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Which cities have the highest risk of human and 
economic losses due to natural hazards? And how will 
urban exposure to major hazards change over the coming 
decades? This paper develops a global urban disaster risk 
index that evaluates the mortality and economic risks 
from disasters in 1,943 cities in developing countries. 
Concentrations of population, infrastructure, and 
economic activities in cities contribute to increased 
exposure and susceptibility to natural hazards. The 
three components of this risk measure are urban 
hazard characteristics, exposure, and vulnerability. For 
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earthquakes, cyclones, floods, and landslides, single 
hazard risk indices are developed. In addition, a multi-
hazard index gives a holistic picture of current city risk. 
Demographic-economic projection of city population 
growth to 2050 suggests that exposure to earthquake and 
cyclone risk in developing country cities will more than 
double from today’s levels. Global urban risk analysis, 
as presented in this paper, can inform the prioritization 
of resources for disaster risk management and urban 
planning and promote the shift toward managing risks 
rather than emergencies.
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A Global Urban Risk Index 

Henrike Brecht, Uwe Deichmann and Hyoung Gun Wang1 

1 Introduction  

The potential for losses from natural hazards is particularly high in urban areas. 1.5% of the world’s land 

is estimated to produce 50% of worldwide Gross Domestic Product (GDP). The same area accommodates 

about one-sixth of the world’s population (World Bank 2009). Concentrations of population, industry, 

infrastructure, and economic activities in cities contribute to increased exposure and susceptibility to 

natural hazards. In fact, the ongoing process of urbanization is one of the main reasons for the staggering 

increase in disaster death tolls and economic losses over the past decades (e.g., Quarantelli 1996, Wisner 

2003, Pelling 2003, Lall and Deichmann 2012).  

The impacts of disasters are on the rise. Statistics show that, even when adjusted for inflation, the losses 

caused by natural catastrophes have been rising at an increasing pace since 1950, even when considering 

improvements in record keeping over time that could bias such comparisons. In the period between 1990 

and 1999 the costs of disasters in constant dollars were more than 15 times higher than during the period 

1950-59 (World Bank 2006). The number of people affected by natural hazards each year nearly 

quadrupled from 1975-84 to 1996-2005 (EM-DAT 2007). Several factors contribute to this increase, for 

example land use changes, social inequalities, subsidence, and environmental degradation (e.g., Smith 

2012, Mileti 1999, Blaikie et al. 1994). Studies suggest that climate change has not significantly 

                                                 
1 The authors are respectively in the East Asia and Pacific Region, the Development Research Group, and 
the Urban and Resilience Management Unit of the World Bank, 1818 H Street, NW, Washington, DC, 
20433, USA (Email: hbrecht@worldbank.org, udeichmann@worldbank.org, hwang4@worldbank.org). 
The research presented in this paper received support from the Global Facility for Disaster Reduction and 
Recovery (GFDRR). The authors thank Saroj Kumar Jha, Apurva Sanghi, Francis Ghesquiere, and Brian 
Blankespoor for helpful discussions and support. The findings, interpretations, and conclusions expressed 
in this paper are entirely those of the authors. They do not necessarily represent the views of the 
International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or 
those of the Executive Directors of the World Bank or the governments they represent. 
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contributed to this increase (e.g., Bouwer, 2011; Neumayer and Barthel, 2010; IPCC, 2012). The main 

driver of risk is population pressure and economic growth in vulnerable locations, for example, in coastal 

areas susceptible to cyclones. The world’s low lying coastal elevation zone covers 2% of the world’s land 

area but contains 10% of the world’s population (McGranahan et al. 2007). In the last 30 years, global 

population living in flood plains increased by 114% and in cyclone prone coastlines by 192% (UN-ISDR, 

2011). Due to the global urbanization process, cities are becoming increasingly predestined for risks. 

Estimates by the United Nations suggest that over 50% of the world’s population already lives in urban 

areas (UN 2008). Cities are predicted to absorb most of the future growth in the world population: the UN 

estimates that the urban population share will rise to 70% by 2050 (UN Population Division 2012).  Cities 

in East Asia, for instance, absorb two million new urban residents every month (Gill and Kharas 2007) 

and are projected to triple their built up areas in the coming two decades (Angel et al. 2005).  

While natural hazards and ongoing urbanization are inevitable, disaster losses can be minimized through 

adequate disaster risk management. Reducing risks ex-ante through risk assessments, land use planning, 

building codes, early warning systems, adequate watershed management, and contingency planning leads 

to significantly reduced disaster impacts. The earthquake in Chile in March 2010 was one of the ten most 

powerful earthquakes recorded in the last century. It released 500 times more energy than the earthquake 

that struck Haiti in January 2010. Yet, only 521 people died in Chile, whereas Port-au-Prince was 

catastrophically affected with tens of thousands of deaths. The main reason for this difference is that 

buildings in Chile are built to codes and are regularly inspected whereas Haiti effectively has no building 

codes.   

Because of the enormous loss potential that has developed and is expanding in the narrowest of urban 

space, disaster risk reduction efforts need to be intensified in cities.  Human losses associated with natural 

disasters and economic damages relative to the size of the economy are larger the poorer a country is 

(Skidmore and Toya 2007). Almost 80% of deaths from disasters in the first decade of this century were 

in developing nations (Zakour and Gillespie 2013) and economic losses are 20 times greater as a 
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percentage of GDP in developing countries than in developed ones (World Bank 2006, ). To secure steady 

advances towards poverty alleviation and economic growth in the developing world, suitable risk 

reduction strategies must be developed and mainstreamed into urban planning and development 

strategies. Otherwise, years of development and accumulated wealth are repeatedly destroyed and eroded 

through repeated disasters.  

Given the intrinsic high loss potential from natural hazards in urban areas, it comes as a surprise that 

relatively little is known about global patterns of vulnerability and risk potential of cities. Which cities are 

likely to be affected by a disaster? Which cities have the highest risk of mortality due to disasters? Which 

cities are most at risk of economic losses due to natural hazards? And which of the world’s regions will 

experience the largest increase in urban hazard risk? Efforts to assess urban risks so far have mainly 

focused on single cities, identifying inner-city hotspots. But a comprehensive ranking of the global cities’ 

risk to guide priorities in building resilience has been lacking. Building on complementary country level 

risk assessments, this study creates a disaster risk ranking of large cities in the less developed world. Risk 

levels of 1,943 cities in 110 countries are evaluated and compared. The five following features 

characterize the analysis in this paper:  

• Risks are assessed for urban agglomerations with more than 100,000 inhabitants.  

• For each city, mortality risk and economic risk are calculated by taking into account three 

components of risks: hazard, exposure, and vulnerability. 

• The loss potentials are expressed in relative levels. 

• Four major natural hazards, namely earthquakes, cyclones, floods, and slides are considered in 

this study. Urban risks are identified for each of these hazards separately. In addition, a multi-

hazard index gives a holistic picture of city risk. 

• Expected urban risk exposure to earthquakes and cyclones in the year 2050 is determined using a 

demographic-economic projection model. 
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By disclosing risks to cities, the results presented here can raise awareness, inform resource planning, 

inspire further research, particularly at local levels, and promote the shift towards managing risks rather 

than emergencies.  

