Ferrites / Philips Technical Library.

Contributors

Philips Electronics N.V.

Publication/Creation

[Eindhoven]: Philips Technical Library, 1959.

Persistent URL

https://wellcomecollection.org/works/dx4de7gq

License and attribution


Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

J. SMIT H.P.J. WIJN

FERRITES

PHILIPS TECHNICAL LIBRARY

FERRITES

Physical properties of ferromagnetic oxides in relation to their application.

by J. SMIT and H. P. J. WIJN

373 pages

15½ x 23½ cm

244 fig.

Price: 72 s./fl. 38,-

The most important development in ferromagnetism in recent years has taken place in the area of magnetic oxides, the term "ferrites" being used to refer to all those containing iron as the major metallic component.

This book provides the reader with an insight into the properties of ferrites, on an intermediate level. The characteristics of ferrites that are of importance for application purpose are presented and discussed and, whenever possible, explained in terms of intrinsic properties.

Since many properties of the ferrites strongly depend on their exact chemical composition and microscopic physical structure, a thorough familiarity such as the authors possess, with the experimental details, is of special importance.

The authors deal with many theoretical problems of phenomena occuring in these materials during processes of magnetization, and make greater use of simple physical models than of rigorous mathematical derivations.

These artificial magnetic materials are now of first-rate economic importance and are used throughout the electronics industry, e.g. radio, television, telephone and telegraph services, recording apparatus, measuring apparatus, ultrasonic apparatus, proton accelerators, motors and generators and magnetic couplings. All scientists and technicians engaged in these, as well as metallurgists and inorganic chemists will be glad of such an authoritative but readable study.

CONTENTS

PART A. THEORY	Chapter IX. INTRINSIC PROPERTIES OF
Chapter I. ON THE PROPERTIES AND THE	FERRITES WITH HEXAGONAL
ORIGIN OF MAGNETIC FIELDS IN	CRYSTAL STRUCTURE § 37. Chemical Compositions and Crystal
MATTER	Structures
§ 1. The Magnetic Field 1 § 2. Energy of the Magnetic Field 4	§ 38. Saturation Magnetization 19
§ 3. The Nature of Magnetic Moments . 6	§ 39. Crystal Anisotropy 20.
Chapter II. THEORY OF FERROMAGNE-	Chapter X. INTRINSIC PROPERTIES OF
TISM	FERRITES WITH GARNET STRUC- TURE
§ 4. Diamagnetism, Paramagnetism and	§ 40. Chemical Composition and Crystal
Ferromagnetism	Structure
§ 6. Statistical Theory of Magnetism 18	§ 41. Saturation Magnetization 21 § 42. Crystal Anisotropy and Ferromagnetic
§ 7. Caloric Properties 27	Resonance Properties 21
Chapter III. FERRIMAGNETISM § 8. Origin of Ferrimagnetism 30	PART D. POLYCRYSTALLINE FERRITES
§ 9. Weiss Field Theory Applied to Ferri-	Chapter XI. STRUCTURE OF POLYCRYSTAL-
magnetism	LINE FERRITES
	§ 43. Isotropic Samples 21
Chapter IV. MAGNETIC ANISOTROPIES § 11. Description of Magnetic Anisotropies 46	§ 44. Crystal Oriented Samples 22
§ 12. Origin of Crystal Anisotropy 52	Chapter XII. ELECTRICAL PROPERTIES
§ 13. Magnetostriction 55	§ 45. D.C. Resistivity
Chapter V. MAGNETIZATION PROCESSES	and Dielectric Constant 23
§ 14. Weiss Domain Structure 60 § 15. The Domain Boundary (Bloch wall) 64	Chapter XIII. STATIC INITIAL PERME-
§ 16. Magnetization due to Domain Boun-	ABILITY
dary Movement 69	§ 47. Static Initial Permeability at Room Temperature
Magnetization Vector	§ 48. Temperature Dependence of Initial
Chapter VI. DYNAMICS OF MAGNETIZA-	Permeability
TION PROCESSES	
§ 18. Ferromagnetic Resonance Conditions . 78 § 19. Ferrimagnetic Resonance 84	Chapter XIV. FREQUENCY-DEPENDENCE OF THE INITIAL PERMEABILITY
§ 20. Spectroscopic Splitting Factor g 88	§ 50. Magnetic Spectrum of Ferrites with
§ 21. Rotational Susceptibility 91 § 22. Wave Propagation in Magnetized Media 92	Spinel Structure
§ 23. Damping 100	rites with the Basal Plane as the
§ 24. Dynamics of Domain Boundary (Bloch wall) Movement	Preferred Plane of Magnetization 27 § 52. Magnetic Spectrum of Hexagonal Fer-
	rites with the c axis as the Preferred
PART B. MEASUREMENTS	Direction of Magnetization 28
Chapter VII. METHODS OF MEASURING	§ 53. Effect of Mechanical Stresses on the Spectrum
FERROMAGNETIC PROPERTIES § 25. Measurement of Magnetization	§ 54. Relaxation Losses 28
§ 26. Measurements of Magnetocrystalline	§ 55. Induced Ferromagnetic Resonance . 29
Anisotropy Energy	Chapter XV. STATIC HYSTERESIS LOOPS § 56. Coercive Force
§ 28. Methods of Measuring Complex Initial	§ 57. Remanent Magnetization 30
Permeability in Various Frequency Ranges	§ 58. Constricted Hysteresis Loops and Mag-
§ 29. Loss Phenomena Related to the Di-	netic Annealing
mensions of the Specimen 132	on the Form of the Hysteresis Loop 31
PART C. INTRINSIC PROPERTIES	§ 60. Permanent Magnets 31
Chapter VIII. INTRINSIC PROPERTIES of	Chapter XVI. DYNAMIC PROPERTIES AT
FERRITES WITH SPINEL STRUC-	## HIGH FIELD STRENGTHS § 61. Hysteresis Losses and Distortion in the
TURE	Rayleigh Region 32
§ 30. Chemical Composition 136 § 31. Crystal Structure	§ 62. Frequency-Dependence of the Magne- tization Curve
§ 32. Saturation Magnetization 147	§ 63. Ferrites under Pulse Conditions 33
§ 33. Paramagnetism above the Curie Point 160 § 34. Crystal Anisotropy 162	§ 64. Total Losses
§ 35. Linear Magnetostriction 168	REFERENCES
8 36 Dynamic Properties	INDEX

About the authors...

J. Smit and H. P. J. Wijn are both Research Physicists in the Research Laboratories of Philips in Eindhoven, Netherlands where so much of the pioneer work on ferromagnetic oxides was carried out. Dr. Smit received his physical engineering degree from Delft in 1948 and his doctorate in physics from Leiden University in 1956. Dr. Wijn took his degree in physics in 1948 at Utrecht University and his doctorate at Leiden in 1953.

J. SMIT

H. P. J. WIJN

ORDER FORM	Date:	
To:		
Please send me/us		
cop of: Smit and W	ijn FERRITES	Price: 72 s./fl. 38,—
for which I/we enclose remittance	to the value of:	
Name:		
Address:		
ridaress.		
	Sign.:	