are not primarily intended for, or directed towards, commercial advantage or private monetary compensation. See the Legal Code for further information.

Image source should be attributed as specified in the full catalogue record. If no source is given the image should be attributed to Wellcome Collection.

TG (dd)
TG venerse transaptare for dd (AF file)
TG pol for (dd) (AF file)
Res (4) microscale dd

Pol mix	100 pl 50 5 350 Hz	M M 7.4 M MG ME		
TH MIX				
	This ph 8	·67 M ·067 M	100 M 10 M 20 M	,
How halfer	6.6 mm - 1 6.6 mm T 6.6 mm		1 M 1 M 1 M 1 27.5 M	/ /
100 pd 100 pd 100 pd 750	m mgllz m mg m me · m Nacl v	1500 / 50		211
450 422			200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32 62

5×3, l. 3 ml mix, 2 ml - mines, 1 ml pol (kl) 30' 00

D 88 Restriction enzyme fragments from ØX

I got some RF1 and RF2 from John Sedat and some good restriction enzyme (Hin) from Tom Maniatis which is exonuclease-free. Set up three digests as follows:

10 μ1 (20 μg) RFl in ·OlM tris ·OOlM EDTA
 10 μ1 Hin buffer (·O6M tris ·6M NaCl, ·O6M mercaptoethanol, ·O6M Mg)

50 μ1 water 30 μ1 Hin enzyme

- As above but with 10 μ1 RF2
- 3. As in 2. but using 10 μ 1 of an older preparation of the Hin enzyme, which probably contained a small amount of exonuclease.

Incubation was at 37° overnight. This was probably unnecessarily long and 2 hr would be sufficient. Three samples were then run on a 5% acrylamide gel made up as follows:

25 ml 30% acrylamide (29 g acrylamide l g bis/100 ml)
15 ml of 10 x TBE (108 g tris 9.3 g EDTA, 55 g boric acid pH 8.3 /litre)

5 ml 1.6% ammonium persulphate

This was brought to 150 ml with water and degassed. 50 ml was used to make a seal at the bottom of the trough after addition of 50 μ l TEMED. When this had set 50 μ l TEMED was added to the remaining 100 ml and it was poured into the apparatus (20 \times 20 cm). It was run for 3 hr at 300 v.

D 88 (cont.)

It was stained with methylene blue for 15 min (5 min would probably have been better as it was very slow destaining). It gave a good pattern of bands as follows:

The patterns for the three samples were essentially the same though

(3) looked slightly less sharp, suggesting some exonuclease action.

In (2) 7a and 7b could be seen starting, but not in the other ones.

There was no separation of the three components of band 6.

The bands were cut out, chopped into small pieces and soaked in

I ml of the elution buffer (0.5 m NaCl , 0.1 m tos Cl & S 0.005 EDTA)

) at 37° overnight. Bands 1-5 were eluted from all three samples, 6, 8 and 9 from (1) and (2) only, and 7a and 7b from (2) only.

 \emptyset X DNA was added to the preparation to act as carrier for precipitation and also as template for the subsequent reactions (12 μ g/sample except for 7a and 7b which had 8 μ g). The eluates were precipitated with ethanol, the precipitate washed with ethanol and dried. They were then dissolved in 10 μ 1 ·1N NaC1 ·O1M tris (5 μ 1 to 7a and 7b; the

D 88 (cont.)

blank experiment - i.e. without primer - was prepared from 4 μ g \emptyset X DNA and 5 μ l NaCl tris). These were sealed in capillary tubes and heated at 95° for 5 min then left 20 min at 67° and put in a bath at 60°, which was allowed to cool slowly to anneal the products. Samples of these solutions were then used in the following experiments:

1) 1 μ 1 samples were treated with DNA polymerase as follows and run on the gel. A mixture was made as follows: 10 μ 1 32 P dGTP was dried down and to this was added

10 µ1 S mix

10 µ1 rCTP

10 μ1 <u>dTTP</u>

10 μ1 <u>dATP</u>

50 µ1 water

In each tube took 5 μ l of the above mixture, 1 μ l of the \emptyset X and primer mixture, 3 μ l water and 1 μ l DNA polymerase (Klenow). Incubation was for 15 min at 4° and the reaction was stopped with 1 μ l ·lM EDTA. In this experiment the samples were run on a 12% urea gel but not split with the Hin enzyme, which was a mistake as, under these conditions, many of the products would not be expected to move out from the origin. The results were rather inconclusive with most of the stuff sticking at the origin though there were faint bands moving out whose nature is not exactly clear. There is a very high blank (sample 10) which makes incorporation rather difficult.

D 88 (cont.)

- 2) This was an experiment with larger amounts of bands 1, 2, 4 and 7b carried out as in 3) below, but in this case I forgot to denature the products: however the results looked much the same as in 3).
- 3) In this case incubated 5 μ1 samples of 1, 3, 5 and 8 with 25 μ1 of the mixture described in 1), 15 μ1 water and 2 μ1 polymerase (J.E.D.). Incubation was for 10 min at 0°. The products were phenol/ed and precipitated with ethanol, washed with ethanol and then dried down. They were then digested with 50 μ1 Hin buffer and 5 μ1 of the Hin enzyme for 1 hr at 37°. They were then heated at 95° for 3 min and rapidly cooled. 5 μ1 dye solution in 50% glycerol was added and they were applied to the gel, which was made up from

60 ml 30% acrylamide

15 m1 10 x TBE

5 m1 1.6% ammonium persulphate

63 g urea brought to 150 ml with water

It was run at 250 v until the faster dye (bromphenol blue) was at the front again. Most of the material is stuck at the origin. One would expect to have bands in the lower part of the gel but the only one that shows any is 5 and these are rather faint. The others do show specific bands, which may suggest that synthesis has gone rather farther than one would have expected. There are also a number of bands which seem to be common to all of them, suggesting they are derived from blank.

4. Ran inculations on 5% tornamide get gave better picker with nothing at origin a bands which seem to be nelated to sizes expected

88 (4) put 34 GTP . dy . 20 5 C / 20 7/20 / 20 7/20 / 20 1/20	heat 90° 31

- 1) This was another somewhat larger scale preparation of the restriction enzyme fragments using two different concentrations of the Hin enzyme and two different preparation as in protocol. The products were run on a 40 cm long gel (5% acrylamide). a and b gave complete digests with good separations of 7a and 7b. There was some sign of resolution in band 6 but it was not possible to cut it out separately. b was only partially digested and gave a large number of very well resolved bands, which were also eluted. The various bands were eluted and precipitated with ethanol and dissolved up in water.
- 2) This was an experiment using band r2 and trying different concentrations of r2 and ØX. The products were run on a formamide gel but there is no sign of any intermediate. The experiment was repeated using band 6a and a different triphosphate. It seemed to work this time, giving a clear band that was not present in the control. The different concentrations of reagent did not seem to affect the reaction much. The yields more or less corresponded to the amount of the primer.
- 3) This was a larger scale experiment with the various primers. About 14 samples of the restriction fragments 1, 2, 4, 5, 7b, 8 and 9 were dried down and dissolved in 5 $\mu 1$ water 2 $\mu 1$ $\emptyset X$ (OD 75)

This was sealed in a capillary tube and heated in a boiling water bath for 3 min. After cooling, 1 μ 1 NaC1 tris (80 μ 1 N-NaC1, 10 μ 1 N-tris and 10 μ 1 water) was added. It was incubated at 67° for 4 hrs.

D 89 (cont.)

(3) cont.

The following mixture was then made up for incubation with DNA polymerase:

 $50~\mu 1$ ^{32}P dATP (6 Nov 1973) was dried down and to this was added 100 $\mu 1$ S mix:

100 µ1 rCTP

100 µ1 TTP

100 μ1 <u>GTP</u>

100 µl water

35 μ1 of the mix were used with the pre-annealed primer and 35 μ1 water and 5 μ1 DNA polymerase (JED). Incubation was for 30 min at 0°. The reaction was stopped by addition of 5 μ1 \cdot 2M-EDTA and precipitated with 10 μ1 sodium acetate and 250 μ1 ethanol. After centrifuging down and drying, the residue was dissolved up in 25 μ1 formamide and run on a formamide 5% acrylamide gel. Quite good bands were obtained, the smaller ones being much stronger than the larger ones. These were eluted by electrophoresis and precipitated with ethanol. They were then digested with panc and run on the 2D system. The small ones, 8 and 9, are extremely complex and probably indicate the presence of a lot of blank material. 4 and 5 seem to be the best though they are still somewhat complex. It may be that the pancreatic digest is somewhat incomplete.