 

2 Background  

The assessment of risk is highlighted as a central activity in defining priorities and building resilience in 

the Hyogo Framework for Action 2005-2015 (UN-ISDR 2005), signed by 168 nations and international 

organizations at the 2005 World Conference on Disaster Reduction. Risk identification supports a wide 

range of decision-making processes for different actors on how risk should be managed from the public to 

the private sector (e.g., Hsu et al. 2012, Cutter and Finch 2008, Fuessel 2007). Quantifying risk and 

estimating future losses are not only the first steps in any disaster risk reduction program; the resulting 

scenarios of a risk assessment are increasingly incorporated into sustainable development approaches in 

different sectors in order to climate- and disaster-proof investments.  Once the severity and geographical 

extent of risks have been assessed and the drivers of risk are better understood, appropriate and cost-

effective countermeasures can be systematically identified and implemented. Depending on the scale, risk 

assessments support multiple applications, for example, urban planning, investment prioritization, land 

use planning, building codes, and disaster risk financing solutions.  

A range of perspectives on risk assessments and indices has emerged, ranging from quantitative 

calculations on losses to qualitative analysis capturing also intangible impacts. Interesting initiatives have 

developed mainly at national level but a few have also been completed at global as well as urban scale. 

Global level: Two main risk assessment initiatives have been undertaken with the goal of identifying 

multi-hazard risk worldwide on the basis of grid cells with sub-national extent. First, the Global Disaster 

Hotspots, developed by the World Bank and Columbia University (Dilley et al. 2005, Lerner-Lam 2007) 

produced detailed geospatial data on risks of mortality and economic losses for six major natural hazards. 
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The results enabled a global assessment of risk levels and the identification of areas where the potential 

for disaster impacts is large. Second, the Global Assessment Report 2009 (UN-ISDR 2009) is a multiple 

agencies effort that developed the Global Disaster Hotspots further by using enhanced modeling 

techniques and improved data layers.  An update of this 2009 global risk analysis was released in the 

Global Assessment Report 2011 (UN-ISDR 2011).  

National level: An example of a comprehensive multi-hazard risk index that assigns overall risk values on 

a national level is the Disaster Risk Index (DRI) (Peduzzi et al. 2009). The DRI calculates three factors on 

a national resolution for 200 countries: risk of mortality, the relative vulnerability of each hazard type, 

and the physical exposures of populations to hazard. Another example for a risk assessment on national 

scale, covering a multitude of countries, is the study by McGranahan et al. (2007), which ranks countries 

according to their population shares in the low elevation coastal zones. 

Urban level: With the rise of megacities, risk assessments have increasingly taken place at the city-level, 

identifying inner-city areas of high risks and loss potential (e.g., World Bank 2010b). However, only a 

few limited initiatives exist which assess the overall risk of numerous cities in the form of an index to 

compare and rank cities with each other. Efforts in this area to date have been confined to relatively 

limited sets of locations and hazards. The Munich Reinsurance Group developed the Natural Hazard 

Index for Megacities for 50 cities with high global economic significance (Munich Re 2005). The index 

has an economic emphasis and is geared towards the risk of material losses which is suitable from an 

insurance perspective. Hanson et al. (2011) ranked 136 port cities around the world that have more than 

one million inhabitants. The study examines the risks of coastal areas due to storm surge and high winds, 

taking into account predictions of climate change, subsidence, and population growth. Brecht et al. (2012) 

determined the impact of sea level rise and intensified storm surges in developing countries and highlight 

the major cities worldwide that are located in storm-surge zones. Furthermore, methodologies have been 

developed that propose indicators to estimate the overall risk of cities. Indicators include, for example, 

population density or number of hospital beds (e.g., Davidson 1997, Cardona 2005). These methodologies 
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have been applied for risk identification in only a handful of cities, since data availability of the indicators 

at the city level hampers the implementation of them on a broader scale.   

3 Motivation 

Why is a global urban risk index useful? First, an index combines a set of indicators, which are derived 

from extensive datasets. It aggregates information and summarizes a body of knowledge from a wide 

range of disciplines. It filters information for the reader and translates research into easy to understand 

results.  This makes indices appealing tools.  

Second, a global urban risk index enables the comparison of risk levels in cities in a self-explanatory 

manner. As the international development community gradually shifts from financing post-disaster relief 

towards financing disaster prevention (see for example, Ashdown 2011), a global risk index gives 

reference points for investment decisions. It yields the basis for decisions on where funding for disaster 

risk reduction should be allocated. It allows comparability and the prioritization of programs in areas 

where hazard risk is greatest and where investment benefits are maximized. Cutter (2001) stresses that 

geographic comparisons across regions with a systematic approach in methodologies and data are crucial 

to prioritize risk reduction strategies or poverty reduction goals. Yet, disaster research has usually 

gravitated toward group or community studies as opposed to large-scale projects (Tierney 2002).  

Third, an index facilitates comparisons over time. It can update on the progress in making cities more 

resilient and points to persistent long-term urban hotspots in which integration of risk reduction in urban 

planning needs to be prioritized.  

 

4 Methodology 

Risk expresses the possibility of future disaster, that is the possibility that a hazardous event will happen 

and that exposed and susceptible elements are in the way. It is defined as the probable value of losses that 
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will occur in the event of a disaster. In this study, we use a risk model that is built upon a sequence of four 

modules: hazard, exposure, vulnerability, and losses (Figure 1).  

Figure 1: The four components of the Global Urban Risk Index 

  

 

4.1 Assessing hazards 

Hazard refers to the possible occurrence of physical events that may have adverse effects on vulnerable 

and exposed elements (White 1973). The hazard module in this index assesses the risks from four 

different natural hazards:  earthquakes, landslides, floods, and cyclones. We determine risks for each 

hazard individually and a multi-hazard index gives an overall picture of city risk. To estimate the 

likelihood of a hazard striking a given city, we take advantage of global hazard data sets developed by 

different organizations (Table 1).  

The data sets depict the geographic distribution of hazard risk in a grid format with a resolution of 1 km2. 

Hazard frequency and, when available, severity are derived from historic events, from modeled 

probabilities or from a combination of both. Historic events are used to calculate cyclone hazard risk for 

cities. To estimate cyclone risk, we combined more than 2,800 historic cyclone tracks in the time period 

from 1975 to 2007 and their modeled wind speed plumes (Figure 2), resulting in a global grid, that shows 
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how many times each grid cell has been struck by a cyclone (frequency) and with what wind speed 

(severity) (Figure 3). 

Landslide hazards are summarized as probabilities.  These probabilities are derived through a 

combination of trigger and susceptibility factors defined by various parameters, including slope, 

lithological or geological conditions, soil moisture condition, vegetation cover, precipitation, seismic 

conditions, and Shuttle Radar Topography Mission (SRTM) elevation data. 

Table 1: Data sources for the hazard component 

Hazard Description Unit Source 
Cyclones Tropical cyclones wind speed 

buffers based on compilation of 
tracks (1975-2007) and GIS 
modelling.  

