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<Opening credits> 

 

<Intertitle> 

 

 Part 1: the Mechanism.  
 Presented by Professor Leonard Saunders, The  School of Pharmacy 
 
<Professor Leonard Saunders to camera, then over graphs, animated diagrams 
and tables of differential equations showing how intravenous drug doses 
function in a two compartment model> 

 

In the first programme of this series, a model of drug disposition was examined which 

was simple first order. The characteristic feature of this model is the linearity of the 

log concentration versus time plot. Experimental errors scatter the points about a 

straight line. However, for many drugs this is not the case. The best line through 

these points with a similar scatter is a curve. This means that the simple one 
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compartment disposition model cannot be applied. The curvature of the log plot 

suggests that the elimination rate gets less and less rapid as time passes, in 

comparison with the simple one compartment model. 

 

This can happen if there is a reservoir or second compartment from which elimination 

does not take place. For example, compartment one might be the plasma and all the 

tissue fluids that equilibrate rapidly with it. And compartment two, all other tissue 

fluids accessible to the drug. Then there will be a reversible transfer of drug between 

one and two. If the rates of transport are appropriate, compartment two will act as a 

reservoir. It will fill at high concentrations in compartment one in competition of 

excretion and return drug to compartment one as excretion reduces the 

concentration in the system. The intravenous administration of a dose of drug 

represents the rapid filling of compartment one. And as time passes, the drug 

disposes itself between the two compartments at the same time as being excreted. 

See how compartment two fills rapidly then slowly empties. The concentration of 

drug is always less than in compartment one. The amount of drug may be greater 

because of the larger volume of compartment two.  

 

We can examine the kinetics of this system. The disposition of the drug is 

characterised by three first order rate constants. ke, the rate constant for excretion; 

K1, the rate constant for absorption into the reservoir and k2 the constant for the 

return from the reservoir. These give rates of depletion of C1 as  

dC1/dt = -ke C1 - k1C1  + k2 C2  . 

The rate of this process depends on the concentration in C2. Because the volumes of 

compartments one and two are different, the same number of drug molecules leaving 

two, represents in C1, v2/v1 times the concentration in C2. So the contribution to 

compartment one from C2 is k2C2v2 divided by v1.  

 

The change in C1 and C2 looks like this. This dotted curve represents just first order 

excretion with the same ke value. C1 decreases more rapidly at high C1, because of 

the filling of the reservoir, and decreases more slowly at low C1 because the reservoir 

is empty. At all stages in the process, the total number of drug molecules is constant. 
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This can be expressed by writing x0=x1+x2+xe. That is to say, the initial dose is either 

in C1, C2 or excreted. 

 

00:06:44:00 

 

So the term C2 v2/v1 can be expressed as  

C2 v2/v1 = v2/v1 x  x2/v2 = 1/v1 (x0-x1-xe). 

And since x1/v1 is C1, the right-hand side of the equation becomes  

(x0 /v1)-C1-(xe /v1). 

This means that the kinetic equation for the model can be written in terms of C1 and 

xe. 

 

The elimination process can be considered separately. The quantity of drug 

eliminated to a given time, xe, represents a loss of C1 of xe/v1 concentration units. If 

this elimination process is first order, then  

d/dt (xe/v1)=keC1. 

This is a relation between xe and C1. These three equations are sufficient to express 

C1 in terms of t and the constants of the model. To make use of the third relation it is 

easiest to differentiate a second equation. Note that the term in x0 disappeared; the 

derivative of a constant is zero. Substituting the third equation into the second gives  

k2 (v2/v1) x dC2/dt = k2 (-dC1/ dt – keC1). 

To make use of the second equation differentiate the first with respect to time which 

gives  

d2C1/dt2 = (-ke+ k1) into dC1/dt + k2 v2/v1 x dC2/dt. 

And substituting for the last term gives  

d2C1/dt2  = - (ke+ k1+ k2) x dC1/dt – k2keC1. 

 

Rearranging, this gives a well-known second order differential equation.  

d2C1/dt2 + (ke+ k1+ k2) dC1/dt + k2keC1 = 0.  

This equation has exponential solutions and if C1 = Ae-mt , the two derivatives  

dC1/dt = -mC1; and d2C1/dt2 = m2C1. 
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When substituted into the differential equation give  

m2C1 – (ke+ k1+ k2)mC1 + kek2C1 = 0. 

The C1 cancels. This is the proof that the exponential is a solution and there are two 

possible values for m, the roots of the quadratic equation. If these are α and β, that is 

to say, the quadratic is  

(m-α)(m-β)=0 or m2 –(α+β)m + αβ = 0. 

A comparison with the original equation for m gives  

α+β = ke+ k1+ k2; αβ = kek2. 

 

The complete solution involves both possibilities and is  

Ae-αt + Be-βt

where A and B are the two arbitrary constants that arise from the solution of the 

second order differential equation. We can now follow the whole course of the 

disposition of excretion of a drug by this model. 

 

The changes in each compartment follow the mathematical model and the values of 

C1, C2 and xe, the amount excreted, approach the limiting values of 0,0 and X0 at 

long times.  

 

<Saunders to camera> 

 

The next programme examines the best ways in which kinetic parameters may be 

derived from a biological system which is represented by this model. 