D 89 (1)				
6) 30 pl	M) RFII		45 pt Hin 20 20 pt Hin 11	200 1 hr
	dosente in	U 20	5 pd dge	
•	3 lands h	d ptl hands 70 0 t well 6's beginning to al out artist	il Sofod supporter could for	wholely see
	toutale metty by how along	- om - om	70 70	
		4 = 15 5 = 17.5 6 = 19.2 72 = 20.5 8 = 24		
•		9 = 26 + 5 EtoH ppt 20. (2468.	. 20)	

1 pl 6x (-6mg)
2
5
1 pl 6x (-6mg)
4 1
7
1 pl 6x (-6mg) r2 (20 2 · Spg) 6 the / d 40 / e f 5 px (10000) heat 35 ~ Nace / dito -8 N tiss 1 420 20 TTP * dry 1 10 S ...x 20 20 Pro 20 4/20 20 20 50/25 + a) 10 mix 40 100 10 c) d) 20 10 10 remains of & 20 40

•			(a) (b) (c) (e)
dv	a) b) c) e) f)	Seal	D 89
J 25 pm	/ 2 2 (10 th 2 2	, he	(Z) Soc (1 Not
A for-	0		6A - 1 2 5 (dued 2
monde	XXX X X4 44 42	our Nov (51)	H20 2 1-23
heat .	shift old 6	nealee	
اسم	15 47 15°	dry	
dy			
	2-		
	bo (
	- not		
	caf'7		

D 89(2)
6A runs. pene At lalels

1. A, G
2. A MG
3. G MT
5. C C (.s. alli sper, poolarly c)
6. C. C.

14.

nons of pane (+0 A)

4 6 1 1

EAT

7 Gara

8 C

9 (

10 9

11 0

S AUD	1	1. C A T Week. 2. S A TI (A Down strated) righ c suggests may be felt. 3. C A T (Ca bit short) 5. C A T 6. S C A spot ahead of T maybe not digested. 7. T (seems a bit slover) 8. G 1. C A G T 2. C A G T 3. A G 4. G 6. C A G T 7. A G 6. C A G T 8. G 6. C A G T 7. A G 6. C A G T 8. G 6. C A G T 7. A G 7. A G 7. A G 7. A G 8. C A G T 9. C A G T 9. C A G T 7. C (self spot in Unity of Control o
-------	---	--

D 89(3) sple s fant a musah stru AM V 4.3 If this really similar to 51 looks 5.3 - A 5.4 C-A-T a strong spot, but must a partal t It is 9-T-A (00)-T 5 5 7.7 could be G-A could be sa A -T 7.4 hoth

D 90 Restriction enzyme partial digests (D 89 ref.)

Attempts were made to redigest some of the fragments from the partial digestion obtained in D 89 (1) b.

- 1) Some experiments were done with the Gradipore system to see if this could be used for separating the fragments, as this would seem to be a more sensitive method for detecting the products. Fairly sharp bands were in fact obtained but in certain cases they seem to have streaked rather badly and moved faster than they should. It seems that this is largely a concentration effect but it looks as if it would be difficult to identify the products unequivocally.
- 2) The better system seems to be the 5% gel using a small slot former. The whole of bands 2, 6, 9, 13, 17, 22 and 26 were dissolved in 5 μ l water and treated with 5 μ l of the following mixture:

10 μ 1 Hin enzyme (preparation A) 20 μ 1 Hin buffer x 10 70 μ 1 water

Incubation was for 3 hr at 37°. After staining the bands could be seen quite clearly but they were all undigested. Another experiment was done using smaller amounts of some of the bands ($^{2}/_{5}$ ths or $^{1}/_{5}$ th) but these could not be seen on staining.

3) Another experiment was done as in 2) above but using about twice as much material and incubating a rather large amount of enzyme. The gel was stained up with $\cdot 05~\mu g/ml$ of ethidium bromide. The controls gave fairly good bright bands but nothing in the digests of the fragments, though one of these looked somewhat streaky, suggesting exonuclease action. It does not appear that the ethidium bromide is appreciably more sensitive than the methylene blue.

D 91 Priming with restriction enzyme fragment 8

The idea of this experiment was to try cutting the product with the Hin enzyme with a view to doing the one-dimensional sequencing, and also to do a blank run with only $\emptyset X$ and only primer. In view of the very complex pattern obtained with band 8 in D89 (3), this may not have been a very suitable choice.

- Three separate tubes were set up a, b and c as in protocol, and these were denatured. Samples were removed from each one and treated with NaCl-tris to anneal. This gave three samples:
 - a) 8 + ØX
 - b) 8 only
 - c) ØX only

and treated with phenol, ethanol and acid. x c. gives channels whomle v complex. It a weak specific publish or a v complex with some strong specis that stand out

2) The remainder of the main batch of 8 and ØX was treated with polymerase for various times and the product isolated on an Agarose column with approximately 9 x 10⁵ counts. 10th samples of this were treated with the Hin enzyme using two different preparations: a, which is exonuclease-free, and b, which probably has exonuclease in it. The product was run on a 7% homomix. Both gave reasonable bands but it looked as if b contained mononucleotide, suggesting the exonuclease action. Bands out out the deputation.

D 91 (cont.)

- 3) 1 20th samples of the above material were treated with some more Hin enzyme as in (2). \underline{a} was equivalent to 2 /3 μ 1, \underline{b} 1 /3 μ 1, c 2 μ 1. \underline{c} has digested considerably further, indicating that 2 μ 1 is probably necessary.
- 4) A 2D run of some of the material treated with Hin as in (5). This looks a but to complex to be really nice though seem to be a number of main bonds that belong
- 5) An experiment missing out different triphosphates and then treating the product with Hin and running on a 1D system with 5% homomix hydrolysed

 10 min. Doesn't look to helpeless, though is difficult to relate 0 one to 4 (above). A possible sequence could be something like C(A)T(G)AGGAAGTCAG(C)A(A)
- 6) The remainder (about half of the material prepared in (5)) was treated with more Hin and run in parallel. These are rather difficult to interpret, especially as several bands seem to go right across. Some bands were cut out and depurinated.

 December remainder look as good as in S though similar execute for smaller ones!

D 91(1) a) 5 pl 8 (25) 2 m2 (12 cone \$2 (1000), 4 H,0) (6 m) 1 pl 8 1 ml \$2 - 2 420 add wall to (80 pl N Nell, 10N tus, 10 450) 1 pd of \$4 dil-4 hr 67° · to a add 2 pel 400 ml a, all b, 2 c, V 120 V 10 10 920 V 10 H201 take 10 pl. -7 40 1 pd/10 1 hr 0° phenol, to H etc. vernances of 8 (a) S LATP * day 420 1 1/20 10 1/20 V 50 HLO V 5 poi 0° 1, 2, 4, 8, 15, 30, min. (20 pl) eganose column his sample. April 350 pel. 2600/pel 9×105 eta lotal to day 10 the 1 while 2 the exe - (2 ps/x)

D 11(5)	
- c 8 2	-T -A - 9 2
	or "440 planol + etch + thin. (carlol z pil)
	1 10x hister. / with 5 the 1 2 thin exo - (2m/x)
•	1 and The . C T O A q . 5% 10'
D 91(6)	add 2 pel Him 1000 a run
•	

D 91(2) Depr. (A n.n.)			
a 9 8 7 6 5 6 3 2	Fant spot e, T, nothing: TC, C TC, C TC, T TC, T TC, T	7 7	(T, *)	
ь 3 2 1	TC C	T		
single	too clea	r lint vall	er suggests	not a

D 91(6) de --T (TC) } (TC) Sharper (TL) C TL quant a list difficult link could fit with {T, (TC)2}{ T, c}T, c Doesn't really fit to well with sey que (A) A GENAGTE AGICACA) the To given is probably like ?

a To(A), looks pretly like?

CA so is probably TGCA

To To in 302 probably come before this ATCCOM GENAGTGGAGGAA

D 92 Formamide gel fractionation of products primed with restriction enzyme fragments

This was an experiment similar to 89 (3). ¹/₈th samples of various fractions were used as in protocol, some with rC and some with rG. The products were run on a formamide gel and gave quite nice bands, which were eluted.

- Bands from 1, 4, 5 and 7b, which were labelled with CTP using rG, were digested with T1. These gave quite good and rather simple patterns.
- 2) 3 and half of 7a were digested with panc but gave rather complicated patterns suggesting probably that digestion is not complete, or else that synthesis has gone a very long way.
- 3) Half of 7a and the whole of band 10 were treated with Hin after annealing with some fresh ØX. The products were run on the 2D system. 7a gives quite a nice picture and spots were cut out for depurination.

 10 looks very messy. To define spots I-H que I.C. test nothing so not whereful tests remaining with 93(2) but don't we know here sizes much of.

D 9	2
● clop~ox	\$-to of 1.3, 4, 5, 7a, 76, 10 dued down
3,	70, 10 20 m S mix / 20 50 20 7/20 / 20 9/20 / 20 H20 / 20 H20 / 20 H20 / 5 M20 S Pel
1,4	
	5 .1 M EDTH 5 No. AC 130 Etou 76
3	1.4571 3.270, 16. Pane \$70, 10 more pox 4 Him \$70, 10 more pox 4 Him anneal. 1.00 - 5 W 670 1 pul 10 x Him anneal. 1.00 - 5 W 670 1 pul 10 x Him anneal. 10 x Lifer 605 2 hr 1 mer 30 mp 5 Next 120 Blat

•	•	7	
	_	76-	D <u>4</u>
2 3 4 5 6	790	1 23 45	92. (
1 A T T G		TTGTT	C nons ALALATAT
97		(40 (40	C) S(double spo
		Lept TC TC TC TC	le thng!
4	cak)	ta	plantile.
TCH	def		
(slover			dep- (di erion) o
the		spode	with
4)		جسم وحد ا ح	of qual
		stads	seem h spots, on t fi
		Α-	6 here

	D VI	92 123456789	Α	A T \	d	deb. U spot , G	n T posit	THE STATE OF THE S	sple	7777

D 93 One-dimensional sequencing with restriction enzyme primed products (D 91 (5) and D 87 ref.)