Estimated Saffir-
Simpson categories 

UNEP/GRID-Europe 

Floods Flood frequencies generated by GIS 
modelling, observed flood data 
from 1999 to 2007, obtained from 
the Dartmouth Flood Observatory 
(DFO) and the UNEP/GRID-
Europe PREVIEW flood dataset.  

Expected average 
number of event per 
100 years 

UNEP/GRID-Europe/ 
Dartmouth Flood 
Observatory 

Earthquakes Modified Mercalli Intensity based 
on GIS modelling using the Global 
Seismic Hazard Assessment 
Program (GSHAP) dataset. 

Simulated Modified 
Mercalli Intensity 
(MMI) 

Center for International 
Earth Science Information 
Network (CIESIN), 
Columbia University 

Landslides Landslide probabilities triggered by 
earthquakes and precipitation based 
on GIS modelling taking into 
account slope factor, lithological 
(or geological) conditions, soil 
moisture condition, vegetation 
cover, precipitation, and seismic 
conditions.  

Expected annual 
probability and 
percentage of pixel 
of occurrence of a 
potentially 
destructive landslide 
event times 
1,000,000 

Norwegian Geotechnical 
Institute / International 
Centre for Geohazards 

Note: See Dilley et al. (2005) and UN-ISDR (2011) for details. 
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To calculate earthquake and flood risks, combinations of historic events and modeled probabilities are 

used. We overlaid the resulting hazard grids with city footprints to identify the maximum hazard 

probability for each of the cities. This is accomplished by assigning the value of the grid cell with highest 

hazard denomination within a city footprint as the city’s hazard severity.  

Figure 2: Wind field of Hurricane Katrina in 2005 

 

Figure 3: Global cyclone frequency 1975-2007 

 

4.2 Quantifying exposure 

The exposed elements at potential risk from hazards are people, buildings, transport infrastructure, 

economies, and communities. In a rapidly urbanizing world, the increasing concentration of people and 

High (count 74) 

Low (count 1) 
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economic assets in cities is leading a sharp rise of urban hazard risk and is a main driver for the increase 

in disaster losses. Growing exposure and delays in reducing vulnerabilities result in an increased number 

of natural hazards and greater levels of loss.  

The impact of a disaster is dependent on the extent of the exposed elements that are in harm’s way, i.e. on 

the number of people and the amount and value of infrastructure that are affected by the disaster. The 

exposure module in this study is an inventory of assets at risk at the city level. We consider two asset 

classes: City population and city GDP. City population numbers are based on the “Henderson City 

Dataset” (Table 2).  

 Table 2: Data sources for the exposure component 

Dataset Description Unit Source 
Henderson 
City Data 

Data set of cities worldwide with more 
than 100,000 inhabitants. The data 
includes city names, countries, codes, 
coordinates, and population numbers of the 
years 1960, 1970, 1980, 1990, and 2000. 

Inhabitants per 
urban 
agglomeration 

Prof. J. Vernon 
Henderson, Brown 
University  
 

GRUMP Global urban footprint grid based largely 
on NOAA’s night-time light satellite data 
from 1994/5 coupled with settlement 
information. 

Urban population 
distribution and the 
global extents of 
human settlements 

Center for International 
Earth Science 
Information Network 
(CIESIN), Columbia 
University 

GDP Sub-national Gross Regional Product 
(GRP) estimates and national Gross 
Domestic Product (GDP) data are allocated 
in proportion to the population residing in 
that cell.  The approach distinguishes 
between rural and urban regions. 

US$ per 1 km2 grid 
cell 

World Bank 

 

All cities in less developed countries with more than 100,000 inhabitants in the year 2000 are selected 

from this database. This results in a city dataset with 1,943 cities. Cities in this context are entire urban 

agglomerations with suburban fringe and adjacent towns.  
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To determine urban GDP and hazard severity, we define a city footprint for each of the city points from 

the Henderson data. To define a footprint for each city, we match the city points of the Henderson data 

with the Global Rural-Urban Mapping Project (GRUMP) raster data by the Center for International Earth 

Science Information Network (CIESIN) at Columbia University. GRUMP is a global urban footprint grid 

based largely on NOAA’s night-time light satellite data (e.g., Elvidge et al. 2010) coupled with settlement 

information. For each of the 1,943 cities, we identify a corresponding urban area in GRUMP, which 

represented the city’s urban footprint. Where multiple city points fall within a large continuous area, we 

use Thiessen polygons to allocate a portion of the area to each urban point, creating a unique urban 

footprint for each city (Figure 4). 

Figure 4: Integration of GRUMP data and Henderson Cities  

 
 

We use the footprints to calculate city GDP by using a global GDP grid with a resolution of 

approximately 1km2. The GDP figures for cells within a city footprint are added up which resulted in the 

city GDP. By overlaying the footprints with the natural hazard grids, the footprints are the basis for 

identifying if a city is exposed to natural hazards, and if so, with what maximum hazard probability.  
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4.3 Calculating vulnerability 

The term ‘vulnerability’ is derived from the Latin word vulnerare, which means 'to wound'. Broadly, 

vulnerability refers to the extent to which a person, structure, or service is likely to be damaged by the 

impact of a disaster. It explains why, with a given hazard severity, people and assets are more or less 

likely to experience damages or losses and why they do or do not fail to be resilient in the face of a 

threatening event. For the purpose of a risk assessment, vulnerability is usually disaggregated into 

categories such as physical, social, economic, or environmental. While physical vulnerability of the built 

environment, for example, is influenced by building age and construction type, social vulnerability is 

affected by lack of access to resources or limited access to political power.  

Vulnerability reduction is a core element in disaster risk management. The concept of vulnerability has 

helped to highlight the role of social and physical factors that have an impact on the constitution of risk 

(Hewitt 1983). By using the notion of vulnerability, disasters are not simply viewed as the result of a 

natural event but rather as the result of the vulnerability of a society, its infrastructure, economy, and 

environment, all of which are determined by human behavior. The focus shifts to what makes a natural 

hazard and unnatural disaster (World Bank 2010a). Governments and citizens can appreciably reduce 

vulnerability, and therefore risk, through sensible combinations of prevention, insurance, and 

preparedness. 

Vulnerability is not easily quantifiable and researchers have struggled to develop appropriate metrics for 

vulnerability (Adgers 2006). Ways to determine vulnerability include deductive, inductive, and combined 

methods. Deductive approaches use quantitative methods based on historical patterns of past disasters and 

their damages and losses. Inductive approaches determine risks through combining weighted variables for 

vulnerability. For example, factors such as GDP, poverty rates, or population density are taken as 

indicators of how vulnerable a place is. An obstacle to inductive modeling is the lack of accepted 

procedures for assigning values and weights to the different vulnerability factors that contribute to risk. 

An obstacle to deductive approaches is that the data on losses during past hazards is insufficient, 
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especially on larger scales, and often not methodologically recorded. Despite this weakness, deductive 

modeling offers a viable option to risk indexing in many contexts and is helpful, especially for risk 

comparisons on larger scales.  