 

<End of first programme> 

 

00:14:07:00 

 

<Intertitle> 

 

 Part 2: Obtaining Kinetic Parameters 
 Presented by Leonard Saunders, The School of Pharmacy 
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<Saunders over animated graphs and diagrams of differential equations 
showing how intravenous drug doses function in a two compartment model> 

 

The two compartment model of drug disposition is described by an equation with two 

exponential turns. In the preceding programme, the concentration C1 as a function of 

time was deduced as  

C1 = Ae-αt + Be-βt

where α and β depend on the rate constants ke, k1 and k2. It is conventional to take α 

as numerically the larger of the two and refer to it as the fast disposition constant; β 

is the slow disposition constant. This suggests a way of determining α and β. Long 

times, e-αt will be very small in comparison with e-βt. And so the decay at long times 

is dominated by the slow disposition constant. The log C1 versus t plot at late times 

tends to a straight line whose slope is -β/2.3. The differences between the two lines 

in terms of the numerical values on the vertical axis are the residuals, γ. As C1 is Ae-

αt + Be-βt the residuals are just Ae-αt. The log plot of these residuals should be linear. 

This residual at t = 1 hour is given by 20.8, the value of C1 – 11.0 from the 

extrapolated line. So γ = 9.8 which we can plot on the same graph. Similarly with the 

other points which lie on a reasonable straight line. From the graph the values of B, 

β, A and α can be read off as B = 19.0mg per litre, β = 0.124 hour-1, A = 14.3mg per 

litre, α = 1.15 hour-1.  

 

This graphical method is known as feathering. These values are liable to 

considerable error when the points are scattered. This is especially true for A and α 

since they depend on an extrapolation of a line based on the least accurate of the 

readings, the small long time values of C1. 

 

<Saunders to camera then over table showing computer programme model of 
equations> 
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A better method of extracting these values from the data is the computer method of 

non-linear least squares. The least squares regression analysis developed in the 

previous programme, was for a straight line. Values of A and B that gave a best fit 

were found by minimising the quantity Q, the sum of the squares of the differences 

between each value of y and the point on the line at the same x. This can be 

extended to any calculable function instead of a straight line. When Q becomes the 

sum over all points of observed value of the function minus calculated value squared. 

However, the partial derivatives of Q, with respect to the fitting parameters, in our 

case A, α, B and β give equations that are not so simply solved. The easiest way is 

to use a computer programme especially designed to give a numerical solution. 

 

A typical programme is in the Biomedical Library published by University of 

California. This programme minimises the fit of a given function at F with respect to 

the parameters. In this case, the programme requires expressions for the four 

derivatives D1 to D4. For this problem  

F = P1e-P2x+ P3e-P4x.  

And for example, D2 is -P1xe P2x.  

 

00:21:22:00 
 

The programme starts with given initial parameters and ends with values for them 

that minimise the squares of the differences between the observed value y and the 

value of the chosen function F at the same x for all points. 

 

<Saunders over computer output data, a table comparing results, tables 
showing differential equations, then to camera> 

 

This is the computer output from our data. The starting values were guesses and 

here are the values of the parameters that minimise the sum of the squares of the 

differences together with their standard deviations. As a check, this table is a 

comparison of the observed and best fit calculated points. The calculation fails if the 

points are too scattered or the function F is unsuitable for the data. You can tell that 
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this has happened when the standard deviations at some of the parameters are 

either zero or unreasonably large. 

 

As with the simple first order analysis, the least squares and graphical methods 

usually give us different answers. 

 

These are the computed results together with the graphical results obtained by the 

feathering method. The limits shown are the standard deviations from the 

programme. Only α in the last column is within one standard deviation from the least 

squares value. The values of the rate constants for the kinetic processes can be 

obtained from these values of the fitting parameters as follows. 

 

The mathematical analysis in the preceding programme gave two relationships 

between αβ and k1k2ke. These are  

α + β = ke+k1+k2 and αβ = kek2. 

Since there are three rate constants to determine, one further equation is required 

which may be developed from the excretion expression assumed to be first order. 

This can now be integrated since C1 is a known function of t. xe/v1 = ke times the 

intergral from 0 to t (Ae-αt + Be-βt)dt. After a long enough time xe is equal to x0 the 

initial dose so the relationship on setting the upper limit of the integral to infinity 

becomes  

x0/v1 = ke(A/α + B/β). 

x0/v1 is the initial concentration C0. From the boundary conditions that’s C = C0, at t = 

0. At t = 0 the exponential terms in the equation for C1 become 1. So C0 = 1, giving 

C0 = A+B.  

 

These equations can be combined by eliminating x0/v1 between them to give  

ke = αβ(A+B / Aβ + Bα).  

The second equation then gives  

k2 = αβ/ke. 

And finally from the first equation  

k1 = α+β-ke -k2. 
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 The least squares values of the parameters give ke = 0.178 hours-1, k1 = 0.394 

hours-1, k2 = 0.536 hours-1. 

 

This programme completes the consideration of results following intravenous 

injection. In the next programme we shall consider the kinetics after oral dosing. 

 

<End credits> 

 

 