This was a fairly ambitious experiment taking restriction enzyme fragments and extending them with all four deoxys, isolating the products on Agarose, then taking samples and extending them in the absence of the different triphosphates. All of these were done in parallel and the final products dissolved up in 8 μ l water.

1) The products from 3 and 8 were treated with Hin enzyme as in protocol and run on the 1D system. Unfortunately tubes were spilt and to some extent mixed up. However the results with 8 looked considerably better than those with 3, though it is difficult to match up the bands here with those in 91 (5). Again there seem to be quite a lot of bands going right across the plate.

8 c c A a q were identifyedde, others nest (e. 50 nene iestened U-2. (= 87 + all the 3's)

U-2 run aerylanide 20% 20x40 cm. Inks

net two had. Z must be 87 ne is dillentfrom nest. 3's look QK. # 8's (remems)

run on aerylande E 7 a (see below)

* Sear for 3 would be like:

VW(V)(V,W)UVWVWUWVYW(VV)WWVY-U

thus accures X is control since it has most heads. W corresponds closest to X suggesting it is A way seem to que hig Jumps suggesting A = q resp.

D 93 3 (Spil), 5 (Spil), 7 x (Spil) 8 (2 pil) dured. 1 pl de 5 pl de (00 15) (3 mg) 1 Nacl - tro . 67° . 3. 20 10 ATP* dy 20 Smix 20 de/20 / 19/20 -20 20 T/20 V H20 V 20 take 25, 5 shift, 15 4,0 5 20 10 pl at .5, 1, 2, 5, 10 mins 5 pl . 1 M EDTA agaroce. 3-78-15.12. 3. 7. 15 3 ds 40 100 5 7 30-40 vac & down dissoled in so pl.

D 9	3
Pol mix C/100 T/100 A/100 A/100 H20	10 10 - 10
	10 pl 3, 5, 7a, 8 10 pl -x mix 1 pol/10 20' 00
•	take -4 + · 2 phenol EtoH pot all in 8 pl 420.
0	8's 1 Hin her (x10) 8 Hze 1 Hin (8/22)
	3's 1 thin When 8 to 5 1 hr 2 hr 2 hr
A	5 5 + 7 . as for 3 but on home 5% . 0'
	7a 1 Him beller 5 XDNA (35 Mg) has conver to present exo 1 Him A massage (New Prep) 6.15

D 94 Priming with restriction enzyme fragments (D 92 etc. ref.)

This was an experiment using some specially prepared \$^{32}P-GTP\$ and adding various incorporations, as in protocol, with rC or with all four deoxys.

a, b, c and d were with fragments prepared in 89 (1), and e, f, g and h with the remainder of the material from D88. a, b and c were with all four deoxys. The products were purified with Agarose and used for the experiments in D95. The remainder were purified on acrylamide formamide.

c, d and g were digested with panc and run on 2Ds. f and h were re-annealed with 5 \(\mu \) (OD 15) and digested with Hin enzyme.

a) 20 pel 3 (to") 5 pel doc(0015	
0 1) 20 7a(to') 10	heat, Naci-his anneal \$70 56
c) all 5 (5°) 10	
d) all 76 (\$:) 10	40(1)
Gra Ghlery	NOU STP
hat 9 20 10	
Smx 50 20 /	
rc 50 - //	
ac/2 - 20 /	
dA/20 SO 20/	
dT/20 50 20/	
40 50 20	
	and much its himmy.
a) 5 pl, 25 q*4de,	15 140, 5 20 15,1,2,5,10 00
W) 10 25 "	15 150, 5 70 .5, 1, 2, 5, 10'0° 30 , 10
c) 10 50 ,	30 10 " 10 "
d) 10 , 50 grc ,	30 120, 10 20 .
of removing of old biets (0 68)	
e) 10pl 5	10' 0"
4) 6	
9) 70 "	
(1) 6 (2) 7a (3) 9	15 E
a, b + c throng	agrose as branch a but
	C PART ETDH
d-h on farmamde.	elubed , pht = ETOH.
6, 9 5 ml dx (co is)	anneal. 100 000 4 hr
c, fix	(6/21)
\$(6) 3 4,0 2 him	(efzz) i his liter (-Noel) sample on 20 hom
h ditto but w	ait
d. e. g. S ml 10 my/ml	pane mix

									Nov	
Th	اج اج	en	m rea	rled	expt	that	didu	t wa	e le	
10 10	M2, M3 M7a		10 pl 7	أماءه	7			ed df		
	3, 7		1 pl \$ \$ 420 3 pl 15 Hz	φ×	500)	S po	l be		67°	. 11-45
S my r C r G dc/20 dc/20 dx/20 dx/20	G* CC	T*rC	10	4 4 day	1//////		at T			
3 7 2 2 de f	take Ci* Spl	4 dec - 5+ - 5-	7 20000							
9 1	wash	Tre Street	(q) (s) (3)	0 8	MED AC HOH HO Van			3'	90° 1 1	ed celos

94/2) my 10 pl for (00 15) 10 pl 4 30 70 (57) 10 Me 970+ dy S mx / 20 my de/20 20 T/20 20 4/20. 20 20 4,0 50 pl mix/ for each 20 pel -5 1 2 5 10 30 40 10 pol/20 10 pl . 1 M EDTA. agarose dry a hit. 5 pl shift 3 40, 10 -x, 2 pol/20 (50) 70' in hath. 5 pul 12 M EDTA. · 4 (4 ml Hzo ropleamer) + · 2 pherol. ethand plot. 8 pl 40 trok. Spi shift I won hister I thin (2 rd/pm)
scriptes on Selo 10' hyd" 4 7 think on acrylande. gheathy.

Do	74.	q*c								
		194,15. (h	۷)			dep-				
	2	CA	9 T	(verh)	T C				
	3.	C A C A A G	T	(nech	.)	77 tous				
	4 .	CI				C host	d chess)	y wTr		
							1			
2	(5.	C.C)							
	,	,	Α. Α.	G						
	2.	Ct. C	A	1						
	3	s south	A	h T						
	3.	week	A	v T						
	6.		A A A			T				
	8	week	c ·			thoT C				
9	(70	ζ* τ	()	athr	west					
- 1	,	-14-500	A, 9	T						
	2		c A							
	3456		CA							
	5		A							
	6		C							
ysles		d.								
	2.	cen s	er, n	TT	A	is some				
	M CO.		1,500	-61	hard	muching	00	4.2	I can	hehm
Mu	5.	equest.	7	net	v	lange	TY	c(5)er =	19 A C(9) ?

D 95 One dimensional sequencing (D 93 ref.)

The idea was to vary the conditions of preparing the material to ensure greater purification.

- a) The material from the Agarose column was divided in four and extended in the absence of different triphosphates, as in protocol, and then run on a formamide gel. There was a relatively faint band in each case in the expected position and a good deal of background material. The band was cut out from each one, eluted and re-annealed and treated with Hin.
- b) The product was extended and then treated directly with Hin. (i.e. This was as in D93.)
- c) The product here was run directly on the formamide gel but there was very little material in the expected position and a lot of background streaking. Thus it seems that the Agarose column is not very effective in purifying the desired product. There did not seem to be enough to continue with.

-70 Biochendy 12, 3086. 2 3/ 1/2 + 19 163/1/19 Store cells ! 10 g lings 17 ml -07 m hs (ph 7.4) - 07 M ME in stainless steel water in ice hater. Sonicate few 10 periode of 30 see at max. output (4/1 60 W temp remains below 4"). Fige Spice and 50 Ti rober at 40,000 rpm 60 mm at 00. (6 rana delen) supernature (19 ml) adjusted to 1M with solid Nacl layered on agaste 1-0.5 colum 2.6 x 55 cm equilibrate in 1.0 m Nacl 0.02 M tos (pH 7.4) 0.01 M ME, flow rate 15 ml/ hr. 6 ml factors assay 2 pl 60 g Nach (75 ml) 20 ml M his T, AGKARC, AACAGC, AI

D96 Prep. of the . Lig Dec 473.

Harmophilus infinenzae Restriction Engyme Prep

15-16/2/73

Sharp, Sugden and Sambrooke (1973) Brochemistry 12, 3055 C-Thomas exo(-) Ho.influenzae strain 9.8 g cells thanked in 27 ml 0.01M This pH74, 0.01M B-me.

Somicated 30-60 sec bursts in ice/water both. 10 x.

Added 5 more me buffer Finascone= 9.8,9 cells in 32 ml buffer
Centulnged.

SN - to IM by adding sollid Nace.

Calculate - 0.0598 g wace Int + IM final conc=

27ml SN. Addd 1-62g Nace.

Loaded on 80×2 cm agarose whom. Column vol. 2 480 ml.
Collected 6-7 ml fractions, starting from when all sample had
entered get.
Fractions assayed:

mix 375 pel & DNA 125 HX 10x Hin holfer - North

trok 50 pl + 3 pl sample digest- in hands heles 6-12

Hin

Pooled Fractions from Phophocellulose Column Fractions

26-28= 5 rel - partially agested 2.38 DA.