In this study, we use deductive methods to determine two dimensions of vulnerability. Vulnerability to 

mortality is calculated based on historical disaster mortality in precedent hazard events and vulnerability 

to economic losses is determined through past economic losses in disasters. We extract the loss data on 

number of deaths and amount of economic losses from the Emergency Events Database (EM-DAT) 

(http://www.em-dat.net) for the period from 1980 to 2007 (Table 3). EM-DAT is maintained by the 

Centre for Research on the Epidemiology of Disasters (CRED) which classifies an event as a disaster and 

includes it into EM-DAT if at least one of the following criteria applies: Ten or more people were killed, 

100 or more people were affected, a declaration of a state of emergency was made, or an appeal for 

international assistance was made. EM-DAT records more than 600 disasters globally each year. For each 

event, the database lists the type of disaster, the country, the date, death tolls, estimated damage, and the 

number of affected people. Aggregating over more than 8,000 entries in EM-DAT helps compensate for 

missing data and reporting inaccuracies. 

Table 3: Data sources for the vulnerability component 

Dataset Description Unit Source 
EM-DAT 
(Emergency 
Events 
Database) 

International disaster database for major 
hazards across the world, listing country, 
date, death tolls, estimated damage, 
number of homeless and affected people. 
The database contains over 14,000 
disasters and is compiled from various 
sources, including UN 
agencies, NGOs, insurance companies,  
research institutes, and press agencies. 

Number of 
fatalities/economic 
losses per disaster 

Centre for Research on 
the 
Epidemiology of 
Disasters 
(CRED) 
http://www.em-dat.net/ 

 

We calculate different vulnerability coefficients, or loss weights, for the two vulnerability categories of 

population and GDP. Weights are obtained for all of the four hazard types for each of the 25 World Bank 
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clusters. Clusters are agglomerations of countries according to standard classifications of the World Bank. 

They stem from seven geographical regions (Africa, East Asia and the Pacific, Europe and Central Asia, 

Latin America and the Caribbean, Middle East and North Africa, North America, South Asia) (Figure 5) 

and four different wealth classes (high, upper-middle, lower-middle, and low). We calculate the 

coefficients on a regional basis rather than for each country, or even city, due to an insufficient number of 

hazard and loss events. The weights are an aggregate index of relative losses over a 27 year period. They 

represent an estimate of the proportion of persons killed during that period in the area that is exposed to 

that hazard. For example, to calculate mortality loss weights for a hazard h for a certain cluster c, the 

death tolls for that hazard (e.g. earthquakes) in the years from 1980 to 2007 are extracted from EM-DAT 

for all countries within that cluster and aggregated: Mch. 

Figure 5: The six regions covered in the study 

 

Then, using the raster layers on the extent of each hazard, we sum up the population in the earthquake 

affected areas from the year 2000 for that cluster: Pch. We calculate a simple mortality rate for the hazard 

for the cluster:  

𝑟𝑐ℎ = 𝑀𝑐ℎ/𝑃𝑐ℎ 
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4.4 Determining urban risk  

Building upon the first three modules of hazard, exposure, and vulnerability, we determine the probability 

of mortality and economic losses from catastrophic events for each city. The vulnerability coefficients are 

used as weights that are combined with both the exposure data per city and the city-specific hazard 

severity. For example, for each city i that is in an earthquake-prone area, we compute the city-specific 

earthquake mortality rate Mice by multiplying the cluster-specific earthquake mortality rate rce by the city 

population Pi and the city-specific earthquake severity Wie. 

𝑀𝑖𝑐𝑒 = 𝑟𝑐𝑒𝑃𝑖𝑊𝑖𝑒 

To compute a weighted multi-hazard index value for mortality that reflects total estimated impacts from 

all disaster types for a city, we follow this method for each hazard h. Since the degree of hazard (hd) for 

each of the five hazards is measured on a different scale (for example, frequency counts for cyclones 

versus probability index values for landslides), the accumulated mortality numbers are not easily 

comparable across hazards and simply adding the resulting values would result in an index unduly 

dominated by a hazard type h that happens to be measured on a scale with larger values. Before 

combining the hazards into a multi-hazard index, we apply a uniform adjustment by deflating the 

weighted hazard-specific mortality figures, so that the total mortality in each region adds up to the total 

recorded in EM-DAT.  

𝑀𝑖𝑐ℎ
∗ = 𝑀𝑖ℎ

′ 𝑀𝑐ℎ /�𝑀𝑖ℎ
′

𝑛

𝑖=1

 

where n is the number of cities per cluster and M’ih is the hazard-specific city mortality rate (hd  Pi  r). 

We calculate the combined, mortality-weighted multi-hazard city risk value Yi
* as the sum of the adjusted 

individual hazard mortality estimates for a given city:  

𝑌𝑖∗ = �𝑀𝑖ℎ
∗

4

ℎ=1
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Reporting actual mortality numbers would portray an unrealistic impression of precision. To avoid literal 

interpretation of the disaster index as the number of persons expected to be killed in a 20-year period and 

in recognition of the many limitations of the underlying data, we convert the resulting measures into 

index values from one to ten, classifying the global risk distribution into deciles and providing relative 

presentations of disaster risk. 

4.5 Interpretation 

The calculated risks in the index assign a value to the city as a whole and are based on the three factors of 

hazard severity in the city, city population, and the vulnerability of the particular World Bank cluster. The 

mortality risk in a city is the potential extent of total fatality numbers that a city could incur rather than 

the extent of risk that a single person experiences in that city. Similarly, economic risk mirrors total 

potential damage extent. 

Result interpretation needs to consider that a number of constraints. In an index, interesting and 

idiosyncratic detail is hidden, and indexing cannot replace detailed research at local level. Constraints in 

globally available data limit the sophistication of the methods that were employed to investigate urban 

risk on a global level. Although we use the best available data, gaps in the data limit our analysis. For 

example, deductive modeling has weaknesses in determining risk in contexts where disasters occur 

infrequently and where historical data are scarce. Moreover, disaster loss data in EM-DAT is recorded on 

country-level and does not allow for a differentiation between urban and rural loss rates and 

vulnerabilities. The relatively small number of disaster events leads us to calculate vulnerability 

coefficients on regional levels using groups of countries. Aggregating across more than 8,000 entries in 

EM-DAT helps compensate for missing data and inaccuracies and reflect broad patterns of vulnerability. 

It cannot, however, reveal protection mechanisms (land use planning, regulations) that individual cities 

might have implemented. Another limiting factor is the relatively crude delineation of some hazards. For 

example, earthquakes with pathological damage patterns are represented incompletely. The cities 

investigated in this study stem from the Henderson city database (see Table 2). This data set contains 
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cities worldwide with more than 100,000 inhabitants. While it has extensive coverage globally, some 

cities are left out in the database and are consequently not included in the index. Finally, for a few clusters 

insufficient historic loss data were available for landslide hazards (i.e. Middle East and Northern Africa 

High Income, Middle East and Northern Africa Lower Middle Income, all clusters in the Africa region, 

and Eastern Europe and Central Asia Lower Middle Income). The countries belonging to those clusters 

were therefore not included in the landslide analysis.  

In recognition of these limitations, the modest objective of the study is to provide a relative presentation 

of disaster risk instead of an absolute one. We therefore convert the absolute city risk values, calculated in 

the risk model, into comparative index values.  

While the index cannot provide the detail needed to identify concrete risk reduction measures, it assesses 

the relative importance of risk at regional level and identifies areas where more attention is needed. 

5 Results 

Global Distribution. The number of exposed urban dwellers to certain hazards has implications for the 

weight given to reduce the risk of specific hazards. In this analysis, by far the greatest number of the 

investigated urban population in less developed countries is exposed to flood hazards, approximately 1.1 

billion. Around half that number (560 million) are at risk to earthquakes and also to landslides (660 

million). Finally, nearly 90 million of the study’s urban population is exposed to cyclone hazards.  

Regional Distribution. Between 1980 and 2006, Pakistan and the US both experienced nineteen major 

earthquakes (>5.0 on Richter scale). While in Pakistan 74,112 people died during these earthquakes, in 

the US only 145 people were killed. This enforces the concept that tragedies are not caused by the 

earthquake itself, but rather by dire construction practices and missing policies. The deaths and 

devastation in disasters result from human action or inaction. Typically, wealthy regions and countries are 

at higher risk in terms of economic losses but suffer fewer fatalities whereas poor countries experience 
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high mortality risks and lesser economic risks. The results in Figure 6 reflect this trend. This figure shows 

the accumulated shares of urban economic and mortality risks by region and hazard. Within the individual 

regions, significant differences can be found in terms risks to mortality and economic loss risks. For 

example, while urban mortality loss risk to cyclones is greatest in South Asia (68%), the share of urban 

cyclone economic loss risk in the same region is only 16%. The wealthier East Asian countries bear the 

greatest burden of urban economic loss risk (77%) whereas East Asia’s urban mortality risk is 

comparatively lower. Next to wealth, the type of disaster is a decisive factor for overall risk. Fatalities 

from severe earthquakes, for example, are usually far larger than fatalities from severe floods or cyclones 

under equal vulnerability conditions. 
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 Figure 6: Regional shares of urban risks for four different hazards 
 

Earthquake mortality risk        Earthquake economic loss risk 

   
 Cyclone mortality risk             Cyclone economic loss risk 

 
 Landslide mortality risk          Landslide economic loss risk 

   
              Flood mortality risk               Flood economic loss risk 

    
 

 

0% 4% 

35% 

5% 

28% 

28% 

0% 5% 

60% 9% 

19% 

7% 

1% 

22% 
0% 

9% 
0% 68% 

4% 

77% 

0% 

3% 0% 16% 

2% 

28% 

31% 

19% 

1% 
19% 13% 

76% 

11% 

28% 

25% 

2% 

20% 

3% 

22% 
39% 

44% 

5% 
5% 1% 6% 



21 
 

5.1 Ranking risks by country 

The five most at risk countries for urban mortality and economic loss risk from four investigated hazards 

are presented in Table 4. Some risks are highly concentrated in certain countries. India, Pakistan, and 

Bangladesh, for example, account for 68% of cumulative urban mortality risk to cyclones out of all 

investigated cities. Economic loss risk from cyclones, on the other hand is highest in East Asia, where 

China alone accounts for 53% of the cumulative urban economic loss risk for cyclones. Earthquake risk is 

highly concentrated in Turkey and Iran, both of which together account for 47% of all investigated 

cumulative urban earthquake risk of economic losses.  Economic risk to earthquakes is also high in 

Hungary and Romania, both of which lay in one of the largest well-defined seismic-active areas of 

Europe. The high density of urban inhabitants in out-of-date infrastructure contributed to past significant 

past earthquake losses in the category of upper middle income countries in Eastern and Central Europe, 

which led a large economic vulnerability coefficient in this study. 

 Table 4: The five most at risk countries for urban mortality and economic loss risk per hazard 

 
Earthquake Risk 

 
Cyclone Risk 

  Mortality  Economic Loss  
 

Mortality  Economic Loss  
1 Turkey Turkey 

 
India China 

2 Iran Iran 
 

Pakistan Myanmar 
3 India Hungary 

 
Bangladesh Vietnam 

4 Pakistan Romania 
 

China India 
5 Egypt Russia 

 
Myanmar Pakistan 

 

 
Landslide Risk 

 
Flood Risk 

  Mortality  Economic Loss  
 

Mortality  Economic Loss  
1 Turkey Turkey 

 
South Africa South Africa 

2 Philippines Philippines 
 

India Vietnam 
3 India Russia 

 
China China 

4 Guatemala Guatemala 
 

Argentina Indonesia 
5 Indonesia China 

 
Bangladesh India 
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5.2 Ranking risks by city 

The cities with the highest mortality and economic loss risk by hazard are listed in Table 5 to Table 8. 

The tables show the five most at risk cities by hazard in each of the six investigated regions. The ranking 

gives an indication of the cities most worthy of further and more detailed investigation. The data provide 

for interesting comparisons. For example, Metro Manila, one of the world’s most disaster prone cities, is 

listed in the tables as being highly at risks from the three hazards of earthquakes, floods and landslides. In 

2012, the city again experienced devastating floods with almost two thirds of the city area being 

submerged after a week of torrential rains. Tehran is also highly at risk, especially from earthquakes and 

floods. This fact has sparked repeated discussions among the country’s leaders about moving the capital 

to a less risky region. A striking, but also sobering, result is the magnitude of risk in certain cities. In 

South Asia, the top five ranked cities for cyclone mortality risk bear 62% of all cumulative mortality loss 

risk in that region. Cumulative economic loss risk for landslides in Eastern Europe and Central Asia 

amounts to 51% for the top five ranked cities in that category. All of those five cities are in Turkey. In 

Africa, Addis Ababa accounts for 31% of the cumulative earthquake mortality risk in that region and the 

top five cities altogether bear 59% of Africa’s earthquake mortality risk. 

A number of smaller cities with less population and wealth are set to swell with rapid increases in 

population and asset exposure. These include, for example, Toluca in Mexico and Conakry in Guinea. 

While the absolute exposure of these cities is currently relatively low, the rapid increase in population 

growth will pose significant challenges for these cities in the coming years.   
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Table 5: Regional top 5 cities most at risk to earthquakes 

 
Mortality risk Economic loss risk 

Region Country City Country City 
Africa Ethiopia Addis Ababa Uganda Kampala 

Uganda Kampala Ethiopia Addis Ababa 
Malawi Blantyre Malawi Blantyre 
Kenya Nakuru Kenya Kisumu 

Burundi Bujumbura Kenya Nakuru 
East Asia Philippines Metro Manila Indonesia Jakarta 

Indonesia Jakarta Philippines Metro Manila 
China Tianjin China Beijing 
China Beijing China Tianjin 

Indonesia Bandung Indonesia Yogyakarta 
Eastern 
Europe and 
Central Asia 

Turkey Istanbul Turkey Ankara 
Turkey Ankara Hungary Budapest 
Turkey Izmir Turkey Izmit 

Romania Bucharest Turkey Istanbul 
Turkey Bursa Turkey Izmir 

Latin 
America and 
the Caribbean 

Mexico Mexico City Peru Lima 
Peru Lima Mexico Mexico City 
Chile Santiago Mexico Tijuana 