29-34 PEAK

Int - manupolity digested 2-3 & DNA 2nd completely digested

35-37 2nd incompletely digested 2.38 ADNA

D 97 One-dimensional sequencing with decamer (Ref. D 87)

- 1) This was a synthesis using the decamer and ØX and all four deoxytriphosphates. Samples of the minus ones were put on homochromatography system, which looked O.K. though resolution of pyrimidines is still a problem. The rest of the material was all put on a gel which was shattered on drying.
- 2) Another similar experiment using the minus approach with coli polymerase and the plus approach with T4 polymerase. Samples were put on homochromo and 20% gel which was radioautographed without drying down for two days. This gave a good pattern and there appears to

be resolution of pyrimidines whereas there is not on the homochromo.

Yet first vadicantographed in a large that and a contempled to large the domestic spread to the forestic with the contemp.

- 3) The DNA polymerase used here is a batch from Boehringer which is less active than previous ones. Using 20 μ1/100 μ1 incubation it gave quite good incorporation as judged from the Agarose column. A preliminary experiment was done with some of this to see if one could "spike" the sequence using exonuclease III. Various concentrations were used and the products run one-dimensionally on homochromo. There is definitely digestion but there still seems to be some specificity though the sites at which the product piles up are different from before.
- 4) The material obtained in (3) was used in another experiment. In this case more violent conditions were used for the T4 polymerase. The products were run on 5% unhydrolysed homomix. The plus ones look quite good here though minus ones are not entirely clear. The + and -G ones do not seem to line up with the others: maybe this is due to some

D 97 (cont.)

(4) cont.

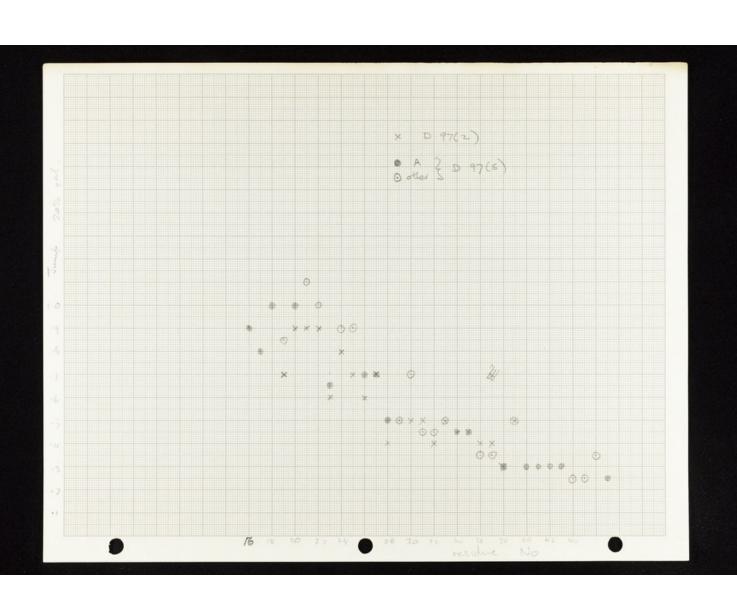
different running effect, again suggesting that the acrylamide is better than the homo. This homeomer (5% unlight) clusteredy not good by mandages often deal que a Junto

5) Another experiment, essentially as above, running all the products on acrylamide.

- 6) Half of the material synthesised was treated with exonuclease to give different products and combined with the untreated material before running through the Agarose column. The pluses showed essentially nothing, suggesting that the exonuclease was still present, so the remaining material was extracted with phenol and then another experiment done (b). This gives a very clean picture with the minuses but pluses are still very faint and seem to have too many bands in them. Perhaps the trouble is due to treating for too long a time with the T4 polymerase (2 hours).
- 7) This is an experiment with increasing times of synthesis and also testing out the action of exonuclease using A labelling. There is clearly further synthesis under these conditions but only up to about 70 residues. The bands seem to pile up at A residues. In this case there was very little activity of the exonuclease.

D97 (1) (see 087) GATTP 500 5 mix φx deca # 10 ·s ,1 ,2 ,4 , 498 couls up to about 60 on agassise wit. concentrate 5 pd -x mix 2 pd (la) 0" 20' 5 pl + puple Les 5 5 5 1 \$, 1 Th min 1 120 . 2 T4 pol S put shalf TH safe all on jet. 44400000 get shattened on drying,

D 97	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	6 970 * (Dec 22 1973) dy . 0 40 / 0 5 mmx / 0 de/20 / 0 de/20 / 10 0 120 / 10
Did expt	· 20 KL
	dissolve 20 pm ppt etoH (1075 m tris - HCI pH 8 75 x 10 4 m MqCl 1 mm DTT (clellands respect)
	10 x = 100 pd Mais 1 pd m mag u 1 S pd DTT 30 H, O.
•	take S pi samples a) - 1) 1 too ero III S' T.T. 2) 1 tokeo cro III 20' T.T. d) 1 tokeo cro III 20' T.T. e) 1 tokeo cro III 20' T.T. rm 10000 5' rmhyd.


D 97(4) -) 2 shift D97(3) 2 5.45 20 \$ 20 T4 mix 40 4,0 (5% unh)

D 97	(5)			-	0.						
		ven									
+)	5	tomi p	4	5 *	- wix	(09	7(4)	2	T4 /0		
-)	5	M	+	5 -	. mix				not ki	Jan 74	
	25	ne I	oma	le					0"	20	
		,	dry								
			dry hent	d	12						
		20 %					luga in t	acis how	,h.		
					A _ G +	C 400	and a				
		1		,	- 11		300	V			

D 9	87 (6)	
	5 pl ATP* dy.	bol my is.
		-2 m ms
	10 pol mix 1	OT M ME
	10 9/20	
	10 0/20	
	10 9/20 10 C/20 10 T/20	
	10 deca	
	_	
	30 1h0	
	Ke Kl. (Jon 8")	
	20 pl 5 . 1 , 2 , 4 ',	00 . 6 . 1
	20 pm . 5 , 7 , 4 ,	0 + 3
	who we pheno .	wash err
	ETOH assock	30 pl 420
	falle \$ (15 ml) 2 ml 10 x	wher The
	I pel to exo 10'	1 mi 1 mEDTA
	combine aga	NDSe
	5 pl for + 's 4 - 74	\$
	+ T4 7 W	370
6)	- pel 30	00 munici ++++++++ =+ -7-4-4.
	5 jul unheated run	27 54 101
	+ 's nothing shown. All lin	when down bresundl
	exo is still actual & w	ot rememed on agarose.
	- 's ox but are bonds th	est shouldn't be the syste
	exo achuity.	5
	plenel remmes, 3 5 pl + 5 pl + + - m	x ethi
	+ 1 pl Ty (o)	7 4 370 330
	- 1 pol (k)	7 L 37° 3-30
6)	0 4 7 9	

97(7)									
يس ک	ATT? *	di	J .			Pol	xim		
pol mix 5/20 6/10 7/20 \$x deco-	S S	1514					100 pl 50 pl	M Mg M Mg H ME	
Kleww	S								
	W	25 سا	pha	nol	ton ton	ional h.Jev	20 pl	× 5'	rt.
		25 ما	2 v c) d)	t 20'	ero II	s pul	formami	de /	
								*	

		440)		97(6)					
16	14	· q							
		.8							
	AACATGATT	1.0		1.					
	c	.4.8		-1-6					
20	A	1.0	-0	.9					
10	7		-9	7					
	-	1-1		2-0					
	4	0.1							
	-	*65	.0	17					
	- 1	19	. %						Н
	T	.9		-8					-
	A	. 7	.6						
	A	. 7	7	·7 ·8 ·6 ·6					
	AACTCCTAA	.9	.6 .7 .4 .5 .5 .4 .5	.5					
	(.5	.5	.4					
30	T	.7		.5					
	(20					
	-	2.9		}.q					
	T	.5	.5	.5					
	A) _						
	A	7.9	3.9	4.85					
		1		3					
-	GCAGAA	2-7	·4 }·7.3	1.13					
	(4	1-7	6					
	A	.3) -3	1					
	9	1.5							
40	A								
	A								
	A	1.2				i.			
	A								
	(7.5							
	0	1.2							
	T	-35							
	Α	. 25							
	1								
)									

D 98 Preparetion of the haquels (085, 89) 60 plan RF II 100 pl Him (8/12), 50 Him Wifer, 300 140 de toot ppt of where the days somewhat the sole works . 50 pel RFII 50 Hm litter 300 Hzo 50 Hz 1 hr + 50 Hm 2, hr odded anoth So pel Him 12-45 2'2 hr SO H- 12-45. 1/2 + SO Hu Huz as alove. Elvit ppt-+ 20 Wifer 1 1 1 2 2 warly (3gue) OK hut meterated. E one has 2 hands behind 1 = 6's not resolved Toked not so good on one of the . 3 etuled + dissolved in 50 pl.

Restriction enzyme fragments from D98 were used for extension using labelled A and purified on Agarose. Samples of these were digested with Hin and run on a 2D system, but essentially nothing was visible so the remaining material was precipitated with ethanol and dissolved in water and treated with Hin. The product was then run on a 20% acrylamide gel. Most of the material seemed to be near the top, suggesting it was linked with the primer in the case of 8, which had moved down. Possible explanations of this are that the Hin has not worked, or else that the products formed are too short to be present on the gel, or that the labelling is simply onto the double-stranded Hin fragment.