Colombia Bogota Colombia Bogota 
Mexico Guadalajara Chile Santiago 

Middle East 
and Northern 
Africa 

Egypt Cairo Iran Tehran 
Iran Tehran Egypt Cairo 
Iran Mashhad Iran Raja'ishahr 
Iran Esfahan Egypt Shubra El-Kheima 

Tunisia Tunis Iran Ahvaz 
South Asia India Kolkata India Delhi 

Bangladesh Dhaka India Kolkata 
Pakistan Karachi Pakistan Karachi 

India Delhi Pakistan Lahore 
Pakistan Lahore Bangladesh Dhaka 
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Table 6: Regional top 5 cities most at risk to cyclones 

 
Mortality risk Economic loss risk 

Region Country City Country City 
Africa Mozambique Quelimane Mozambique Quelimane 

Mozambique Beira Mozambique Beira 
Madagascar Toamasina Madagascar Toamasina 
Madagascar Mahajanga Madagascar Mahajanga 

East Asia Myanmar Yangon China Shenzhen 
China Shanghai Myanmar Yangon 

Vietnam Hai Phong Vietnam Hai Phong 
China Fuzhou China Shanghai 
China Dongguan China Dongguan 

Latin 
America and 
the 
Caribbean 

Dominican Republic Santo Domingo Mexico Cancun 
Jamaica Kingston Jamaica Kingston 

Cuba La Habana Mexico Ciudad Madero 
Mexico Cancun Dominican Republic Santo Domingo 

Dominican Republic La Romana Mexico Mazatlan 
South Asia India Chennai India Chennai 

Pakistan Karachi Pakistan Karachi 
Bangladesh Chittagong India Visakhpatnam 

India Visakhpatnam Bangladesh Chittagong 
Bangladesh Khulna Bangladesh Khulna 

Note: No cyclone risk was measure in the Middle East, Northern Africa, Eastern Europe, and Central 
Asia 
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Table 7: Regional top 5 cities most at risk to landslides 

 
Mortality risk Economic loss risk 

Region Country City Country City 
Africa Sierra Leone Freetown 

  Guinea Conakry 
  Nigeria Lagos 
  Côte d'Ivoire Abidjan 
  Ethiopia Adis Abeba 
  East Asia Philippines Metro Manila Philippines Metro Manila 

Indonesia Surabaya China Shenzhen 
Philippines Baguio Indonesia Surabaya 

Vietnam Ho Chi Minh Indonesia Yogyakarta 
Indonesia Padang China Hong Kong SAR, China 

Eastern 
Europe 
and 
Central 
Asia 

Turkey Manisa Turkey Izmit 
Turkey Izmir Turkey Manisa 
Russia Petropavlovsk-Kamatskij Turkey Kahramanmaras 
Turkey Kahramanmaras Turkey Izmir 
Turkey Erzurum Turkey Erzurum 

Latin 
America 
and the 
Caribbean 

Guatemala Guatemala City Guatemala Guatemala City 
Ecuador Quito Brazil Vitoria 

Colombia Bogota Peru Lima 
Peru Lima Ecuador Quito 

Brazil Vitoria El Salvador San Salvador 
Middle 
East and 
Northern 
Africa 

Iran Tehran Bahrain Al-Manamah 
Iran Rasht Djibouti Djibouti 
Iran Shiraz Iran Tehran 
Iran Tabriz Iran Mashhad 
Iran Khorramabad Iran Esfahan 

South Asia India Imphal India Imphal 
India Mumbai India Srinagar 
India Srinagar India Thane 

Pakistan Peshawar India Bhiwandi 
Pakistan Islamabad India Chandigarh 

Note: Due to lack of data, economic loss risk for landslides could not be calculated in Africa. 
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Table 8: Regional top 5 cities most at risk to floods 

 
Mortality risk Economic loss risk 

Region  Country City Country City 
Africa South Africa Cape Town South Africa Cape Town 

South Africa Pretoria South Africa Durban 
South Africa Durban South Africa Pretoria 
South Africa Port Elizabeth South Africa Port Elizabeth 

Nigeria Lagos South Africa Alberton 
East Asia Indonesia Jakarta Vietnam Ho Chi Minh 

China Wuhan Indonesia Jakarta 
Philippines Metro Manila Philippines Metro Manila 

Vietnam Ho Chi Minh Vietnam Hanoi 
Vietnam Hanoi Cambodia Phnom Penh 

Eastern 
Europe and 
Central 
Asia 

Uzbekistan Tashkent Russia Moscow 
Uzbekistan Namangan Poland Warszawa 
Uzbekistan Andijan Uzbekistan Tashkent 

Russia Moscow Poland Kattowitz 
Tajikistan Khujand Turkey Ankara 

Latin 
America 
and the 
Caribbean 

Argentina Buenos Aires Argentina Buenos Aires 
Venezuela Caracas Brazil Sao Paulo 

Brazil Sao Paulo Uruguay Montevideo 
Argentina Rosario Venezuela Caracas 
Venezuela Maracaibo Mexico Mexico City 

Middle 
East and 
Northern 
Africa 

Iran Tehran Iran Ahvaz 
Iran Ahvaz Iran Tehran 
Iraq Al-Basrah Iran Rasht 
Iran Shiraz Iran Shiraz 

Morocco Casablanca Iran Abadan 
South Asia Bangladesh Dhaka India Kolkata 

India Kolkata India Delhi 
India Delhi Bangladesh Dhaka 

Bangladesh Chittagong India Surat 
Pakistan Karachi Pakistan Karachi 
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Figure 7:  Urban mortality risk 

 

Figure 8: Urban economic loss risk 

 

Urban multi-hazard mortality risk for all 1,943 investigated cities is shown in Figure 7. The values are 

calculated as the sum of the adjusted individual mortality estimates from the four hazards, and the results 

are grouped into five classes, using quintiles. Mortality risk is significant in regions exposed to repeated, 
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severe flooding and storms along the eastern continental shorelines but also in the earthquake prone 

regions of Eastern Europe and the Middle East. The regional differences in risks are in part due to 

differences in population size but also the degree of hazard severity and frequency across regions. 

Additionally, the differences reflect the variation in vulnerability. Similarly, economic risk is shown in 

Figure 8.  

Figure 9 shows the cities most at risk, taking into account both economic and mortality risk from all 

hazards. To determine these, we calculated percentiles of the hazard-specific mortality of all the cities 

using 15 classes (6.66 percentile, 13.33 percentile, etc.). The same was done for economic risk. Cities that 

fall into the class above the highest percentile (93.33) for both mortality and economic risk are included in 

the maps. Of these highest ranked thirty cities, eleven are in East Asia, five are in South Asia, five are in 

Eastern Europe and Central Asia, three in Latin America, three in Sub-Saharan Africa and three in the 

Middle East and Northern Africa. Some of these city results are closely tied with high hazard risk from 

several hazards (for example, Tehran), others are particularly at risk due their size (for example, Metro 

Manila) and yet others are in the top 30 list due to their high vulnerability (for example, Ankara).  

Figure 9: 30 cities most at risk 
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6 Sensitivity analysis 

Sensitivity analysis, applied to a risk assessment, is a method used to understand how risk estimates 

depend on the variability and uncertainty of the factors used in the analysis. It determines how the 

different factors used in the index construction process affect the outputs, and it plays an important role in 

the verification and validation of the model. According to Saltelli at al. (2000) a sensitivity analysis is 

conducted to determine, for example, a) if the model resembles the system under study; b) the factors that 

most influence the output variability and therefore require special attention; c) the model parameters that 

are insignificant and that can be omitted; and d) which factors interact with each other. It is the final step 

in index development analysis, which examines the sensitivity of the model to changes in its inputs, and 

that gives an indication on the level of confidence or uncertainty. In existing risk and vulnerability 

indices, this last step has often been omitted. 

In the Urban Risk Index, sources of uncertainties include: a) the underlying hazard models, b) the 

delineation of cities, c) the global grids for GDP and population, and d) the vulnerability coefficients. 

Future work on the index could conduct local sensitivity analysis by varying these input factors one at a 

time and examine the impact, while the other factors remain constant. Since the index measures relative 

values, the sensitivity of the relative, not absolute, values would need to be examined. These analyses 

could be developed for the individual four single hazard indices. 

For the multi-hazard index, which simply adds the values of the single hazard indices, it would be 

interesting to determine which of the four indices have the largest influence in the overall urban multi-

hazard risk. The percentage values to which the single hazard indices contribute to the overall index vary 

largely from 0-100% for all four hazards. We carried out a preliminary analysis that investigates how the 

top 20 cities of the multi-hazard mortality index change if one single hazard value is removed. If the 
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landslide results are omitted from the overall index, only one city out of the top 20 cities changes. If the 

flood index values are omitted, three cities change in the top 20. Removing the cyclones from the overall 

index, results in a change of six cities and, finally, excluding earthquakes results in a change of seven 

cities in the top 20 cities. This corresponds to the fact that earthquakes, on average, cause large fatality 

numbers.  

 

7 Future urban hazard risk 

Between 2010 and 2050, urban areas will receive almost 2.7 billion additional residents according to UN 

estimates. Almost all of this net growth—a result of migration, natural increase and absorption of nearby 

rural areas—will occur in developing countries. Larger cities also mean greater exposure of people and, 

because urban dwellers tend to be more productive than rural ones, an even greater increase of exposure 

of economic assets. We develop a demographic-economic model of city-level population growth to derive 

an estimate of future population exposure to earthquakes and cyclones up to 2050.  

Population projections for countries tend to be more accurate than those for cities. Since international 

population movements are typically far smaller than within-country migration, demographic models 

based on fertility and mortality work well to forecast national population totals. But at the city level, 

migration and the future fertility of these new migrants become more important factors. Migration, in 

turn, responds to economic dynamics, so commonly used demographic models do not yield reliable 

predictions (World Bank 2009). Instead, city level projections require consideration of various 

endogenous and exogenous factors, such as technological change, economic growth and development, as 

well as national population growth. In order to project future urban growth locations, it is critical to 

understand the underlying forces that drive this transformation.  

We based our projections on a global study of determinants of city growth by Henderson and Wang 

(2007). This paper empirically modeled the urbanization process between 1960 and 2000.  We focus on 
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the projection of future city growth to the year 2050 at the global scale while following the city growth 

modeling framework and key variables developed by Henderson and Wang (2007). The model is set up as 

a three-stage procedure. In the first stage, we develop a city growth empirical model of “core cities” with 

more than 100,000 population-essentially re-estimating a modified version of the Henderson–Wang 

model and use the estimated parameters to produce corresponding city population projections to 2050. In 

the second stage, we extend the projections to “broader cities” of more than 50,000 population by 

extrapolating city growth dynamics in different city size groups. These smaller cities are important 

because many will enter our category of larger cities within the next four decades. In the third and final 

stage, we use the UN Population Division country level urban population projections (to 2050) to make 

our city population projections conform to these national urban totals. 

We extend Henderson and Wang’s (2007) modeling framework and datasets covering core cities with 

more than 100,000 population (as of year 2000) and estimate corresponding city population projections in 

ten year intervals from 2010 to 2050. The projection in this stage covers 2,186 cities. 

The core city growth model is estimated using the Ordinary Least Squares estimation. The dependent 

variable is the city population growth rate of city i in country j over a 10-year period 

( )1ln ln lnijt ijt ijtn n n −∆ = − . The independent variables include both country and city level 

characteristics. At the country level, we add the national population growth over the same period 

( )ln nat_pop jt∆ , the share of urban population ( )1urban_rate jt− , the share of population between 15 to 

24 years of age ( )1r_pop_15_24 jt− , the percentage of adults with secondary education 

( )1pct_sec_edu jt−  
in the base year, and a dummy indicating landlocked countries.  

At the city level, we include the city population growth in the previous period ( )1ln ijtn −∆  in order to 

capture strong time persistence often observed in the city growth empirical literature. In addition we 

consider factors that determine the economic attractiveness of a city relative to its national peers. The 

growth of a city-specific market potential measure in the previous period ( )1ln ijtMP −∆ is added as a 
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crude representation of the extent of market demand for a city’s products. The market potential of city i is 

the distance discounted sum of populations of all other cities in the country excluding city i. ikd  is the 

distance from city i to k. 

kjt
ijt

k j ik
k i

n
MP

d∈
≠

=∑  

For other geographical control variables, we include distance to coasts ( )ln distance_coast ij  and a 

dummy for a capital city. Coastal locations facilitate imports and exports and make a city an attractive 

location for investment. The seat of government usually attracts a disproportionate share of migrants to 

capital cities. Finally, we add interaction terms to capture heterogeneous contributions of different 

covariates, which include 1 1ln lnijt ijtn MP− −×∆ , and -1 1ln pct_sec_eduijt jtn −× . 

The estimation results of the base sample covering 1960 to 2000 are reported in Table 9. All covariates 

are significant and have expected signs, which can be easily interpreted. Henderson and Wang (2007) 

provide detailed interpretation of a similar set of estimation results. 
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Table 9: City growth estimation results of core cities with more than 100,000 population 

Dependent variable 1ln ln lnijt ijt ijtn n n −∆ = −  
Estimation method OLS 

  
ln nat_pop jt∆  0.699*** 

 (0.076) 

1urban_rate jt−  -0.067*** 
 (0.022) 

1r_pop_15_24 jt−  0.471** 
 (0.192) 

1ln ijtn −∆  0.181*** 
 (0.031) 

1 1ln lnijt ijtn MP− −×∆  -0.153*** 
 (0.026) 

1pct_sec_edu jt−  -0.005** 
 (0.002) 

-1 1ln pct_sec_eduijt jtn −×  0.0004*** 
 (0.00016) 

1ln ijtMP −∆  2.360*** 
 (0.355) 

Dummy for a landlocked country -0.046* 
 (0.023) 

Dummy for a capital city 0.079*** 
 (0.018) 

ln distance_coast ij  0.006*** 
 (0.001) 
  

Constant  Yes 
Observations 4,014 

R2 0.383 
 
Note: 1. Robust standard errors are in parentheses. 2. * significant at 10%; ** significant at 5%; *** 
significant at 1%. 