- 2. Samples of 8 & S subjected to the my treatment followed by the Rum get portung in right place a man hand is 4 where uncharged S or 8 would be expected (Actually are several bands do extended). Then lets of bands morning and in front of it which seem to wary with different -s. can't make it out
- 3. ext with samples of 7th a cartal with a deca. Best one is al which is with a labelling. A dees not seen to have watered with one. Samples from front of his e in a new heart with one small ones singlesty A later with one small ones singlesty A later or all your house is small ones singlesty A later or water house is the same heater with klenow eng, though do get some heads with JD erg, No it and control (g) looks ox. Doing pheal ethanol treatment at either stage deex and not help, so simplest procedure is lest.
- 5. With pulper blanks, a very kenow ery for blanks has got stronger but get good hards in a which is standard pudadure. Using A or less a seems had (mongh pulably smally has gone wrong with h. 50 org bed could be this doe to 5' 200 during him outling stage

										Tim	74
5	ri (to) 3,	5, 7 dx (1007	8	(D 98)) .				
		1 pil		(- h.		56(3					
	10 p	u *1	, יוד	·4×7							
		20	di .30	/							
		20 20 20	20	1							
		20	120	1							
		40	H, O								
5 pul	3	5	7a	8	,						
nery	25	25	2.5 .5	25	1/1						
S mix	5	5	2	5	1						
shift	5	S	5	5	1						
no	10	10	10	10	/		7				
pol (k)	5	5	-								
pel 70	-	-	5	5							
		00	اسم 10	1.	1 , 5	, 10	1 26				
							· hu .				
	20	,					approx				
	-0	mit	E	toff	ppt.	1	E.B.)	143	. 4		
		25 take	Il	HLE	/	/					
			S			2	the.	2 h		4.30	_
	7	30	pul Hz	0	take	5 m				pol 0 3	. 7
4	10 20		mer.	tale	.4 +	.2/	المحاد	weigh	3×	elle	Etc
	20 6	ur -0 2	00 1-	whe ?	0 4	W -	neppte				

	10 pl 1 2	on the	(00	75)						
	7	H20		/-			10 K H	9.10 halfe	4 hr	
10	Let A						A 10	mix but		dry .
							+		10 11,0	/
							9/20		10	/
	a	6	د	d	0	£	9/20 9 4	4	10	
76 /20 15		2	4	4	4	4	4	-	-	/
A mix	4	4	4	-	4	4	ч	4	4	1
7/20				1						1
A/20				dryt						1
9 se deca				3				1	1	1
H20	3	2	1	1	-	1	1	2	1	1
pol (KI)		3.	0 1		2				2	
	3.	phen	free	.1.	1 40		EfoH	ppt.		
all	1		1 10	put the	0 -	. a	+ 1 h	in	d down	. \
			all 20 ml	except	f (+	folia 5 m	STAH HO	10 /	140.	ml + ·2
			Eto	H ppt	0					
			25	for	mand	٤ -				

D 9										
	10	76	1	-						
		φ× 420	(00	3)						
		3	1 10	0 "						
	2			10 lu	Fer.					
		6	70 11	-2/						
							G		c de	
									q dry	/
							A/2			/
							C/20			/
							H, D		4	/
1 = 1	0.	6-	C	d	9	5	9 Hay	106	F 6	
9× (15)		2	-	/					Else d	20 4
76 000		-	4	4	L	4	4		E (E, e,	
G my		4 ~	14	4	4	4	4			10/4 7
HLO	4	3 /	1	4-	1	- (- 1			
, JA					,					
101 3P		1	- 1		ı	- 1	1			
hol kl			172	2,						
	10									
	5. 0	-1 ml	110	0.1 ph	mel	etar	, eth	ed.	10 140	o I wher
a, h,	9.		2 ~	ATOS	/				, ,	2.4
c	d	e +	-	2 his		8-35	4.0VA	2	hr	37
ado	a, w,	٠, ۵,	14.0	الم ا	3	100)-	,,,,,,		, occur	Fron
	all		- 2	المام ا	. 2	M EDT	A , 25	ml	farme	mele.
				15%	sh	at 1	el .			

	10 N	el -	6	3.5.	7a	8	(12	(12)		
	5 0	boc	,	, ,	, ,			1		
	3 4									
		heal								
	2		10 6					Mily	1.0	
76	+	5 4		-45		./		T/20	10	/
10		3 -0,	, n	- wy	4	Y		c/20		/
								buffer	6	/
								HLO	4	/
	a	6	<	d	e	£	3	4	i	
ht q =	. 5	.5	. 5	.5	. 5	- 5	. 2	. (2	
hot A =	10								-	V
76		2	2							/
76000	-	-	-	4	4	4	4		24	/
my	4	4	4	4	4	4			-	
4x16n	1	-1	+				10	- Marie	1	V
5/20									,	1
420									1	7
420	2	1	1	-		1	-	-	-	1
pol (ki)	2.	2	2	2	2	-	2	2	2	
1 Ja						1				
			0	+5		. 5				
/	1	,	3	0	00					
G	, ol	(-1hn 2 m	1 4	21 1	Pul	4	0 1	TA		
Inc. ii		- 1		~ .	pul	6-00	Z M	ENTA		
		ul 25	pel	form	ande					

D 99(6)	
	mix
take 3, 5, 7a 8 (099(5)	10 hot 9 dy
1 20 mix	2057/20
10 pol (kl)	205A/20
	20,50/20
30' 0"	15 Inster
	10 4,0 /
6 lake 5 pl + 1 Hin 3.30	2 hr
/ EDTA.	~ .50/ -1
rest but thingh 20 famardi	do 1 15 70 921
(On gel with \$ 105) Look quite	crecen sicupie
rest put thingh agarose.	dry to about 20 pl
rest put thingh agarose.	7
mix's with the lufer.	
-C -T -A - 9 + C + T +	
finx10 10 10 10 10 10 10	0 10
- 10 10 10 1	
● T/100 10 - 10 10	
P/100 10 10 - 10	
9/100 10 10 10 - 10	
C/S T/S 10	-
. A/S	
9/5 H20 25 25 2	5 25 /
	lake 5/12 W11
8 & 1 1hnx10	/ 0 % //
4/20	
15+10	
5 48 -15. Spil - mix 5 pil 5	or8, 1 pic (KI) 30' 0
2 of the thin was	7 1 770
The set his a set of	4. 2. 37
20% get tris- gly all + 80 8+0 -> +9 8-0 -> -9, 5-	c q ! 645 300
	805 400
91 Ta from this was + a - ed , 20% get with harate Not too	a run ou a
20% get with horate. Not too	had.

An	realed.		,		
	>10 1	Ja		1 Hm x 10 holfer ann	ed .
8.	G T			G mux T migx	
dx 8 - Ghmy -T - 4 kl	2 2 - 2 - 2 1 1 1 30' 00 1 m waste 2	1 4	4 ≤	N.B. This has 12	2 hours the
Ose 8 Julier bx	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A C	×	muched up 8 so repeat on	
w(/KI)	z z take about rest i to S pel	SO pl	H - M	combre ago	roce.

99(7) D T, (9) C A G G G A G T G A A T G A G].3 TGA SO # c G A T

	D 99	(8) 7	a				
_	+						
CT							
c,	A (6)						
C	6	A	uit unsal	istacts equines	ry .		
SOUATION USI-9	A(t) TA G(T) TA						
c G	C(A)						
q homie							

7 99 (9) - TC -					1-16-33	
- 72 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	P 99 (9					
CTT CT						
CTT CT		+		,		
CTT CT		17	-			
CTT CT		é	AC			
CTT CT	● A	3				
CTT CT		T				
A A A A A A A A A A A A A A A A A A A			C			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CTT	C,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δ	G				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	A				
C A A A: G G C G G G G C G G G G G G G G G G G	3		€ T			
C A A A: G G C G G G G C G G G G G G G G G G G	c	C	C			
A A A C C C C C C C C C C C C C C C C C	C A	A	T			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A.3					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C A	ζ,				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	C				
$\begin{array}{c} C. & C \\ T A & A \\ T \\ G(t) & G \\ C & C \\ A & A \\ G & G \\ T & T \\ A & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ A & A \\ C & G \\ G & G \\ G & G \\ A & A \\ C & G \\ G & G \\ G & G \\ A & A \\ C & G \\ G & G$	GT	G 7				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C	c.	C				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C	TA	A				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C		T				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C	900	9				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C	A	A				
T T A G G A (A) T C A C G G G A A T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A A C C T G A C C T G A C C T G A C C C T C C C C C C C C C C C C C C C	G	C				
		+				
	A					
	9	9				
	A	A				
		Т				
		C				
	A					
T G A C C T	^	A				
T C, A C L T	C					
ACCT	9	S A				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T					
G A G(T) A A	· AC					
G il G(T) A A		A				
A A	6.					
AA	1 3	G(T)				
	A	A				

D 100 Sequencing with decamer (ref. D 97)

- 1) In order to vary the complexity of the product for the one-dimensional sequencing, tried preparing on material with different hot triphosphates using considerably longer times of incubation than previously. The products were run through agarose and samples put on 20% acrylamide. Samples of the G labelled one were also treated with exonuclease III. There is a fantastic difference in the size of the products formed, the G labelled being very much the largest. This also appeared to be the hottest from the yield off the agarose. The size of the C labelled material is intermediate and seems to be about what is required.
- 2) 40 μ1 A, 20 μ1 C, 10 μ1 G from the previous experiment were combined, dried down, dissolved in 50 μ1 water and 5 μ1 taken for the plus and minus treatment. For the plus took 1 μ1 T4 polymerase for 30 min at 37°: for the minus 2 μ1 polymerase (Klenow December) for 30 min at 0°.
- 2. Expts with low comes of tuplosphotes to get conditions & a a b were same amont of A but diff times, no difference showing mark. is probably complete in 30 mine.
- 3. On the housing of 2 chose amounts of TP's that would give similarly length ship. Each out there was Ao 90 (0. equal ands (40 pl) combined of the action of the remainder combined but on acceptant agarose of redone is the for three home got a high presumably when I mined them to but on agarose they had all 4 TP's a new extended. It's from this look good but uninterputable, unfortunately all the -'s here are mainly shield at top!"