 

 

To project future city level population, the estimation results are sequentially applied to each city’s 

decadal population. For example, the expected city population growth in year t+1 (say, 2010) is used to 

compute the market potential measure in year t+1, which in turn is used to predict the city population 
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growth in year t+2 (2020). The educational attainment, specifically the percentage of adults with 

secondary education, represents human capital accumulation and is an indirect measure of technological 

progress. Its projection from 2010 to 2050 is imputed using a simple projection equation capturing stable 

correlation with GDP per capita.2 Other national level exogenous variables, such as projections of 

national population growth and urbanization rate, are from the UN Population Division projections. In 

this way, we estimate city population projections of 2,175 core cities of more than 100,000 population. 

In the second stage, we extend the city population projections to 8,301 cities of more than 50,000 

population. The data are from the CIESIN (2010), but they only contain estimates for a single point in 

time, for the year 2000. We also note that data for these 8,301 cities have been collected from different 

sources and city definitions are not completely harmonized with the aforementioned city profiles of 2,175 

core cities with more than 100,000 population.3 

These data limitations do not allow a full-fledged panel data analysis as in the first stage core city 

modeling, and we cannot identify city-specific growth dynamics. In order to circumvent this problem, we 

extrapolate city growth dynamics from the first stage core city growth modeling results. A key 

assumption, derived from the systems of cities literature, is that a city’s growth dynamics crucially depend 

on its rank in the urban hierarchy.4 In other words, the relative city population size in a competing region 

determines its future growth when other exogenous variables are controlled for. 

                                                 
2 The percentage of adults with secondary education of country j in year t is predicted using GDP per capita 
projections of Hawksworth (2006).   

( ) ( )
1(0.008) (2.832)

2 3

(0.384) (0.017)

pct_sec_edu 0.870 pct_sec_edu 9.537 ln

                        1.545 ln 0.075 ln constant

jt jt jt

jt jt

GDPpc

GDPpc GDPpc

−= × − ×

+ × − × +
 

Robust standard errors are in parentheses. All coefficients are significant at 1%. R2 = 0.835. 
3 In contrast to the previous analysis we include cities in industrialized countries in these projections. 
4 A basic model of multiple types of cities involves different types of urban specialization, where different types of 
cities are specialized in different products and resulting in different city sizes. See Henderson (1974), and Duranton 
and Puga (2002) for a review. 
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We first reclassify the 2,175 core cities (of more than 100,000 population) into 16 regions following the 

regional classification employed in the 2009 World Development Report (World Bank 2009): Australia 

and New Zealand, Central America and Caribbean, Central Asia, Caucasus and Turkey, Eastern Africa, 

Eastern Europe and Russia, Middle Africa, North America, Northeast Asia, Northern Africa, South 

America, Southeast Asia and Pacific, Southern Africa, Southern Asia, Western Africa, Western Asia, and 

Western Europe. In each WDR region, we group its constituent cities into quintile subgroups according to 

their relative city population size in 2000, and compute in each quintile group the mean values of each of 

the regressors of Table 9. These quintile mean values represent region-specific average attributes of each 

quintile group cities. For example, the largest quintile group cities in Western Africa is assumed to share 

the same city-specific attributes and dynamics (such as previous growth rates of city population and 

market potential), while conditioned by country-specific exogenous growth paths (such as projected 

national population growth, and urbanization rates). 

We repeat the same region-specific quintile grouping for 8,301 broader cities of more than 50,000 

population. Based on its quintile group, each city in this broader set is then assigned the growth attributes 

(listed in Table 9) extrapolated from corresponding core city statistics in the same quintile group of the 

same region. In this way we identify city growth dynamics of each 8,301 broader cities, and sequentially 

project city population growth rates and corresponding city population sizes backward (from 2000 to 

1970) and forward (from 2000 to 2050). 

In the third and final stage, we harmonize our projections with UN Population Division national urban 

population projections (to year 2050) as these are the most widely used national estimates of future urban 

and rural population. We adjust city population projections ( )adj. proj
ij,tcity pop such that national urban 

population growth rates are the same as the UN Population Division’s country projections. Specifically, 

ini. proj
UNPDkj,2000

k j,tadj. proj ini. proj
ij,t ij,t ini. proj UNPD

kj,t j,2000
k

city pop
urban pop

city pop city pop
city pop urban pop

j

j

∈

∈

= × ×
∑
∑ . 
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Aggregating urban population projections with data on the spatial distribution of cyclones and 

earthquakes described earlier shows that population exposure to those hazards is likely to more than 

double by 2050 (Figure 10 and Figure 11). The largest urban cyclone exposure is expected to be in South 

Asia while the largest earthquake exposure will be found in East Asia and the Pacific. Figure 12 shows 

the data for individual cities in map form. 

Figure 10: Population in large cities exposed to cyclones (1970-2050) 

 

Note: OHIE=Other high income economies, OECD=Organization for Economic Cooperation and Development, 
SSA=Sub-Saharan Africa, SAS=South Asia, MNA=Middle East and North Africa, LAC=Latin America and the 

Caribbean, ECA=Europe and Central Asia, EAP=East Asia and the Pacific. 
 

Figure 11: Population in large cities exposed to earthquakes (1970-2050) 
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Figure 12: Exposure to cyclones and earthquakes in large cities in 2000 and 2050 

 

Note: Map produced by Brian Blankespoor, DECRG; see also World Bank (2010). 

 

8 Conclusion 

This study assesses the risk of mortality and economic loss from catastrophic events in cities of 

developing countries worldwide with a population greater than 100,000. We calculate risk by combining 

the three modules of hazard, exposure, and vulnerability. The urban hazards are determined by overlaying 

the city locations with hazard severity grids; regional vulnerability coefficients are based on loss data 

from past events; and exposure is defined through city population and city GDP. We developed four 

single hazard risk indices and in addition, a multi-hazard index gives a holistic picture of city risk. The 

absolute risk values are converted into index values, classifying the results into relative presentations of 

risk. Expected urban risk exposure in the year 2050 is determined through projections of future city 
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population growth. The results suggest that populations exposed to earthquake and cyclone risks will 

more than double by 2050 in developing country cities. 

By revealing risk levels, this paper contributes to the knowledge on the variation of urban risks. Such 

knowledge is useful for local and national planners, as well as international donors. Disclosing risks to 

cities raises awareness, informs the prioritization of resources, inspires further research, particularly at 

local levels, and promotes a shift towards managing risks rather than emergencies.  

The index also provides a baseline for channeling international interest and funding for detailed urban 

multi-hazard risk assessments. These detailed assessments of the hazards, elements at risks, and the 

present and future vulnerabilities are required to gain a deep understanding for effective risk reduction 

and financial risk transfer mechanisms.  Once the underlying risks in a city are known, the key drivers of 

risk can be addressed through a range of policy options, for instance, through building codes, 

environmental rehabilitation, land use planning, and early warning. Since the current lack of integration 

of urban development and risk reduction increases vulnerabilities and expected future losses, a shift to 

proactive and preventive urban planning underpinned with the principle of diminishing risk is needed. 

This increased role of spatial and localized urban planning as a tool for reducing disaster is perhaps the 

most important public policy recommendation from this paper. 
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