D 100		(1)				cee D	97)	
. S . S	ATP CTP		بذير					
1/20 9/20	A 25 -	4 25 5 -?	25 5	4			for man	
1/20 1/20 1/20 /20/ k Re	5	5	5	/			fol mix T/20 for deca	10 / 20 / 20 /
	10	pi _ !	15	30 60	0° + 30	37° +t.	H20	20 /
				agarose	2 M	EDTA		
				A ho	about	200		
	10	pel pel	A					
E)	5	pl q	1 9	o Wher	3 14.0	I see	10'	
4)	5		-		- 3	4		
	Exo	lace		A C . G .			w , lu	20%
han	ed to	sa luig ,	y as	ne hel	ne so	lar dels	4>c> (restanding sequ	A Pil
Thi	S co.	الما	he si	mplest	way	of do	ing sequ	ience,

100 P STRAGURGENEROUT OU GROUT THAT STRAGUM STRAG .8 31.1 3.9 .00 5.5 1.0 .3 CTTCIGT ETTC GT CCGCGCTTCGTCCAA

) 100	2 ~	u dat dati	ρ* 	day → 20 20	taka	5%	(4) (e) (e)	2(0)	f)	()	5,
	(~ 1/10 9/20		1	gn.	LANGE HE	÷ ~	Mar.	pol m T/2 Pz deca	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
9/mx C max 5/20	- 1	-25 q 2 1	c . (s 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d .054 2 1	2 - 25 (f .5 c 2 - 1	2 - 1	1/1/			
(120 per de)	2	'w	1 1	, ,	45'	, , , ,	,	\	4-15.		

D 100	(3) 10 2 5	9	/50 /100 /50				T Ø: de	/20 /20	20 20 10	11111	
mix A/20 G/20 C/20 H20	- 5 5 5	9 50 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10	5 - 5	1////			П	20	30	V	
pol (oec)		20 Vac	a	-7	m No	ED791.	pel	= 5 pl	-> -	rev .k	
• 0)	re	5	pul	5	+ mix + mx	- 1	T4	pc (30'	3) 0 (A sp.H 4 up	picked
6)			5,	T+0	conflet C+ A	+, T-			·	ested.	
c)		A	c of	¢ (-	7 - A	- 4-	40 40	. 90			
•											

100 (3) OGOGUT T 000000 1-2 ones laver for TC STG 2-2 C C Debehnations uere elutet & depurnated. It is possible to suggest what diff has bands are: From Known ceeps would expect.

TCT C, T TT CTCCT C CCT CC

G+T have there and a hand that find

CITI, would be CTTC ccy

C sample seems to have expect. c sample seems to have exh + (+0) D 100/3 0'5 Agrees with 100(4) roughly. At A & gree a good c then

CA G nothing KII come of C (v show)

at least ce no sign of 9 here

possible faint A ATAC-GCTACTC perhaps. then CAGGAAA Then? C's, ATTOANCT(9) TAC Chu 100 (4 from t's strong TG then & T. An T. C. T. G.C.

D 100 (4) Remains of AG for 100(3) & some of tro- 100(1) 20 pl + 20 pl - mixes 5 pl pol (Occ) reme e 10 pul for running. the combine rest a agarose dry dissolve 50 pul heeze . (1) 5 + S(4mix) 1 T2 pol 30' 370 + 5-m- 2 pa (Dec) 30' 00 25 pl formamide. (2) (Trough batter pt 8.75) Fichine looks pretty good. But are a few wong honds eg G+ 1 in AATA post- (40-43) so interpretslightly dealethed. Politican is Jumps get v Small hends award the 55-60 region

D 100(4) AUUTAUUSUSUTTUSUST GUTAFAUU UGTAUTU 50 2 A

	20 1	nd 3 nd 5 4 pd	φx							
		4 No-	el-his	>	5-45					
3 S lut A lut q	3 A /4(3)		5 A - /14 + -	59	3 5 ,	d, drie	.(ric The,	Sun	- Go
A/20 G/20 T/20 rC H20 pd k	10 10	0-00000	100000						1/20 1/20	50 50 160
pol To		-	10	10						
	200	ho phen L7 el	ul Ktri et	uv.	15	06				
8	0 40	. 10	Hm ×10	ulf.	o pel	the	/1	30 -	7-30	
						20				
	The on a	e la	ok b	nethy	دسن	Ful	w.th	mo	st of	com

D 107 . Products run on 25 homo; shift at onig onigin pance. out a Some of pone spots nined. 5A1 (20) 1. A. T 2. C. A. T 3. C. A. G. T 4. A. G. (*C.T.) 5. A. (*C.T.) 4. C (+ C+ G) 5 AZ (m 10) 1 A Desn't seem to correspond to SAI 2 A v well. C 3 5 9 3 may correspond to SAZ/1002 1. 2 hard ahead of T 3 91 (20) looks valu confer 1. T, G 2 A 3 . A, G (K COC) 4 9 (4 6. 1 392 (10) 1. C (V A) T = 352/1) C 3941 C 3A1 1 T (W A) that samples Some questa might have get mixed

D 102 Radioactive restriction enzyme fragments

This was an attempt to make radioactive Rf by extending the nicks with DNA polymerase. The product was digested with Hin and run on acrylamide. It was stained up and gave a normal pattern, but on radioautography certain of the bands seemed much stronger than the others. These are particularly band 3 and band 8, which are probably in fact near to the site of the specific nick responsible for replication. The actual counts are not very high so that this method does not seem of very general use.

D 102. 5 mgl RF II (NM) 5 5 ht GTF CTP 10 Pol mix / T/20 10 A/20 10 10 9/20 y 10 Pal/20 (30) 20 mms / 80 rt. agarose A Hin verylande somple 5 him liter, 10 him 3 # 35 420 Etan ppt.

Renera	e tr	6	phase			5	pl ho	inster	
nuv	5	5	/				2	10 mm	
0 cta	3	2	1						
	2	2 r.t					10	ф×	
	1		2',	5, 10,	20' 40	9	10	420	24
			got	not	una				
	20	het	C	dy.					
		diene							
miy		5	5	1					
	20								
	R.T	2	2	you	(had	- 10	of 991	3.)	
				37°	10', 2	0' 40	,		
	0	95,0	6						
	5'		4200						
	10'	3600	2800		7				
- 1	40'	8040	8500						
	back	144	nt 3	70	1130 -	6-30			
		3544	3)60		July 3 4				
Uns	nees	دليا	ex(s	unet	tryra	h :	iee .	what	happ
with	**	V TV	ans.		,	`			,

1	rl	A do	y	20	HZO			pol mx	10
A* G* C*	·2+M	4 pM 6 2 -	c - 1 - dr .	2	e - -	f - - 2		1/100 de ea H2 0 take a 1-120	10
4/100 C/100 C/100 H, O	2 		10 2 2 2 4	10	10 2 2 2 4	10 2 - 2 2 4	7/		
hot sign on pi	gesti nen c	00(2) pil 0% she	ing er	this	Sin	ple be howe	do	approach approach some a some Big	residue, ru e houde
hou	ind ?	wi	h	nd shea den	ahn	altp	(see 100(z	10

rescue CGB three	d ho or tel has whall	here we we hered helow y lovol	she he he care	in lace	strength that t	4/100 A/100 HD	-Anx 5 5 - 10	- Cmx	- 9-4 5 - 5 0	1/	
Trela	ries s	nen	extent	of		Mix		φχ T/100 deca/2	10	//	2
Let A =	a. 1	4	c /	d	e	£	J	40	-5	PRIVAL	~
. C =				•1	- 1	. 2	- 1	.,	. ,		
mix -Amy	10	2 2	2 2	4	2	Z	10	4	2	1	
-C my				4	2	2	10	4	2	/	
pol Kl		1	1	Z	1	1	5	2	(
, 2 3	5 pd say 9', 19' 30'	()	¥ .,'	: 3	6	£071	16 N. 1	14	ě S		
		s. a1,									
a s	seq dela	looks it s	pots cone a4 (retty.	Erter	t o	f s	ne gutte	sic 815 al (7	depende	الم
10	gel ners	atho arb lightle	here	ا ل	Sout	lu	n de	ay .	adt al	80 1	00

103(3) 1- old A -> 10 late & lar 6 mix (2) 1 old 4 -> 10 1 ido c (5.w.s) -> 10 5 0x deca/2 e pol max 2 2 8 100 4 1 1/1000 A/100 11 9/100 ful (k) 1 - 1 4 1 1 hr 30' 30' 0" rt New 4 a Systeme have gone vater for a lit more sperific though hard to certain. Looks as if & (now temp) might be a luit more specific Depundions Some hands depresented Expected fraquets from a label to uf 50 A ane one present 4 (this is a mixte piling up at the 295 c & one doner than Tat, and rate ret = .65. According to Zillie film this could be (6) or T3 (.7). Thus probably is FEE CTTC (which is expected). T2(is v strong suggesting may be another needle has extra c. comit really account for this corresponds to g's in cay GCG (106(4)) but this shouldn't quartitations T26 's 12 1 02 C 5 1n 1

DIO3(3) - Deguination quants

● 1 (2T2 TCT CC	c pm 282 428 244 258 399	CPM -black 200 346 162 176 317	1.2 2.0 .9 1.0 -
2 (2T2 tcT cc T	749 1286 630 607 649	667 1204 548 525 567	1.2 2.3 1.0 1.0 -
3 CZTZ TCT CC T	217 483 415 400	135 401 333 318 308	· 4 1·3 1·0 1·0
Blank.	221 150 188 82	139	1·3 ·6 1·0

with denath (100(3) 103) 104. Trouble D 18 60 rae a hit C (D 100) mix the lot + 20 famounde pl + 5 pl old T - mix 2 pol (Dec) c) new c terminate with 1 pl 2 m 50TA d) " don't dry Formande (9) (5an) 3'
... (50) 5 new - 1 port on in sos mix. C (for c take 20 + 20 % 10 pl alignels) 30' 0° d 1 pd . 2 M EDTA 25 pl formande. 6-9 20 pl 505 mx 3% 505, 10% MZ h. a, t, c, d, f, g dry. all heat a put or 20 cm 20% gel was to see which have garlage shiek at angin no garliage hards diffuse. (0) b) garlage thus T-mix ox. d) No garlage. This is the lest e) V it witte garbage, thus drying off water seems to be harmful garhage g) Not much garlage but hands diffree suggesty exo h) garlinge Thus seems important to add ESTA presentally renaturation takes place if My present Best not to dry off. Seems prot is also invoked as pol Jo que no trouble a T4 was OK (0:00(1)

25 A - w 5 +0 psc 5 +0 10 pol (de				
a sul	· 2 MEDTA	agarose	- # 10	otz.
S to	40 + 40 -T			
c -c 10	2 pl Keip 10 - c m	2 pl (w 1>0(e ligal
	15 19 pm 4,0			aned.
e c +	5 pul + 5 pul	- 4 my 2	pd (k)) .	
9 9		7	**	
Å	7 7	7 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
		3T h.		

(c) (A		C/T/A/ po de dec
ショウ ヤーム	5	\$ 1 5 20 20 5 20 10	not
e to put S s	女 (60 g d (~ d	4 G° A° C° C°	S S S
	(سبر المو ک گاب		1///
3.	to by sh	106(4).	12
huged S S S S S	d. (F) S S	20 20 5 20 10	5° (a) 30° (a)
· toda	c- T- S+	2 C- T- S- A- T	T STA
	1/1		c c°
pul) ly. 1 pol 2 pol 1 pol	1 1 T4 pol	1 pol	10 hala
C	A	ς ρ ρ ρ	
e -> c -> -> c ->		→ C T T G J A G T	0
e day live Spa			

D 105 ((9 51 CI C C C CC GU) 9 9 (G) C G C T but seems to Fairly comblex expt hong warren o.K. where see, known piling up as expected Note the second ge is not seen (this would be expected from key. Shill problem where the v small jumps occur. there comes from the G which is slightly ahead behind it. A similar thing seems to occur with the baster to largest G hand which with T- mix gives nothing up but a some stong one appears of Suggests possibility that larger may sometimes travel taster that That's a problem. Presumably due slover. 2m structue?. JF has good evidence for TTC(4) in a pane of ve suggesty seq. TACCGCGCTTCGTCGCT therego doubtful if we count vely on order

125 9 I) A &c T co -C C T +7 A 9 9 4 C C С 4 9 3 G C C C K T T Α +7 4 4 9 C C ς, C C C T T C 5 6 C TTCGTCTGEGTCA " HEGETTGGTCA 9 A

105(2) CE 50 T C T

5 (3) 5 (3) 5 (4) 6 (2) 6 (2) 6 (2) 6 (2) 6 (2) 6 (2) 6 (2) 7 (2) 10 (2) 10 (3) 10 (4) 10 (4) 10 (5) 10 (6) 10 (7) 1		e) f) q) k)	a) L) c) d)	CI.		
Q C * dry (ax D 10) (2) 15' 0° 5 ml .2 × EDTA. = 200 duvided who 20 20 10 pts 1 fr G dry ml G°. 20° C mx 5 pt pol, ag. > 25 pt 26 20° T - 53 pt C' 5 pt G - 1 pol G + 174 T - 1 pol T - G - T T - G - T C + 1 pol T - G - T A' 10 T - 1 2 pol A' 10 T	sk (5	20	10	
(a) 0 107 (2) 15' 0° 5 pl .2 M EDTA 200 20' 10' 5 pl .2 M EDTA 200 4° 20° C mx 5 pl pol, ag> 25 pl 7° 20° T - 33 15 15 15 15 16 17 17 17 17 17 17 17 17 17	al G°	 	pd 	0		
S' 0° S pl .2 M EDTA. = 200 ded . Jo 20, 20, 10 ps 1 for 90 dry 20° C mx S pl pol, 29. 3 25 pl 20° T 10 A	wut c'		. c	90		
(a) D (0) (2) 0° S pl .2 N EDTA 200 who 20, 20, 10 pts 1 for 9° dry 0° C mx S pl pol, ag 25 pl 0° T - \$3 5 pl 9 - 15 5 pl 9 - 174 T - 1 pol C - T T - 1 pol C - T C + 1 pol T - 2 p	a b			, 2,		*
D 107 (2) 0° S pl .2 M EDTA 200 No 20, 20, 10 pts 1 for 9° dry C mx S pl fol, ag> 25 pl T - 33 -> 15 pl 9- 1 Ty T - 1 pol C - T T - 1 pol C - T C - 1 pol C - T C - 1 pol C - T T - 2 pol A -> T for running 1286 gel used to d T' ef y h A' i 5:30 45 0:30 11 9:30 11 9:30 11	1/2		5	00		lru
20, 20, 10 pts 1 for 9° max 5 put bol, ag. > 25 pt > 25 > 3 > 15	for		pl	-	, who	7
20, 20, 10 pts 1 for 9° 20, 20, 10 pts 1 for 9° 25 pt pol, ag. 3 25 pt 3 25 33 3 35 - 15 - 1 pol	Т	A	5977	n		
0, 20, 10 pbs 1 1 1 4 9° S put bol, ag. → 25 pl 3 25 → 15 /1 pol 1 Ty 1 pol 1 Ty 1 pol 1 Ty 1 pol 1 Ty 1 Ty 1 pol 1 Ty 1 T	ru	+ 1		1×		
10 pbs 1 1	rui F	(11			
10 pts 1 for 90 10 pts	-9 y h	T	pol T4 T4 pol			
1 25 pl 1 ag> 25 pl -> 25 -> 15 C -> q - C -> T - T -> C - T -> C - T -> C + T -> C	12 A			hol		
- 25 pl - 2	1 2			, ag		
25 pl 25 pl 25 pl 26 15 C > 9 + C - T + C - T - T - C + T - T - T - T - T - T - T - T - T - T				->		
9 9 7+ - T- - T- - T- - T- - T- - T- - T- - T	5.	て一:	660	25		
q+ 1+ + + + + + + + + + 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	30	o c	→ ·	i		
	32.	+	+			

	105/3)_5	1/2	* +	7	K+A	+ C	K	A?	7	1 A	
29	4	7	£	Т	Т	A	C	Z	I	9	10	
•			C	AT.	九丁			C	T			
	G+	4	C							G		
	G ⁺	9	C		Т		C+		т		NO THE INC.	ere to
		9	C	T+	T			С	T	G	lation of the control	7 (a) 'c
	G+-		C	×	T		et set		T	W S	.'-9CT	
	? (q+)	S		T+						Ġ		
•	9+		C	T+			C+	C	T		This co	ans of Ti
			С			At	C ⁺		T-,		in ct me	net T
			C									
					7		C+					
									d te m			
		Ses	seen	us ho		77	(pul	lem 1	gt cr	unina	hous)	
		This	was a	12%	gel The	. The	T 460	earing Which	to h	ane	put the	
	0	· pw	mein	luta	ne ,			(3	ee	114 (4))	

				5 19				nd
pri (T d	7 -	20	tho				S den /2
10	6	2	d	e	£	9	h	5 A/100
2 7	7	2 2	2 7	2	2	2	2	1 - 9 mm
,	,	1	1	2	2	2	2	10 Hz0
	15		0°	FCT				5 9/100 5 9/100 10 H20
	20%	anyl	ande	Ton	horse		300	V 4-50-160
In of	geners ul u So	Seem	it is	, di ho all	Hick	lt squi ses	to Tuesiz	denthy de quite
)	2 2 1	a L 10 4 2 2 2 1 1 1 15 1 20 20%	10 14 2 2 2 2 2 2 1 1 1 15' 1 20 for	10 14 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 15' 0° 1 1 1 1 1 15' 0° 1 1 1 m és 20 forman	10 14 2 1 10 14 2 1 10 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 15' 0° 1 1 1 1 1 1 1 20 formande 20% any ande To	a b c d e f 10 14 2 1 10 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 15' 0° 1 1 1 1 1 1 20 formande 20% any ande Toe have	a 6 c d e f 9 10 4 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 15' 0° 1 1 1 1 1 1 1 1 20 formande 20% any ande Toe borde	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-9 ~~~ T/100 A/107 C/100 poi(k) / 15' 00 / pl 1 M EDTA	10 de 1	10 de
T*10	T*indy S 2 1 98.5 1 5 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Thirdy S 2 1 18.5 1 10 10 10 10 10 10 10 10 10 10 10 10 1
10,600 1 15' 0° 1 M 1 M EDITI	A 10,600 1 15 0° 1 1 1 1 1 1 1 1 1	The state of the s
-9 mi 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-9 m T/100 A/100 A/100 c/100 pei(k) / 15' 00 / m - 1 m EDTT Unea his gly gel 20% 400 5-45 moving up h	T/100 A/100 A/100 C/100 poi(k) / 15' 00 / m · m · m · m · m · m · m · m · m · m
c/100 pel(k) 1 15' 00 1 pl -1 m EDTA	c/100 pol(k) 1 15' 00 1 pl . 1 M EDTA 1 1 - then his gly get 20% 400 5-45.	c/100 poi(k) 1 15' 00 1 pl . 1 M EDTA 1 1 - then his gly get 20% hor 5-45 in morning up ho Has gone slow both running a ungrale - relative to markers. Can read off right
	100 morning up to	Has gone slow both running & ungration relative to markers. Can read off right

•			•		\$120 \$120 \$120 \$120	let q 1 het T //so,ovo //so,ovo	
at	seem	Ind The			- ! !	a dis	106(
	de	ae a		4	1 1 -	6 50	(3)
seer	Fro	ne		4 n 20	- 1	lodo C S 10	μ
	bould habl	o mp	e -	بند ,		C d = 10	9* dr T*
	he +	too	n , o ,	1	dry	· 是 沙/	٦ →
	0 "	good	o~ 7	pol		f 250	40
	elialil - ab	5 /	20%	kl .		9 50	ul .
	proae	eem	horale		1	2	
us to	the Dietho	to he	5 °/6 \	mix		2	
	d a	= L a	onte.	10	1 1	k tos	
	e it	·2 pm		φx deca/2 pol mi HD	- 1	- Chy -	
		1				N 10 1 10 5	

	1 7	>	20	d lake	5				
	19	->							hus
	,							2025	20 px
								20 85	20 dece/2
	T	9	A	C					20 pl m
Iplat =	. 25	-25	29	29				2028	20 HO
my	20	20	20	<20	-				
4/20	5	5 5 5	5	-	V.				
A/20		5	_	5	/				
0/20	5	5	5	_	V.				
T/20	-	5	2	S	/				
T/20 A/1000		-	2	5 - 5 - 1	/				
1 1000	5	5	4-10	10	1				
H20	10	10	10	105					
by (K)	1.0	10	10	1-0-5				-	
			30'	o°				T C	100
				ul		EDTA	1	q	300
				ganose				e	100
			4.1						
			T SE	c	de a	Red	50		
			A	, .			100		
			5	a	Lit	0-61	50		
	-	take	ST	, 2	of	the .	rest		
	2	0 10 A)						
	3	の場合	5						
	34	2 -	5						
	34	01名,丁	0						
	< .1	. <	4		1	77.			
2/	6 1	+ 5	£ -	· (4)	56	P.I /I	11		
10	& lon	. 200	4	TOCK K	34	100(1	,		
	S +	1 1000	723 01	2 1/2	2	4-	. N	ot su	ve whi
one							in it		
	100	SAT	7						
		5 A 7	1 5	S Lov	+ 5				
		10 6)						

106(4)		200 an usea	lo				
-	+ c	G					
2	C	C					
GUGT	C G C (A)	9 C T					
T		7					
CT	C	T C (S)					
CT	TUSTGO	T C					
	c						
A.	A	AL					
A C	^	C					
	T	,					
C	c	CCTCA					
T		T C					
A	G	A G					
(6.)	c	9					
CCTCAGCGAATAG	0	CAIL					
T	T	A:V					
A43	A&						
T	T						
C							

15 % 106(4) unear. + A C CA T 7 A A .3 C 19 0 909 C 6 50 .6 this - a looks like a doublet but Jump suggests only I a .67 1 6 .6 15-20 C C 2-0 ナナ THUST ST .25 1.3 \$(C) T(c) S looks like ·352 c C .13 .6 A lasks lik AA A 1.1 1-1 C 2-3 T A 1.3 9 13 USUA C. .6 A (53) At corresponds to T so Gunlikely T(0) Ton AA? A C

D 107(1) 2 pl * GTP dry. 5 pd mix V 20 pl mis -> *GTP deca/2 5 T/20 5 A/20 + 4 pl 1/20 8 pol (kl) 00 samples at a 40 cms 4 5 pl 14 c 2 mm d 4 1 1/20 8 2 1/2 mx 15 1 pol (ki) 30 Définale différence non between dit times at short times (up to 2 mms) can see pretty well all products to about 30. At longer Times foods out a smaller ones foods out a seems to be more piling up. Idea is to do try and get heterogeneous with extess hiphosphote seems to work but probably no of courts a hit low. D 107(2) 5 GTP* dry.

10 pd mix X

10 px X

10 deca 2

10 T/20 X

10 T/20 X

10 T/20 X

20 H20 20 pel (kl) . 2 N EDTA 50 pl + 5 8 " 30 30 20 2

00909011091 C < 50 10 T SULUERO GTC A COLTAGEGO -(A). AT T A (A) (T),

D 108. C D het applied 1 _ 1 _ 4 5) 2 20 pol mix i 20 0x V 25 mx 10 10 10 4/20 20 deca/2~ 5 2 2 410,000 5 20 1/20 V 10 S 11,0 4 20 A/20 V 8 -> 40 4 pol (k) 4 2' 35 15'5 0 30 - of eganose 4 pl 500 1 fol 5'00 Ca. remare 15% get uner Vilan 10'8 v.t. 30' 0° 100 5 49(9) 12' C. 5 pl as hig C 50' 00 rest of A.B.C.D dured A 5 pl 40 5 pl -9 \$1 pol = e B 1000 pl 400 + 10 -9 (wide get) Spel + 10 & pel 1 pol 00 -10' 30' O° pel | poel 301 720 30 C. 205 pl 10 10 pt < 5 pt J 5 pl + Spl + 9 1 Th >10 pl + 10 - 9 agrosse 8 pl +20 +3 k day Sy Besting of Spl Spl + GV / D 10 pl 5 pl + 5 pl c - 20' et. = 0 5 mix vy 1 GTP day 2 40,000 & 5 pl 10' rt 300 1401) 5 pt 10' 2/201

108/1) a-d. with limited GTP* diff conditions of inapto test accuracy of welled, by looks & much helter than others suggesting at believe than 00. cone = e-ti ranous ways of doing a -q on shift labelled with xs q for 2'(e) or 15'(the next). Doesn't really seem to make much difference. They all ceen pretty good anyhow. J-m. doing on +9 on a 90 or 9- demed from it. Not, much difference both give spot, m two as m has more spots up top so question is are the artefacts or not? much difference. both home it not at 22 (should be a 9) otherwise perfect. it anything better, shows doubles well.

(08/2) 1 hot 477 40 10 10 20 20 day 20 108 mix pol 1 1 1 4 4/20 4 4 1 2 1 00 > 10' ct. 8 40 00 30' 15% men 127276 abede Main pullen seems to be extra spots at bettom. The best is polably e roun temp seems preferable to 00 d seems an important. Suggesting man Thing also may be needed. Presimable to have q as the only limiting thing everything else much be going well.

108 (2.		477.8	d.	e	£		q	14	20	/
GP dig	1 11	6	1	_ ±	2	2	77P*	25/2 47.	pol unx	20	U
	14) 20			111	10 1	dew/2	20	5
mix	20			8 my	10	10	1	2/	HO	20	1
A/20	2			> from	2				172	~	
-1-0	5			108(2)	1	2	19	2/	/		
T/20	5	/		19/10,000 A	_	45		10 4 V			
H20 inte	611			10,000	45		/ "	W - 1 V			ı
	5 66 6			2	5	5	_	5			t
pol	10 Fee			-	2	3		2			t
take	10'	rt	5' 37	10' A	10 st	10' it.					h
	2		1-	0	9	7		9			
to rung	v lope	oll	all	all	N 10	N 10		N 10			H
							,				H
Y-ma	12.1/2		gel	start			alto				ŀ
									(no has)		
								- 11	10,	anned.	4
0		ea b	10		1001		.0	200	-		0
10	ach	Samp	1 1	0~	1270,	tinea	get	1	- 30	0.10.	3
-	05E	24	1000	noe	run (210	0.0	20	50	· Ha	C
CO	tell	~	shall s	ha	ppena		neps	i i	u	1 1	H
	100	oper	ger	11 (500	1	(1)	-	-		t al	5
-11	k o	220	pulle	me of		Cueda		0	L 1	1 1	
100	m.	51	1	te.	1 cot		gove		Brown	au y	1
620	m		1	ol q					Seen		
44	04	longs	er h		Lui #		1	ase il	-he.	~ ;	1
20	My	15°	T	a	CU N		821	, km	- amy	1	Te
a	ge	enc									
											h
											t
											t
											H